TW200909863A - Stereo projection optical system - Google Patents

Stereo projection optical system Download PDF

Info

Publication number
TW200909863A
TW200909863A TW96132528A TW96132528A TW200909863A TW 200909863 A TW200909863 A TW 200909863A TW 96132528 A TW96132528 A TW 96132528A TW 96132528 A TW96132528 A TW 96132528A TW 200909863 A TW200909863 A TW 200909863A
Authority
TW
Taiwan
Prior art keywords
light
polarized light
optical system
projection optical
beam splitter
Prior art date
Application number
TW96132528A
Other languages
Chinese (zh)
Other versions
TWI348033B (en
Inventor
Chien-Wen Hsu
Chia-Hung Kao
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096132528A priority Critical patent/TWI348033B/en
Publication of TW200909863A publication Critical patent/TW200909863A/en
Application granted granted Critical
Publication of TWI348033B publication Critical patent/TWI348033B/en

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The present invention discloses a stereo projection optical system. The stereo projection optical system includes a first polarization beam splitter configured for separating a light input into a first polarized light and a second polarized light, a first image assimilator positioned to receive the first polarized light emitted by the first polarization beam splitter, a second image assimilator positioned to receive the second polarized light emitted by the first polarization beam splitter, and a fourth polarization beam splitter positioned to receive the light output emitted by the first, second image assimilators. The first, second image assimilators project two images formed by the first polarized light and the second polarized light with spatial information in the stereo projection optical system. When viewers draw on a glass that has two polarizers whose polarization direction is vertical relative to each other, the viewers can watch three-dimensional image.

Description

200909863 九、發明說明: 【發明所屬之技術領域】 本發明關於一種投影光學系統,尤其係—種具有立 體投影顯示功能之立體投影光學系統。 【先前技術】. ㈤近年來,圖像投影儀,尤魏位投錢,作為向觀 眾顯示多種訊息之工具已經逐漸流行。一般,這些投影 儀用於將㈣腦生成之圖像投影到螢幕上。對觀看者^ 說,圖像投影儀投影之圖像通常看起來係平面二維圖 像’除圖像本身外無法顯示任何圖像景深訊息。這種顯 不可以適用於顯示多種訊息。但是,在某些情況下,觀 看者希望能有比二維顯示能夠更大程度地顯示圖 深或結構特徵之投影儀。 μ 、使二維顯示之圖像能給出圖像景深之一種方式係通 過立體地顯示圖像。立體圖像,通常稱為“三維,,或 3D圖像,在觀看者看來具有深度尺寸。這些圖像包 括刀開的冗合的左眼及右眼圖像,這些圖像設置成模 仿人之左右眼觀看時,由於人眼睛間隔引起之三 表面之微小差別’而具有之景深圖像。左眼及右眼圖像 係這樣來顯示,即觀看者之右眼看不到左眼圖像,左眼 看不到右眼圖像。這種顯示方式—般借助於觀看者佩戴 之光學濾光鏡。 旦〜通常顯示立體圖像之方式係使用兩個分開之圖像投 影系統分別來投影左眼圖像及右眼圖像。而這種系統在 200909863 成功地用於形成立體圖像之同時,系統之成本和重量則 比單個投影儀要高很多。而且,兩個投影儀要求光學對 準相對困難並比較費時。還有,由於這兩個系統之重量 及體,,使這種系統在兩個位置之間移動起來特別困 難,還有存在潛在之圖像對準之問題。 【發明内容】 有#於此’有必要提供—種單個的能夠投影立體圖像 的立體投影光學系統。 $立體投影光學“,其包括第—偏振分束 垂直m振分束㈣於將人射光分成偏振狀態互相 像;收器設置於所述第-偏振光出射方向上, 制:. >第—偏振分束器以及—第-反射式空間光調 ,述::第二圖像吸收器,該第二圖像吸收器設置於所 以上,且其包括-第三偏振分束器 -、第設置於所逑第 所述第-偏振光進入第二偏振=弟四偏振分束器; 該第-反射式空間光調制器上':第:反=:後照射在 :將:亥第-偏振光調制成第二偏振光反射調制 —、第四偏振分束器發射出去 透過第 透過該第三偏振分束器,第第:偏振光進入並 制器上,該第二反射式空間光第:反射式空間光調 偏振先反射出去,該第—偏振光 ^ ^ 一乐四 200909863 偏振分束器反射後發射出去。 哭八之立體投影光學系統通過為第一、第二圖像吸收 載有不同訊息之光,而該第-、第二圖像吸 通過投影透鏡投影出去,偏振光及第二偏振t 偏方向相互垂直之兩片《左右眼分別戴上檢 像訊息。 振片,就可以觀察到立體之圖 【實施方式】 下面將結合附圖,舉以τ ^ _ 細描述如下。 Λ下較佳貫施例並配合圖式詳 請參閱圖1,為本發明所 — 影光學系統100之結構示音:# f把例之立體奴 包括沿光路方向依次設置:圖;;亥立體投影光學系統100 ,分束器12,分別設置於心= 元件11、-第 上之第-、第二圖像以^^束器12不同出射光路 第二圖像吸收器14’—設置於所述第一、 以及-^置於第四偏振第四偏振分束器 透鏡16。 m刀束器15出射光路上之投影 所述光源元件11白 111、-色輪maC光路設置之-照明光源 偏振分束器12之入射光故刀為113,其设置於所述第― 括顯示彩色圖像所需之,上。所述照明光源111發射包 光。該光源11可以為4夸K(R)、綠光⑹及藍光(B)之白 在本實施例中,該光源u ^金屬㈣匕物燈錢燈等。 為鹵素燈。所述色輪112包括 200909863 紅、綠、藍二色區,其可在電機(圖未示)之帶動下高速旋 .轉’以給投影光路配以各種色彩。所述積分器113用來 .均勻化及有效地使用光源π發出之光。 所述第一偏振分束器(p〇larizati〇n Beam splitter,PBS) 12々用於將來自光源元件n之非偏振光變成第—偏振光 及第二偏振光,即變成S偏振光及P偏振光。該S偏振 光被該第一偏振分束器12反射,而p偏振光透過該第一 偏振刀束12 „亥第—偏振分束器12可以為金屬柵格型 偏振片(Wire Grid P〇ladzer,簡稱WGp偏振片),也可以 為偏振分光棱鏡,在本實施例中,該第一偏振分束器12 為偏振分光棱鏡。 所述第一、第二圖像吸收器(Image Assimilat〇r) 13、 14刀別设置於S、P偏振光之出射光路上,即第一圖像 •吸收态13接收S偏振光,第二圖像吸收器14接收p偏 振光。所述第一、第二圖像吸收器13、14結構及工作原 理基本相同,下面以第—圖像吸收器13為例來說明其結 s 構及工作原理。 所奠第-圖像吸收器13包括—第二偏振分束器ΐ3ι 及一第-反射式空間光調制器132。該第二偏振分束器 m可以為金屬柵格型偏振片(WireGridP〇larizer,簡稱 /偏振片)’也可以為偏振分光棱鏡,在本實施例中, 該^偏振分束器131為偏振分光棱鏡。該第二偏振分 束裔131用於將人射之第—偏振光即s偏振光反射到第 -反射式空間光調制器132中。所述第一反射式空間光 10 200909863 周制tm 了以為石夕基液晶(Liquid Crystal on Silicon, LCoS)顯不面板。該矽基液晶顯示面板工藝結構結合了液 曰曰技術與半^體積體電路技術°LCoS面板利用半導體制 板’然後在電晶體上採用研磨技術磨平, 並鍍上銘或銀等當作反射鏡,形成CMOS基板,再將 CMOS基板與含*㈣電極之玻璃基板貼合後灌入液晶 分子並封裝測試,形成LCgS面板。lCqS面板通過控制 先之偏振狀態來調制人射光並給人射光加人空間訊息, 形成包括該人射光及該空間訊息之經過調制之出射光。 :述二門上:可以為該LC〇s所載入之控制訊號電壓,該 ::號電[直接控制薄膜電晶體之開關狀態 ==來控制所述液晶分子之偏轉狀態,而液晶 光線,從而學各向異性,能夠控制來自入射光之 施例中,該第二:::圖像訊號之目的。在本實 進行調制,並在所調制器132對該S偏振光 光。該p偏振光重:^括有空間訊息之p偏振 _過第二偏振光調制器132反 光之弟第 ::吸 V:器14包括-用於直接接收所述P偏振 器142。所述;:二::個第二反射式空間光調制 ^ ^ 爲振先直接透過該第三偏振分束器141 並照射到第二反射式空間光調制器142巾。該第i反射 式空間光調制器142對該P偏振光進行調制,並錢述p 11 200909863 以產生一包括空間訊息之出射 S偏振光。該S偏振光重新被 142反射並又被第三偏振分束 偏振光上疊加空間訊息, 光,即包括有空間訊息之 弟二反射式空間光調制器 器141反射而發射出去。 所述第四偏.振分束器15與第1振 及工作原理基本相同,在此不 z之、0稱 器15設置於第一、第二圖像吸 ==四偏振分束 光路上。由第一圖像吸收器13的° 之出射光之 該第四偏振分束器15發射出去::先pp偏振光透過 16中。而第二圖像吸收器14之出人下述之投影透鏡 四偏振分束器15反射而發W偏振光被該第 中,以被投影到螢幕上(圖未示)。而進入奴衫透鏡16 之出射光 並將放大 所述投影透鏡16設置於第四偏振分束器 的光路上,用於將出射光所形成之圖像放 之圖像投影到螢幕上。 ’ J/风向系統之對比声,… 以在上述之立體投影光料統中力^複數偏振片又還 圖2所示’該偏振片17可以讓—定偏振方 ’ 而吸收其他偏振方向之光,例如讓p^光通避 收s偏振光或者讓s偏振光通過,而吸收而 複數偏振17之具體之放置位置可 振分束器12及第一或/與第二圖像吸收器13吩之弟 第一或/與第二圖像吸收器13、14及第四 14之間 之間。在本實施例中在第一偏振分束器i振刀束器1 ° 與第一、第二 12 200909863 圖像吸收器13、14之鬥,、,Ώ η松 之間以及第一、第二圖像吸收器13、 14及^四偏振分束器15之間都設置有偏振片17。 閱圖3 ’為本發明提供之第二實施例之投影光學 之結構示意圖。該立體投影光學系統200包括 哭99八^丨“ 夏之先源兀件21、一第一偏振分束 二 V °又置於第—偏振分束器22不同出射光路上之 弟一、弟二圖像吸收玛 “ 又為23、24,一設置於所述第一、第 二圖像吸收器23、24之屮M企 弟 α 出射光路上之第二偏振分束器25 二及U於㈣偏振分束心出射光路上之投影透鏡 偏振同\第击實施例’所述第1像吸收器23包括一第二 第又二器231及—第—反射式空間光調制器232。所述 =时吸收器24包括—第三偏振分束器241及一第二 空間光調制器冰。該第二實施例與第-實施例之 第:偏Si第一、第四偏振分束器22、25以及第二、 弟二偏振分束器231、241 不同。在該第二實施例中,所^光及Ρ偏振光之作用 . 斤攻弟一、第二、第二、第 四偏振分束器22、231、241、% 弟一弟 讓s偏振光透過各偏振分束$ 偏振光’而可以 光在各光學元件即第—偏#~ „ $ Ρ偏振光及S偏振 的。以及4四偏振分束器中之傳輸光路係相同 同理,為了進一步提高系統 實知例之立體投影光學系統2⑽巾加 13 200909863 在設置位置與第一實施例相同。 # 上述之立體投影光學系統通過為第一、第二圖像吸 收器分別輸入載有不同訊息之光,而該第一、第二圖像 吸收器所形成之兩幅圖像分別以p偏振光及s偏振光或 S偏振光及P偏振光通過投影透鏡投影出去,當觀看者 之左右眼分別戴上檢偏方向相互垂直之兩片偏振片*就 可以觀察到立體之圖像訊息。 綜上所述,本發明符合發明專利要件,爰依法提出 專利申請。惟,以上所述者僅為本發明之較佳實施方式, 本發明之範圍並不以上述實施方式為限,舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明提供之第一實施例之立體投影光學系 統之結構不意圖。 圖2係在圖1之立體投影光學系統設置有複數偏振 片之結構不意圖。 圖3係本發明提供之第二實施例之立體投影光學系 統之結構不意圖。 14 200909863 【主要元件符號說明】 立體投影光學系統100、200光源組件11、21 照明光源 111 色輪 112 積分器 113 投影透鏡 16 第一、第二圖像吸收器 13、14、23 ' 24 第二反射式空間光調制器 132 、 142 、 231 、 242 12 、 131 、 141 、 15 、 第二、第三、第四偏振分束器 22 、 231 、 241 、 25 偏振片 17、27 15200909863 IX. Description of the Invention: [Technical Field] The present invention relates to a projection optical system, and more particularly to a stereoscopic projection optical system having a stereoscopic projection display function. [Prior Art]. (V) In recent years, image projectors, especially in the Wei Wei position, have become popular as tools for displaying a variety of messages to the audience. Typically, these projectors are used to project (4) brain-generated images onto the screen. For the viewer ^, the image projected by the image projector usually looks like a flat two-dimensional image 'cannot display any image depth of field information except the image itself. This display is not suitable for displaying multiple messages. However, in some cases, the viewer desires to have a projector that displays the depth or structural features to a greater extent than the two-dimensional display. μ, a way in which an image displayed in two dimensions can give an image depth of field is to stereoscopically display an image. Stereoscopic images, often referred to as "three-dimensional," or 3D images, have depth dimensions in the eyes of the viewer. These images include the cumbersome left and right eye images of the knife, which are set to mimic people The left-eye and right-eye images are displayed in such a way that the left eye and the right eye image are displayed when the left and right eyes are viewed, because the viewer's right eye does not see the left eye image. The left eye does not see the right eye image. This display mode is generally by means of the optical filter worn by the viewer. The way to display the stereo image is to use two separate image projection systems to project the left eye separately. Image and right eye image. While this system was successfully used to form stereoscopic images at 200009863, the cost and weight of the system is much higher than for a single projector. Moreover, the two projectors require optical alignment relative to each other. Difficulties and time consuming. Also, due to the weight and body of the two systems, it is particularly difficult to move such a system between two positions, and there is a problem of potential image alignment. There is a need to provide a single stereoscopic projection optical system capable of projecting stereoscopic images. $stereoscopic projection optics, which includes a first-polarization splitting vertical m-vibration beam splitting (4) to separate human light into polarization states. The image is disposed in the direction in which the first polarized light is emitted, and is: -> a polarization beam splitter and a - reflection space light tone, wherein: a second image absorber, the second An image absorber is disposed on the upper portion, and includes a third polarizing beam splitter - the first polarized light is disposed in the second polarization = the fourth polarizing beam splitter; the first reflecting type On the spatial light modulator, ': the first: reverse =: the rear illumination is: the: the first-polarized light is modulated into the second polarized light, and the fourth polarized beam splitter is emitted to pass through the third through the third polarized light. Beamer, first: polarized light enters the parallelizer, the second reflective spatial light: reflective spatial light is firstly reflected, the first polarized light ^ ^ a music four 200909863 polarizing beam splitter after reflection Launched. The three-dimensional projection optical system of crying eight absorbs light carrying different messages for the first and second images, and the first and second images are projected through the projection lens, and the polarized light and the second polarization t are mutually opposite directions. Two pieces of vertical "The left and right eyes are respectively wearing the image information. The vibrating piece can be observed as a three-dimensional image. [Embodiment] Hereinafter, the following will be described in detail with reference to the accompanying drawings, τ ^ _. Referring to FIG. 1 , the structure of the optical system 100 of the present invention is shown in FIG. 1 : # f The stereo slaves of the example are arranged in the direction of the optical path: FIG. The projection optical system 100 and the beam splitter 12 are respectively disposed on the heart=element 11, the first-first, and the second image are different from the beam splitter 12, and the second image absorber 14' is disposed on the optical path. The first, and -^ are placed in a fourth polarization fourth polarization beam splitter lens 16. The projection of the m beam beamer 15 on the exiting light path is performed by the light source element 11 white 111, the color wheel maC optical path, and the incident light of the illumination source polarization beam splitter 12 is 113, which is disposed on the first display Color images are required, on. The illumination source 111 emits envelope light. The light source 11 may be white of 4 ku K (R), green light (6), and blue light (B). In this embodiment, the light source u ^ metal (four) smear light lamp or the like. It is a halogen lamp. The color wheel 112 includes 200909863 red, green and blue two-color areas, which can be rotated at a high speed by a motor (not shown) to match the projection light path with various colors. The integrator 113 is used to homogenize and efficiently use the light emitted by the light source π. The first polarizing beam splitter (PBS) 12々 is used to change the unpolarized light from the light source element n into the first polarized light and the second polarized light, that is, into the S polarized light and P. polarized light. The S-polarized light is reflected by the first polarizing beam splitter 12, and the p-polarized light is transmitted through the first polarizing blade bundle 12. The polarizing beam splitter 12 can be a metal grid type polarizer (Wire Grid P〇ladzer) The WGp polarizer is a polarizing beam splitter. In this embodiment, the first polarizing beam splitter 12 is a polarization beam splitting prism. The first and second image absorbers (Image Assimilat〇r) 13. The 14th knife is disposed on the outgoing light path of the S, P polarized light, that is, the first image • the absorption state 13 receives the S polarized light, and the second image absorber 14 receives the p polarized light. The first and second The structure and working principle of the image absorbers 13 and 14 are basically the same. The first image absorber 13 is taken as an example to illustrate the structure and working principle of the image absorber 13. The first image absorber 13 includes a second polarization component. a beam splitter ι3ι and a first-reflective spatial light modulator 132. The second polarizing beam splitter m may be a metal grid type polarizer (WireGrid Planator) or a polarization beam splitter prism. In this embodiment, the polarization beam splitter 131 is a polarization beam splitting prism. The second polarization beam splitter 131 is used to reflect the first-polarized light, that is, the s-polarized light of the human, into the first-reflective spatial light modulator 132. The first reflective spatial light 10 is 200909863, and the tm is considered to be a stone. Liquid Crystal on Silicon (LCoS) is not a panel. The 矽-based liquid crystal display panel process structure combines liquid helium technology with half-volume circuit technology. The LCoS panel utilizes a semiconductor board' and then is used on a transistor. Grinding technology is smoothed, and plated with Ming or silver as a mirror to form a CMOS substrate. The CMOS substrate is then bonded to a glass substrate containing *(4) electrodes, and then liquid crystal molecules are poured and packaged to form an LCgS panel. lCqS panel By controlling the first polarization state to modulate the human light and adding a spatial information to the human light, a modulated light comprising the person's light and the spatial information is formed.: On the second door: can be loaded for the LC〇s Control signal voltage, the:: electric number [directly controls the switching state of the thin film transistor == to control the deflection state of the liquid crystal molecules, and the liquid crystal light, thereby learning anisotropy, can control the incoming In the example of light, the purpose of the second:::image signal is to modulate in the real world, and to modulate the S-polarized light at the modulator 132. The p-polarized light weight: includes a spatial information p The polarization-passing second polarized light modulator 132 reflects the first:: the suction V: the device 14 includes - for directly receiving the P polarizer 142. The second:: second reflective spatial light modulation ^ ^ is directly transmitted through the third polarization beam splitter 141 and irradiated to the second reflective spatial light modulator 142. The ith reflective spatial light modulator 142 modulates the P-polarized light, and modulates 11 200909863 to generate an outgoing S-polarized light comprising a spatial message. The S-polarized light is again reflected by 142 and is superimposed on the third polarized beam splitting polarized light, and the light, that is, the second spatial reflective light modulator 141 including the spatial information, is reflected and transmitted. The fourth partial vibration beam splitter 15 is basically the same as the first vibration and the working principle. The zero scale device 15 is disposed on the first and second image suction == four polarization beam splitting optical paths. The fourth polarization beam splitter 15 that emits light from the first image absorber 13 emits: pp polarized light is transmitted through 16. The projection lens of the second image absorber 14 is reflected by the four polarization beam splitter 15 to emit W-polarized light to be projected onto the screen (not shown). The light exiting the slave lens 16 is enlarged and the projection lens 16 is enlarged on the optical path of the fourth polarizing beam splitter for projecting an image of the image formed by the outgoing light onto the screen. ' J / wind direction system contrast sound, ... in the above-mentioned three-dimensional projection light system, the power of multiple polarizing plates and also shown in Figure 2 'the polarizing plate 17 can let the polarization side' and absorb other polarization directions of light For example, letting the p-light pass through the s-polarized light or letting the s-polarized light pass, and absorbing the specific polarization position of the complex polarization 17 and the first or/and second image absorber 13 The first or the second is between the second image absorbers 13, 14 and the fourth 14. In the present embodiment, between the first polarizing beam splitter i-vibrator beam 1 ° and the first, second 12 200909863 image absorbers 13, 14 between the bucket, and the first and second A polarizing plate 17 is disposed between the image absorbers 13, 14 and the four polarization beam splitters 15. 3 is a schematic structural view of projection optics according to a second embodiment of the present invention. The stereoscopic projection optical system 200 includes a crying 99 丨 丨 夏 夏 夏 夏 夏 夏 、 、 、 、 、 、 、 、 、 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 The image absorption gamma is again 23, 24, a second polarization beam splitter 25 disposed on the exit path of the first and second image absorbers 23, 24, and a U (4) The projection lens of the polarization splitting beam exiting light path is polarized in the same manner as the first image absorber 23 includes a second second and second 231 and a first reflective spatial light modulator 232. The =time absorber 24 includes a third polarization beam splitter 241 and a second spatial light modulator ice. This second embodiment is different from the first embodiment of the first embodiment, the first and fourth polarization beam splitters 22 and 25, and the second and second polarization beam splitters 231 and 241. In the second embodiment, the action of the light and the Ρpolarized light. 斤, the second, the second, the fourth, the fourth polarization beam splitter 22, 231, 241, % Each polarized beam splitting $polarized light' can be optically the same in the optical elements, ie, the first-shifted #~ „$ Ρpolarized light and S-polarized, and the transmission optical path in the four-four-polarizing beam splitter, in order to further improve Stereoscopic projection optical system 2 (10) towel plus 13 200909863 is set in the same position as the first embodiment. # The stereoscopic projection optical system described above inputs light having different messages for the first and second image absorbers, respectively. And the two images formed by the first and second image absorbers are respectively projected through the projection lens with p-polarized light and s-polarized light or S-polarized light and P-polarized light, respectively, when the left and right eyes of the viewer wear The image information of the three-dimensional image can be observed by detecting two polarizing plates* which are perpendicular to each other in the direction of the deviation. In summary, the present invention complies with the patent requirements of the invention, and patent application is filed according to law. However, the above is only the present invention. Preferred embodiment, The scope of the present invention is not limited to the above-described embodiments, and equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. 1 is a schematic structure of a stereoscopic projection optical system according to a first embodiment of the present invention. Fig. 2 is a schematic view showing a structure in which a stereoscopic projection optical system of Fig. 1 is provided with a plurality of polarizing plates. Fig. 3 is a second embodiment of the present invention. The structure of the stereoscopic projection optical system of the embodiment is not intended. 14 200909863 [Description of main component symbols] Stereoscopic projection optical system 100, 200 light source assembly 11, 21 illumination light source 111 color wheel 112 integrator 113 projection lens 16 first and second diagram Image absorbers 13, 14, 23' 24 second reflective spatial light modulators 132, 142, 231, 242 12, 131, 141, 15, second, third, fourth polarization beam splitters 22, 231, 241 , 25 polarizers 17, 27 15

Claims (1)

200909863 十、申請專利範圍: 1. 一種立體投影光學系統,其改進在於,其包括: 一第一偏振分束器,該第一偏振分束器用於將入射光 分成偏振狀態互相垂直之第一偏振光及第二偏振光; 一第一圖像吸收器,該第一圖像吸收器設置於所述第 一偏振光出射方向上,且其包括一第二偏振分束器以 及一第一反射式空間光調制器; 一第二圖像吸收器,該第二圖像吸收器設置於所述第 二偏振光出射方向上,且其包括一第三偏振分束器以 及一第二反射式空間光調制器,以及 一設置於所述第一、第二圖像吸收器之出射光方向之 第四偏振分束器; 所述第一偏振光進入第二偏振分束器,被反射後照射 在該第一反射式空間光調制器上,第一反射式空間光 調制器將該第一偏振光調制成第二偏振光反射出去, 並透過第二、第四偏振分束器發射出去; 所述第二偏振光進入並透過該第三偏振分束器,且照 射在第二反射式空間光調制器上,該第二反射式空間 光調制器將該第二偏振光調制成第一偏振光反射出 去,該第一偏振光經第三、第四偏振分束器反射後發 射出去。 2. 如申請專利範圍第1項所述之立體投影光學系統’其 中,所述立體投影光學系統還包括一光源組件,設置 於第一偏振分束器之入射光路上,用於发射包括顯示 16 200909863 彩色圖像所需之紅光、綠光及藍光及白光。 . 3.如申請專利範圍第2項所述之立體投影光學系統,其 中,所述光源組件包括一照明光源。 . 4.如申請專利範圍第2項所述之立體投影光學系統,其 中,所述光源組件包括一色輪。 5. 如申請專利範圍第2項所述之立體投影光學系統,其 中,所述光源組件包括一積分器。 6. 如申請專利範圍第1項所述之立體投影光學系統,其 1 中,所述第一、第二、第三、第四偏振分束器為金屬 拇格型偏振片。 7. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一、第二、第三、第四偏振分束器為偏振 分光棱鏡。 8. 如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一、第二反射式空間光調制器為矽基液晶 面板。 * 9.如申請專利範圍第1項所述之立體投影光學系統,其 中,所述第一偏振光為S偏振光和P偏振光中之一 種° ° . 10. 如申請專利範圍第9項所述之立體投影光學系統,其 ' 中,當第一偏振光為S偏振光時,第二偏振光為P偏 - 振光。 11. 如申請專利範圍第9項所述之立體投影光學系統,其 中,當第一偏振光為P偏振光時,第二偏振光為S偏 17 200909863 振光。 . 12.如申請專利範圍第1項所述之立體投影光學系統,其 中,所述立體投影光學系統還包括一設置於所述第四 * 偏振分束器出射光方向上之投影透鏡,用於將出射光 所形成之圖像放大。 13.如申請專利範圍第1項所述之立體投影光學系統,其 中,所述立體投影光學系統還包括複數偏振片,該複 數偏振片分別設置於第一偏振分束器與第一、第二圖 像吸收器之間或者第二偏振分束器與第一、第二圖像 吸收器之間。 18200909863 X. Patent Application Range: 1. A stereoscopic projection optical system, the improvement comprising: a first polarization beam splitter, the first polarization beam splitter is configured to divide incident light into first polarizations in which polarization states are perpendicular to each other Light and second polarized light; a first image absorber, the first image absorber is disposed in the first polarized light exiting direction, and includes a second polarizing beam splitter and a first reflective type a spatial light modulator; a second image absorber disposed in the second polarized light exiting direction, and comprising a third polarizing beam splitter and a second reflective spatial light a modulator, and a fourth polarization beam splitter disposed in the direction of the outgoing light of the first and second image absorbers; the first polarized light enters the second polarization beam splitter, is reflected and then illuminated In the first reflective spatial light modulator, the first reflective spatial light modulator modulates the first polarized light into a second polarized light and transmits it through the second and fourth polarizing beam splitters; Second partial Light enters and passes through the third polarizing beam splitter and illuminates the second reflective spatial light modulator, and the second reflective spatial light modulator modulates the second polarized light to reflect the first polarized light. The first polarized light is reflected by the third and fourth polarizing beam splitters and emitted. 2. The stereoscopic projection optical system of claim 1, wherein the stereoscopic projection optical system further comprises a light source assembly disposed on the incident light path of the first polarization beam splitter for transmitting the display 16 200909863 Red, green and blue and white light for color images. 3. The stereoscopic projection optical system of claim 2, wherein the light source assembly comprises an illumination source. 4. The stereoscopic projection optical system of claim 2, wherein the light source assembly comprises a color wheel. 5. The stereoscopic projection optical system of claim 2, wherein the light source assembly comprises an integrator. 6. The stereoscopic projection optical system according to Item 1, wherein the first, second, third, and fourth polarization beam splitters are metal thumb-type polarizers. 7. The stereoscopic projection optical system according to claim 1, wherein the first, second, third, and fourth polarization beam splitters are polarization beam splitting prisms. 8. The stereoscopic projection optical system according to claim 1, wherein the first and second reflective spatial light modulators are germanium-based liquid crystal panels. 9. The stereoscopic projection optical system of claim 1, wherein the first polarized light is one of S-polarized light and P-polarized light. 10. As claimed in claim 9 In the stereoscopic projection optical system, when the first polarized light is S-polarized light, the second polarized light is P-polarized. 11. The stereoscopic projection optical system according to claim 9, wherein when the first polarized light is P-polarized light, the second polarized light is S bias 17 200909863 illuminating. 12. The stereoscopic projection optical system of claim 1, wherein the stereoscopic projection optical system further comprises a projection lens disposed in a direction of the outgoing light of the fourth *polarizing beam splitter, The image formed by the emitted light is enlarged. The stereoscopic projection optical system of claim 1, wherein the stereoscopic projection optical system further comprises a plurality of polarizing plates, the plurality of polarizing plates being respectively disposed on the first polarizing beam splitter and the first and second Between the image absorbers or between the second polarizing beam splitter and the first and second image absorbers. 18
TW096132528A 2007-08-31 2007-08-31 Stereo projection optical system TWI348033B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096132528A TWI348033B (en) 2007-08-31 2007-08-31 Stereo projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096132528A TWI348033B (en) 2007-08-31 2007-08-31 Stereo projection optical system

Publications (2)

Publication Number Publication Date
TW200909863A true TW200909863A (en) 2009-03-01
TWI348033B TWI348033B (en) 2011-09-01

Family

ID=44724168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096132528A TWI348033B (en) 2007-08-31 2007-08-31 Stereo projection optical system

Country Status (1)

Country Link
TW (1) TWI348033B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452341B (en) * 2011-12-09 2014-09-11 Delta Electronics Inc Stereoscopic display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452341B (en) * 2011-12-09 2014-09-11 Delta Electronics Inc Stereoscopic display apparatus
US9039202B2 (en) 2011-12-09 2015-05-26 Delta Electronics, Inc. Multi-view display apparatus

Also Published As

Publication number Publication date
TWI348033B (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US8077196B2 (en) Stereo projection optical system
CN101408675B (en) Stereo projection optical system
US7878656B2 (en) Stereo projection optical system
JP2017072835A (en) Projection type image display device
TWI357986B (en) Optical system for stereo projection
CN101373275A (en) Stereo projection optical system
US8057042B2 (en) Stereo projection optical system using LCD to separate left and right eye images
TW200916828A (en) Optical system for stereo projection
CN201984280U (en) Projecting apparatus
US9268160B2 (en) Three dimensional image projector with single modulator
US8950869B2 (en) Three dimensional image projector with two color imaging
JP2012173401A (en) Transmitted light selection device, and stereoscopic image display device and method
CN115145097B (en) Two-piece type 3D projection system and imaging method thereof
TWI352216B (en) Stereo projection optical system
TW200909863A (en) Stereo projection optical system
TWI359284B (en) Optical system for stereo projection
JP2005043656A (en) Projection solid image display device
JPH0926555A (en) Stereoscopic image display device
US8944604B2 (en) Three dimensional image projector with dual light modulators
TWI356191B (en) Optical system for stereo projection
TW200912381A (en) Stereo projection optical system
TWI412789B (en) Three-dimensional vsiual display device and display system
CN102313996A (en) Stereo projection optical system
TWI359283B (en) Optical system for stereo projection
TW201350909A (en) Stereoscopic projection display apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees