TW200912011A - Apparatus and method for fabrication of magnesium-matrix composites - Google Patents

Apparatus and method for fabrication of magnesium-matrix composites Download PDF

Info

Publication number
TW200912011A
TW200912011A TW96134479A TW96134479A TW200912011A TW 200912011 A TW200912011 A TW 200912011A TW 96134479 A TW96134479 A TW 96134479A TW 96134479 A TW96134479 A TW 96134479A TW 200912011 A TW200912011 A TW 200912011A
Authority
TW
Taiwan
Prior art keywords
magnesium
composite material
based composite
preparing
electromagnetic
Prior art date
Application number
TW96134479A
Other languages
Chinese (zh)
Other versions
TWI367264B (en
Inventor
Kam-Shau Chan
Cheng-Shi Chen
Li-Qing Zhang
Wen-Zhen Li
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096134479A priority Critical patent/TWI367264B/en
Publication of TW200912011A publication Critical patent/TW200912011A/en
Application granted granted Critical
Publication of TWI367264B publication Critical patent/TWI367264B/en

Links

Abstract

The present invention relates to a method for fabrication of magnesium-matrix composites. The method includes the steps of: providing a plurality of magnesium particles and a plurality of carbon nanotubes, forming a mixture of the magnesium particles and the carbon nanotubes; heating the mixture in a circumstance of protected air to form a semi-solid-state paste; imparting a electromagnetic stirring force to the semi-solid-state paste to make the carbon nanotubes evenly dispersed therein; injecting the semi-solid-state paste into a die casting; cooling down the semi-solid-state paste to form the magnesium-matrix composites. The present invention also relates to a system for fabrication of magnesium-matrix composites. The system includes a fix quantify feed-in device, a thixomolding machine, an electromagnetic stirring device and an injectomolding machine.

Description

200912011 九、發明說明: 【發明所屬之技術領域】 ’ 本發明涉及一種複合材料的製備方法及製備裝置,尤 其涉及一種鎂基複合材料的製備方法及製備裝置。 【先前技術】 鎮合金係目别工業應用中最輕的金屬合金結構材料之 一,具有很局的比強度和比剛度、優異的阻尼性、良好的 f 電磁相容性、易加工等優點,可廣泛用於航空航天領域、 車行業和資訊產業當中。然先前技術中鎂合金的強韋刀性 還較低,其強度僅為相同工藝製備鋁合金的5〇%〜7〇% ,而 其韌性及塑性與鋁合金間的差距更大,易發生潛變,這限 制了鎂合金的應用範圍。而鎂合金複合材料在這方面可以 彌補鎮合金的不足。 目别,一般採用通過外加陶瓷相、纖維、奈米碳管 (carbon nanotube,CNT)等增強相來複合獲得鎂合金複合 、 材料。在鎂合金·材料中加人奈树管,形成的複合材料具 ^下優點,第―,可以提高複合材料的抗拉強度,奈米 =盲/、鎂s金材料複合時易與其介面結合良好,使鎂合金— ^来峡讀合材料能承受更大的抗力;第二,可以提高複 辟的L伸率,奈米碳管與鎂合金材料基體浸潤性及介 域合力好’使鎂合金_奈米碳管複合材料具有更優異的性 能。 先引技術中,常採用粉末冶金法、噴射沈積法、熔體 >料授拌铸造法製備鎂基複合材料’然所製備的鎮基 7 200912011 複合材料中存在著奈米碳管分散不均勻(請參見, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique,C S Goh et al., Nanotechnology,vol 17, p7(2006))和奈米碳管與鎂合金材料基體浸潤性差的 問題。這係由於奈米碳管在液相合金中的低·性而浮到 了液相合金的表面,使得奈米碳管在鎂合金材射發生偏 聚,造成奈米碳管在鎂合金材料中分散不均勾,和鎮合金 材料基體的相容性、介面浸難差。從而導致了鎮合金— 奈米碳管複合材料在抗㈣度和植方面沒有達到預°期的 要求,此’奈米碳管的分散及與基_結合力強弱係影 響奈米石炭管增強效果的關鍵因素。 _於此’提供-種奈米辦分散均勻,且 強度高及_好賴基複合材料的製備方法及製備 為必要。 & 只 【發明内容】. -種鎂基複合㈣的製備方法,包括町 步,提供大量的鎮顆粒和大量的奈米碳管第 奈米碟管的混合體m保 護=顆^ 與奈米竣管混合後得到的混合體^口= 奈米碳管在半固態漿料中均勻^#,電磁攪拌’以使 为放有奈米碳管料_漿_射進 _ 1勾 後’得到一織複合材料。 AM中’冷卻 8 200912011 -種製備上親基複合㈣妙備裝置—旦 輸送裝置、-觸變成形機、—電㈣^ 上述定量輸钱置包括-進料σ卜輪/ m =帶相連通。上述觸變成形機包括一加熱:和: 2喷^在加熱_第_端,上述定量輸送裝置的幹 :力::熱:第二端相?通。上述觸變成形機進-步包: 圍口碟1、—螺杆及—單向閥。加熱帶圍繞在加熱桶的外 圍。螺杆设置在加熱桶内軸心處。單向閥設置於上述螺杆 之上。上述電磁勝器包括—感應線圈和—電源,該感應 線圈3又置於加熱桶第—端的加熱帶的外圍。上述注射成形 機包括一壓鑄模具。 與先前技術相比較,所述的鎂基複合材料的製備方法 通過對鎂顆粒和奈米碳f形成的半固態漿料施加電磁擾 拌,此有效避免奈米碳管浮到半固態漿料表面的現象,使 得奈米碳管在半固態漿料中不發生偏聚,保證奈米碳管在 半固態漿料中均‘勻分散的同時具有很好的流動性。從而使 得奈米碳管和鎂合金材料基體的相容性、介面浸潤性好, 可以獲得抗拉強度高和延伸率大的鎂基複合材料。 所述的鎂基複合材料的製備裝置可在先前技術的半固 態鎂合金製備裝置上直接增設一電磁攪拌器,結構簡單, 容易實現,無須重新設計裝置製備鎂基複合材料。 【實施方式】 下面將結合附圖及具體實施例,對本發明提供的鎂基 複合材料的製備方法及製備裝置作進一步的詳細說明。 200912011 如圖1所示’本發明提供了—顧基複合材料的製備 方法’其具體包括以下步驟: (-)提供大I的賴粒與大量的奈米碳管,將鎮顆 粒和奈米碳管混合,得關難與奈米碳管的混合體。' 其中,鎂顆粒可以係純鎂顆粒也可以係鎮合金 上述的鎂合金顆粒驗成元素除鎂外,還含有鋅、盆、铭、 錯、钍、經、銀、解其他元素中的一種或幾種。直中鎮 占鎂合金顆粒總質量百分比_以上,其他域占鎮合金 顆粒總質量百分比·以下。本實施織勒純鎂顆粒。 鎂顆粒平均直徑為2〇奈料nm)_1QQ微米(㈣。奈米碳管 為市场上銷售的普通奈米碳管,所採用的奈料管的直徑 為^n-15〇nm,奈米石炭管的長度^Um_1〇#m。奈米碳管 質量與鎂顆粒質量之間的比例為1:5G_1:2QQ,本實施例優 ^為1.1GG。其巾奈米碳管的加人量不能過多,否則因奈 求碳管難以分散會使複合材料的性能大幅下降。 ’ (―)在保.護氣體保護下,加熱上述鎂顆粒與奈米碳 笞此合後得到的混合體,形成一半固態漿料。 上述鎂顆粒與奈米碳管的混合體係在密閉的裝置中進 仃加熱的。該裝置在加熱設制侧下簡加熱溫度在一 預定溫度,該預定溫度需確保上述混合體被加熱至半固態 的漿料的同時’並_上述混合體的半關狀g。上述的 預定溫度係不固定的,根據上述混合體中奈米碳管和鎂合 金顆粒質量之間比例的不同及鎂合金顆粒成分的不同而不 同。本實施例優選奈米碳管質量與純鎂顆粒質量以1:1〇〇 200912011 的比例混合,在預定溫度為縦c下加 =::具有,拌設備,拌設== 置中疋轉,對+固態漿料進行局部撥掉,實現夺 半固隸料中的初步分散。上述混合體應在保護氣體環境 防止觀,該賴缝為紐賴或氮氣, 本戶、細例優選保護氣體為氬氣。 (三)對上述的半固態襞料施加電磁 竣管在半© s料巾均自分散。 使不米 ,磁擾拌係利用導電的半固態漿料與變化磁場間產生 的感應力驅動半固態漿料進行旋轉運動。電磁攪拌可以通 過一電磁攪拌器來進行,上述的電磁_器的功率為〇 2 千瓦⑽〜15千瓦⑽,頻率為5赫兹⑽)〜3()赫兹(ηζ), 擾拌速率為500轉/分(rmp)〜3咖轉/分(卿)。在電磁攪 拌,中通過5HZ〜3GHZ的交流電,會產生—變化的磁場。半 固悲漿料在電磁授拌器所產生的變化磁場的作用下會產生 一感應電流。感應電流產生的感應磁場與變化磁場之間的 相互作用’推動半固態漿料以整體游的方式運動。這種 整體攪拌的作用能夠有效避免奈米碳管浮到半固態賴表 面的現象,使得奈米碳管在半固態漿料中不發生偏聚,保 也不米石厌官在半固恶漿料中均勻分散的同時具有很好的流 動性。從而使得奈米碳管和鎂合金材料基體的相容性、介 面浸潤性好。通過電源調節電磁攪拌器的功率和頻率,可 以控制電磁攪拌的強度和速度,從而實現奈米妓管在鎮基 複合材料中良好的分散性及浸潤性。 11 200912011 &將2的電磁攪拌器了電磁感應的原理可以對半固 悲水·現整體的方式,使奈米碳f 性及浸潤性 均句妓,從而實現奈米碳管在半固祕料巾良200912011 IX. Description of the Invention: [Technical Field] The present invention relates to a method and a device for preparing a composite material, and more particularly to a method and a device for preparing a magnesium-based composite material. [Prior Art] One of the lightest metal alloy structural materials in industrial applications, it has the advantages of specific strength and specific stiffness, excellent damping, good f electromagnetic compatibility, and easy processing. Can be widely used in the aerospace industry, the automotive industry and the information industry. However, the strength of the magnesium alloy in the prior art is still low, and its strength is only 5〇%~7〇% of the aluminum alloy prepared by the same process, and the difference between the toughness and the plasticity and the aluminum alloy is larger, and the potential is easy to occur. This limits the range of applications of magnesium alloys. Magnesium alloy composites can make up for the deficiency of town alloys in this respect. In view of the above, magnesium alloy composites and materials are generally obtained by externally adding a ceramic phase, a fiber, a carbon nanotube (CNT) or the like. In the magnesium alloy material, the Nai tree tube is added, and the formed composite material has the following advantages. The first one can improve the tensile strength of the composite material, and the nanometer = blind/magnesium s gold material is easy to combine with the interface. In order to make the magnesium alloy - ^ to the gorge reading material can withstand greater resistance; second, can improve the recovery of the L elongation rate, the carbon nanotube and magnesium alloy material matrix infiltration and the good combination of the 'good magnesium alloy _Nanocarbon tube composites have superior performance. In the first introduction technique, the powder metallurgy method, the spray deposition method, the melt > material feeding and casting method are used to prepare the magnesium-based composite material. However, the town base 7 prepared in the 200912011 composite material has uneven distribution of the carbon nanotubes. (See, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, CS Goh et al., Nanotechnology, vol 17, p7 (2006)) and the problem of poor wettability of the carbon nanotube and magnesium alloy material matrix. This is due to the low polarity of the carbon nanotubes in the liquid phase alloy and floats to the surface of the liquid phase alloy, which causes the carbon nanotubes to be segregated in the magnesium alloy, causing the carbon nanotubes to be dispersed in the magnesium alloy material. Uneven hook, compatibility with the matrix of the alloy material, poor interface dipping. As a result, the town alloy-nano carbon nanotube composite material does not meet the pre-period requirements in terms of resistance (four degrees) and planting. The dispersion of the 'nano carbon tube and the strength of binding with the base _ influence the enhancement effect of the carboniferous tube. The key factor. _ This provides a kind of nano-distribution uniform, high strength and _ good lye matrix composite preparation and preparation is necessary. & only [invention content]. - Preparation method of magnesium-based composite (four), including the town, providing a large number of town particles and a large number of carbon nanotubes, a mixture of tenmimeters, m protection = ^ ^ and nano The mixture obtained after the mixing of the manifold is in the form of a carbon nanotube in the semi-solid slurry, and the electromagnetic stirring is performed so that the carbon nanotube material is placed in the semi-solid state. Woven composite materials. AM 'cooling 8 200912011 - preparation of the upper parent compound (four) wonderful device - once the transport device, - thixoforming machine, - electricity (four) ^ The above quantitative money input includes - feed σ wheel / m = belt connected . The above thixoforming machine comprises a heating: and: 2 spraying at the heating_the _ end, the drying of the above-mentioned quantitative conveying device: force:: heat: the second end phase is open. The above-mentioned thixoforming machine advances into a step package: a mouth dish 1, a screw and a - check valve. The heating belt surrounds the outer circumference of the heating tub. The screw is placed at the inner center of the heating barrel. A check valve is disposed above the screw. The electromagnetic actuator includes an induction coil and a power source, and the induction coil 3 is again placed on the periphery of the heating belt at the first end of the heating barrel. The above injection molding machine includes a die casting mold. Compared with the prior art, the method for preparing the magnesium-based composite material applies electromagnetic interference to the semi-solid slurry formed by the magnesium particles and the nano carbon f, which effectively prevents the carbon nanotube from floating to the surface of the semi-solid slurry. The phenomenon that the carbon nanotubes do not segregate in the semi-solid slurry ensures that the carbon nanotubes are uniformly dispersed in the semi-solid slurry and have good fluidity. Therefore, the compatibility and interface wettability of the carbon nanotubes and the magnesium alloy material matrix are good, and a magnesium-based composite material having high tensile strength and high elongation can be obtained. The preparation device of the magnesium-based composite material can directly add an electromagnetic stirrer to the semi-solid magnesium alloy preparation device of the prior art, and has a simple structure and is easy to realize, and does not need to redesign the device to prepare the magnesium-based composite material. [Embodiment] Hereinafter, a method for preparing a magnesium-based composite material and a preparation apparatus provided by the present invention will be further described in detail with reference to the accompanying drawings and specific embodiments. 200912011 As shown in FIG. 1 'the present invention provides a method for preparing a Guji composite material', which specifically comprises the following steps: (-) providing a large I granule and a large number of carbon nanotubes, the town granule and the nano carbon The tube is mixed and it is difficult to mix with the carbon nanotubes. ' Among them, the magnesium particles may be pure magnesium particles or may be alloyed alloys. The above-mentioned magnesium alloy particles are in addition to magnesium, and also contain one of zinc, pot, inscription, error, bismuth, warp, silver, and other elements. Several. Zhizhong Town occupies the total mass percentage of magnesium alloy particles_above, and other domains account for the total mass percentage of the town alloy particles. This embodiment is a pure magnesium particle. The average diameter of magnesium particles is 2〇N) nm)_1QQ microns ((4). The carbon nanotubes are commercially available ordinary carbon nanotubes, and the diameter of the tube used is ^n-15〇nm, nanocarbon The length of the tube ^Um_1〇#m. The ratio between the mass of the carbon nanotubes and the mass of the magnesium particles is 1:5G_1:2QQ, and the optimum of this embodiment is 1.1GG. The amount of the carbon nanotubes can not be excessive. Otherwise, the performance of the composite material is greatly reduced due to the difficulty in dispersing the carbon tube. ' (-) The mixture obtained by heating the above-mentioned magnesium particles and nano carbon 在 under the protection of the protective gas to form a half solid state The slurry of the above-mentioned magnesium particles and the carbon nanotubes is heated in a closed device. The device is heated at a predetermined temperature on the heating side, and the predetermined temperature is required to ensure that the mixture is heated. At the same time as the semi-solid slurry, and the above-mentioned predetermined temperature is not fixed, according to the difference between the mass of the carbon nanotubes and the magnesium alloy particles in the above mixture and magnesium The composition of the alloy particles is different. This embodiment is preferred. The quality of the carbon nanotubes and the mass of pure magnesium particles are mixed in the ratio of 1:1〇〇200912011, and the temperature is 縦c under the predetermined temperature =:: with, mixing equipment, mixing == 置 ,, + + solid slurry The material is partially removed to achieve the initial dispersion in the semi-solid material. The above mixture should be protected from the protective gas environment, and the slit is Nilai or Nitrogen. The household and the fine example are preferably argon. c) Applying an electromagnetic manifold to the above-mentioned semi-solid material to self-disperse in the half-s towel. The non-meter, magnetic interference system drives the semi-solid slurry by the induction force generated between the conductive semi-solid slurry and the varying magnetic field. The material is rotated. The electromagnetic stirring can be carried out by a magnetic stirrer. The power of the above electromagnetic device is 〇2 kW (10)~15 kW (10), the frequency is 5 Hz (10))~3 () Hertz (ηζ), the scramble The rate is 500 rpm (rmp) ~ 3 coffee transfer / minute (Qing). In an electromagnetic stirring, an alternating current of 5 Hz to 3 GHz produces a varying magnetic field. The semi-solid slurry produces an induced current under the action of a varying magnetic field generated by the electromagnetic stirrer. The interaction between the induced magnetic field generated by the induced current and the changing magnetic field pushes the semi-solid slurry to move in an integrated manner. The effect of the overall agitation can effectively avoid the phenomenon that the carbon nanotubes float to the semi-solid surface, so that the carbon nanotubes do not eclipse in the semi-solid slurry, and the nano-soil is not used in the semi-solid paste. The material is uniformly dispersed while having good fluidity. Thereby, the compatibility and interface wettability of the carbon nanotube and the magnesium alloy material matrix are good. By adjusting the power and frequency of the electromagnetic stirrer by the power supply, the strength and speed of the electromagnetic stirring can be controlled, thereby achieving good dispersibility and wettability of the nanotube in the matrix composite. 11 200912011 & 2 electromagnetic stirrer electromagnetic induction principle can be used in the semi-solid water and the current way, so that the carbon and the infiltration of the carbon are all in a sentence, thus achieving the carbon nanotubes in the semi-solid Good towel

可以理解,本發明上述的電磁婦器可以斑工頻、低 頻或者變__連,制祕的方式可以制正轉、反 轉或者交#運行,利用半固料運動慣性產生很大的速 度差和慣性衝擊,從而使攪拌效率大為提高。 (=)將上述均勻分散有奈米碳管的半固態漿料注射 進一壓鑄模具中,冷卻後,得到一鎂基複合材料。 上述均勻分散有奈米碳管的半固態漿料在電磁攪拌器 的攪拌後,可注射進並同時充滿壓鑄模具。該壓鑄模具具 有一預定的形狀,上述半固態漿料冷卻後,即可得到一具 有預定形狀的鎂基複合材料。由於鎂基複合材料通過將半 固態漿料注射充滿壓鑄模具而製成,故具有高的鑄造精度。 如圖2所示,本發明提供一種鎮基複合材料8的製備 裝置100,包括一定量輸送裝置3、一觸變成形機4、一電 磁攪拌器6和一注射成形機7。上述定量輸送裝置3包括 一進料口 31和一輸送帶32。上述進料口 31進一步包括一 第一進料口 311和第二進料口 312。大量的鎮顆粒1與大 量的奈米碳管2分別通過第一進料口 311和第二進料口 312 ’進入到定量輸送裝置3中混合。其中進料口 31與輸 送τ 32相連通,混合後的鎂顆粒1與奈米碳管2通過輸送 帶32進行傳輸。上述觸變成形機4包括一加熱桶41和一 12 200912011 ,嶼 喷嘴45,喷嘴45設置在加熱桶41的第—端,上述定量輸 送裝置3的輸送帶32與加_ 41第二端相連通。上述觸 變成形機4進—步包括—加熱帶44、-螺杵42及一單向 ΓΓ」、加熱帶44圍繞在加熱桶41的外圍,用於將鎂顆粒 ^不米碳管2的混合體加熱到預定溫度,得到一半固瘁 ⑽5。螺杆42設置在加熱桶41内軸心處,可在加_ 内輯和前後移動,用於攪拌混合上述的半固態聚料 ’並推辭關翻5向前職。單_ 43設置於上述 叙' 42之上’用於保持上述的半固態聚料5向-個方向流 ^述私磁攪拌11 6包括—感應線SI61和-電源(圖中 44 該感應軸61設置於加_ 41第—端的加熱帶 圍的^Γ 力該電磁授掉器可以連續提供不同功率和頻率範 = Μ足各種半固態漿料5製備的需要。上述 ^ 7包括—星鑄模具71,該屬鑄模具71具有一 料’祕軸具有默雜魏基複合材 办腔72中域形機7中,半固態材料5由喷嘴45注射到 工腔72中,亚充滿壓鑄模具71。 複合复合材料8的製傷裝置⑽製基 料口 顆粒1與大量的奈米碳管2分別通過第一進 入 進料口 312,進人到定量輸送裝置3中混 ^進丨與奈觸2的混合體通過輸送帶 圍:二:,進入雜變成形機4中的加熱桶“内,被 % 口’、、、桶41外圍的加熱帶44加熱,形成—半固態漿 13 200912011 料5。在加熱混合體至預定溫度時,由螺杆42, 並推動+ ©錢料5向前運_電磁娜器6所在的部 上述混讀在加_,加_ 41响㈣充滿保護氣 體’以防止减,魏魏料‘·氣體錢氣,本實施 例中優選為减。對上述的半_漿料5施加電磁授掉, 以使奈純管2在半固㈣料5中均勻分散。上述均勾八 =有奈祕管2的半固㈣料5在電拌器6的授^ ,下向喷嘴45的方向運動,由噴嘴45注射進上述具有預 ^形狀的空腔72中,並充滿壓鑄模具71,得到—具有預 定形狀的鎮基複合材料8。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本㈣之較佳實施例, 自不能以此_本案之申請專職圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。It can be understood that the above-mentioned electromagnetic woman device of the present invention can be used for spot frequency, low frequency or variable __ connection, and the secret method can be used for forward rotation, reverse rotation or intersection operation, and a large speed difference is generated by using the semi-solid motion inertia. And inertial impact, so that the mixing efficiency is greatly improved. (=) The above semi-solid slurry in which the carbon nanotubes are uniformly dispersed is injected into a die-casting mold, and after cooling, a magnesium-based composite material is obtained. The above semi-solid slurry in which the carbon nanotubes are uniformly dispersed is injected into the electromagnetic stirrer and simultaneously filled with the die-casting mold. The die-casting mold has a predetermined shape, and after the semi-solid slurry is cooled, a magnesium-based composite material having a predetermined shape is obtained. Since the magnesium-based composite material is produced by injecting a semi-solid slurry into a die-casting mold, it has high casting precision. As shown in Fig. 2, the present invention provides a preparation apparatus 100 for a town-base composite material 8, comprising a certain amount of conveying means 3, a thixoforming machine 4, an electromagnetic stirrer 6, and an injection molding machine 7. The above-described metering device 3 includes a feed port 31 and a conveyor belt 32. The feed port 31 further includes a first feed port 311 and a second feed port 312. A large number of town particles 1 and a large number of carbon nanotubes 2 are mixed into the metering device 3 through the first feed port 311 and the second feed port 312', respectively. The feed port 31 is in communication with the transport τ 32, and the mixed magnesium particles 1 and the carbon nanotubes 2 are transported through the conveyor belt 32. The thixoforming machine 4 includes a heating barrel 41 and a 12 200912011, a nozzle 45 disposed at the first end of the heating barrel 41, and the conveying belt 32 of the above-mentioned quantitative conveying device 3 is connected to the second end of the adding _41. . The thixoforming machine 4 includes a heating belt 44, a screw 42 and a one-way crucible, and a heating belt 44 surrounds the periphery of the heating tub 41 for mixing the magnesium particles with the carbon nanotubes 2. The body is heated to a predetermined temperature to obtain a half solid (10) 5. The screw 42 is disposed at the inner center of the heating barrel 41, and can be moved in and out, used to stir and mix the above-mentioned semi-solid material, and pushes the 5th forward. The single_43 is disposed above the above-mentioned '42' for maintaining the above-mentioned semi-solid material 5 flowing in one direction, and the private magnetic stirring is performed. The magnetic line is inductively connected to the sensing line SI61 and the power source (in the figure 44, the sensing shaft 61) The electromagnetic transducer can be continuously provided with different power and frequency range to meet the needs of preparation of various semi-solid slurry 5. The above-mentioned ^ 7 includes - star casting mold 71 The casting mold 71 has a material in which the semi-solid material 5 is injected into the working chamber 72 by the nozzle 45 and sub-filled with the die-casting mold 71. The base material granule 1 of the composite material 8 and the large number of carbon nanotubes 2 are respectively passed through the first inlet inlet 312, and are mixed into the quantitative delivery device 3 to mix the sputum and the nano-contact 2 The body is surrounded by the conveyor belt: two:, into the heating barrel in the hybrid molding machine 4, "heated by the % port", the heating belt 44 around the barrel 41, forming a semi-solid slurry 13 200912011 material 5. heating When the mixture reaches the predetermined temperature, it is driven by the screw 42, and pushes + © money material 5 forward to move _ electromagnetic nano 6 In the above part of the mixed reading in addition _, plus _ 41 ring (four) filled with protective gas 'to prevent the reduction, Wei Wei material' gas gas, in this embodiment is preferably reduced. Apply electromagnetic to the above-mentioned half_slurry 5 Granted, so that the neat tube 2 is evenly dispersed in the semi-solid (four) material 5. The above-mentioned uniform hook = the semi-solid (four) material 5 of the neat tube 2 in the direction of the electric mixer 6, and the direction of the nozzle 45 The movement is injected into the cavity 72 having the pre-shaped shape by the nozzle 45, and is filled with the die-casting mold 71 to obtain a town-base composite material 8 having a predetermined shape. In summary, the present invention has indeed met the requirements of the invention patent.遂Proposed a patent application according to law. However, the above is only the preferred embodiment of (4), and it is not possible to apply for a full-time application. Modifications or variations are intended to be included within the scope of the following claims.

【圖式簡單說明.】 圖1係本技術方案實施例鎂基複合材料的製備方法的 流程示意圖。 圖2係本技術方案實施例鎮基複合材料的製備裝置的 結構示意圖。 " 14 200912011 【主要元件符號說明】 鎂顆粒 1 鎂基複合材料的製備裝置 100 奈米碳管 2 定量輸送裝置 3 進料口 31 輸送帶 32 第一進料口 311 第二進料口 312 觸變成形機 4 加熱桶 41 螺杆 42 單向閥 43 加熱帶 44 喷嘴 45 半固態漿料 · 5 電磁攪拌器 6 感應線圈 61 注射成形機 7 壓鑄模具 71 空腔 72 鎂基複合材料 8 15BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic flow chart showing a method for preparing a magnesium-based composite material according to an embodiment of the present technical solution. 2 is a schematic structural view of an apparatus for preparing a town-base composite material according to an embodiment of the present technical solution. " 14 200912011 [Description of main components] Magnesium granules 1 Preparation device for magnesium-based composites 100 Carbon nanotubes 2 Quantitative conveying device 3 Feed port 31 Conveyor belt 32 First feed port 311 Second feed port 312 Touch Forming machine 4 Heating barrel 41 Screw 42 Check valve 43 Heating belt 44 Nozzle 45 Semi-solid slurry · 5 Electromagnetic stirrer 6 Induction coil 61 Injection molding machine 7 Die-casting mold 71 Cavity 72 Magnesium-based composite material 8 15

Claims (1)

200912011 、申清專利範圍 '驟:提供 i一,鎂基複合材料的製備方法,其包括以下步 大置的鎂顆粒和大量的奈米碳管; 域上述__奈米碳管混合後剌的 一半固態漿料; 义上述的半固態漿料施力。電磁授拌;及 將上述施加電磁擾拌後的半固態漿料注射進—壓禱模具 中冷卻後,得到一鎮基複合材料。 、申明專#域圍第〗項所述的鎮基複合材料的製備方 法其_,鎂顆粒係純鎂顆粒和鎂合金顆粒中的一種。 .如U利inm第2項所述的絲複合㈣的製備方 法’其中’所述的鎂合金顆粒的組成元素除鎂外,還含 有m錯ϋ、銀、解其他元素中的-種或幾種。 4·如申請專利範圍第3項所述的鎂基複合材料的製備方 法,其中,其中鎂占鎂合金顆粒總質量百分比80%以上。 5·如申請專利顧第3項所述龍基複合材料的製備方 法,其中,除鎂以外其他元素占鎂合金顆粒總質量百分 比20%以下。 6.如申請專利範圍第1項所述的鎂基複合材料的製備方 法,其中,所述的鎂顆粒的平均直徑為2〇奈米—1〇〇微 米。 .如申請專利範圍第1項所述的鎂基複合材料的製備方 法,其中,所述的奈米碳管的直徑為i奈米―15〇奈米。 16 200912011 8·如申請專利範圍第i ' 法,其尹,所述的奈米^越的鎮基複合村料的製備方 9.如申請專利範圍第^袄官的長度為1微米-1〇微米。 法,射,所述的太^所述的縣複合材料的製備方 例為1:50~1:200。丁〜、蚨管質量與鎂顆粒質量之間的比 10.如申請專利範圍第 法,其中,所述心 述的絲複合材料的製備方 環境下進行加熱,診米碳管的混合體在保護氣體 江如申請專利範_ i j讀騎性顏或氮氣。 法,其中,诵禍一+項所述的鎂基複合材料的製備方 電磁卿。 叫鮮輯所述的半料施加 項所述的鎂基複合材料的製備方 磁攪拌器的功率和頻率控制攪拌 !2.如申請專利範圍第“ 法,其中,通過調節電 的強度和速度。 13'種鎂基複合材料的製備裝置,包括: j量輪送裝i ’該定量輸送裝置包括—麵σ和—輪 送帶,其中進料口與輪送帶相連通; 一觸變成形機,該觸變成形機包括一加熱桶和—喷嘴, 噴夤设置在加熱桶的第一端,上述定量輪送裝置的輪送 帶與加熱桶第二端相連通,該觸變成形機進—步包括— 加熱帶、-螺杆及-單向閥’加熱帶圍繞在加熱桶的外 圍,螺杆設置在加熱桶内轴心處,單向閥設置於上述螺 杆之上;及 、Ί、 —注射成形機,該注射成形機包括一壓鑄模具, 17 200912011 步包括一電磁攪拌器, 該感應線圈設置於上述 其改良在於,上述製傷裝置進 該電磁攪拌器包括一感應線圏 加熱桶第一端的加熱帶的外園。 的功率為0. 2千瓦〜15千瓦 15·如中請專利範項所述的絲複合材料的 置’其中,所述電磁麟器的辭為5赫茲〜3Q赫兹。x I6.如申請專利範13項所述的鎂基複合材料的製備掌 置’其中’所述電磁攪拌器的攪拌速率為500轉/分〜3000 轉/分。 17. 如申請專利範園第13項所述的鎂基複合材料的製備裝 置,其中,所述電磁攪拌器與工頻、低頻或者變頻電源 相連。 18. 如申請專利範®第13項所述的鎂基複合材料的製備裝 置,其中,所述電磁攪拌器的電磁攪拌方式可以採用正 轉、反轉或者交替運行。 18200912011, Shenqing patent scope 'exc: provide i, the preparation method of magnesium-based composite material, which includes the following steps of magnesium particles and a large number of carbon nanotubes; the above-mentioned __nano carbon nanotubes are mixed Half of the solid slurry; the above semi-solid slurry is applied. Electromagnetic mixing; and the above-mentioned semi-solid slurry after electromagnetic interference is injected into the mold to cool, and then a town-base composite material is obtained. The method for preparing a town-base composite material according to the term “Zhengwei”, the magnesium particle is one of pure magnesium particles and magnesium alloy particles. The method for preparing the silk composite (IV) according to Item 2 of the U.S. Patent No. 2, wherein the constituent elements of the magnesium alloy particles contain, in addition to magnesium, m-mole, silver, and other species in the other elements. Kind. 4. The method for preparing a magnesium-based composite material according to claim 3, wherein the magnesium accounts for more than 80% by mass of the total mass of the magnesium alloy particles. 5. The method for preparing a dragon-based composite material according to claim 3, wherein the other elements other than magnesium account for less than 20% by mass of the total mass of the magnesium alloy particles. 6. The method of preparing a magnesium-based composite material according to claim 1, wherein the magnesium particles have an average diameter of from 2 nanometers to 1 inch. The method for preparing a magnesium-based composite material according to claim 1, wherein the carbon nanotube has a diameter of from 1 nm to 15 nanometers. 16 200912011 8·If you apply for the patent scope i' method, its Yin, the preparation of the nano-surge of the town-based composite village material. 9. If the length of the patent application is 1 micron-1〇 Micron. The method of preparing the composite material of the method described in the above-mentioned method is 1:50~1:200. The ratio between the mass of the crucible, the mass of the crucible and the mass of the magnesium particles. 10. The method according to the scope of the patent application, wherein the preparation of the silk composite material is heated under the environment of the preparation, and the mixture of the carbon tube for diagnosis is protected. Gas Jiang such as applying for a patent _ ij read riding sex or nitrogen. The method, in which the preparation of the magnesium-based composite material described in the item + item is electromagnetic. The preparation of the magnesium-based composite material described in the above-mentioned semi-material application item is controlled by the power and frequency of the magnetic stirrer. 2. For example, the method of the invention, in which the strength and speed of electricity are adjusted. The apparatus for preparing a 13' magnesium-based composite material comprises: j-volume feeding device i' the quantitative conveying device comprises a surface σ and a wheel feeding belt, wherein the feeding port is connected with the wheel belt; the one-touch forming machine The thixoforming machine includes a heating barrel and a nozzle, and the sneezing is disposed at the first end of the heating barrel, and the feeding belt of the quantitative feeding device communicates with the second end of the heating barrel, and the thixoforming machine enters into the machine- The steps include: a heating belt, a - screw and a - check valve. The heating belt surrounds the periphery of the heating barrel, the screw is disposed at the inner shaft of the heating barrel, and the check valve is disposed above the screw; and, Ί, - injection molding Machine, the injection molding machine comprises a die-casting mold, 17 200912011 step comprises a magnetic stirrer, the induction coil is arranged in the above improvement, wherein the damage device comprises the first end of the induction stirrer heating barrel The power of the outer zone of the heating belt is 0.2 kW~15 kW. 15. The wire composite material according to the patent specification is set therein, wherein the word of the electromagnetic device is 5 Hz to 3 Hz. x I6 The preparation of the magnesium-based composite material according to the application of the patent specification 13 wherein the stirring speed of the electromagnetic stirrer is 500 rpm to 3000 rpm. 17. If the patent application is the 13th item The apparatus for preparing a magnesium-based composite material, wherein the electromagnetic stirrer is connected to a power frequency, a low frequency or a variable frequency power source. 18. The apparatus for preparing a magnesium-based composite material according to claim 13, wherein The electromagnetic stirring mode of the electromagnetic stirrer can be reversed, reversed or alternately operated.
TW096134479A 2007-09-14 2007-09-14 Apparatus and method for fabrication of magnesium-matrix composites TWI367264B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096134479A TWI367264B (en) 2007-09-14 2007-09-14 Apparatus and method for fabrication of magnesium-matrix composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096134479A TWI367264B (en) 2007-09-14 2007-09-14 Apparatus and method for fabrication of magnesium-matrix composites

Publications (2)

Publication Number Publication Date
TW200912011A true TW200912011A (en) 2009-03-16
TWI367264B TWI367264B (en) 2012-07-01

Family

ID=44724763

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096134479A TWI367264B (en) 2007-09-14 2007-09-14 Apparatus and method for fabrication of magnesium-matrix composites

Country Status (1)

Country Link
TW (1) TWI367264B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020417A (en) * 2019-12-17 2020-04-17 西安理工大学 SW-CNTs fiber reinforced magnesium alloy matrix composite wire and method
CN111910098A (en) * 2020-06-30 2020-11-10 上海交通大学 Preparation method of graphene/carbon nanotube reinforced magnesium-lithium-based composite material
CN113319260A (en) * 2021-05-12 2021-08-31 山东华盛荣镁业科技有限公司 Semi-solid die casting method for magnesium-lithium alloy notebook shell
CN113427004A (en) * 2020-03-23 2021-09-24 精工爱普生株式会社 Method for producing material for thixotropic injection molding
CN113579194A (en) * 2021-07-15 2021-11-02 伯乐智能装备有限公司 Light alloy product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020417A (en) * 2019-12-17 2020-04-17 西安理工大学 SW-CNTs fiber reinforced magnesium alloy matrix composite wire and method
CN111020417B (en) * 2019-12-17 2021-06-29 西安理工大学 SW-CNTs fiber reinforced magnesium alloy matrix composite wire and method
CN113427004A (en) * 2020-03-23 2021-09-24 精工爱普生株式会社 Method for producing material for thixotropic injection molding
CN113427004B (en) * 2020-03-23 2023-09-01 精工爱普生株式会社 Method for producing thixotropic injection molding material
CN111910098A (en) * 2020-06-30 2020-11-10 上海交通大学 Preparation method of graphene/carbon nanotube reinforced magnesium-lithium-based composite material
CN113319260A (en) * 2021-05-12 2021-08-31 山东华盛荣镁业科技有限公司 Semi-solid die casting method for magnesium-lithium alloy notebook shell
CN113579194A (en) * 2021-07-15 2021-11-02 伯乐智能装备有限公司 Light alloy product

Also Published As

Publication number Publication date
TWI367264B (en) 2012-07-01

Similar Documents

Publication Publication Date Title
CN101376932B (en) Preparation and preparing apparatus for magnesium-based composite material
CN111940723B (en) Nano ceramic metal composite powder for 3D printing and application
CN108103346B (en) Contain micro nano particle aluminium alloy welding wire wire rod and preparation method thereof
Zhou et al. Manufacture of nano-sized particle-reinforced metal matrix composites: a review
CN100357468C (en) Preparation method of endogenous particle reinforced aluminium-based composite material
CN102382998B (en) Method for preparing in situ titanium-based composite material and part
Sajjadi et al. Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties
CN107460376B (en) A kind of hybrid reinforced aluminum-matrix composite material and preparation method thereof
CN109996625A (en) For producing the material and method and thus obtained metal nanometer composite material of metal nanometer composite material
CN101787454B (en) Method for preparing multicomponent reinforced aluminum-base composite material
CN100392126C (en) Magnetic chemical reaction in-situ synthesizing method for preparing metal base nano composite material
CN108746625A (en) A kind of preparation method of aluminum-base nano composite material
CN107604193A (en) A kind of manufacturing process of nanoparticle reinforced aluminum-based composite
TW200912011A (en) Apparatus and method for fabrication of magnesium-matrix composites
Xu et al. Characterization of SiO2/Ag composite particles synthesized by in situ reduction and its application in electrically conductive adhesives
CN106158223A (en) A kind of magnetic liquid metal and preparation method thereof
Zhang et al. Designable interfacial structure and its influence on interface reaction and performance of MWCNTs reinforced aluminum matrix composites
CN110629061A (en) Preparation method of aluminum-based composite material with controllable in-situ nano aluminum oxide content
CN106282637A (en) A kind of original position prepares the method for boron-containing magnesium-base composite
Hadad et al. Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites
CN108004426A (en) A kind of two-phase in-situ nano enhancing titanium matrix composite and preparation method thereof
CN106544549B (en) A kind of preparation method of the double scale TiC particle enhanced aluminum-based composite materials of micro-nano
CN110129596A (en) Thin ribbon shaped nanometer Al3The preparation method of (Sc, Zr)/Al composite inoculant
KR20090121967A (en) Metal nano composite material manufacture method using for turbulent in-situ melting mixing process
Xu Achieving uniform nanoparticle dispersion in metal matrix nanocomposites