TW200909544A - Coating composition and optical member - Google Patents

Coating composition and optical member Download PDF

Info

Publication number
TW200909544A
TW200909544A TW097114315A TW97114315A TW200909544A TW 200909544 A TW200909544 A TW 200909544A TW 097114315 A TW097114315 A TW 097114315A TW 97114315 A TW97114315 A TW 97114315A TW 200909544 A TW200909544 A TW 200909544A
Authority
TW
Taiwan
Prior art keywords
resin
acid
acrylate
coating composition
sol
Prior art date
Application number
TW097114315A
Other languages
Chinese (zh)
Inventor
Osamu Fujimoto
Yoshinari Koyama
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW200909544A publication Critical patent/TW200909544A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

The invention provides a coating composition capable of obtaining a coating film with high light transmission and low refractive index, as well as an optical component having the coating film with low refractive index. The coating composition is prepared by using a binder and sodium fluoride magnesium sol in which the concentration of sodium fluoride magnesium (NaF.MgF2) is prepared to 5 mass percent and the transmission of sol to the light having a wavelength of 500 nm and light path within 10 mm is greater than 80%; the optical component with low refractive index is obtained by spreading the coating composition on an optical substrate.

Description

200909544 九、發明說明 【發明所屬之技術領域】 本發明係關於折射率低、透光率高之含氟化鈉鎂溶膠 之塗料組成物及由此塗料組成物所形成之具有高透明性且 低折射率被膜之光學構件。 【先前技術】 一般於鏡片或陰極射線管、液晶顯示器等之影像顯示 面上,爲減低太陽光或燈光等之外來光線反射,而且提高 光的透過,進行抗反射處理。已知傳統以來,藉由以折射 率低的透明薄膜被覆透明的物體表面,反射率變低之現象 。設置利用如此現象之抗反射膜於影像顯示裝置之顯示面 ,可提升視覺辨識性。抗反射膜係於顯示面上設置折射率 低之低折射率層之單層結構、或爲使抗反射效果更好,於 顯示面上設置多數層之中〜高折射率層,於中〜高折射率 層上,設置減少最表面折射率用之低折射率層之多層結構 者。 上述之抗反射處理,已知一般的氣相法及塗佈法,已 知氣相法有真空蒸著法、濺鍍法等之物理方法,及CVD (化學氣相沈積)法等之化學方法。塗佈法有輥塗法、凹 版塗佈(gravure coat)法、斜板式塗佈(Slide Coating) 法、噴霧法、浸漬法、網版印刷(S c r e e n P r i n t i n g )法等 o 由氣相法所得之透明被膜雖可形成高品質的透明薄膜 -4- 200909544 ,但必須控制高真空下之環境,另外,因爲需要特殊加熱 裝置或離子產生加速裝置,所以製造裝置複雜且大型化, 必定有製造成本變高之問題。另外,氣相法係難以將透明 薄膜大面積化。 另一方面,藉由塗佈法中之噴霧法時,雖有塗佈液之 利用效率差,難以控制成膜條件等之問題,但藉由輥塗法 、凹版塗佈法、斜板式塗佈法、浸漬法、網版印刷法等時 ,塗佈液之利用效率佳,於大量生產或設備成本面有效。 作爲藉由塗佈法所得之透明被膜,已知使含有作爲塡 料之具有低折射率之二氧化矽或氟化鎂之塗料組成物,於 光學基材表面塗佈、乾燥,或將含有二氧化矽或氟化鎂之 塗料組成物,於光學基材之表面塗佈、乾燥後,藉由UV 照射等硬化’形成低折射率層者。二氧化矽之折射率爲 1.45’氟化鎂爲1.378〜1.390’爲得到效率佳之被膜作爲 低折射率被膜時,必須選擇折射率更低之塡料爲材料。 作爲具有折射率比氟化鎂低之金屬氟化物之材料,已 知有氟化鈉。依據 Handbook of Chemistry and Physics ( 1 970- 1 97 1,51st edition)(非專利文獻1)時,氟化鈉之 折射率爲1.32 7,雖比氟化鎂之折射率(1.3 7 8〜1.3 90 ) 低’但因氟化鈉溶解於水,所以很難以形成微粒子或溶膠 〇 作爲非水溶性之金屬氟化物之材料,特開平 7-69620號公報(專利文獻1 )揭示平均粒子徑爲1〇〜 lOOnm之氟化鈉鎂(NaF.MgF2)之膠體粒子所形成之溶 200909544 膠。依據 Physics and Chemistry of Minerals 20, 419-424 (1 993 )(非專利文獻2 )時,氟化鈉鎂之折射率爲 1 .3 64,有效地作爲折射率比二氧化矽或氟化鎂低之材料 〇 [專利文獻1]特開平7-69620號公報 [非專利文獻 1 ] Handbook of Chemistry and Physics ( 1 9 7 0 - 1 9 7 1 , 5 1 s t edition) [非專利文獻 2] Physics and Chemistry of Minerals 20, 419-424 ( 1993) 【發明內容】 發明之揭示 發明所欲解決之課題 光學構件之抗反射層所使用之低折射率被膜係要求抗 外來光線反射,同時具有高的透光性。專利文獻1所記載 之氟化鈉鎂溶膠因透光率低,所以有作爲低折射率被膜時 ,不能得到高透光性之課題。 本發明係以提供藉由使用具有高透光率之氟化鈉鎂溶 膠,可得到高透光性之低折射率被膜之塗料組成物及具有 低折射率被膜之光學構件爲目的。 課題之解決手段 爲解決上述課題,本發明中作爲用以得到低折射率被 膜之塗料組成物,使用調製氟化鈉鎂(NaF_MgF2 )濃度 200909544 成5質量%之溶膠於光程長爲l〇mm之波長爲500nm之透 光率爲8 0 %以上之氟化鈉鎂溶膠作爲塡料成份。塗料組 成物所使用之膠黏劑係只要與氟化鈉鎂溶膠相溶,被膜性 良好者即可’並無特別限定,可舉例如丙烯酸樹脂、聚酯 樹脂、胺基甲酸乙酯樹脂、環氧樹脂、聚乙烯醇樹脂、三 聚氰胺樹脂、明膠及明膠衍生物、纖維素及纖維素衍生物 、聚醯亞胺樹脂、酚醛樹脂、有機矽化物、尿素樹脂、鄰 苯二甲酸二烯丙酯樹脂、丁醛樹脂等。 另外,本發明中提供施以由含有調製氟化鈉鎂( NaF«MgF2)濃度成5質量%之溶膠於光程長爲10mm之波 長爲5 00nm之透光率爲80%以上之氟化鈉鎂溶膠及膠黏 劑之塗料組成物所形成之被膜於光學基材表面,具有抗反 射能力之光學構件。 發明之功效 由本發明提供可形成透光性極佳之被膜,可適用生產 成本低之塗佈法之塗料組成物及由此塗料組成物所形成之 具有低折射率被膜之光學構件。 用以實施發明之最佳型態 以下係詳細地說明關於本發明之實施型態。 本發明之塗料組成物所使用之低折射率塡料係調製氟 化鈉鎂(NaF_MgF2)濃度成5質量%之溶膠於光程長( optical path length)爲10mm之波長爲500nm之透光率 200909544 爲8 0 %以上之氟化鈉鎂溶膠。本發明所使用之氟化鈉鎂 溶膠係以3.0之Na/Mg莫耳比,混合氟化鈉水溶液及鎂鹽 水溶液,使產生氟化鈉鎂膠體粒子之凝聚體漿料,除去所 得氟化鈉鎂膠體粒子之凝聚體漿料中之副產生鹽類,進一 步由濕式粉碎而可得到氟化鈉鎂膠體粒子之凝聚體漿料。 製造本發明中所使用之氟化鈉鎂溶膠時所使用之鎂鹽 係以水溶性的鹽爲宜,可舉例如氯化鎂、硝酸鎂、硫酸鎂 、胺基磺酸鎂、醋酸鎂、甲酸鎂等,此等係可單獨或混合 2種以上使用。混合氟化鈉水溶液及鎂鹽水溶液,使 Na/Mg比成爲3.0爲宜。氟化鈉水溶液及鎂鹽水溶液係可 使用Satake式攪拌機、Faudora型攪拌機、分散機( disper )、勻化器等之裝置,於0〜l〇〇°C之溫度範圍混合 。尤其爲使平均粒子徑爲10〜50nm,於0〜35°C之溫度 範圍混合爲宜。攪拌下,該添加時間係可以0 . 1〜1 0小時 進行。藉由混合氟化鈉水溶液及鎂鹽水溶液而產生之氟化 鈉鎂濃度係調整NaF.MgF2成0.1〜5.0質量%,以0.2〜2 質量%爲宜。產生之氟化鈉鎂係平均粒子徑爲10〜50nm 之氟化鈉鎂膠體粒子之凝聚體,成爲漿料。將此漿料藉由 靜置而沈澱分離氟化鈉鎂膠體粒子之凝聚體。產生氟化鈉 鎂膠體粒子時,產生副產生鹽類。此副產生鹽類係由鎂鹽 之陰離子及起因自氟化鈉之鈉離子者,例如副產生氯化鈉 之鹽。 接著,除去此副產生鹽類。作爲除去此副產生鹽類之 方法,雖可利用壓濾機(filter press )等之過濾洗淨法、 200909544 由超濾膜、反滲透膜等之膜過濾洗淨法、離子交換法、靜 置分離洗淨法等,但以使用超瀘膜之膜過濾洗淨法最好。 另外,因應需要,可倂用膜過濾洗淨法及上述其他方法。 尤其藉由使用管式超濾膜,可有效地除去副產生鹽類。除 去鹽類步驟之溫度雖依超濾膜之材質而異,但通常可於0 〜8 0 °C進行。此溫度愈高,過濾速度大,洗淨性亦變佳, 但因微小的膠體粒子發生鍵結,所以以0〜60 °c爲宜。爲 充份地除去鹽類,必須連續或斷續地加入純水下進行。濾 過洗淨時間雖無特別限定,但通常以1〜5 0小時進行。 藉由除去副產生鹽類,氟化鈉鎂膠體粒子之凝聚體中 ’因副產生鹽類’凝聚的部份凝聚體變小,成爲水性溶膠 ,但大部份凝聚體僅除去鹽類而不能形成溶膠,以凝聚體 狀態存在。將實質上不含有副產生鹽類之氟化鈉鎂膠體粒 子之凝聚體漿料’使用球磨機、砂磨機、珠磨機( attritor )、勻化器等之裝置,藉由進行濕式粉碎,可得 到氟化鈉鎂水性溶膠。進行濕式粉碎時,儘可能使用小粒 徑之粉碎介質爲宜’另外,粉碎介質之材質係玻璃或氧化 鋁、氧化銷、二氧化矽鋁等之陶瓷類適合。 藉由進行上述之濕式粉碎所得之氟化鈉鎂水性溶膠之 濃度,以NaF*MgF2爲2〜50質量%,以5〜50質量%爲 宜,但以高濃度爲宜。進行濕式粉碎時之溫度,雖可於0 〜80°C進行’但因溫度變高時,微小的膠體粒子發生鍵結 ’所以以〇〜4 〇°C爲宜。另外,粉碎時間係依粉碎方法而 異,爲0 . 1〜1 0 0小時。 -9- 200909544 藉由濕式粉碎所得之氟化鈉錶水性溶膠 以電子顯微鏡觀察,可使平均粒子徑爲1 〇 需要,未粉碎或粉碎不充份的粒子係可由離 置分離法、過濾法等除去。 由濕式粉碎所得之氟化鈉鎂水性溶膠的 法,以減壓或常壓取代成有機溶劑而得到有 所使用之有機溶劑,可舉例如甲醇、乙醇、 醇、二甲基甲醯胺、二甲基乙醯胺、乙二醇 等,可使用此等單獨或2種以上之混合物。 度雖依溶劑之沸點而異,但於減壓下儘可能 宜。另外,溶劑取代係可以0.5〜100小時達 由上述溶劑取代所得之氟化鈉鎂有機溶 NaF.MgF2爲2〜40質量%。另外,該粒子 鏡觀察,平均粒子徑爲10〜70nm。 本發明所使用之氟化鈉鎂水性溶膠及將 性溶膠進行溶劑取代所得之有機溶膠中任一 膠之分散溶劑,調整NaF*MgF2濃度成5質 透光率爲8 0 %以上。作爲低折射率被膜時 之透光性,此透光率係以90%以上爲宜, 好。此透光率係以厚度爲1 0mm的水之波長 光率爲100%時,厚度爲l〇mm的氟化鈉鎂 長之透光率之相對値表示者。 本發明所使用之氟化鈉鎂水性溶膠或有 雖可未滿2質量%,但與其他膠黏劑混合使 之膠體粒子係 〜7 0 n m。因應 心分離法、靜 水係可藉由常 機溶膠。作爲 異丙醇、正丙 、丙基溶纖劑 此溶劑取代溫 以低溫進行爲 I行。 膠之濃度係以 徑以電子顯微 此氟化鈉鎂水 種皆使用該溶 量%之溶膠之 ,爲賦予更高 U 9 5 %以上更 爲5 OOnm之透 溶膠之相同波 機溶膠之濃度 用時,因固形 -10- 200909544 物濃度變低,所以不適宜。另外,雖亦可爲濃度超過5 〇 質量%之氟化鈉鎂水性溶膠,或濃度超過40質量%之氟 化鈉鎂有機溶膠,但因溶膠黏度變高,所以不適合。 本發明所使用之膠黏劑係只要與氟化鈉鎂溶膠相溶, 被膜性良好者即可,並無特別限制,可舉例如丙烯酸樹脂 、聚酯樹脂、胺基甲酸乙酯樹脂、環氧樹脂、聚乙烯醇樹 脂、三聚氰胺樹脂、明膠及明膠衍生物、纖維素及纖維素 衍生物、聚醯亞胺樹脂、酚醛樹脂、有機矽化物、尿素樹 脂、鄰苯二甲酸二烯丙酯樹脂、丁醛樹脂等。 作爲丙烯酸樹脂,有如下所示者,此等係可單獨或混 合2種以上使用。另外,可使用單體、寡聚物、聚合物中 任一種狀態。具體上可舉例如三氟乙基丙烯酸酯、三氟甲 基丙烯酸酯、苯基縮水甘油基丙烯酸酯、羥乙基(甲基) 丙烯酸酯、四氫呋喃基丙烯酸酯、丙烯醯嗎啉、Ν·乙醯吡 咯烷酮、Ν-乙烯-e-己內醯胺、新戊二醇(甲基)丙烯酸 酯、1,6-己二醇二(甲基)丙烯酸酯、三甲醇丙烷(甲基 )丙烯酸酯、二三甲醇丙烷四(甲基)丙烯酸酯、季戊四 醇四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、 季戊四醇(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯 、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙 烯酸酯、四乙二醇二(甲基)丙烯酸酯、九乙二醇二(甲 基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、三丙二醇 二(甲基)丙烯酸酯、四丙二醇二(甲基)丙烯酸酯、九 丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸 -11 - 200909544 酯、羥基三甲基 A二(甲基)丙 基)丙烯酸酯、 2,2-雙[4-(丙烯 甲基丙烯氧基二 丙烯酸酯、1,6-甲醇丙烷三(甲 、三-(2-羥乙 戊四醇五(甲基 酸酯、2 -羥丙基 酸酯、叔丁基( 烯酸酯、硬酯醯 、ω -竣基聚己P 烯酸二聚物、月 烯酸酯、丁氧基 酯、甲氧基三乙 、硬脂醯基(甲 、四氫糖基(甲 異冰片基(甲基 基丙嫌酸酯、苯 (甲基)丙烯酸 苯酚乙氧基化丙 苯基丙烯酸酯、 基甲基丙烯酸酯 乙酸新戊一醇一(甲基)丙稀酸酯、雙酉分 烯酸酯、2—乙基,2 -丁基一丙二醇二(甲 1,9 -壬一醇一(甲基)丙;(:希酸醋、己基 氧基二乙氧基)苯基]丙烷、2,2 -雙[4-( 乙氧基)本基]丙院、3 -苯氧基-2-丙酿基 雙(3-丙烯氧基-2-羥基丙基己醚、三 基)丙烯酸酯、甘油三(甲基)丙烯酸醋 ;)-三聚異氰酸酯(甲基)丙烯酸酯、季 )丙烯酸酯、二季戊四醇六(甲基)丙嫌 (甲基)丙烯酸酯、異丁基(甲基)丙烯 甲基)丙烯酸酯、2 -乙基己基(甲基)丙 基丙儲酸醋、2 -乙基己基卡必醇丙稀酸酯 勺酯單丙烯酸酯、丙烯醯基氧乙基酸、丙 桂基(甲基)丙烯酸酯、2 -甲氧基乙基丙 乙基丙烯酸酯、乙氧基乙氧基乙基丙烯酸 二醇丙烯酸酯、甲氧基聚乙二醇丙烯酸酯 基)丙烯酸酯、環己基(甲基)丙烯酸酯 基)丙烯酸酯、Ν-乙烯基-2_吡咯烷酮、 )丙稀酸酯、二環戊嫌基丙稀酸醋、苯甲 基縮水甘油醚環氧丙烯酸酯、苯氧基乙基 酯、苯氧基(聚)乙二醇丙烯酸酯、壬基 稀酸酯、丙烯醯基氧乙基苯二甲酸、三溴 一·漠本酌乙氧基化(甲基)丙;):希酸醋、甲 、三溴苯基甲基丙烯酸酯、甲基丙烯醯基 -12- 200909544 氧乙基酸、甲基丙烯醯基氧乙基馬來酸、甲基丙烯醯基氧 乙基六氫苯二甲酸、甲基丙烯醯基氧乙基苯二甲酸、聚乙 二醇(甲基)丙烯酸酯、聚丙二醇(甲基)丙烯酸酯、 /3-羧乙基丙烯酸酯、N-羥甲基丙烯醯胺、N-甲氧基甲基 丙烯醯胺、N -乙氧基甲基丙烯醯胺、N -正丁氧基甲基丙烯 醯胺、叔丁基丙烯醯胺磺酸、硬脂酸乙烯酯、N-甲基丙烯 醯胺、N -二甲基丙烯醯胺、N -二甲基胺基乙基(甲基)丙 烯酸酯、N-二甲基胺基丙基丙烯醯胺、縮水甘油基甲基丙 烯酸酯、正丁基甲基丙烯酸酯、乙基甲基丙烯酸酯、甲基 丙烯酸烯丙酯、十六烷基甲基丙烯酸酯、十五烷基甲基丙 烯酸酯、甲氧基聚乙二醇(甲基)丙烯酸酯、二乙基胺基 乙基(甲基)丙烯酸酯、甲基丙烯醯基氧乙基琥珀酸、己 二醇二丙烯酸酯、新戊二醇二丙烯酸酯、三乙二醇二丙烯 酸酯、聚乙二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、新戊 基羥基三甲基乙酸酯、季戊四醇二丙烯酸酯單硬脂酸酯、 乙二醇二丙烯酸酯、2-羥乙基甲基丙烯醯基磷酸酯、雙酚 A乙二醇加成物丙烯酸酯、雙酚ρ乙二醇加成物丙烯酸酯 '三環癸烷甲醇二丙烯酸酯、三羥乙基三聚異氰酸酯二丙 烯酸酯、2-羥基-1-丙烯氧基-3-甲基丙烯氧基丙烷、三甲 醇丙烷三丙烯酸酯、三甲醇丙烷乙二醇加成物三丙烯酸酯 、三甲醇丙烷丙二醇加成物三丙烯酸酯、季戊四醇三丙烯 酸酯、三丙烯醯基氧乙基磷酸酯、三羥乙基三聚異氰酸三 丙烯酸酯、改性ε -己內酯三丙烯酸酯、三甲醇丙烷乙氧 基三丙烯酸酯、甘油丙二醇加成物三丙烯酸酯、季戊四醇 -13- 200909544 四丙烯酸酯、季戊四醇乙二醇加成物四丙烯酸醋、二三甲 醇丙烷四丙烯酸酯、二季戊四醇六(五)丙稀酸醋、二季 戊四醇單羥基五丙烯酸酯及環氧丙烯酸酯。 作爲聚酯樹脂,可使用二羧酸成份及甘醇成份爲結構 成份之線狀聚酯等。二竣酸成份及甘醇成份之例如下所示 。此等亦可單獨或混合2種以上使用。二殘酸成份:對苯 二甲酸、間苯二甲酸、苯二甲酸、2,6 -萘二羧酸、4,4 -二 苯基二羧酸、1,4-環己烷二羧酸、己二酸、癸二酸、苯基 茚滿二羧酸及二聚酸(Dimer Acid )。甘醇成份:乙二醇 、1,4-丁二醇、新戊二醇、二乙二醇、二丙二醇、1,6-己 二醇、1,4-環己烷二甲醇、苯二甲基二醇、二羥甲基丙酸 、甘油、三甲醇丙烷、聚(伸乙基氧)乙二醇、聚(四伸 甲基氧)乙二醇、雙酚A之環氧化物加成物及氫化雙酚A 之環氧化物加成物。 作爲胺基甲酸乙酯樹脂,通常可使用聚異氰酸酯及含 活性氫化合物進行加成聚合反應所得者。聚異氰酸酯及含 活性氫化合物之例如下所示。此等係可單獨或混合2種以 上使用。聚異氰酸酯:乙烯二異氰酸酯、四伸甲基二異氰 酸酯、六伸甲基二異氰酸酯(HDI)、十二伸甲基二異氰 酸酯、1,6,1 1-十一烷三異氰酸酯、2,2,4-三甲基六伸甲基 二異氰酸酯、賴胺酸二異氰酸酯(2,6 -二異氰酸基甲基己 酸酯)、雙(2 -異氰酸基乙基)富馬酸酯、雙(2_異氰酸 基乙基)碳酸酯、2 -異氰酸基乙基-2,6 -二異氰酸基己酸酯 、異氟爾酮二異氰酸酯(IPDI)、二環己基甲烷-4,4’-二 -14- 200909544 異氰酸酯(氫化MDI)、環己烯二異氰酸酯、甲基環己稀 二異氰酸酯、雙(2-異氰酸基乙基)-4-環己烯-1,2-二竣 酸酯、2,5-及/或2,6-降冰片烷二異氰酸酯、間一及/或 對-苯二甲基二異氰酸酯、α,α,α’,α’-四甲基苯二甲基 二異氰酸酯、及作爲聚異氰酸酯之改性物、改性MDI (胺 基甲酸乙酯改性MDI、碳化二亞胺改性MDI、三羥基含碳 基磷酸酯 MDI )、胺基甲酸乙酯改性TDI、縮二脲改性 HDI、三聚異氰酸酯改性HDI、三聚異氰酸酯改性IPDI等 之聚異氰酸酯之改性物及此等2種以上之混合物。含活性 氫化合物:2元醇(乙二醇、二乙二醇、1,3 -丙二醇、 l4· 丁二醇、1,5 -戊二醇、1,6 -己二醇)、具有支鏈之二 元醇(丙二醇、新戊二醇、3 -甲基-1,5 -戊二醇、2,2 -二乙 基-1,3 -丙二醇、1,2-、1,3 -或2,3 -丁二醇)、具有環狀基 之二元醇(1,4-雙(羥甲基)環己烷、間一或對-苯二甲基 二醇)、2價酚(雙酚A)、多元醇(甘油、三甲醇丙烷 、季戊四醇、山梨糖醇)、糖類及其衍生物(蔗糖、甲基 葡糖苷)、脂肪族二胺(伸乙基二胺、六伸甲基二胺等) 、脂環式二胺(4,4,-二胺基- 3,3,-二甲基二環己基甲烷、 4,4’-二胺基- 3,3,-二甲基二環己基、二胺基環己烷、異佛 爾酮二胺)、芳香族二胺(二乙基甲苯二胺)、芳香脂肪 族二胺(苯二甲基二胺、α,α,α,,α,-四甲基苯二甲基 二胺)、雜環二胺(哌啶)、多官能胺(二伸乙基三胺、 二伸乙基四胺)、高分子多元醇(聚酯多元醇、聚醚多元 醇)、脂肪族聚羧酸(琥珀酸、戊二酸、馬來酸、富馬酸 -15- 200909544 、己二酸、壬二酸、癸二酸、六氫苯二甲酸)、芳香族聚 羧酸(苯二甲酸、間苯二甲酸、對苯二甲酸、四溴苯二甲 酸、四氯苯二甲酸、偏苯三酸、均苯四甲酸)、馬來酸酐 、富馬酸酐、對苯二甲酸二甲酯、內酯單體(r-丁內酯 、ε -己內酯、r -戊內酯)及加成具有2個以上活性氫原 子之化合物環氧化物之結構者。 作爲環氧樹脂,可使用雙酚A型、雙酚F型、氫化 雙酚A型、雙酚AF型、苯酚漆用酚醛型等之各種液狀環 氧樹脂及其衍生物、以及由多元醇及環氧氯丙烷所衍生之 液狀環氧樹脂及其衍生物、縮水甘油胺型、海因( hydantoin)型、胺基苯酚型、苯胺型、甲苯胺型等之各 種縮水甘油基型液狀環氧樹脂及其衍生物。 作爲聚乙烯醇系樹脂,可使用將乙酸乙烯等之乙烯酯 系單體’進行自由基聚合所得之聚乙烯酯系聚合物,藉由 皂化所得者。聚乙烯酯系聚合物之例如下所示。此等係可 單獨或混合2種以上使用。可舉例如聚乙烯酯系聚合物: 甲酸乙烯、乙酸乙烯、丙酸乙烯、戊醯酸乙烯、月桂酸乙 烯、硬脂酸乙烯、苯甲酸乙烯、三甲基乙酸乙烯及十碳酸 (versatic acid )乙烯等之乙烯酯類之聚合物。聚乙烯酯 系聚合物亦可爲共聚合可共聚合之共聚物單體( C〇m〇nomer )於上述乙烯酯單體類之共聚物,作爲共聚物 單體’可舉例如乙烯、丙烯、丨_丁烯、異丁烯等之鏈儲烴 類、丙烯酸及其鹽、丙烯酸甲酯、丙烯酸乙酯、丙嫌酸正 丙酯、丙烯酸異丙酯 '丙烯酸正丁酯、丙烯酸異丁醋、丙 -16- 200909544 烯酸叔丁酯、丙烯酸2 -乙基己酯、丙烯酸十二烷酯、丙 烯酸十八烷酯等之丙烯酸酯類、甲基丙烯酸及其鹽、甲基 丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丙酯、甲基 丙烯酸異丙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯、 甲基丙烯酸叔丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯 酸十二烷酯、甲基丙烯酸十八烷酯等之甲基丙烯酸酯類、 丙烯醯胺、羥基烷基、N-甲基丙烯醯胺、N-乙基丙烯醯胺 、Ν,Ν-二甲基丙烯醯胺、二丙酮丙烯醯胺、丙烯醯胺丙烷 磺酸及其鹽、丙烯醯胺丙基二甲基胺及其鹽、或其4級鹽 、Ν-羥甲基丙烯醯胺及其衍生物等之丙烯醯胺衍生物、甲 基丙烯醯胺、甲基甲基丙烯醯胺、Ν-乙基甲基丙烯醯胺 、甲基丙稀酸胺丙院磺酸及其鹽、甲基丙嫌醯胺丙基二甲 基胺及其鹽、或其4級鹽、Ν -羥甲基甲基丙烯醯胺及其衍 生物等之甲基丙烯醯胺衍生物、甲基乙烯醚、乙基乙烯醚 、正丙基乙烯醚、異丙基乙烯醚、正丁基乙烯醚、異丁基 乙烯醚、叔丁基乙烯醚、十二烷基乙烯醚、硬脂醯基乙烯 醚等之乙烯醚類、丙烯腈、甲基丙烯腈等之腈類、氯化乙 烯、偏氯乙烯、氟化乙烯、偏氟乙烯等之鹵化乙烯、乙酸 烯丙酯、氯丙烯等之烯丙基化合物、馬來酸及其鹽、或其 酯、乙烯三甲氧基矽烷等之乙烯基甲矽烷基化合物、乙酸 異丙烯酯等。 作爲三聚氰胺樹脂,可使用甲基化三聚氰胺樹脂、丁 基化三聚氰胺樹脂、甲基丁基混合型三聚氰胺樹脂等。 作爲明膠及明膠衍生物,可使用苯二甲酸化明膠、琥 -17 - 200909544 珀酸化明膠、偏苯三酸明膠、均苯四甲酸明膠、酯化明膠 、醯胺化明膠、甲醯化明膠等。 作爲纖維素及纖維素衍生物,可使用二乙醯基纖維素 、三乙醯基纖維素、羥丙基纖維素、三乙醯基纖維素、二 乙醯基纖維素、乙醯基纖維素、乙酸丙酸纖維素、乙酸丁 酸纖維素、乙酸苯二甲酸纖維素、乙酸偏苯三酸纖維素、 硝酸纖維素等。 作爲有機矽化物,可舉例如含有以下之 A成份及/ 或B成份之矽化物。 A成份:以一·般式(I) (R1)a(R3)bSi(OR2)4-(a + b) (I) (在此,R1、R3係分別表示選自烷基、鏈烯基、芳基、 醯基' 鹵素基、環氧丙氧基、環氧基、胺基、苯基、巯基 、甲基丙烯氧基及氰基所成群之有機基,R2係表示選自 碳數1〜8之烷基、烷氧基、醯基及苯基所成群之有機基 ,a及b係〇或1之整數)所表示之有機砂化物或其水解 物。 B成份:以一'般式(II) {(OX)3.aSi(R4)}2Y (II) (在此,R4係表示碳數1〜5之有機基,X係表示碳數1 〜4之烷基或碳數1〜4之醯基,Y係表示碳數2〜20之 -18- 200909544 有機基,a係0或1之整數)所表示之有機矽化物或其水 解物。 A成份係以上述一般式(I )所示。該具體的有機矽 化物或其水解物之例:甲基矽酸鹽、乙基矽酸鹽、正丙基 矽酸鹽、異丙基矽酸鹽、正丁基矽酸鹽、四乙酸基矽烷、 甲基三甲氧基矽烷、甲基三丙氧基矽烷、甲基三乙酸基矽 烷、甲基三丁氧基矽烷、甲基三丙氧基矽烷、甲基三戊氧 基矽烷、甲基三苯氧基矽烷、甲基三苯甲基氧矽烷、甲基 三苯乙基氧矽烷、環氧丙氧基甲基三甲氧基矽烷、環氧丙 氧基甲基三甲氧基矽烷、環氧丙氧基乙基三甲氧基矽 烷、α-環氧丙氧基三乙氧基矽烷、/3-環氧丙氧基三甲氧 基矽烷、/3-環氧丙氧基乙基三乙氧基矽烷、α-環氧丙氧 基丙基三甲氧基矽烷、α-環氧丙氧基丙基三乙氧基矽烷 、/3-環氧丙氧基丙基三甲氧基矽烷、/3-環氧丙氧基丙基 三乙氧基矽烷、r -環氧丙氧基丙基三甲氧基矽烷、r -環 氧丙氧基丙基三乙氧基矽烷、7-環氧丙氧基丙基三丙氧 基矽烷、r-環氧丙氧基丙基三丁氧基矽烷、r-環氧丙氧 基丙基三苯氧基矽烷、α-環氧丙氧基丁基三甲氧基矽烷 、α-環氧丙氧基丁基三乙氧基矽烷、/3-環氧丙氧基丁基 三乙氧基矽烷、r ·環氧丙氧基丁基三甲氧基矽烷、7 -環 氧丙氧基丁基三乙氧基矽烷、(5-環氧丙氧基丁基三甲氧 基矽烷、5 -環氧丙氧基丁基三乙氧基矽烷、(3,4-環氧環 己基)甲基三甲氧基矽烷、(3,4-環氧環己基)甲基三乙 氧基矽烷、;5 - ( 3,4-環氧環己基)乙基三甲氧基矽烷、 -19- 200909544 /3-(3,4 -環氧環己基)乙基三乙氧基矽烷、/3-(3,4 -環 氧環己基)乙基三丙氧基矽烷、/9-( 3,4-環氧環己基)乙 基三丁氧基矽烷、/3 - ( 3,4-環氧環己基)乙基三苯氧基矽 烷、7 - ( 3,4 -環氧環己基)丙基三甲氧基矽烷、r -( 3,4-環氧環己基)丙基三乙氧基矽烷、<5-( 3,4-環氧環己 基)丁基三甲氧基矽烷、6-( 3,4-環氧環己基)丁基三乙 氧基矽烷、環氧丙氧基甲基甲基二甲氧基矽烷、環氧丙氧 基甲基甲基二乙氧基矽烷、α-環氧丙氧基乙基甲基二甲 氧基矽烷、α -環氧丙氧基乙基甲基二乙氧基矽烷、0 -環 氧丙氧基乙基甲基二甲氧基矽烷、yS-環氧丙氧基乙基乙 基二甲氧基矽烷、0:-環氧丙氧基丙基甲基二甲氧基矽烷 、α-環氧丙氧基丙基甲基二乙氧基矽烷、環氧丙氧基 丙基甲基二甲氧基矽烷、環氧丙氧基丙基乙基二甲氧 基矽烷、r-環氧丙氧基丙基甲基二甲氧基矽烷、Τ-環氧 丙氧基丙基甲基二乙氧基矽烷、r-環氧丙氧基丙基甲基 二丙氧基矽烷、τ-環氧丙氧基丙基甲基二丁氧基矽烷、 7-環氧丙氧基丙基甲基二苯氧基矽烷、7-環氧丙氧基丙 基乙基二乙氧基矽烷、T-環氧丙氧基丙基乙基二乙氧基 矽烷、r -環氧丙氧基丙基乙烯基甲氧基矽烷、7 -環氧丙 氧基丙基乙烯基乙氧基矽烷、r-環氧丙氧基丙基乙烯基 苯基甲氧基矽烷、r-環氧丙氧基丙基乙烯基苯基乙氧基 矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙烯基三 甲氧基矽烷、乙烯基三乙酸基矽烷、乙烯基三甲氧基乙氧 基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、苯基三 -20- 200909544 乙酸基矽烷、r-氯丙基三甲氧基矽烷、r-氯丙基三乙氧 基矽烷、r-氯丙基三乙酸基矽烷、3,3,3-三氟丙基三甲氧 基矽烷、r-甲基丙烯基氧丙基三甲氧基矽烷、酼基丙 基三甲氧基矽烷、r -锍基丙基三乙氧基矽烷、万-氰基乙 基三乙氧基矽烷、氯甲基三甲氧基矽烷、氯甲基三乙氧基 矽烷、N-( /3-胺基乙基)胺基丙基三甲氧基矽烷、N-(/3 -胺基乙基)r -胺基丙基甲基二甲氧基矽烷、7·-胺 基丙基甲基三甲氧基矽烷、N-(y3-胺基乙基)r-胺基丙 基三乙氧基矽烷、n-( /3-胺基乙基)T-胺基丙基甲基二 乙氧基矽烷、二甲基二甲氧基矽烷、苯基甲基二甲氧基矽 烷、二甲基二乙氧基矽烷、苯基甲基二乙氧基矽烷、r-氯丙基甲基二甲氧基矽烷、r-氯丙基甲基二乙氧基矽烷 、二甲基二乙酸基矽烷、7 -甲基丙烯基氧丙基甲基二甲 氧基矽烷、γ -甲基丙烯基氧丙基甲基二乙氧基矽烷、r-巯基丙基甲基二甲氧基矽烷、r-锍基丙基甲基二乙氧基 矽烷、甲基乙烯基二甲氧基矽烷、甲基乙烯基二乙氧基矽 烷及此等之水解物。 B成份係以上述一般式(II)所示。該具體的有機矽 化物或其水解物之例:伸甲基雙甲基二甲氧基矽烷、伸乙 基雙乙基二甲氧基矽烷、伸丙基雙乙基二乙氧基矽烷、伸 丁基雙甲基二乙氧基砂垸及此等之水解物。200909544 IX. INSTRUCTIONS OF THE INVENTION [Technical Field] The present invention relates to a coating composition of a sodium fluoride-containing sol having a low refractive index and a high light transmittance, and a coating composition having high transparency and low An optical member of a refractive index film. [Prior Art] Generally, on the image display surface of a lens, a cathode ray tube, a liquid crystal display or the like, light reflection is performed in addition to sunlight or light, and light transmission is enhanced to perform anti-reflection treatment. Conventionally, since the surface of a transparent object is covered with a transparent film having a low refractive index, the reflectance is lowered. By setting the anti-reflection film of such a phenomenon on the display surface of the image display device, the visibility can be improved. The antireflection film is formed by a single layer structure in which a low refractive index layer having a low refractive index is provided on the display surface, or a higher refractive index effect is provided on the display surface, and a plurality of layers are disposed on the display surface to a high refractive index layer. On the refractive index layer, a multilayer structure in which a low refractive index layer for reducing the refractive index of the outermost surface is provided is provided. The above-mentioned antireflection treatment is known as a general vapor phase method and a coating method. It is known that a vapor phase method includes a physical method such as a vacuum evaporation method or a sputtering method, and a chemical method such as a CVD (Chemical Vapor Deposition) method. . The coating method includes a roll coating method, a gravure coating method, a slant coating method, a spray method, a dipping method, a screen printing method (S creen P rinting) method, etc. Although the transparent film can form a high-quality transparent film -4-200909544, it is necessary to control the environment under high vacuum. In addition, since a special heating device or an ion generating acceleration device is required, the manufacturing device is complicated and large, and the manufacturing cost is inevitable. The problem of getting higher. Further, it is difficult to increase the area of the transparent film by the vapor phase method. On the other hand, in the spraying method in the coating method, the use efficiency of the coating liquid is poor, and it is difficult to control the film forming conditions and the like. However, the roll coating method, the gravure coating method, and the swash plate coating method are possible. When the method, the dipping method, the screen printing method, etc., the coating liquid is used efficiently, and it is effective in mass production or equipment cost. As a transparent film obtained by a coating method, it is known that a coating composition containing cerium oxide or magnesium fluoride having a low refractive index as a coating material is coated on a surface of an optical substrate, dried, or contains two A coating composition of cerium oxide or magnesium fluoride is applied to the surface of the optical substrate, dried, and then cured by UV irradiation or the like to form a low refractive index layer. When the refractive index of ceria is 1.45', the magnesium fluoride is 1.378 to 1.390', and when a film having good efficiency is obtained as a film having a low refractive index, it is necessary to select a material having a lower refractive index as a material. As a material having a metal fluoride having a lower refractive index than magnesium fluoride, sodium fluoride is known. According to Handbook of Chemistry and Physics (1 970- 1 97 1, 51st edition) (Non-Patent Document 1), the refractive index of sodium fluoride is 1.32 7, although it is higher than that of magnesium fluoride (1.3 7 8 to 1.3 90). However, since the sodium fluoride is dissolved in water, it is difficult to form fine particles or a sol as a material of a water-insoluble metal fluoride. Japanese Patent Publication No. Hei 7-69620 (Patent Document 1) discloses that the average particle diameter is 1〇. ~ 20090044 gel formed by colloidal particles of sodium fluoride (NaF.MgF2) of lOOnm. According to Physics and Chemistry of Minerals 20, 419-424 (1 993) (Non-Patent Document 2), the refractive index of sodium magnesium fluoride is 1.364, which is effectively lower than that of cerium oxide or magnesium fluoride. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei 7-69620 [Non-Patent Document 1] Handbook of Chemistry and Physics (1 9 7 0 - 1 9 7 1 , 5 1 st edition) [Non-Patent Document 2] Chemistry of Minerals 20, 419-424 (1993) SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The low refractive index film used for the antireflection layer of an optical member is required to be resistant to external light reflection and has high light transmission. Sex. Since the sodium fluoride magnesium sol described in Patent Document 1 has a low light transmittance, there is a problem that high light transmittance cannot be obtained when it is used as a low refractive index film. The present invention has an object of providing a coating composition of a low refractive index film having high light transmittance and an optical member having a film having a low refractive index by using a sodium fluoride magnesium sol having a high light transmittance. In order to solve the above problems, in the present invention, as a coating composition for obtaining a low refractive index coating, a sol of a sodium hydride (NaF_MgF2) concentration of 200909544 is used to form a sol of 5 mass% in a wavelength of an optical path length of 10 mm. A sodium fluoride magnesium sol having a light transmittance of more than 80% at 500 nm is used as a dip component. The adhesive used in the coating composition is not particularly limited as long as it is compatible with the sodium magnesium sol sol, and is excellent in film properties, and examples thereof include an acrylic resin, a polyester resin, a urethane resin, and a ring. Oxygen resin, polyvinyl alcohol resin, melamine resin, gelatin and gelatin derivatives, cellulose and cellulose derivatives, polyimine resin, phenolic resin, organic telluride, urea resin, diallyl phthalate resin , butyral resin and the like. Further, in the present invention, a sodium fluorite sol having a light transmittance of 5% by mass and having a light transmittance of 80% or more at a wavelength of 10 mm and having an optical path length of 10 mm is provided. And the coating formed by the coating composition of the adhesive is an optical member having an antireflection ability on the surface of the optical substrate. EFFECT OF THE INVENTION According to the present invention, it is possible to form a film having excellent light transmittance, and it is applicable to a coating composition of a coating method which produces a low cost and an optical member having a low refractive index film formed by the coating composition. BEST MODE FOR CARRYING OUT THE INVENTION The following is a detailed description of embodiments of the present invention. The low-refractive-index material used in the coating composition of the present invention is a sol having a concentration of 5% by mass of sodium sulphate (NaF_MgF2) and a light transmittance of a wavelength of 500 nm with an optical path length of 10 mm. It is a sodium fluoride magnesium sol of more than 80%. The sodium fluoride magnesium sol used in the present invention is obtained by mixing an aqueous sodium fluoride solution and a magnesium salt aqueous solution at a Na/Mg molar ratio of 3.0 to produce an aggregate slurry of sodium magnesium fluoride colloidal particles, and removing the obtained sodium fluoride. In the agglomerate slurry of the magnesium colloidal particles, a salt is produced as a by-product, and further, the agglomerate slurry of the sodium fluoride magnesium colloidal particles is obtained by wet pulverization. The magnesium salt used in the production of the sodium magnesium sol sol used in the present invention is preferably a water-soluble salt, and examples thereof include magnesium chloride, magnesium nitrate, magnesium sulfate, magnesium aminosulfonate, magnesium acetate, magnesium formate, and the like. These may be used alone or in combination of two or more. The aqueous sodium fluoride solution and the aqueous magnesium salt solution are mixed to have a Na/Mg ratio of 3.0. The aqueous sodium fluoride solution and the aqueous magnesium salt solution can be mixed in a temperature range of 0 to 10 ° C using a Satake type mixer, a Faudora type mixer, a disper, a homogenizer or the like. In particular, in order to make the average particle diameter 10 to 50 nm, it is preferred to mix at a temperature of 0 to 35 °C. With stirring, the addition time can be carried out at 0.1 to 1 hour. The concentration of sodium magnesium fluoride produced by mixing an aqueous solution of sodium fluoride and an aqueous solution of magnesium salt adjusts NaF.MgF2 to 0.1 to 5.0% by mass, preferably 0.2 to 2% by mass. The produced sodium magnesium fluoride is an aggregate of sodium fluoride magnesium colloidal particles having an average particle diameter of 10 to 50 nm, and is a slurry. The slurry was precipitated and separated to form an aggregate of sodium magnesium fluoride colloidal particles by standing. When sodium fluoride colloidal particles are produced, a by-produced salt is produced. This by-produced salt is derived from an anion of a magnesium salt and a sodium ion derived from sodium fluoride, for example, a salt of sodium chloride. Next, this by-produced salt is removed. As a method of removing the by-produced salt, a filtration washing method such as a filter press or the like, a filter filtration method such as an ultrafiltration membrane or a reverse osmosis membrane, an ion exchange method, and a static reaction can be used. Separation and washing methods, etc., but it is best to use a membrane filtration method using a super-ruthenium membrane. In addition, the membrane filtration washing method and the other methods described above may be used as needed. In particular, by using a tubular ultrafiltration membrane, by-product salts can be effectively removed. Although the temperature of the salt removal step varies depending on the material of the ultrafiltration membrane, it can usually be carried out at 0 to 80 °C. The higher the temperature, the higher the filtration speed and the better the detergency, but the bonding of the fine colloidal particles is preferably 0 to 60 °c. In order to adequately remove salts, it must be carried out continuously or intermittently in pure water. Although the filtration washing time is not particularly limited, it is usually carried out at 1 to 50 hours. By removing the by-produced salts, the aggregates of the aggregates of the sodium fluoride magnesium colloidal particles which are agglomerated by the by-produced salts become smaller, and become aqueous sols, but most of the aggregates only remove salts and cannot The sol is formed and exists in an aggregate state. By using a ball mill, a sand mill, an attritor, a homogenizer or the like in a device which does not substantially contain a sodium-magnesium-containing colloidal particle of a by-produced salt, by wet pulverization, An aqueous sodium sol of sodium fluoride can be obtained. When the wet pulverization is carried out, it is preferable to use a pulverized medium having a small particle diameter as much as possible. In addition, the material of the pulverization medium is preferably a ceramic such as glass, alumina, oxidized pin or cerium oxide. The concentration of the sodium magnesium fluoride aqueous sol obtained by the wet pulverization described above is preferably from 5 to 50% by mass in terms of NaF*MgF2, and preferably from 5 to 50% by mass, preferably at a high concentration. The temperature at the time of wet pulverization can be carried out at 0 to 80 °C. However, when the temperature is high, the fine colloidal particles are bonded. Therefore, it is preferable to use 〇~4 〇 °C. Further, the pulverization time varies depending on the pulverization method, and is 0.1 to 1 hour. -9- 200909544 The sodium fluoride aqueous sol obtained by wet pulverization can be observed by electron microscopy to obtain an average particle diameter of 1 〇. Unpulverized or pulverized insufficient particles can be separated by separation method or filtration method. And so on. The method for preparing the aqueous sodium sulphate sol obtained by wet pulverization is replaced with an organic solvent by a reduced pressure or a normal pressure to obtain an organic solvent to be used, and examples thereof include methanol, ethanol, alcohol, and dimethylformamide. These may be used alone or in a mixture of two or more kinds of dimethylacetamide, ethylene glycol or the like. Although the degree varies depending on the boiling point of the solvent, it is preferably as low as possible under reduced pressure. Further, the solvent substitution may be from 0.5 to 100 hours until the sodium fluoride magnesium-soluble organic NaF.MgF2 obtained by substituting the above solvent is from 2 to 40% by mass. Further, the particle mirror observation showed an average particle diameter of 10 to 70 nm. The aqueous sodium sol of magnesium fluoride used in the present invention and the dispersion solvent of any of the organosols obtained by solvent-replacement of the sol are adjusted to have a NaF*MgF2 concentration of at least 80%. The light transmittance in the case of a low refractive index film is preferably 90% or more. This light transmittance is expressed by the relative 値 of the transmittance of sodium fluoride magnesium having a thickness of 10 mm when the wavelength of water having a thickness of 10 mm is 100%. The aqueous sodium sulphate sol used in the present invention may be less than 2% by mass, but may be mixed with other adhesives to form colloidal particles of 770 nm. Due to the separation of the heart, the hydrostatic system can be obtained by a conventional sol. As isopropanol, n-propyl, and propyl cellosolve, this solvent is substituted for the temperature at a low temperature. The concentration of the gel is determined by electron microscopy. The sodium silicate water is used as the sol of the same amount, which is the concentration of the same wave sol which imparts a higher SiO 5 % or more and a 5% sol. When used, it is not suitable because the solid concentration of -10-200909544 becomes low. Further, it may be an aqueous sodium sulphate sol having a concentration of more than 5 〇 mass% or a sodium fluorosilicate organo sol having a concentration of more than 40% by mass, but it is not suitable because the viscosity of the sol is high. The adhesive to be used in the present invention is not particularly limited as long as it is compatible with the sodium magnesium sol sol, and is not particularly limited, and examples thereof include an acrylic resin, a polyester resin, a urethane resin, and an epoxy resin. Resins, polyvinyl alcohol resins, melamine resins, gelatin and gelatin derivatives, cellulose and cellulose derivatives, polyimine resins, phenolic resins, organic tellurides, urea resins, diallyl phthalate resins, Butyraldehyde resin and the like. The acrylic resin may be used singly or in combination of two or more kinds as described below. Further, any of a monomer, an oligomer, and a polymer can be used. Specific examples thereof include trifluoroethyl acrylate, trifluoromethacrylate, phenyl glycidyl acrylate, hydroxyethyl (meth) acrylate, tetrahydrofuran acrylate, propylene morpholine, Ν·B. Pyrrolidone, hydrazine-ethylene-e-caprolactam, neopentyl glycol (meth) acrylate, 1,6-hexanediol di(meth) acrylate, trimethylolpropane (meth) acrylate, Ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol (meth)acrylate, ethylene glycol di(meth)acrylate, two Ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate, polyethylene Alcohol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, nonapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylic acid-11- 200909544 Ester, Hydroxy Trimethyl A bis(methyl)propyl) acrylate, 2,2-bis[4-(propylene methacryloxy diacrylate, 1,6-methanol propane tris(A, tris-(2-hydroxyethylpentene) Alcohol pentasole (methyl ester, 2-hydroxypropyl acid ester, tert-butyl group (enoic acid ester, hard acid ester, ω-mercapto polyhexamethylene dimer, ureic acid ester, butoxylate) , methoxytriethyl, stearyl sulfhydryl (methyl, tetrahydroglycosyl (methanoyl (methyl propyl acrylate), phenyl (meth) acrylate ethoxylated propyl phenyl acrylate, Methacrylate, pentaerythritol mono(methyl) acrylate, diterpene enoate, 2-ethyl, 2-butyl-propanediol bis (methyl 1,9-nonanol- (A) (), C; (: vinegar, hexyloxydiethoxy)phenyl]propane, 2,2-bis[4-(ethoxy)benyl]propyl, 3-phenoxy-2- Propyl bis(3-propenyloxy-2-hydroxypropyl hexyl ether, triyl) acrylate, tris(meth)acrylic acid vinegar;)-trimeric isocyanate (meth) acrylate, quaternary) acrylate Dipentaerythritol hexa(methyl) propyl (meth) acrylate , isobutyl (meth) propylene methyl acrylate, 2-ethylhexyl (methyl) propyl sulphonate, 2-ethylhexyl carbitol acrylate ester monoacrylate, propylene Mercapto oxyethyl acid, propyl laurate (meth) acrylate, 2-methoxyethyl propyl ethyl acrylate, ethoxy ethoxy ethyl acrylate acrylate, methoxy polyethylene Alcohol acrylate based) acrylate, cyclohexyl (meth) acrylate based acrylate, fluorene-vinyl-2_pyrrolidone, acrylic acid ester, dicyclopentanyl acrylate vinegar, benzyl condensed water Glycerol Ether Epoxy Acrylate, Phenoxyethyl Ester, Phenoxy (Poly) Ethylene Glycol Acrylate, Ruthenium Diester, Acrylate Oxy Ethyl Acetate, Tribromo-Im Oxylated (methyl) propyl;): sulphuric acid, methyl, tribromophenyl methacrylate, methacryl fluorenyl-12- 200909544 oxyethyl acid, methacryloyloxyethyl malay Acid, methacryloyloxyethyl hexahydrophthalic acid, methacryl oxime oxyethyl phthalate, polyethylene glycol (meth) acrylate , polypropylene glycol (meth) acrylate, /3-carboxyethyl acrylate, N-methylol acrylamide, N-methoxymethyl propylene decylamine, N-ethoxy methacrylamide, N-n-butoxymethyl acrylamide, t-butyl propylene decyl sulfonic acid, vinyl stearate, N-methyl acrylamide, N - dimethyl decylamine, N - dimethylamine Ethyl (meth) acrylate, N-dimethylaminopropyl acrylamide, glycidyl methacrylate, n-butyl methacrylate, ethyl methacrylate, allyl methacrylate , hexadecyl methacrylate, pentadecyl methacrylate, methoxy polyethylene glycol (meth) acrylate, diethylaminoethyl (meth) acrylate, methacryl Mercaptooxyethyl succinic acid, hexanediol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, neopentyl hydroxyl three Methyl acetate, pentaerythritol diacrylate monostearate, ethylene glycol diacrylate, 2-hydroxyethyl methacrylate Phosphate, bisphenol A ethylene glycol adduct acrylate, bisphenol ρ ethylene glycol adduct acrylate 'tricyclodecane methanol diacrylate, trishydroxyethyl isocyanate diacrylate, 2- Hydroxy-1-propenyloxy-3-methylpropoxypropane, trimethylolpropane triacrylate, trimethylolpropane ethylene glycol adduct triacrylate, trimethylolpropane propylene glycol adduct triacrylate, pentaerythritol Acrylate, tripropylene decyl oxyethyl phosphate, trishydroxyethyl tripoly isocyanate triacrylate, modified ε-caprolactone triacrylate, trimethylolpropane ethoxy triacrylate, glycerol propylene glycol plus Compound triacrylate, pentaerythritol-13- 200909544 tetraacrylate, pentaerythritol ethylene glycol adduct tetraacrylate vinegar, ditrimethanol propane tetraacrylate, dipentaerythritol hexa(penta) acrylate vinegar, dipentaerythritol monohydroxy five Acrylate and epoxy acrylate. As the polyester resin, a linear polyester having a dicarboxylic acid component and a glycol component as a structural component can be used. The diterpenic acid component and the glycol component are shown below. These may be used alone or in combination of two or more. Diacid components: terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, Adipic acid, sebacic acid, phenylindane dicarboxylic acid and dimer acid. Glycol components: ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, benzoic acid Ethylene glycol, dimethylolpropionic acid, glycerol, trimethylolpropane, poly(ethyleneoxy)ethylene glycol, poly(tetramethyloxy)ethylene glycol, epoxide A epoxide adduct And an epoxide addition of hydrogenated bisphenol A. As the urethane resin, a polyisocyanate and an active hydrogen-containing compound can be usually used for the addition polymerization reaction. The polyisocyanate and the active hydrogen-containing compound are shown below. These may be used alone or in combination of two or more. Polyisocyanate: ethylene diisocyanate, tetramethylammonium diisocyanate, hexamethylene diisocyanate (HDI), dodecamethyl diisocyanate, 1,6,1 1-undecane triisocyanate, 2,2,4 - Trimethylhexamethylene diisocyanate, lysine diisocyanate (2,6-diisocyanatomethyl hexanoate), bis(2-isocyanatoethyl) fumarate, double (2-Isocyanoethyl)carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, isophorone diisocyanate (IPDI), dicyclohexylmethane- 4,4'-di-14- 200909544 Isocyanate (hydrogenated MDI), cyclohexene diisocyanate, methylcyclohexyl diisocyanate, bis(2-isocyanatoethyl)-4-cyclohexene-1, 2-Didecanoate, 2,5- and/or 2,6-norbornane diisocyanate, m- and/or p-xylylene diisocyanate, α,α,α',α'-tetra Benzo-dimethyl diisocyanate, and modified as polyisocyanate, modified MDI (ethyl urethane modified MDI, carbodiimide modified MDI, trihydroxycarbonated phosphate MDI), amine group Ethyl formate modified TD I. A modification of a polyisocyanate such as a diuret-modified HDI, a trimeric isocyanate-modified HDI, a trimer isocyanate-modified IPDI, or a mixture of two or more thereof. Active hydrogen-containing compound: 2-alcohol (ethylene glycol, diethylene glycol, 1,3-propanediol, l4·butanediol, 1,5-pentanediol, 1,6-hexanediol), with branching Diol (propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,2-, 1,3 or 2) , 3-butanediol), a glycol having a cyclic group (1,4-bis(hydroxymethyl)cyclohexane, m- or p-benzodimethyl glycol), divalent phenol (bisphenol) A), polyol (glycerol, trimethylolpropane, pentaerythritol, sorbitol), sugars and their derivatives (sucrose, methyl glucoside), aliphatic diamines (ethylenediamine, hexamethylenediamine) Et,) alicyclic diamine (4,4,-diamino-3,3,-dimethyldicyclohexylmethane, 4,4'-diamino-3,3,-dimethylbicyclo Hexyl, diaminocyclohexane, isophorone diamine), aromatic diamine (diethyltoluenediamine), aromatic aliphatic diamine (benzodimethylamine, α,α,α,, α,-Tetramethylphenyldimethyldiamine), heterocyclic diamine (piperidine), polyfunctional amine (diethylidene triamine, diethylidene) Tetraamine), high molecular polyol (polyester polyol, polyether polyol), aliphatic polycarboxylic acid (succinic acid, glutaric acid, maleic acid, fumaric acid-15-200909544, adipic acid, hydrazine Diacid, azelaic acid, hexahydrophthalic acid), aromatic polycarboxylic acid (phthalic acid, isophthalic acid, terephthalic acid, tetrabromophthalic acid, tetrachlorophthalic acid, trimellitic acid) , pyromellitic acid), maleic anhydride, fumaric anhydride, dimethyl terephthalate, lactone monomers (r-butyrolactone, ε-caprolactone, r-valerolactone) and addition A structure of a compound epoxide of two or more active hydrogen atoms. As the epoxy resin, various liquid epoxy resins and derivatives thereof such as bisphenol A type, bisphenol F type, hydrogenated bisphenol A type, bisphenol AF type, phenol paint type, and the like, and polyhydric alcohol can be used. And liquid epoxy resin derived from epichlorohydrin and its derivatives, glycidylamine type, hydantoin type, aminophenol type, aniline type, toluidine type and the like, various glycidyl type liquids Epoxy resin and its derivatives. As the polyvinyl alcohol-based resin, a polyvinyl ester-based polymer obtained by radically polymerizing a vinyl ester-based monomer such as vinyl acetate can be used, which is obtained by saponification. The polyvinyl ester type polymer is shown below. These may be used alone or in combination of two or more. For example, a polyvinyl ester-based polymer: ethylene formate, vinyl acetate, ethylene propionate, ethylene pentanoate, ethylene laurate, ethylene stearate, ethylene benzoate, trimethyl vinyl acetate, and versatic acid A polymer of vinyl ester such as ethylene. The polyvinyl ester-based polymer may be a copolymer of a copolymerizable copolymerizable copolymer monomer (C〇m〇nomer) in the above vinyl ester monomer, and examples of the copolymer monomer may include ethylene, propylene, and the like.丨_butene, isobutylene, etc. chain storage hydrocarbons, acrylic acid and its salts, methyl acrylate, ethyl acrylate, n-propyl propyl acrylate, isopropyl acrylate 'n-butyl acrylate, butyl acrylate, c- 16- 200909544 Acrylates of tert-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, methacrylic acid and its salts, methyl methacrylate, methacrylic acid Ethyl ester, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methyl A methacrylate such as lauryl acrylate or octadecyl methacrylate, acrylamide, hydroxyalkyl, N-methyl acrylamide, N-ethyl acrylamide, hydrazine, hydrazine Methyl acrylamide, diacetone acrylamide, acrylamide propylene sulfonate a propylene amide derivative such as a salt thereof, acrylamide propylamine dimethylamine and a salt thereof, or a 4-grade salt thereof, hydrazine-hydroxymethyl acrylamide and a derivative thereof, methacrylamide, methyl Methyl acrylamide, hydrazine-ethyl methacrylamide, methacrylic acid propyl sulfonate and its salt, methyl propyl decyl propyl dimethylamine and salts thereof, or its grade 4 a methacrylamide derivative such as a salt, hydrazine-hydroxymethylmethacrylamide or a derivative thereof, methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl Vinyl ethers such as vinyl ether, isobutyl vinyl ether, t-butyl vinyl ether, lauryl vinyl ether, stearyl vinyl ether, nitriles such as acrylonitrile and methacrylonitrile, and vinyl chloride , vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc., allyl compounds such as allyl halide, allyl acetate, chloropropene, maleic acid and its salts, or its esters, ethylene trimethoxy decane, etc. A mercaptoalkyl compound, an isopropyl acetate or the like. As the melamine resin, a methylated melamine resin, a butylated melamine resin, a methylbutyl mixed type melamine resin or the like can be used. As gelatin and gelatin derivatives, phthalated gelatin, amber-17-200909544 peri-acidified gelatin, trimellitic acid gelatin, pyromellitic acid gelatin, esterified gelatin, guanylated gelatin, formazan gelatin, etc. can be used. . As the cellulose and cellulose derivative, diethyl hydrazide cellulose, triethylene sulfhydryl cellulose, hydroxypropyl cellulose, triethylene sulfhydryl cellulose, diethyl hydrazine cellulose, acetonitrile cellulose can be used. , cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose acetate trimellitate, nitrocellulose, and the like. The organic halide may, for example, be a telluride containing the following A component and/or B component. A component: a general formula (I) (R1) a (R3) bSi (OR2) 4- (a + b) (I) (here, R1, R3 are respectively selected from an alkyl group, an alkenyl group An organic group in which a group of an aryl group, a fluorenyl group, a halogen group, a glycidoxy group, an epoxy group, an amine group, a phenyl group, a fluorenyl group, a methacryloxy group, and a cyano group, and an R 2 group is selected from a carbon number An organic sand compound or a hydrolyzate thereof represented by an alkyl group, an alkoxy group, a fluorenyl group and a phenyl group in the group of 1 to 8, an a and a b group or an integer of 1). Component B: a general formula (II) {(OX)3.aSi(R4)}2Y (II) (here, R4 represents an organic group having a carbon number of 1 to 5, and X represents a carbon number of 1 to 4) The alkyl group or the fluorenyl group having 1 to 4 carbon atoms, and Y is an organic telluride represented by a carbon number of 2 to 20 -18 to 200909544 organic group, and a is an integer of 0 or 1 or a hydrolyzate thereof. The component A is represented by the above general formula (I). Examples of the specific organic telluride or a hydrolyzate thereof: methyl decanoate, ethyl decanoate, n-propyl decanoate, isopropyl decanoate, n-butyl decanoate, tetraacetic acid decane , methyl trimethoxy decane, methyl tripropoxy decane, methyl triacetoxy decane, methyl tributoxy decane, methyl tripropoxy decane, methyl tripentyl decane, methyl three Phenoxydecane, methyltrityloxydecane, methyltriphenylethyloxane, epoxidoxymethyltrimethoxydecane, glycidoxymethyltrimethoxydecane, propylene oxide Oxyethyltrimethoxydecane, α-glycidoxytriethoxydecane, /3-glycidoxytrimethoxydecane, /3-glycidoxyethyltriethoxydecane , α-glycidoxypropyltrimethoxydecane, α-glycidoxypropyltriethoxydecane, /3-glycidoxypropyltrimethoxydecane, /3-epoxy Propoxypropyltriethoxydecane, r-glycidoxypropyltrimethoxydecane, r-glycidoxypropyltriethoxydecane, 7-glycidoxypropyltri Propoxy decane, r- Oxypropoxypropyl tributoxy decane, r-glycidoxypropyltriphenoxydecane, α-glycidoxybutyltrimethoxydecane, α-glycidoxybutyl Triethoxydecane, /3-glycidoxybutyltriethoxydecane, r-glycidoxybutyltrimethoxydecane, 7-glycidoxybutyltriethoxydecane (5-glycidoxybutyltrimethoxydecane, 5-epoxypropoxybutyltriethoxydecane, (3,4-epoxycyclohexyl)methyltrimethoxydecane, (3 , 4-epoxycyclohexyl)methyltriethoxydecane, 5-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, -19- 200909544 /3-(3,4-epoxy Cyclohexyl)ethyltriethoxydecane, /3-(3,4-epoxycyclohexyl)ethyltripropoxydecane, /9-(3,4-epoxycyclohexyl)ethyltributyloxy Pyridin, /3 - ( 3,4-epoxycyclohexyl)ethyltriphenoxydecane, 7 - ( 3,4-epoxycyclohexyl)propyltrimethoxydecane, r -( 3,4- Epoxycyclohexyl)propyltriethoxydecane, <5-(3,4-epoxycyclohexyl)butyltrimethoxydecane, 6-(3,4-epoxycyclohexane Butyl triethoxydecane, glycidoxymethylmethyldimethoxydecane, glycidoxymethylmethyldiethoxydecane, α-glycidoxyethylmethyl Dimethoxydecane, α-glycidoxyethylmethyldiethoxydecane, 0-glycidoxyethylmethyldimethoxydecane, yS-epoxypropoxyethyl B Dimethoxyoxane, 0:-glycidoxypropylmethyldimethoxydecane, α-glycidoxypropylmethyldiethoxydecane, glycidoxypropylmethyl Dimethoxydecane, glycidoxypropylethyldimethoxydecane, r-glycidoxypropylmethyldimethoxydecane, fluorene-glycidoxypropylmethyl Diethoxydecane, r-glycidoxypropylmethyldipropoxydecane, τ-glycidoxypropylmethyldibutoxydecane, 7-glycidoxypropyl Diphenoxydecane, 7-glycidoxypropylethyldiethoxydecane, T-glycidoxypropylethyldiethoxydecane, r-glycidoxypropyl Vinyl methoxy decane, 7-glycidoxypropyl vinyl ethoxy decane R-glycidoxypropylvinylphenylmethoxydecane, r-glycidoxypropylvinylphenylethoxysilane, ethyltrimethoxydecane, ethyltriethoxydecane , vinyl trimethoxy decane, vinyl triacetoxy decane, vinyl trimethoxy ethoxy decane, phenyl trimethoxy decane, phenyl triethoxy decane, phenyl tri-20 - 200909544 acetate decane , r-chloropropyltrimethoxydecane, r-chloropropyltriethoxydecane, r-chloropropyltriacetoxydecane, 3,3,3-trifluoropropyltrimethoxydecane, r-甲Propenyloxypropyltrimethoxydecane, mercaptopropyltrimethoxydecane, r-mercaptopropyltriethoxydecane, wan-cyanoethyltriethoxydecane, chloromethyltrimethoxy Decane, chloromethyltriethoxydecane, N-(/3-aminoethyl)aminopropyltrimethoxydecane, N-(/3-aminoethyl)r-aminopropylmethyl Dimethoxydecane, 7-aminopropylmethyltrimethoxydecane, N-(y3-aminoethyl)r-aminopropyltriethoxydecane, n-(/3-amino Ethyl)T-aminopropylmethyldiethoxyhydrazine , dimethyldimethoxydecane, phenylmethyldimethoxydecane, dimethyldiethoxydecane, phenylmethyldiethoxydecane, r-chloropropylmethyldimethoxy Decane, r-chloropropylmethyldiethoxydecane, dimethyldiacetoxydecane, 7-methacryloxypropylmethyldimethoxydecane, γ-methacryloxypropyl Diethoxy decane, r-mercaptopropyl methyl dimethoxy decane, r-mercaptopropyl methyl diethoxy decane, methyl vinyl dimethoxy decane, methyl vinyl di Oxydecane and such hydrolysates. The component B is represented by the above general formula (II). Examples of the specific organic telluride or a hydrolyzate thereof: methyl dimethyl dimethoxy decane, ethyl bis dimethyl dimethoxy decane, propyl diethyl diethoxy decane, and Butyl bismethyldiethoxy sand mash and such hydrolysates.

A成份及/或B成份之有機砂化物係可單獨使用僅A 成份或B成份,或混合使用A成份及B成份。另外,可 使用2種以上之A成份’亦可使用2種以上之B成份° A -21 - 200909544 成份及/或B成份之有機矽化物之水解係於A成份及/ 或B成份之有機矽化物中,添加鹽酸水溶液、硫酸水溶液 、或醋酸水溶液等之酸性水溶液,藉由攪拌所進行。 作爲有機矽化物係除了上述矽化物以外,可使用聚矽 氧烷清漆、聚矽氧烷醇酸清漆、聚矽氧烷環氧清漆、聚矽 氧烷丙烯基清漆、及聚矽氧烷聚酯清漆等之改性聚矽氧烷 清漆。此等係可單獨或混合2種以上使用。 作爲鄰苯二甲酸二烯丙酯樹脂,可使用鄰苯二甲酸二 烯丙酯、間苯二甲酸二烯丙酯及對苯二甲酸二烯丙酯。 作爲丁醛樹脂,可舉例如聚乙烯基丁縮醛。 本發明之塗料組成物雖含有上述膠黏劑及氟化鈉鎂溶 膠’但因應需要,亦可配合調製塗佈液用之溶劑、聚合開 始劑、硬化劑、交聯劑、抗紫外線劑、紫外線吸收劑、表 面調整劑(塗平劑)、或其他成份。 例如,膠黏劑具有電離放射線硬化性基,使用光自由 ®聚合開始劑。作爲光自由基聚合開始劑,可使用如乙醯 苯類、二苯甲酮類、酮縮醇類、蒽醌類、噻噸酮類、偶氮 化合物、過氧化物、2,3 -二烷基二酮化合物類、二硫化物 類、二烴胺荒醯(thiuram )類、氟胺化合物等。更具體 上’可舉例如1-羥基-環己基-苯基-酮、2-甲基-1 [4-(甲 硫基)苯基]-2-嗎啉基丙烷-1-酮、苯甲基二甲基酮、1-( 4-十二烷基苯基)-2-羥基-2-甲基丙烷-1-酮、2-羥基-2-甲 基-1-苯基丙烷-1-酮、1-(4-異丙基苯基)-2-羥基-2-甲基 丙烷-1-酮、二苯甲酮等。此等中之1-羥基-環己基-苯基- -22- 200909544 酮及2 -甲基- l[4-(甲硫基)苯基]-2 -嗎啉基丙烷-1-酮, 因爲即使少量’仍藉由電離放射線的照射,促進聚合反應 開始’所以適宜。此等中任一種係可單獨或組合兩者使用 。此等亦存在市售品,1 -羥基-環己基-苯基-酮係可取得自 Chiba Specialty Chemicals (股)之商品名 Ilugacure 184 〇 使用光自由基聚合開始劑時,通常相對於膠黏劑成份 ’以1〜3 0質量份之比率,配合光自由基聚合開始劑爲宜 〇 硬化劑係配合以促進膠黏劑之熱硬化性極性基之熱硬 化反應。熱硬化性極性基爲羥基時,作爲硬化劑,通常可 使用羥甲基三聚氰胺等之具有鹼性基之化合物、藉由金屬 醇鹽等之水解而發生羥基之具有水解性基之化合物。 膠黏劑成份之熱硬化性極性基爲環氧基時,塗佈組成 物中’通常使用多價羧酸酐或多價羧酸作爲硬化劑。作爲 多價羧酸酐之具體例,可舉例如苯二甲酸酐、衣康酸酐、 琥珀酸酐、檸康酸酐、十二碳烯琥珀酸酐、丙二羧酸酐、 馬來酸酐、六氫苯二甲酸酐、二甲基四氫苯二甲酸酐' 5-雙環庚烯-2,3-雙羧酸酐(Himic anhydride)、納迪克酸酐 (nadic anhydride)等之脂肪族或脂環族二羧酸酐; 1,2,3,4 - 丁烷四羧酸二酐 '環戊烷四羧酸二酐等之脂肪族 多價羧酸二酐;均苯四甲酸酐、偏苯三酸酐、二苯甲酮四 羧酸酐等之芳香族多價羧酸酐;乙二醇雙偏苯三酸酯、甘 油偏苯三酸酯等之含酯基酸酐,可舉例如芳香族多價羧酸 -23- 200909544 酐尤佳。另外,亦可適合使用市售之羧酸酐所 樹脂硬化劑。另外,作爲多價羧酸之具體例, 珀酸、戊二酸、己二酸、丁烷四羧酸、馬來酸 之脂肪族多價羧酸;六氫苯二甲酸、1,2 -環己 1,2,4-環己烷三羧酸、環戊烷四羧酸等之脂肪 、及苯二甲酸、間苯二甲酸、對苯二甲酸、均 偏苯三酸、1,4,5,8 -萘四羧酸、二苯甲酮四羧 族多價羧酸,可舉例如芳香族多價羧酸尤佳。 使用硬化劑時,相對於膠黏劑成份,通常 3 0 · 0質量份之比率配合硬化劑。 本發明之使用於塗料組成物之溶劑並無特 可使用各種有機溶劑,例如異丙醇、甲醇、乙 之醇類、甲基乙基酮、甲基異丁基酮、環己酮 乙酸乙酯、乙酸丁酯等之酯類、甲苯、二甲苯 烴或此等之混合物。 本發明之塗料組成物係可由各種已知方法 基材上。可舉例如旋轉塗佈法、浸漬法、噴霧 塗佈(Slide Coating)法、桿塗法、輥塗法、 m e n i s c u s c 〇 a t )法、柔版印刷法、網版印刷法 法等之方法。 本發明之光學構件係藉由塗佈上述本發明 物於光學基材的表面,形成被膜所得。因爲此 折射率低之氟化鈉鎂之膠體粒子,所以折射率 明性優異,並且量產性亦優異。此被膜係可使 形成之環氧 可舉例如琥 、衣康酸等 烷二羧酸、 族多價羧酸 苯四甲酸、 酸等之芳香 係以0.0 5〜 別的限制, 醇、丁醇等 等之酮類、 等之芳香族 塗佈於光學 法、斜板式 彎月塗佈( 、液滴塗佈 之塗料組成 被膜係含有 非常低,透 用於要求低 -24- 200909544 折射率之光學薄膜,其中尤其特別適合作爲抗反止 折射率層。 抗反射膜係於顯示面上設置折射率低之低折射 單層結構、或爲使抗反射效果更好,於顯示面上設 層之中〜高折射率層,亦有於中〜高折射率層上, 少最表面折射率用之低折射率層之多層結構者。本 光學構件係直接塗佈本發明之塗料組成物於光學基 ’使形成所得之被膜,可作爲抗反射膜,光學構件 本發明之塗料組成物所得被膜之間,亦可形成設置 中〜咼折射率層之抗反射膜。 塗佈本發明之塗料組成物之光學基材,並無特 。可舉例如以玻璃或三乙酸纖維素(TAC )、聚對 酸乙二醇酯(PET )、二乙醯基纖維素、乙酸丁酸 、聚醚颯、丙烯酸系樹脂、聚胺基甲酸乙酯系樹脂 、聚碳酸酯、聚颯 '聚醚、三甲基戊烯、聚醚酮、 )丙烯腈等之各種樹脂形成之薄膜等。 本發明之光學構件係具有低折射率被膜層,具 射能力之光學構件,尤其適合使用於液晶顯示器( 、陰極射線管(CRT )、等離子顯示面板( Display Panel > PDP )、電激發光顯示器(Eld) 像處理裝置之顯示面材料。 【實施方式】 [實施例] 膜之低 率層之 置多數 設置減 發明之 材表面 與塗佈 多數層 別限制 苯二甲 纖維素 、聚酯 (甲基 有抗反 LCD ) Plasma 等之影 -25- 200909544 參考例 (a)步驟:溶解226 8g之氟化鈉(NaF,試藥特級, 關東化學(股)製)於100公升純水’調製102.3kg之氟 化鈉水溶液。此水溶液中之氟化鈉濃度爲2 · 2 2質量% ° 另一方面,溶解3 654g之氯化鎂(MgCl2*6H20,試藥特 級,小宗化學藥品(股)製)於1 〇〇公升純水’調製 1 0 3.7 k g之氯化鎂水溶液。此水溶液中之氯化鎂(M g C 12 )濃度爲1.65質量%。加入102.3kg之上述氟化鈉水溶 液於3 0 0公升之容器’使用分散機,強力攪拌下,同時於 室溫以3 0分鐘添加1 〇 3 · 7 k g之上述氯化鎂水溶液後,再 持續進行1小時,得到206kg之氟化鈉鎂膠體粒子之漿料 。反應式係如下所示。 3NaF + MgCl2-> NaF*MgF2 + 2NaCl 上述氟化鈉及氯化鎂係Na/Mg莫耳比爲3.0。所得之 氟化鈉鎂膠體粒子之漿料雖部份形成溶膠,藉由靜置而沈 澱,形成氟化鈉鎂膠體粒子之凝聚體。此漿料中之氟化鈉 鎂濃度爲〇_91質量%。 (b )步驟:將206kg之(a)步驟所得之氟化鈉鎂膠 體粒子之凝聚體漿料,使用管式超濾裝置[UF(PS-150) ’三菱Rayon Engineering (股)製],以與超濾速度相同 速度添加420kg之純水下,同時進行過濾洗淨。過濾洗淨 中漿料之液溫爲2 5 °C ’過濾時間爲丨5 . 5小時。過濾洗淨 -26- 200909544 時之固形物濃度以N aF · M g F 2約爲3 · 0質量%。過濾洗淨 後,同樣地由超濾裝置進行濃縮,得到6 1 7 0 g之實質上不 含有鹽類之氟化鈉鎂膠體粒子之凝聚體漿料。此(b)步 驟所得之氟化鈉鎂膠體粒子之凝聚體漿料係氟化鈉鎂濃度 (NaF«MgF2濃度)爲28.0質量%,導電率爲870//s/cm ,藉由靜置而部份凝聚體沈澱。氟化鈉鎂之產率約爲92 %。 (c)步驟:於67〇g之(b)步驟所得之實質上不含 有鹽類之氟化鈉鎂膠體粒子之凝聚體漿料,加入500g之 陶瓷製粉碎用珠,藉由批次式砂磨機(旋轉次數 2 0 0 0 r · p . m ·,藉由冷卻以保持於室溫)進行粉碎8小時, 得到氟化鈉鎂水性溶膠。粉碎結束後,回收溶膠時,因使 用純水以洗淨粉碎用珠,所得氟化鈉鎂水性溶膠之質量成 爲1 4 4 0 g。此氟化鈉鎂水性溶膠係比重爲1 .1 〇 〇,ρ η 7.1 3 ’黏度爲3.2mPa*s’氟化鈉鎂濃度(NaF.MgF2濃度)爲 13.0質量%,導電率爲410/zs/cm。 將此氟化鈉鎂水性溶膠,使用旋轉蒸餾器(Rotary Evaporator ),於減壓下進行甲醇取代,得到氟化鈉鎂甲 醇溶膠後’同樣地進行異丙醇取代,得到氟化鈉鎂異丙醇 溶膠。所得氟化鈉鎂異丙醇溶膠之比重爲0.8 4,以純水 1 + 1稀釋時之pH爲8.4’黏度爲7.8mPa.s,氟化鈉鎂( NaF_MgF2)濃度爲10.5質量%。另外,使用分光式色差 計TC- 1 8 00MK-II (東京電色(有)製)測定調製此氟化 鈉鎂異丙醇溶膠成氟化鈉鎂(NaF.MgF2 )濃度爲5質量 -27- 200909544 %之溶膠之透光率之結果,於光程長爲l〇mm之波長爲 5 0 0nm之透光率爲99.0% ’以顯微鏡觀察’平均粒子徑爲 4 0nm,動態光散射法之粒子徑爲80nm。 實施例1 於10.5g之參考例所得之氟化鈉鎂異丙醇溶膠,添加 〇.43g之二季戊四醇六丙烯酸酯(曰本化藥(股)製)及 0.02g 之 Ilugacur e-1 84 ( Chiba Specialty Chemicals (股) 製)、1 9.0 g之異丙醇,調製含有氟化鈉鎂之塗料組成物 。使用旋轉塗佈機塗佈所得之塗料組成物於切成5cmx5 cm 之矽晶圓上後,藉由照射紫外線,製作低折射率被膜。以 橢圓測厚儀(Ellipsometer) ( Five Lab MARY-102)測定 所得之低折射被膜之結果,折射率爲1 .4799,膜厚度爲 892A。 實施例2 於7.5g之參考例所得之氟化鈉鎂異丙醇溶膠,添加 0.71g之二季戊四醇六丙烯酸酯(日本化藥(股)製)及 0.04g 之 Ilugacure-184 ( Chiba Specialty Chemicals ( ) 製)、:I5.0g之異丙醇’調製含有氟化鈉鎂之塗料組成物 。使用旋轉塗佈機塗佈所得之塗料組成物於切成5cmx5cm 之矽晶圓上後’藉由照射紫外線,製作低折射率被膜。以 橢圓測厚儀(F i v e L a b M A R Y _ 1 〇 2 )測定所得之低折射被 膜之結果’折射率爲I·43 6 1,膜厚度爲9 93 A。 -28- 200909544 實施例3 於4 · 5 g之參考例所得之氟化鈉鎂異丙醇溶膠,添加 l.Og之二季戊四醇六丙烯酸酯(日本化藥(股)製)及 0.05g 之 Ilugacure-184 ( Chiba Specialty Chemicals (股) 製)、2 4 · 4 5 g之異丙醇’調製含有氟化鈉鎂之塗料組成物 。使用旋轉塗佈機塗佈所得之塗料組成物於切成5 cmx5 cm 之矽晶圓上後,藉由照射紫外線,製作低折射率被膜。以 橢圓測厚儀(Five Lab MARY-102 )測定所得之低折射被 膜之結果,折射率爲1.3838,膜厚度爲991A。 比較例1 於3 . 3 g之二氧化矽異丙醇溶膠(商品名IP A- S T ;日 產化學工業(股)製),添加〇.95g之二季戊四醇六丙烯 酸酯(日本化藥(股)製)及0_05g之Ilugacure-184( Chiba Specialty Chemicals (股)製)' 35.7g 之異丙醇, 調製含有二氧化矽之塗料組成物。使用旋轉塗佈機塗佈所 得之塗料組成物於切成5cmx 5 cm之矽晶圓上後,藉由照 射紫外線,製作低折射率被膜。以橢圓測厚儀(Five Lab MARY-1〇2 )測定所得之低折射被膜之結果,折射率爲 1.4917,膜厚度爲926A。 比較例2 於7.5g之氟化鈉鎂異丙醇溶膠(MFS-10P ;日產化學 -29- 200909544 工業(股)製)’添加〇.71g之二季戊四醇六丙烯酸酯( 日本化藥(股)製)及 0.04g 之 Ilugacure-184 ( Chiba Specialty Chemicals (股)製)、15 0g 之異丙醇,調製 含有氟化鈉鎂之塗料組成物。使用旋轉塗佈機塗佈所得之 塗料組成物於切成5Cmx5Cm之矽晶圓上後,藉由照射紫 外線,製作低折射率被膜。以橢圓測厚儀(Five Lab MARY-1 02 )測定所得之低折射被膜之結果,折射率爲 1.45 3 6,膜厚度爲967A。 產業上利用性 本發明之塗料組成物係可於光學基材上形成透光性極 爲良好之被膜’可適用生產成本低之塗佈法。另外,本發 明之光學構件係具有低折射率被膜層’具有抗反射能力之 光學構件,尤其適合使用於液晶顯示器(LCD )、陰極射 線管(CRT )、等離子顯示面板(PDP)、電激發光顯示 器(ELD)等之影像處理裝置之顯示面材料。 -30-The organic sand compound of component A and/or component B may be used alone or in combination of component A and component B. In addition, two or more kinds of A components can be used, and two or more kinds of B components can also be used. The hydrolysis of the organic telluride of the component and/or the component B is based on the organic deuteration of the component A and/or the component B. An acidic aqueous solution such as a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution or an aqueous acetic acid solution is added to the mixture and stirred. As the organic telluride system, in addition to the above-mentioned telluride, a polyoxyalkylene varnish, a polyoxyalkylene alkyd varnish, a polyoxyalkylene epoxy varnish, a polyoxyalkylene propylene varnish, and a polyoxyalkylene polyester can be used. Modified polyoxyalkylene varnish such as varnish. These may be used alone or in combination of two or more. As the diallyl phthalate resin, diallyl phthalate, diallyl isophthalate and diallyl terephthalate can be used. The butyral resin may, for example, be polyvinyl butyral. The coating composition of the present invention contains the above-mentioned adhesive and sodium magnesium sol sol, but may also be used in combination with a solvent, a polymerization initiator, a hardener, a crosslinking agent, an ultraviolet ray inhibitor, and an ultraviolet ray for preparing a coating liquid. Absorbent, surface conditioner (coating agent), or other ingredients. For example, the adhesive has an ionizing radiation hardening group, and a light free polymerization initiator is used. As the photoradical polymerization initiator, for example, acetophenone benzene, benzophenone, ketal, hydrazine, thioxanthone, azo compound, peroxide, 2,3-dioxane can be used. A ketone compound, a disulfide, a dihydrocarbamine thiuram, a fluoroamine compound, and the like. More specifically, 'for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1 [4-(methylthio)phenyl]-2-morpholinylpropan-1-one, benzoic acid Dimethyl ketone, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropane-1- Ketone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, benzophenone and the like. 1-hydroxy-cyclohexyl-phenyl--22-200909544 ketone and 2-methyl-l[4-(methylthio)phenyl]-2-morpholinylpropan-1-one in these It is suitable even if a small amount 'is still irradiated by ionizing radiation to promote the start of polymerization reaction'. Any of these may be used singly or in combination. There are also commercially available products, and 1-hydroxy-cyclohexyl-phenyl-ketone is available from Chiba Specialty Chemicals under the trade name Ilugacure 184. When using a photoradical polymerization initiator, it is usually relative to an adhesive. The component 'in combination with a photo-radical polymerization initiator in an amount of from 1 to 30 parts by mass in combination with a photo-radical polymerization initiator to promote a thermosetting reaction of a thermosetting polar group of the adhesive. When the thermosetting polar group is a hydroxyl group, as the curing agent, a compound having a basic group such as methylol melamine or a compound having a hydrolyzable group of a hydroxyl group by hydrolysis of a metal alkoxide or the like can be usually used. When the thermosetting polar group of the adhesive component is an epoxy group, the coating composition 'usually uses a polyvalent carboxylic acid anhydride or a polyvalent carboxylic acid as a curing agent. Specific examples of the polyvalent carboxylic acid anhydride include phthalic anhydride, itaconic anhydride, succinic anhydride, citraconic anhydride, dodecene succinic anhydride, malonic anhydride, maleic anhydride, and hexahydrophthalic anhydride. An aliphatic or alicyclic dicarboxylic anhydride such as dimethyltetrahydrophthalic anhydride '5-bicycloheptene-2,3-dicarboxylic anhydride, nadic anhydride; Aliphatic polyvalent carboxylic acid dianhydride such as 2,3,4-butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, or the like; pyromellitic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride, etc. The aromatic polyvalent carboxylic acid anhydride; the ester-containing acid anhydride such as ethylene glycol trimellitate or glycerol trimellitate may, for example, be an aromatic polyvalent carboxylic acid -23-200909544. Further, a commercially available carboxylic acid anhydride resin hardener can also be suitably used. Further, as a specific example of the polyvalent carboxylic acid, peric acid, glutaric acid, adipic acid, butane tetracarboxylic acid, aliphatic polyvalent carboxylic acid of maleic acid; hexahydrophthalic acid, 1,2-ring a fat such as 1,2,4-cyclohexanetricarboxylic acid or cyclopentanetetracarboxylic acid, and phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, 1,4,5 The 8-naphthalenetetracarboxylic acid or the benzophenonetetracarboxylic polyvalent carboxylic acid may, for example, be an aromatic polyvalent carboxylic acid. When a hardener is used, a hardener is usually blended in a ratio of 30 parts by mass with respect to the adhesive component. The solvent used in the coating composition of the present invention is not particularly applicable to various organic solvents such as isopropyl alcohol, methanol, ethyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, ethyl cyclohexanone ethyl acetate. An ester of butyl acetate or the like, toluene, xylene hydrocarbon or a mixture thereof. The coating composition of the present invention can be applied to various substrates by various known methods. For example, a method such as a spin coating method, a dipping method, a spray coating method, a rod coating method, a roll coating method, a m e n i s c u s c 〇 a t ) method, a flexographic printing method, or a screen printing method can be mentioned. The optical member of the present invention is obtained by coating the above-described present invention on the surface of an optical substrate to form a film. Since the colloidal particles of sodium fluoride magnesium having a low refractive index are excellent in refractive index and excellent in mass productivity. The epoxy resin to be formed by the film may be, for example, an alkanedicarboxylic acid such as acrole or itaconic acid, a polyvalent carboxylic acid such as pyromellitic acid, or an acid such as an acid, which is limited to 0.05 to 5, an alcohol, a butanol, or the like. Aromatic coatings such as ketones and the like are applied to optical methods and slanted plate meniscus coatings. (The coating composition of droplet coating is very low, and is used for optical films requiring a low refractive index of -24,095,044,044. Particularly suitable as an anti-reverse refractive index layer. The anti-reflection film is provided with a low-refractive single-layer structure having a low refractive index on the display surface, or a layer on the display surface in order to make the anti-reflection effect better. The high refractive index layer also has a multilayer structure of a low refractive index layer for the lowest surface refractive index on the medium to high refractive index layer. The optical member directly coats the coating composition of the present invention on the optical base. The obtained film can be formed as an antireflection film, and an optical member can be formed between the films obtained by the coating composition of the present invention, and an antireflection film provided with a medium to fluorene refractive index layer can be formed. Material, no special For example, glass or cellulose triacetate (TAC), polyethylene terephthalate (PET), diethyl cellulose, acetic acid butyric acid, polyether oxime, acrylic resin, polyurethane A film formed of various resins such as an ester resin, a polycarbonate, a polyfluorene polyether, a trimethylpentene, a polyether ketone, or an acrylonitrile. The optical member of the present invention has a low refractive index coating layer and an optical member capable of emitting light, and is particularly suitable for use in a liquid crystal display (CRT), a cathode ray tube (CRT), a plasma display panel (PDP), an electroluminescent display. (Eld) The display surface material of the processing apparatus. [Embodiment] [Examples] The low-rate layer of the film is provided in a large number to reduce the surface of the invention and to coat most layers to limit phthalonitrile, polyester (A Base anti-reverse LCD) Plasma and other shadows-25- 200909544 Reference example (a) Step: Dissolve 226 8g of sodium fluoride (NaF, reagent special grade, Kanto Chemical Co., Ltd.) in 100 liters of pure water 'modulation 102.3 Kg of sodium fluoride aqueous solution. The concentration of sodium fluoride in this aqueous solution is 2 · 22 % by mass. On the other hand, 3 654 g of magnesium chloride (MgCl 2 * 6H20, special grade, small chemical (manufactured by the company)) The aqueous solution of magnesium chloride (1 g 3.7 kg) was prepared in 1 liter of pure water. The concentration of magnesium chloride (M g C 12 ) in the aqueous solution was 1.65 mass%. 102.3 kg of the above aqueous sodium fluoride solution was added to the container of 300 liters. ' Using a dispersing machine, while vigorously stirring, 1 〇3 · 7 kg of the above aqueous magnesium chloride solution was added at room temperature for 30 minutes, and then continued for 1 hour to obtain 206 kg of a slurry of sodium fluoride magnesium colloidal particles. The system is as follows: 3NaF + MgCl2-> NaF*MgF2 + 2NaCl The above sodium fluoride and magnesium chloride Na/Mg molar ratio is 3.0. The obtained slurry of sodium magnesium fluoride colloidal particles partially forms a sol, Precipitated by standing to form agglomerates of sodium magnesium fluoride colloidal particles. The concentration of sodium magnesium fluoride in the slurry is 〇_91% by mass. (b) Step: fluorination of 206 kg of the step (a) The agglomerate slurry of the sodium-magnesium colloidal particles was filtered using a tubular ultrafiltration device [UF (PS-150) 'Mitsubishi Rayon Engineering Co., Ltd.) to add 420 kg of pure water at the same speed as the ultrafiltration rate. Wash. The temperature of the slurry in the filter wash is 25 ° C. The filtration time is 丨 5 . 5 hours. The solid concentration of the filter is -26-200909544 with a concentration of N aF · M g F 2 of about 3 · 0% by mass. After filtration and washing, it is concentrated by an ultrafiltration apparatus to obtain 6 1 7 0 g. The aggregate slurry of sodium fluoride magnesium colloidal particles substantially does not contain a salt. The agglomerate slurry of the sodium fluoride magnesium colloidal particles obtained in the step (b) is a sodium fluoride magnesium concentration (NaF «MgF 2 concentration). 28.0% by mass, the electric conductivity was 870 / / s / cm, and some aggregates were precipitated by standing. The yield of sodium magnesium fluoride is about 92%. (c) Step: Adding 500 g of ceramic pulverized beads to agglomerated slurry of sodium fluoride magnesium colloidal particles substantially free of salts obtained in the step (b) of 67 g, by batch sand The mill (the number of rotations of 2 0 0 r · p · m · , which was kept at room temperature by cooling) was pulverized for 8 hours to obtain an aqueous sodium sol of sodium fluoride. After the completion of the pulverization, when the sol was recovered, the pulverized beads were washed with pure water, and the mass of the obtained sodium magnesium fluoride aqueous sol was 1,400 g. The sodium fluoromagnesium aqueous sol has a specific gravity of 1.1 〇〇, ρ η 7.1 3 'viscosity of 3.2 mPa*s' sodium fluoride magnesium concentration (NaF.MgF2 concentration) of 13.0% by mass, and conductivity of 410/zs. /cm. This sodium magnesium fluoride aqueous sol was subjected to methanol substitution under reduced pressure using a rotary evaporator (Rotary Evaporator) to obtain a sodium magnesium fluoride methanol sol, and the same was carried out by isopropanol substitution to obtain sodium fluoroacetate isopropyl chloride. Alcohol sol. The obtained sodium magnesium fluoride isopropanol sol had a specific gravity of 0.84, a pH of 8.4' diluted with pure water 1 + 1 and a viscosity of 7.8 mPa·s, and a sodium fluoride magnesium (NaF_MgF2) concentration of 10.5% by mass. In addition, the sodium fluorinated magnesium isopropyl alcohol sol was prepared to a sodium fluoride magnesium (NaF.MgF2) concentration of 5 mass by using a spectrophotometer TC- 1 8 00MK-II (manufactured by Tokyo Electric Co., Ltd.). - 200909544 % of the sol light transmittance, the light transmittance of the optical path length of l〇mm is 50000 nm and the light transmittance is 99.0% 'microscopic observation' average particle diameter is 40 nm, particle diameter of dynamic light scattering method It is 80 nm. Example 1 In 10.5 g of the sodium magnesium fluoride isopropanol sol obtained in the reference example, 43.43 g of dipentaerythritol hexaacrylate (manufactured by Sakamoto Chemical Co., Ltd.) and 0.02 g of Ilugacur e-1 84 ( Chiba Specialty Chemicals (manufactured by Chiba Specialty Chemicals Co., Ltd.), 1 9.0 g of isopropyl alcohol, to prepare a coating composition containing sodium magnesium fluoride. The obtained coating composition was applied onto a ruthenium wafer of 5 cm x 5 cm by a spin coater, and then a low refractive index film was formed by irradiating ultraviolet rays. The resulting low refractive film was measured by an Ellipsometer (Five Lab MARY-102) to have a refractive index of 1.4799 and a film thickness of 892A. Example 2 In 7.5 g of the sodium magnesium fluoride isopropanol sol obtained in the reference example, 0.71 g of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) and 0.04 g of Ilugacure-184 (Chiba Specialty Chemicals (s) were added. )): I5.0 g of isopropyl alcohol' is prepared as a coating composition containing sodium magnesium fluoride. The obtained coating composition was applied onto a tantalum wafer of 5 cm x 5 cm by a spin coater, and a low refractive index film was produced by irradiating ultraviolet rays. The resulting low refractive film was measured by an elliptical thickness gauge (F i v e L a b M A R Y _ 1 〇 2 ). The refractive index was I·43 6 1 and the film thickness was 9 93 A. -28- 200909544 Example 3 A magnesium fluoride isopropyl alcohol sol obtained in a reference example of 4 · 5 g, adding 1.0 g of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) and 0.05 g of Ilugacure -184 (manufactured by Chiba Specialty Chemicals Co., Ltd.), 2 4 · 4 5 g of isopropyl alcohol' to prepare a coating composition containing sodium magnesium fluoride. The obtained coating composition was applied onto a ruthenium wafer of 5 cm x 5 cm by a spin coater, and then a low refractive index film was formed by irradiating ultraviolet rays. The resulting low refractive film was measured by an elliptical thickness gauge (Five Lab MARY-102) to have a refractive index of 1.3838 and a film thickness of 991 Å. Comparative Example 1 3. 3 g of cerium oxide isopropanol sol (trade name: IP A-ST; manufactured by Nissan Chemical Industries Co., Ltd.), and added 9.5 g of dipentaerythritol hexaacrylate (Nippon Chemical Co., Ltd.) And 0.05 g of Ilugacure-184 (manufactured by Chiba Specialty Chemicals Co., Ltd.) 35.7 g of isopropyl alcohol, and a coating composition containing cerium oxide was prepared. After the obtained coating composition was applied onto a ruthenium wafer of 5 cm x 5 cm by a spin coater, a low refractive index film was formed by irradiating ultraviolet rays. The resulting low refractive film was measured by an elliptical thickness gauge (Five Lab MARY-1〇2) to have a refractive index of 1.4917 and a film thickness of 926A. Comparative Example 2 Adding 71.71 g of dipentaerythritol hexaacrylate to 7.5 g of sodium magnesium fluoride isopropanol sol (MFS-10P; manufactured by Nissan Chemical -29-200909544 (manufactured by Niko Co., Ltd.) (Nippon Chemical Co., Ltd.) And 0.04 g of Ilugacure-184 (manufactured by Chiba Specialty Chemicals Co., Ltd.) and 150 g of isopropyl alcohol to prepare a coating composition containing sodium magnesium fluoride. The obtained coating composition was applied onto a tantalum wafer cut into 5 cm x 5 cm by a spin coater, and then irradiated with ultraviolet rays to prepare a low refractive index film. The resulting low refractive film was measured by an elliptical thickness gauge (Five Lab MARY-1 02) to have a refractive index of 1.45 3 and a film thickness of 967 A. Industrial Applicability The coating composition of the present invention is capable of forming a coating film having excellent light transmittance on an optical substrate, which is applicable to a coating method having a low production cost. In addition, the optical member of the present invention has an optical member having a low refractive index coating layer having antireflection capability, and is particularly suitable for use in a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display panel (PDP), and an electroluminescence. Display surface material of an image processing apparatus such as an indicator (ELD). -30-

Claims (1)

200909544 十、申請專利範圍 1 · 一種塗料組成物,其特徵係含有調製氟化鈉鎂( NaF*MgF2)濃度成5質量%之溶膠於光程長爲l〇mm之波 長爲500nm之透光率爲80%以上之氯化納鏡彳谷膠及膠黏 劑。 2.如申請專利範圍第1項之塗料組成物,其中該膠 黏劑係至少1種選自丙烯酸樹脂、聚酯樹脂、胺基甲酸乙 / * 醋樹脂、環氧樹脂、聚乙烯醇樹脂、三聚氰胺樹脂、明膠 及明膠衍生物、纖維素及纖維素衍生物、聚醯亞胺樹脂、 酌醒樹脂、有機矽化物、尿素樹脂、鄰苯二甲酸二烯丙酯 樹脂以及丁醛樹脂所成群。 3· 一種光學構件’其特徵係於光學基材表面,具有 由申請專利範圍第1項或第2項之塗料組成物所形成之被 膜。 -31 - 200909544 七 無 明 說 單 簡 號 無符 ^表 為代 圖件 表元 代之 定圖 指表 :案代 圖本本 表、、 代 定一二 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無200909544 X. Patent Application No. 1 · A coating composition characterized by a sol having a concentration of 5% by mass of sodium fluoride (NaF*MgF2) and a light transmittance of 80 nm at an optical path length of 10 mm. More than % of sodium chloride glutinous gum and adhesive. 2. The coating composition of claim 1, wherein the adhesive is at least one selected from the group consisting of an acrylic resin, a polyester resin, an amino carboxylic acid ethyl acetate/acetic acid resin, an epoxy resin, a polyvinyl alcohol resin, Melamine resin, gelatin and gelatin derivatives, cellulose and cellulose derivatives, polyimine resin, dewax resin, organic telluride, urea resin, diallyl phthalate resin and butyral resin . 3. An optical member which is characterized in that it is on the surface of an optical substrate and has a film formed of the coating composition of the first or second aspect of the patent application. -31 - 200909544 七无明说单单单号无符^ The table is the map of the generation of the map. The table is the table: the representative of the case, the table, and the definite one or two. If the case has a chemical formula, please reveal the best Chemical formula showing the characteristics of the invention: none
TW097114315A 2007-04-24 2008-04-18 Coating composition and optical member TW200909544A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113936A JP5029818B2 (en) 2007-04-24 2007-04-24 Coating composition and optical member

Publications (1)

Publication Number Publication Date
TW200909544A true TW200909544A (en) 2009-03-01

Family

ID=40046438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114315A TW200909544A (en) 2007-04-24 2008-04-18 Coating composition and optical member

Country Status (4)

Country Link
JP (1) JP5029818B2 (en)
KR (1) KR20080095773A (en)
CN (1) CN101294014A (en)
TW (1) TW200909544A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981575B1 (en) * 2006-07-10 2010-09-10 주식회사 엘지화학 Antireflective coating composition with excellent stain resistance
WO2012053427A1 (en) * 2010-10-18 2012-04-26 株式会社ニコン Optical thin film, multilayer optical thin film, optical element, method for producing optical element, and coating liquid for forming optical thin film
TWI468996B (en) * 2012-04-06 2015-01-11 Dexin Corp Optical dustproof mouse
CN103937197B (en) * 2014-02-14 2016-05-11 东莞市想联实业投资有限公司 A kind ofly prepare the polyurethane synthetic resin of seamless sticker and apply the seamless sticker that it is prepared
CN109655942A (en) * 2018-12-19 2019-04-19 宁波甬安光科新材料科技有限公司 A kind of optical thin film, optical module and preparation method comprising the film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769620A (en) * 1993-08-31 1995-03-14 Nissan Chem Ind Ltd Sol and fine powder of sodium magnesium fluoride and production thereof
DE102004027842A1 (en) * 2004-06-08 2006-01-12 Institut für Neue Materialien Gemeinnützige GmbH Abrasion and scratch resistant low refractive index coatings on a substrate
JP4877518B2 (en) * 2006-06-22 2012-02-15 日産化学工業株式会社 Conductive tin oxide sol and method for producing the same

Also Published As

Publication number Publication date
CN101294014A (en) 2008-10-29
JP5029818B2 (en) 2012-09-19
JP2008266505A (en) 2008-11-06
KR20080095773A (en) 2008-10-29

Similar Documents

Publication Publication Date Title
TWI241326B (en) Hard coating material and film comprising the same
TW536639B (en) Anti-reflection material and polarized film using the same
JP4883383B2 (en) Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating
JP5057199B2 (en) Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating
TWI316530B (en) Coating composition for film with low refractive index and film prepared therefrom
TWI358360B (en)
TWI482738B (en) Hollow silica fine particles, a transparent film-forming composition containing the same, and a substrate having a transparent film
TWI439419B (en) Aggregate of spherical core shell type cerium oxide/polymeric hybrid nano particles and manufacturing method thereof
JP5771967B2 (en) Antireflection film
CN105555849B (en) Laminate film and its manufacturing method
JP2012106240A (en) Coating composition, coating of the composition, reflection preventing film, and image display device
TW200923406A (en) Stacked film for optical use
JP6820354B2 (en) Coating composition, antireflection film and its manufacturing method, laminate, and solar cell module
TW200909544A (en) Coating composition and optical member
JP2010084017A (en) Organic-inorganic hybrid hollow fine particle, anti-reflective resin composition, coating agent for antireflection film, antireflection layered product, and antireflection film
TWI680874B (en) Laminated film and its manufacturing method
TW201615764A (en) Composition
JP2009226947A (en) Manufacturing method of laminate
JP2010084018A (en) Method for producing hollow organic-inorganic hybrid fine particle, and hollow organic-inorganic hybrid fine particle
TW201124486A (en) Conductive coating composition and coated member
JP2012236921A (en) Antistatic hard coat coating material and optical member
JP2011136850A (en) Method for preparing organic solvent-dispersed sol including high refractive index metal oxide fine particle, such organic solvent-dispersed sol, and coating composition obtained using the organic solvent-dispersed sol
TW201226325A (en) Hydrophobic organic solvent dispersion fluid of surface-modified anhydrous zinc antimonate colloidal particle, and coating composition and coated material by use of the liquid
JP2018145339A (en) Low refractive index film forming liquid composition and formation method of low refractive index film therewith
JP4925935B2 (en) Composite rutile fine particles, composite rutile fine particle dispersion, high refractive index material, high refractive index member, and method for producing composite rutile fine particles