TW200912018A - Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof - Google Patents

Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof Download PDF

Info

Publication number
TW200912018A
TW200912018A TW96133158A TW96133158A TW200912018A TW 200912018 A TW200912018 A TW 200912018A TW 96133158 A TW96133158 A TW 96133158A TW 96133158 A TW96133158 A TW 96133158A TW 200912018 A TW200912018 A TW 200912018A
Authority
TW
Taiwan
Prior art keywords
magnesium alloy
titanium dioxide
alloy material
vapor deposition
thin film
Prior art date
Application number
TW96133158A
Other languages
Chinese (zh)
Inventor
Jian-Yi Wang
Shiung Li
Jang-Chiuan Shiu
You-Ching Fang
Shan Tung
Li Shiu
Ren-Bin Weng
De-Jiun Fan
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW96133158A priority Critical patent/TW200912018A/en
Publication of TW200912018A publication Critical patent/TW200912018A/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

The present invention provides a magnesium alloy material having a titanium dioxide thin film and its physical vapor deposition manufacturing method. The magnesium alloy material having titanium dioxide thin film includes: a magnesium alloy substrate; and a titanium dioxide thin film deposited over the magnesium alloy substrate. The physical vapor deposition manufacturing method of the magnesium alloy material having a titanium dioxide thin film includes steps of: preparing a magnesium alloy substrate; and plating a titanium dioxide thin film on the magnesium alloy substrate through physical vapor deposition. The magnesium alloy material having a titanium dioxide thin film is a corrosion-resistant material. Non environmental-unfriendly agents are generated during the manufacturing process and agent pollution is prevented, and the magnesium alloy material having a titanium dioxide thin film is an anti-fouling and sterilization material.

Description

200912018 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種具氧化物薄膜之鎂合金材料及其製造方法,尤其係 指一種具二氧化鈦薄膜之鎂合金材料及其物理氣相沉積製造方法,其係應 用在3C產品外殼、運輸工業、汽車、家電及0A產業之鎂合金防蝕、防污 及殺菌之領域。 【先前技術】 鎂合金具有低密度、高比強度、散熱性、财振性及電磁波遮蔽性等優 良特性,近年來不僅在3C產品外殼廣泛的被應用,在運輸工業、汽車、家 電及OA產業追求輕量化之潮流中,鎂合金之應用亦大幅擴展,然而财敍 性人佳疋阻礙鎂合金應用之關鍵問題。因此鎮合金表面處理之相關研究受 到各界的重視。近年來微弧陽極氧化處理(Barton T.F.,Macculloch J.A.,Ross P.N., United States Patent 6280598, 2001)(Khaselev O, Weiss D, Yahalom J.,200912018 IX. The invention relates to a magnesium alloy material with an oxide film and a manufacturing method thereof, in particular to a magnesium alloy material with a titanium dioxide film and a physical vapor deposition manufacturing method thereof It is applied in the fields of 3C product casing, transportation industry, automobile, home appliance and magnesium alloy anti-corrosion, anti-fouling and sterilization. [Prior Art] Magnesium alloys have excellent properties such as low density, high specific strength, heat dissipation, vibration resistance, and electromagnetic shielding. In recent years, they have been widely used not only in the outer casing of 3C products, but also in the transportation industry, automobiles, home appliances, and OA industries. In the pursuit of lightweight, the application of magnesium alloy has also expanded significantly, but the financial narration has hindered the key issues of magnesium alloy application. Therefore, the research on the surface treatment of the town alloy has received attention from all walks of life. In recent years, micro-arc anodic oxidation treatment (Barton T.F., Macculloch J.A., Ross P.N., United States Patent 6280598, 2001) (Khaselev O, Weiss D, Yahalom J.,

Corrosion Science 2001; 43; 1295)、新化成處理(Han E, Zhou W,Shan 〇, Ke W.,Materials Science Forum 2003; 419-422; 879)及鎂合金表面 Cladding 純 金屬(T.M· Yue、Y.P. Su、H.O. Yang,Laser cladding of Zr65Al7 5Ni10Cui7 5 amorphous alloy on magnesium)等表面處理研究陸陸續續出現,有些並已邁 入商業化。此外,以PVD在AZ91鎮合金鍵A1N+AIN+A1N和AlN+TiN Coating(A丨turn H,Sadri S.,Materials Design 2〇06; 27; 1174)及鎂合金本身之 高純度化亦是改善耐钮性之重要研究方向。 但上述之化成處理或陽極氧化之防蝕處理會產生一些不合環保之藥 劑,故本發明提供一種具二氧化鈦薄膜之鎂合金材料及其物理氣相沉積製 造方法,由於二氧化鈦為氧化物,且氧化物具有極高之耐蝕性,故本發明 使用物理氣相沉積在鎮合金表面鍍上一層緻密的二氧化鈦薄膜後,能達到 防钱之功效,且本發明能避免產生不合環保之藥劑,並減少藥劑之污染。 再者,由於二氧化鈦具有防污及殺菌之功效,故本發明具二氧化鈦薄膜之 200912018 鎂合金材料及其物理氣相沉積製造方法相較於習知鍍膜之鎂合金多了防污 及殺菌的功效。 【發明内容】_ 本發明之主要目的在於提供一種具二氧化鈦薄膜之鎮合金材料及其物 理軋相沉積製造方法,其在鎂合金表面錢上一層緻密的二氧化鈦膜後,能 達到防蝕之功效,並能避免習知鎂合金防蝕技術產生不合環保之藥劑,防 止藥劑之污染。 本發明之次要目的在於提供一種具二氧化鈦薄膜之鎂合金材料及其物 理氣相沉積製造方法,其在鎂合金表面鍍上一層緻密的二氧化鈦膜,相較 於習知鎂合金防蝕技術多了防污及殺菌之功效。 本發明提供一種具二氧化鈦薄膜之鎂合金材料及其物理氣相沉積製造 方法。該具二氧化鈦薄膜之鎂合金材料,包括:—鎮合金基材;及一二氧 化鈦薄膜設於纖合錄材上。該具二氧化鈦細域合金㈣之物理氣 相沉積製造方法’其步魏括:提供—鎂合金基材;及糊物理氣相沉積 法,將一二氧化鈦薄膜鑛於該鎂合金基材上。 【實施方式】 為使貴審查委員對本發明具二氧化鈦薄膜之鎮合金材料及其物理 =。積製&方法之特徵及方法步驟有更進—步之瞭解與認識,現將詳細 设计之原理及本發明之較佳實施例說明如後。 藉岭外光或太陽光的照射能使二氧化鈦(Ti〇2)光觸媒表面的電子吸 收足夠μ娜’而在電子麟的位置形絲正電的電洞,電洞會將附近 ㈣計g娜,柄.報默㈣彻田巷㈣ 即所μ超氧;氫氧自由基—旦遇到有機物f,便會將電子奪回, 物,八鍵結的潰散而裂解。—般的污染物或病原體多半是碳水化合 刀解敍雜會變成無害的水及二氧化碳,因此二氧化鈦可以達到除 200912018 污及滅菌的目標。 本發明具—德鈦薄膜之鎮合金材料卜包括(如第—圖所示):一鎮合 二材11 ’及—氧化鈦薄⑴2設於該鎂合金基材η上其中該二氧化 =膜12之厚料。該具二氧化料社鎂合金材料丨為一抗餘 材料或一除污及抗菌材料。 本土月氧化鈦薄膜之鎂合金材料之物理氣相沉積製造方法,其步 驟包括(如第二圖所示): si提供一鎂合金基材;及 S2利用物理氣相沉積法,將一二氧化鈦薄膜鍵於該鎮合金基材上。 其中該物理IU目沉積法包括—贿法及_蒸鍍法,又誠鍍法為一磁 控濺鍍法。 該磁控麟法之步驟於―題巾進行。顏步驟為先將鎂合金基材置 於該腔體中,並將該腔體抽真空至真空度為Η臟_,通人氬氣之通量 為30〜50 sccm及氧氣通量為5〜1〇 sccm,並將鎂合金基材加熱至23〇〜27〇 °C,並使㈣顿〜49GV的健賴,產生之二氧化鈦賴之膜厚為 〇·1 〜5μηι。 較佳實施例 採用反應性磁控濺鍍法’將二氧化鈦薄膜鍍於^91鎂合金板上,鍍膜 步驟於腔體中進行。鑛膜步驟為先將鎂合金板置於該腔體中,並將該腔 體抽真空至真空度為2 mm torr’通入氬氣之通量為40 seem及氧氣通量為7 SCCm ’並將鎂合金板加熱至250°C,並使用470V的電壓鍍膜,產生之二氧 化欽薄膜之膜厚為lum。然後執行光觸媒特性測試及耐姓性試驗。 光觸媒特f生測武採用接觸角(Contact angle)來評估。利用紫外光分別照 射热瑕鎂场合金緘片汉一氧化紙瑕朕鞅甘五試^,母朐川为、锤凋成 水滴與鎂合金試片之接觸角變化情形。 耐钮性試驗則採用恆電位儀測試’測試無鍍膜ΑΖ91鎂合金試片及二氧 化鈦鍍膜鎂合金試片之電化學極化曲線。 200912018 二氧化鈦光觸媒經uv光照射後,會形成親水基表面。第三圖為二氧 化欽錢膜鎂合金試片及無鍍膜AZ91鎂合金試片經^光照射後之接觸角變 化。無錄膜AZ91鎂合金試片呈現極高的接觸角,υγ光照射後接觸角仍高 達6〇。,相反地’二氧化鈦鍍膜鎂合金試片經UY光照射後,接觸角隨時間· 之增長而降低,20分鐘後即降至10。以下,顯示二氧化鈦鍍膜鎂合金試片 達到極佳之親水性。 第四圖為二氧化鈦鍍膜鎂合金試片與無鍍膜AZ91鎂合金試片之極化 曲線,縱軸是極材相對於氯化銀(AgCl)之電極電位,橫軸是極材單位面積通 過的電流,即電流密度。由第四圖可知,A291鎂合金試片之腐蝕電位約為 L45V,而二氧化鈦鍍膜鎂合金試片之腐蝕電位約為262V。較高之腐蝕 電位具有較佳之耐蝕性,因此二氧化鈦鍍膜鎂合金試片之耐蝕性優於無鍍 膜AZ91鎂合金試片。 ^根據本發明,在鎂合金表面鍍上一層二氧化鈦薄膜,經由紫外光照射 後’其接_會_下降至5。左右,錢合金表轉光觸媒個而達到防 '殺菌的效果。另一方面,由極化曲線測試結果_,可知經二氧化鈦錢臈 ^鎮&金之腐餘電位咼於無二氧化鈦鑛膜之鎂合金故二氧化鈦鍍膜後 之鎂合金的耐蝕能力可顯著的提升。 惟=上所述者,縣本發歡錄實關而已,並非絲限定本發明 =之範圍’舉凡依本發日种請專利範麟述之構造、特徵及精神所為之 =等變化與修飾,均應包括於本發明之申請專利範園内。 【圖式簡單說明】 第—圖為本發明具二氧化鈦薄膜之鎮合金材料之側視圖。 丰固补㈣丹一氣減薄朕合金相斜^^氣相崎嚴运 步驟流程圖。 : 第-圖為本發明二氧化賴賴合金刻及無觀細齡金試片對水 之接觸角和紫外(UV)光照射時間之關係圖。 200912018 第四圖為本發明二氧化鈦鍍膜鎂合金試片及無鍍膜AZ91鎂合金試片之恒 電位儀測試之電化學極化曲線圖。 【主要元件符號說明】 ‘ 1具二氧化鈦薄膜之鎂合金材料 11鎂合金基材 12二氧化鈦薄膜Corrosion Science 2001; 43; 1295), new chemical treatment (Han E, Zhou W, Shan 〇, Ke W., Materials Science Forum 2003; 419-422; 879) and magnesium alloy surface Cladding pure metal (TM·Yue, YP Su, HO Yang, Laser cladding of Zr65Al7 5Ni10Cui7 5 amorphous alloy on magnesium) and other surface treatment research have appeared, and some have entered commercialization. In addition, the high purity of the magnesium alloy in the AZ91 town bond A1N+AIN+A1N and AlN+TiN Coating (A丨turn H, Sadri S., Materials Design 2〇06; 27; 1174) and the magnesium alloy itself is also improved. An important research direction of button resistance. However, the above-mentioned chemical treatment or anodizing anti-corrosion treatment may produce some environmentally unfriendly chemicals, so the present invention provides a magnesium alloy material having a titanium dioxide film and a physical vapor deposition manufacturing method thereof, since titanium dioxide is an oxide and the oxide has Extremely high corrosion resistance, the present invention uses physical vapor deposition to deposit a dense titanium dioxide film on the surface of the alloy, which can achieve the effect of preventing money, and the invention can avoid the generation of environmentally friendly chemicals and reduce the pollution of the medicament. . Furthermore, since the titanium dioxide has antifouling and sterilizing effects, the 200912018 magnesium alloy material having the titanium dioxide film and the physical vapor deposition manufacturing method thereof have more antifouling and sterilizing effects than the conventional magnesium alloy. SUMMARY OF THE INVENTION The main object of the present invention is to provide a titanium alloy thin film alloy material and a physical roll deposition manufacturing method thereof, which can achieve an anti-corrosion effect after a dense titanium dioxide film on the surface of the magnesium alloy. It can avoid the conventional magnesium alloy anti-corrosion technology to produce environmentally friendly chemicals to prevent contamination of chemicals. A secondary object of the present invention is to provide a magnesium alloy material having a titanium dioxide film and a physical vapor deposition method thereof, which are coated with a dense titanium dioxide film on the surface of the magnesium alloy, which is more resistant than the conventional magnesium alloy anti-corrosion technology. The effect of pollution and sterilization. The present invention provides a magnesium alloy material having a titanium dioxide film and a physical vapor deposition manufacturing method thereof. The magnesium alloy material having a titanium dioxide film comprises: a town-alloy substrate; and a titanium dioxide film is disposed on the fiber-bonding material. The method for producing a physical gas phase deposition of the titanium dioxide fine-domain alloy (4) is as follows: providing a magnesium alloy substrate; and a paste physical vapor deposition method, depositing a titanium dioxide film on the magnesium alloy substrate. [Embodiment] In order to enable the examiner to apply the titanium alloy film of the present invention to the alloy material and its physical =. The features and method steps of the <RTI ID=0.0>>>>>> By illuminating the outside of the ridge or the sunlight, the electrons on the surface of the titanium dioxide (Ti〇2) photocatalyst can be sufficiently absorbed. In the position of the electron lining, the hole is positively charged, and the hole will be nearby (four). Handle. Reporting silence (4) Chetian Lane (4) That is the super-oxygen; the hydroxyl radicals will encounter the organic matter f, and the electrons will be recaptured, and the eight bonds will be broken and cracked. Most of the pollutants or pathogens are carbon hydrates, and the water and carbon dioxide are harmless. Therefore, titanium dioxide can achieve the goal of pollution and sterilization in addition to 200912018. The invention relates to an alloy material of a titanium film comprising (as shown in the first figure): a town of two materials 11' and a thin titanium oxide (1) 2 disposed on the magnesium alloy substrate η wherein the dioxide = film 12 thick material. The magnesium alloy material of the dioxide material is a residual material or a decontamination and antibacterial material. The physical vapor deposition manufacturing method of the magnesium alloy material of the local titanium oxide film comprises the steps (as shown in the second figure): si provides a magnesium alloy substrate; and S2 uses a physical vapor deposition method to form a titanium dioxide film The bond is on the town alloy substrate. The physical IU mesh deposition method includes a bribe method and an evaporation method, and the electroplating method is a magnetron sputtering method. The steps of the magnetron control method are carried out in the title towel. The color step is to first place the magnesium alloy substrate in the cavity, and evacuate the cavity to a vacuum degree of Η_, the flux of argon gas is 30~50 sccm and the oxygen flux is 5~ 1 〇 sccm, and the magnesium alloy substrate is heated to 23 〇 ~ 27 ° ° C, and (four) ton ~ 49 GV of the health, the resulting titanium dioxide film thickness is 〇 · 1 ~ 5 μηι. DETAILED DESCRIPTION A titanium dioxide film is plated onto a ^91 magnesium alloy plate by reactive magnetron sputtering, and the coating step is carried out in a cavity. The filming step is to first place a magnesium alloy plate in the cavity, and evacuate the cavity to a vacuum of 2 mm torr 'the flux of argon gas is 40 seem and the oxygen flux is 7 SCCm 'and The magnesium alloy sheet was heated to 250 ° C and coated with a voltage of 470 V, and the film thickness of the oxidized film was lum. Then, photocatalytic property test and resistance to surname test were performed. Photocatalysts are evaluated using a contact angle. Ultraviolet light was used to respectively illuminate the yttrium-manganese field alloy yttrium-manganese oxide paper, and the contact angle of the water droplets with the magnesium alloy test piece was changed. The resistance test was conducted using a potentiostat test to test the electrochemical polarization curves of the uncoated ΑΖ91 magnesium alloy test piece and the titanium dioxide coated magnesium alloy test piece. 200912018 Titanium dioxide photocatalyst will form a hydrophilic surface after being irradiated by UV light. The third figure shows the contact angle change of the oxidized zirconia magnesium alloy test piece and the uncoated AZ91 magnesium alloy test piece after the light irradiation. The unrecorded AZ91 magnesium alloy test piece exhibited an extremely high contact angle, and the contact angle was still as high as 6 υ after υγ light irradiation. On the contrary, the contact angle of the titanium dioxide-coated magnesium alloy test piece after UY light irradiation decreased with time, and fell to 10 after 20 minutes. Hereinafter, it is shown that the titanium oxide coated magnesium alloy test piece achieves excellent hydrophilicity. The fourth picture shows the polarization curves of the titanium dioxide coated magnesium alloy test piece and the uncoated AZ91 magnesium alloy test piece. The vertical axis is the electrode potential of the pole material relative to silver chloride (AgCl), and the horizontal axis is the current passing through the unit area of the pole material. , that is, current density. As can be seen from the fourth figure, the corrosion potential of the A291 magnesium alloy test piece is about L45V, and the corrosion potential of the titanium dioxide coated magnesium alloy test piece is about 262V. The higher corrosion potential has better corrosion resistance, so the corrosion resistance of the titanium dioxide coated magnesium alloy test piece is better than that of the uncoated AZ91 magnesium alloy test piece. According to the present invention, a titanium dioxide film is plated on the surface of the magnesium alloy, and after irradiation with ultraviolet light, it is lowered to 5. Left and right, the money alloy watch turns to the photocatalyst to achieve the anti-bacterial effect. On the other hand, from the results of the polarization curve test, it can be seen that the corrosion resistance of the magnesium alloy after the titanium dioxide coating of the titanium dioxide and the gold residue of the titanium dioxide is significantly improved. However, if the above is mentioned, the county is not only limited by the scope of the invention. The scope, characteristics and spirit of the patent Fan Linshu are changed and modified. Both should be included in the patent application garden of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a side view of the town alloy material having a titanium dioxide film of the present invention. Feng Gubu (four) Dan Yi gas thinning bismuth alloy phase oblique ^ ^ gas phase rigorous step flow chart. : Fig. 1 is a graph showing the relationship between the contact angle of water and the ultraviolet (UV) light irradiation time of the ruthenium-free and ruthless gold test pieces of the present invention. 200912018 The fourth figure is an electrochemical polarization curve of the potentiostat test of the titanium dioxide coated magnesium alloy test piece and the uncoated AZ91 magnesium alloy test piece of the present invention. [Description of main component symbols] ‘Magnesium alloy material with titanium dioxide film 11 Magnesium alloy substrate 12 Titanium dioxide film

Claims (1)

200912018 十、申請專利範圍·· ι_ 一種具二氧化鈦薄膜之鎂合金材料,包括·· 一鎂合金基材;及 一二氧化鈦薄臈設於該鎂合金基材上。· 2.如申請專利範圍第】項所述之具二氧化鈦薄膜之鎮合金材料,其中該二 氧化欽薄膜之厚度為0.1〜5μηι。 1如^專利範圍冑1項所述之具二氧化鈦薄膜之鎮合金材料,其中該具 二氧化鈦薄膜之鎂合金材料為一抗蝕材料。 4·如申請專利範圍帛i項所述之具二氧化鈦薄膜之鎮合金材料,其中該具 二氧化鈦薄膜之鎂合金材料為一除污及抗菌材料。 5. -種具二氧化鈦雜之鎂合金材料之物理氣相沉積製造方法,其步驟包 括: ' 提供一鎂合金基材;及 利用物理氣相沉積法,將一二氧化鈦薄膜鍍於該鎂合金基材上。 6. 如申請專利範圍第5項所述之具二氧化鈦薄膜之鎂合金材料之物理氣 相沉積製造方法,其中該物理氣相沉積法包括一濺鑛法及一蒸鑛法。 7. 如申請專利範圍第6項所述之具二氧化鈦薄膜之鎂合金材料之物理氣 相沉積製造方法’其中該歲鍵法為一磁控濺鍵法。200912018 X. Patent application scope·· ι_ A magnesium alloy material with a titanium dioxide film, including a magnesium alloy substrate; and a titanium dioxide thin crucible disposed on the magnesium alloy substrate. 2. The town alloy material having a titanium dioxide film as described in the patent application scope, wherein the thickness of the oxidized film is 0.1 to 5 μm. An alloy material having a titanium dioxide film as described in claim 1, wherein the magnesium alloy material having a titanium dioxide film is a resist material. 4. The alloy material having a titanium dioxide film as described in the patent application 帛i, wherein the magnesium alloy material having the titanium dioxide film is a decontamination and antibacterial material. 5. A physical vapor deposition manufacturing method for a titanium dioxide mixed magnesium alloy material, the steps comprising: 'providing a magnesium alloy substrate; and plating a titanium dioxide film on the magnesium alloy substrate by physical vapor deposition on. 6. The method for producing a physical gas phase deposition of a magnesium alloy material having a titanium dioxide film according to claim 5, wherein the physical vapor deposition method comprises a sputtering method and a steaming method. 7. The method for producing a physical gas phase deposition of a magnesium alloy material having a titanium dioxide film as described in claim 6 wherein the old bond method is a magnetron sputtering method.
TW96133158A 2007-09-06 2007-09-06 Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof TW200912018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96133158A TW200912018A (en) 2007-09-06 2007-09-06 Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96133158A TW200912018A (en) 2007-09-06 2007-09-06 Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW200912018A true TW200912018A (en) 2009-03-16

Family

ID=44724765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96133158A TW200912018A (en) 2007-09-06 2007-09-06 Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200912018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735141B (en) * 2020-01-17 2021-08-01 香港商巨騰國際控股有限公司 Surface treatment method and structure of magnesium alloy object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735141B (en) * 2020-01-17 2021-08-01 香港商巨騰國際控股有限公司 Surface treatment method and structure of magnesium alloy object

Similar Documents

Publication Publication Date Title
Aliofkhazraei et al. Nano-fabrication by cathodic plasma electrolysis
Cotolan et al. Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate
Saji et al. Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution
Uhm et al. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering
Zhao et al. Antibacterial characteristics of electroless plating Ni–P–TiO2 coatings
Lin et al. Surface characteristics of a dental implant modified by low energy oxygen ion implantation
Lee et al. The biocompatibility of HA thin films deposition on anodized titanium alloys
JP6223327B2 (en) Production and application of catalytically active metal reactive foam materials
Saharudin et al. Surface modification and bioactivity of anodic Ti6Al4V alloy
Shayganpour et al. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration
JPWO2018225861A1 (en) Multilayer structure and method for producing multilayer structure
US10000841B2 (en) Hydrophilic-hydrophobic transformable composite film and the method of fabricating the same
Wang et al. Investigation on time-dependent wetting behavior of Ni-Cu-P ternary coating
Zhao et al. Acid‐induced bioactive titania surface
JPH10121266A (en) Metallic material having photocatalytic activity and its production
Agbe et al. Electrochemically synthesized silver phosphate coating on anodized aluminum with superior antibacterial properties
Wei et al. Formation of CaTiO3/TiO2 composite coating on titanium alloy for biomedical applications
Hayden et al. Electrode coatings from sprayed titanium dioxide nanoparticles–behaviour in NaOH solutions
JP2000096212A (en) Photocatalyst film coated member and its production
Zhao et al. Dose-Dependent effects of CeO 2 on microstructure and antibacterial property of plasma-sprayed TiO 2 coatings for orthopedic application
TW200912018A (en) Magnesium alloy material having titanium dioxide thin film and physical vapor deposition manufacturing method thereof
Musil et al. Two-functional direct current sputtered silver-containing titanium dioxide thin films
Sato et al. Ultra-rapid formation of crystalline anatase TiO2 films highly doped with substrate species by a cathodic deposition method
JP4620844B2 (en) Metal plate with photocatalytic activity
JP2002187806A (en) Antimicrobial material