TW200907523A - Electrochromic structure and manefacturing method thereof - Google Patents

Electrochromic structure and manefacturing method thereof Download PDF

Info

Publication number
TW200907523A
TW200907523A TW96129474A TW96129474A TW200907523A TW 200907523 A TW200907523 A TW 200907523A TW 96129474 A TW96129474 A TW 96129474A TW 96129474 A TW96129474 A TW 96129474A TW 200907523 A TW200907523 A TW 200907523A
Authority
TW
Taiwan
Prior art keywords
electrochromic
oxide
layer
electrochromic structure
conductive substrate
Prior art date
Application number
TW96129474A
Other languages
Chinese (zh)
Inventor
Fu-Rong Chen
Keng-Che Cheng
Chia-Ching Liao
sheng-hui Lin
Shih-Hung Chiou
Original Assignee
Hitekcorps Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitekcorps Co Ltd filed Critical Hitekcorps Co Ltd
Priority to TW96129474A priority Critical patent/TW200907523A/en
Publication of TW200907523A publication Critical patent/TW200907523A/en

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present invention relates to an electrochromic structure and the manufacturing method thereof, which essentially includes a first transparent electric conduction substrate, a second transparent, opaque or reflective electric conduction substrate, and an electrochromic layer and a reflection nano electrolysis layer. The electrochromic layer is disposed between the first transparent electric conduction substrate and the second electric conduction substrate. The reflection nano eletrolysis layer which is coated upon the electrochromic layer includes a plurality of opaque nano particles to be served as the background colors of the electrochromic structure. When a predetermined potential difference is applied to the first and second transparent electric conduction substrates, ions within the reflection nano electrolysis layer can move in or out of the electrochromic layer so as to change the optical characteristics of the electrochromic material in the electrochromic layer. Accordingly, the colors of the electrochromic structure can be varied due to coloration and decoloration.

Description

200907523 九、發明說明: 【發明所屬之技術領域】 本發明之目的係為提供一種電致色變結構及其製造 方法(一),特別是透過反射式奈米電解層之設計,提供其 背景顏色而不需再額外增加反射層之電致色變結構與其 製造方法者。 【先前技術】 電致色變(electrochromic)的概念已於1961年提 出,其主要係利用「電致色變物質在受到外加電場的作用 之下,將會改變其對光的吸收能力,而導致顏色及光穿透 度的變化,且具有可逆及持續的特性」。即對電致色變材 料施予外加電位時,其顏色會改變。例如,當電致色變結 構被施予一可見光,實質上電致色變結構會吸收某特定波 長之光穿透,藉此,以防止過度的光線穿過電致色變結 構,可用以調節不同波長光之入射量。 傳統之電致色變結構包含一第一透明導電基材、一電 致色變層、一電解質層及一第二透明導電基材,第一透明 導電基材及第二透明導電基材位於電致色變結構的最外 侧,電解質層與電致色變層則係配置於第一透明導電基材 及第二透明導電基材間,當在第一透明導電基材及第二透 明導電基材間施予一預設電位差,便可使電致色變結構改 變顏色,達成所預設之光學特性。 典型的第一透明導電基材及第二透明導電基材係由 玻璃及在玻璃上設導電薄膜而成,但是在一些特殊的應用 上亦有利用在塑膠材料上設導電薄膜作為透明導電基材 者。電致色變層可以有機化合物實現,如紫精【Viologen】 200907523 或吡啶【Pyrodine】,或是以無機化合物來實現,例如無 機過渡金屬化合物氧化鎢【W〇3】、氧化鉬【M〇〇3】或五氧 化二飢【秘】。另-方面’電解質層可用—已添加鋰氯化 物及高氯酸鹽之溶液。根據不同的光學特性,電致色變結 構可應用作為調節室内陽光入射能量之智慧型窗戶 (Smart windows)、汽車的反強光照後鏡(Anti_dazzHng200907523 IX. Description of the Invention: [Technical Field] The present invention aims to provide an electrochromic structure and a manufacturing method thereof (I), in particular, through the design of a reflective nano-electrolytic layer, providing a background color thereof There is no need to additionally increase the electrochromic structure of the reflective layer and its manufacturing method. [Prior Art] The concept of electrochromic was proposed in 1961, which mainly uses "electrochromic substances to change their ability to absorb light under the action of an applied electric field, resulting in Changes in color and light penetration with reversible and continuous properties." That is, when an applied potential is applied to the electrochromic material, the color changes. For example, when an electrochromic structure is applied to a visible light, a substantially electrochromic structure absorbs light of a particular wavelength, thereby preventing excessive light from passing through the electrochromic structure, which can be used to adjust The amount of light incident at different wavelengths. The conventional electrochromic structure comprises a first transparent conductive substrate, an electrochromic layer, an electrolyte layer and a second transparent conductive substrate, wherein the first transparent conductive substrate and the second transparent conductive substrate are electrically The outermost side of the color-changing structure, the electrolyte layer and the electrochromic layer are disposed between the first transparent conductive substrate and the second transparent conductive substrate, when the first transparent conductive substrate and the second transparent conductive substrate By applying a predetermined potential difference, the electrochromic structure can be changed in color to achieve the predetermined optical characteristics. A typical first transparent conductive substrate and a second transparent conductive substrate are made of glass and a conductive film on the glass, but in some special applications, a conductive film is also used as a transparent conductive substrate on the plastic material. By. The electrochromic layer can be realized by an organic compound, such as Viologen 200907523 or pyridine [Pyrodine], or by an inorganic compound such as an inorganic transition metal compound tungsten oxide [W〇3], molybdenum oxide [M〇〇 3] or pentoxide hunger [secret]. Another aspect - the electrolyte layer is available - a solution of lithium chloride and perchlorate has been added. Depending on the optical properties, the electrochromic structure can be applied as a smart window for adjusting the incident energy of indoor sunlight, and an anti-glare back mirror for the car (Anti_dazzHng)

Rear view Mirrors)、車内的天窗(Sun R〇〇fs)、靜態圖 案看板或數字顯示器(Static display Devices)等等。 然而,現有的電致色變結構中,其背景之顏色均為透 明,若欲實現白色或是其他顏色之背景,則必須在該電致 色變結構中額外增加一層反射層。請參閱第一圖,係顯示 現有具背景顏色之電致色變結構之示意圖,其包含一第一 透明導電基材(11)、一電致色變層(丨2)、一電解質層 (13)、一絕緣層(14)、一第二透明導電基材(15)及一反射 層(16),該電致色變層(12)、電解質層(13)及反射層(16) 介於第一及第二透明導電基材(11)、(15)中間,並在周圍 以絕緣層(14 )予以封裝,據此,利用其額外增加的反射層 (16)作為反射入射光源之波長,以形成背景顏色,但額外 增加反射層(16)會使得電致色變結構的整體厚度增加,造 成使用上的不便,又,現有技術中反射層(16)與電致色變 層(12)中間隔著電解質層(13),所以其顏色之對比度較差。 【發明内容】 今,發明人即是鑒於現有之電致色變結構必須利用其 額外增加設置之反射層來作為反射入射光源之波長以形 成背景顏色,而據此產生整體結構過厚不利使用之缺失, 於是本發明人基於多年從事研究與諸多實務經驗,經多方 200907523 研究設計與專題探討,遂於本發明提出一種電致色變結構 及其製造方法,以作為前述期望之實現方式與依據。 本發明之目的為提供一種電致色變結構及其製造方 法(一),尤其是指一種透過反射式奈米電解層之設計,提 供其背景顏色而不需再額外增加反射層者。 而本發明之目的、功效是由以下之技術所達成: 其包含一第一透明導電基材、一具透明、不透明或反 射式的第二導電基材、一電致色變層及一反射式奈米電解 層;電致色變層係配置於第一透明導電基材及第二導電基 材之間,反射式奈米電解層係塗佈於電致色變層上,且反 射式奈米電解層包含複數個不透明奈米粒子,用以作為電 致色變結構之背景顏色;當第一透明導電基材及第二導電 基材被施予一預設電位差時,則反射式奈米電解層中之離 子將會遷入或遷出電致色變層,改變電致色變層中電致色 變材料之光學特性,使該電致色變結構之顏色因此產生著 色或去色之變化。 承上所述,因本發明之電致色變結構中的反射式奈米 電解層不只是負責傳導正離子,使電致色變材料完成氧化 還原反應,亦由於反射式奈米電解層包含不透明奈米粒 子,可反射光線,使反射式奈米電解層具有顏色,足以作 為反射層提高變色對比,而不需要額外的反射層,使得電 致色變結構可以更薄,且因本發明中之反射式奈米電解層 與電致色變層間係彼此相鄰,因此顏色的對比度較高。 茲為使貴審查委員對本發明之技術特徵及所達成 之功效有更進一步之瞭解與認識,下文僅提供較佳之實施 例及相關圖式以為輔佐之用,並以詳細之說明文字配合說 7 200907523 明如後。 【實施方式】 以下將參照才目關圖式,說明本發明較佳實施例之電致 色變結構及其製造方法,其中相同的元件將以相同的參照 符號加以說明。 請參閱第二圖,係顯示本發明之電致色變結構之構造 示意圖,其包含一第一透明導電基材(21)、一具透明、不 透明或反射式之第二導電基材(22)、一第一電致色變層 (23)及一反射式奈米電解層(24) 〇 該第一透明導電基材(21),係由玻璃或塑膠材料製 成,並於其第一端面(211)上設有導電薄膜(212); 該第二導電基材(22)〔可為透明、不透明或反射式〕, 其第一端面(221)上同樣設有導電薄膜(222); 該第一電致色變層(23),係建置於第一透明導電基材(21) 及第二導電基材(22)之間; 該反射式奈来電解層(24),係建置於第一電致色變層 (23)及第一導電基材(22)之間,且反射式奈米電解層(24) 包含複數個具顏色之不透明奈米粒子(241),用以作為第一 電致色變層(23)之背景顏色,又該不透明奈米粒子(241) 較佳為二氧化鈦【Ti〇2】奈米粒子,且不透明奈米粒子(241) 係均勻散佈於反射式奈米電解層(24)中;再者,該反射式 奈米電解層(24)係由過氯酸鋰【LiCl〇4】及碳酸丙烯 【Propylene Carbonate(PC)】二者混合而成,亦可為由 過氯酸鋰、碳酸丙烯及聚曱基丙烯酸曱酯【PMMA】三者混 合而成,或可以提供變色所需之離子,如K+、H+、Li+等 所組成之組群中選出之材料所組成; 8 200907523 據此’當第一透明導電基材(21)及第二導電基材(22) 間接没一電源裝置(2 5 )後,並施予一預設之正電位差或負 電位差時’則反射式奈米電解層(24)中之離子將會擴散遷 入第一電致色變層(23)或由第一電致色變層(23)遷出,以 改變電致色變層(23)的光學特性。 其中,本發明之電致色變結構更包含一第二電致色變 層(26)【請一併參閱第三圖所示】,其係設置在反射式奈 米電解層(24)及第二導電基材(22)之間,當第二導電基材 (22)及第一透明導電基材(21)被施予一預設正電位差或 負電位差時,則反射式奈米電解層(24)中之離子將會進入 第一電致色變層(23)或第二電致色變層(26),以改變第一 電致色變層(23)或第二電致色變層(26)之光學特性,藉此 以達成雙面皆可變色之電致色變結構之實現。 上述第一、第二電致色變層(23)、(26)係由自過渡金 屬氧化物(transition metal oxides),如鶴氧化物 (tungsten oxide)、錮氧化物(molybdenum oxide)、飢氧 化物(vanadium oxide)、鎳氧化物、鈦氧化物(titanium oxide)、銳氧化物(niobium oxide)、筛氧化物(cerium oxide)、鈷氧化物(cobalt oxide)、组氧化物(tantalum oxide)、鉻氧化物(chromium oxide)、锰氧化物(manganese oxide)、鐵氧化物(iron oxide)、釕氧化物(ruthenium oxide)、錢氧化物(rhodium oxide)及銀氧化物(iridium oxide),或過渡金屬氰化物(transition metal hexacyanometallates),如普魯士藍(Prussian blue)、 普魯士藍衍生物及六氰鐵化銦(I nHCF ),亦或是有機化合 物或導電高分子(organic materials),如紫精或°比咬及 200907523 ^ 每氧嗟1【P〇ly—3, 4-Ethylenedioxythiophene, PED0T】所組成之組群中選出之材料經處理後所組成。 上述電致色變結構更可利用封裝技術將之封裝成一 結構體’並於其外圍形成-絕緣層(27)【請-併參第四 圖】。 由上之s兒明,可知本發明之電致色變結構所具之反射 式奈米電解層(24)包含有不透明奈米粒子(241),且各不透 明奈米粒子(241)本身又具有顏色,故可成為第 一或第二電 致色變層(23)、(26)之背景顏色。 凊一併參閱第五圖,係顯示本發明之製造電致色變結 構之方法的步驟流程圖,其步驟順序為: a步驟(S41):先在第一透明導電基材及第二導電基材 (21)、(22)的第一端面(211)、(221)上設導電薄膜(212)、 (222); b步驟(S42):於第一透明導電基材(21)設有導電薄 膜(212)的一侧處配置一第一電致色變層(23); c步驟(S43):在第一電致色變層(23)與第二導電基 材(22)之導電?專膜(222)之間配置反射式奈米電解層 (24),反射式奈米電解層(24)包含複數個具顏色之不透明 奈米粒子(241),用以作為第一電致色變層(23)之背景顏 色,又該不透明奈米粒子(241)較佳為二氧化鈦【Ti〇2】 奈米粒子,且不透明奈米粒子(241)係均勻散佈於反射式 奈米電解層(24)中;再者,該反射式奈米電解層(24)係由 過氯酸裡及碳酸丙烯二者混合而成,亦可為由過氯酸經、 碳酸丙烯及聚甲基丙烯酸甲酯三者混合而成,或可以提供 變色所需之離子,如K+、H+、Li +等所組成之組群中選出 10 200907523 之材料所組成; 據此,當在第一透明導電基材(21)及第二導電基材 (22)間接設一電源裝置(25),以在第一透明導電基材(21) 及第二導電基材(22)之間施予一預設之正電位或負電位 時’則反射式奈米電解層(24)中之離子將會擴散遷入第一 電致色變層(23)或由第一電致色變層(23)遷出,進而改變 第一電致色變層(23)的光學特性,達成電致色變結構之著 色或去色狀態。 上述之製造電致色變結構之方法更包括d步驟(S44) 【請一併參閱第六圖】:在第二導電基材(22)之導電薄膜 (222)與反射式奈米電解層(24)之間配置一第二電致色變 層(26)。 上述第一、第二電致色變層(23)、(26)係由自過渡金 屬氧化物,如鎢氧化物、鉬氧化物、釩氧化物、鎳氧化物、 鈦氧化物、銳氧化物、铈氧化物、銘氧化物、组氧化物、 鉻氧化物、錳氧及銥氧化物,或過渡金屬氰化物,如普魯 士藍、普魯士藍衍生物及六氰鐵化銦’亦或是有機化合物 或導電高分子,如紫精、°比淀及聚乙撐二氧嗔吩所組成之 組群中選出之材料經處理後所組成。 上述之製造電致色變結構之方法其在c步驟或d步驟 之後更包括一 e步驟(S45):將上述之電致色變結構予以 封裝’並據此在其外圍形成絕緣層(27)【請一併參閱第 七、八圖】。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 200907523 綜上所述,本發明實施例確能達到所預期之使用功 效,又其所揭露之具體構造,不僅未曾見諸於同類產品 中,亦未曾公開於申請前,誠已完全符合專利法之規定與 要求,爰依法提出發明專利之申請,懇請惠予審查,並賜 准專利,則實感德便。 12 200907523 【圖式簡單說明】 第一圖:係顯示現有之電致色變結構之示意圖 實施例 第二圖:係顯示本發明之電致色變結構的其一較佳 示意圖 第三圖:係顯示本發明之電致色變結構的其二較佳實施例 示意圖 第四圖:係顯示本發明之電致色變結構的其三較例 示意圖 第五圖:係顯示本發明之製造電致色變結構之方法的其一 較佳實施例步驟流程圖 ' 第六圖:係顯示本發明之製造電致色變結構之方法的其二 較佳實施例步驟流程圖 ' 〃 第七圖:係顯示本發明之製造電致色變結構之方法的其三 較佳實施例步驟流程圖 ‘ '、一 四 第八圖:係顯示本發明之製造電致色變結構之方法的其 較佳實施例步驟流程圖 【主要元件符號說明】 <現有> 電致色變層 絕緣層 反射層 第一端面 第二導電基材 導電薄祺 反射式奈米電解層 (11)第一透明導電基材(12) (13)電解質層 (14) (15)第一透明導電基材 (16) <本發明> (21) 第一透明導電基材(211) (212)導電薄膜 (22) (221)第一端面 (222) (23) 第一電致色變層(24) 13 200907523 (241) 不透明奈米粒子 (25) 電源裝置 (26) 第二電致色變層 (27) 絕緣層 (S41) a步驟 (S42) b步驟 (S43) c步驟 (S44) d步驟 (S45) e步驟 14Rear view Mirrors), sunroofs in the car, static graphics or static display devices. However, in the existing electrochromic structure, the background color is transparent, and if a white or other color background is to be realized, an additional reflective layer must be added to the electrochromic structure. Referring to the first figure, there is shown a schematic diagram of an electrochromic structure having a background color, which comprises a first transparent conductive substrate (11), an electrochromic layer (丨2), and an electrolyte layer (13). , an insulating layer (14), a second transparent conductive substrate (15) and a reflective layer (16), the electrochromic layer (12), the electrolyte layer (13) and the reflective layer (16) are interposed The first and second transparent conductive substrates (11), (15) are interposed and surrounded by an insulating layer (14), whereby an additional reflective layer (16) is used as a wavelength for reflecting the incident light source. To form the background color, but additionally adding the reflective layer (16) will increase the overall thickness of the electrochromic structure, causing inconvenience in use, and the reflective layer (16) and the electrochromic layer (12) in the prior art. The electrolyte layer (13) is interposed, so the contrast of the color is poor. SUMMARY OF THE INVENTION Now, the inventors have considered that the existing electrochromic structure must utilize its additionally added reflective layer as the wavelength of the reflected incident light source to form a background color, thereby causing an excessively thick overall structure. Therefore, the inventor has been engaged in research and many practical experiences for many years, and has been studied and designed by the multi-party 200907523. In view of the present invention, an electrochromic structure and a manufacturing method thereof are proposed as the implementation and basis of the foregoing expectation. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrochromic structure and a method of fabricating the same (I), and more particularly to a design of a reflective nano-electrolytic layer that provides a background color without the need for additional reflective layers. The object and effect of the present invention are achieved by the following technology: comprising a first transparent conductive substrate, a transparent, opaque or reflective second conductive substrate, an electrochromic layer and a reflective a nano-electrolytic layer; an electrochromic layer is disposed between the first transparent conductive substrate and the second conductive substrate, and the reflective nano-electrolytic layer is coated on the electrochromic layer, and the reflective nano-layer The electrolytic layer comprises a plurality of opaque nano particles as a background color of the electrochromic structure; when the first transparent conductive substrate and the second conductive substrate are subjected to a predetermined potential difference, the reflective nano-electrolysis The ions in the layer will move into or out of the electrochromic layer, changing the optical properties of the electrochromic material in the electrochromic layer, so that the color of the electrochromic structure is colored or decolored. . As described above, the reflective nano-electrolytic layer in the electrochromic structure of the present invention is not only responsible for conducting positive ions, but also for the redox reaction of the electrochromic material, and also because the reflective nano-electrolytic layer contains opaque layers. The nano particles can reflect the light, so that the reflective nano electrolytic layer has a color enough to enhance the color change contrast as the reflective layer without requiring an additional reflective layer, so that the electrochromic structure can be thinner and because of the present invention The reflective nano-electrolytic layer and the electrochromic layer are adjacent to each other, so the contrast of the color is high. In order to provide a better understanding and understanding of the technical features of the present invention and the effects achieved by the reviewing committee, only the preferred embodiments and related drawings are provided for assistance, and the detailed explanations are used in conjunction with the statement 7 200907523 As shown later. [Embodiment] Hereinafter, an electrochromic structure and a method of manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the drawings, wherein the same elements will be described with the same reference numerals. Referring to the second figure, there is shown a schematic structural view of an electrochromic structure of the present invention, comprising a first transparent conductive substrate (21), a transparent, opaque or reflective second conductive substrate (22). a first electrochromic layer (23) and a reflective nano-electrolytic layer (24), the first transparent conductive substrate (21), made of glass or plastic material, and at the first end face thereof (211) is provided with a conductive film (212); the second conductive substrate (22) (which may be transparent, opaque or reflective), and the first end surface (221) is also provided with a conductive film (222); a first electrochromic layer (23) is disposed between the first transparent conductive substrate (21) and the second conductive substrate (22); the reflective Neil electrolytic layer (24) is built Between the first electrochromic layer (23) and the first conductive substrate (22), and the reflective nano-electrolytic layer (24) comprises a plurality of colored opaque nano particles (241) for use as The background color of the first electrochromic layer (23), and the opaque nanoparticle (241) is preferably titanium dioxide [Ti〇2] nanoparticle, and opaque nano The particles (241) are uniformly dispersed in the reflective nano-electrolytic layer (24); further, the reflective nano-electrolytic layer (24) is composed of lithium perchlorate [LiCl〇4] and propylene carbonate [Propylene Carbonate ( PC)] It can be mixed with lithium perchlorate, propylene carbonate and phthalic acid acrylate (PMMA), or it can provide ions needed for discoloration, such as K+, H+, a material selected from the group consisting of Li+, etc.; 8 200907523 Accordingly, when the first transparent conductive substrate (21) and the second conductive substrate (22) are indirectly without a power supply device (2 5 ), When a predetermined positive potential difference or negative potential difference is applied, then the ions in the reflective nano-electrolytic layer (24) will diffuse into the first electrochromic layer (23) or by the first electrochromic layer. (23) Move out to change the optical characteristics of the electrochromic layer (23). Wherein, the electrochromic structure of the present invention further comprises a second electrochromic layer (26) [please refer to the third figure together], which is disposed on the reflective nano-electrolyte layer (24) and Between the two conductive substrates (22), when the second conductive substrate (22) and the first transparent conductive substrate (21) are subjected to a predetermined positive potential difference or negative potential difference, the reflective nano electrolytic layer ( The ions in 24) will enter the first electrochromic layer (23) or the second electrochromic layer (26) to change the first electrochromic layer (23) or the second electrochromic layer (26) Optical characteristics, thereby achieving the realization of an electrochromic structure in which both sides are discolored. The first and second electrochromic layers (23) and (26) are made of transition metal oxides such as tungsten oxide, molybdenum oxide, and starvation. (vanadium oxide), nickel oxide, titanium oxide, niobium oxide, cerium oxide, cobalt oxide, tantalum oxide, Chromium oxide, manganese oxide, iron oxide, ruthenium oxide, rhodium oxide, and iridium oxide, or transition Transition metal hexacyanometallates, such as Prussian blue, Prussian blue derivatives, and indium hexacyanoferrate (I nHCF ), or organic compounds or organic materials such as viologen or ° ratio biting and 200907523 ^ per 嗟 1 [P〇ly-3, 4-Ethylenedioxythiophene, PED0T] selected from the group consisting of materials after treatment. The above electrochromic structure can be packaged into a structure by a packaging technique and an insulating layer (27) is formed on the periphery thereof [please - and refer to the fourth figure]. It can be seen from the above that the reflective nano-electrolytic layer (24) of the electrochromic structure of the present invention contains opaque nano particles (241), and each opaque nano particle (241) itself has The color can be the background color of the first or second electrochromic layers (23) and (26). Referring to FIG. 5, a flow chart showing the steps of the method for fabricating an electrochromic structure of the present invention is shown in the following steps: a step (S41): first on the first transparent conductive substrate and second conductive substrate The first end faces (211) and (221) of the materials (21) and (22) are provided with conductive films (212) and (222); b (S42): conductive is provided on the first transparent conductive substrate (21) A first electrochromic layer (23) is disposed on one side of the film (212); c step (S43): conducting electricity between the first electrochromic layer (23) and the second conductive substrate (22)? A reflective nano-electrolytic layer (24) is disposed between the masks (222), and the reflective nano-electrolyte layer (24) comprises a plurality of colored opaque nano-particles (241) for use as the first electrochromic layer. The background color of the layer (23), and the opaque nanoparticle (241) is preferably titanium dioxide [Ti〇2] nanoparticle, and the opaque nanoparticle (241) is uniformly dispersed in the reflective nano electrolytic layer (24). Further, the reflective nano-electrolytic layer (24) is formed by mixing perchloric acid and propylene carbonate, or by perchloric acid, propylene carbonate and polymethyl methacrylate. Mixing, or providing ions required for discoloration, such as K+, H+, Li+, etc., consisting of 10 200907523 materials; according to this, when the first transparent conductive substrate (21) And a second power substrate (22) is indirectly provided with a power supply device (25) for applying a predetermined positive potential or negative between the first transparent conductive substrate (21) and the second conductive substrate (22) At the potential, the ions in the reflective nano-electrolyte layer (24) will diffuse into the first electrochromic layer (23) or An electrochromic layer (23) move, thereby changing the optical characteristics of the first electrical actuator color changing layer (23) is reached electrochromic structures or colored to colored state. The above method for manufacturing an electrochromic structure further includes a step d (S44) [please refer to the sixth figure]: a conductive film (222) on the second conductive substrate (22) and a reflective nano electrolytic layer ( 24) A second electrochromic layer (26) is disposed between. The first and second electrochromic layers (23), (26) are made of a self-transition metal oxide such as tungsten oxide, molybdenum oxide, vanadium oxide, nickel oxide, titanium oxide, sharp oxide. , bismuth oxides, oxides, group oxides, chromium oxides, manganese oxides and cerium oxides, or transition metal cyanides such as Prussian blue, Prussian blue derivatives and indium hexacyanofluoride or organic compounds Or a conductive polymer, such as a material selected from the group consisting of viologen, phlegm and polyethylene dioxyphene, is processed. The above method for manufacturing an electrochromic structure further comprises an e step (S45) after the step c or the step d: encapsulating the electrochromic structure described above and thereby forming an insulating layer on the periphery thereof (27) [Please refer to the seventh and eighth figures together. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. 200907523 In summary, the embodiments of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in similar products, nor has it been disclosed before the application, and has completely complied with the patent law. The regulations and requirements, the application for invention patents in accordance with the law, and the application for review, and the grant of patents, are truly sensible. 12 200907523 [Simple description of the drawings] The first figure is a schematic diagram showing the existing electrochromic structure. The second figure shows a preferred schematic diagram of the electrochromic structure of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic view showing a second preferred embodiment of the electrochromic structure of the present invention. FIG. 5 is a schematic view showing the third embodiment of the electrochromic structure of the present invention. Flowchart of a preferred embodiment of the method for modifying the structure. FIG. 6 is a flow chart showing the steps of the second preferred embodiment of the method for manufacturing an electrochromic structure of the present invention. 第七 FIG. 7 is a display The third preferred embodiment of the method for fabricating an electrochromic structure of the present invention is a flow chart of the steps of the first embodiment of the method for producing an electrochromic structure of the present invention. Flowchart [Description of main component symbols] <Existing> Electrochromic insulating layer reflective layer first end surface second conductive substrate conductive thin reflective nano-electrolytic layer (11) first transparent conductive substrate (12) (13) Electrolytes (14) (15) First transparent conductive substrate (16) <The present invention> (21) First transparent conductive substrate (211) (212) Conductive film (22) (221) First end face (222) (23) First electrochromic layer (24) 13 200907523 (241) Opaque nanoparticle (25) Power supply unit (26) Second electrochromic layer (27) Insulation layer (S41) a step (S42) bStep (S43) cStep (S44) d Step (S45) eStep 14

Claims (1)

200907523 十、申請專利範圍: 1. 一種電致色變結構(一),至少包含: 一第一透明導電基材,在第一透明導電基材的第一 端面上設透明導電薄膜; 一第二導電基材,在第二導電基材的第一端面上設 導電薄膜; 一第一電致色變層,係位於第一透明導電基材之導 電薄膜的一側;以及 一反射式奈米電解層,係建置在第一電致色變層與 第二導電基材之導電薄膜之間,且反射式奈米電解層包 含複數個不透明之奈米粒子,用以作為電致色變層之背 景顏色。 2. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第一透明導電基材的第一端面上設透明導電薄膜 者。 3. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第二導電基材為透明者。 4. 如申請專利範圍第1項所述之電致色變結構(一),其 中*該第二導電基材為不透明者。 5. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第二導電基材為反射式者。 6. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第一電致色變層係為過渡金屬氧化物者。 7. 如申請專利範圍第6項所述之電致色變結構(一),其 中,該過渡金屬氧化物為鶴氧化物、錮氧化物、鈒氧化 物、鎳氧化物、鈦氧化物、鈮氧化物、鈽氧化物、钴氧 15 200907523 化物、鈕氧化物、鉻氧化物、猛氧化物、鐵氧化物、名了 氧化物、铑氧化物及銥氧化物所組成之組群中選出之材 料經處理後所組成。 8. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第一電致色變層係為過渡金屬氰化物者。 9. 如申請專利範圍第8項所述之電致色變結構(一),其 中,該過渡金屬氰化物為普魯士藍、普魯士藍衍生物及 六氰鐵化銦所組成之組群中選出之材料經處理後所組 成。 10. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第一電致色變層係為有機化合物者。 11. 如申請專利範圍第10項所述之電致色變結構(一),其 中,該有機化合物為紫精、吼咬所組成之組群中選出 之材料經處理後所組成。 12. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該第一電致色變層係為導電高分子者。 13. 如申請專利範圍第12項所述之電致色變結構(一),其 中,該導電高分子為聚乙撐二氧噻吩所組成之組群中 選出之材料經處理後所組成。 14. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該電致色變結構更包含一第二電致色變層,係位 於第二導電基材與反射式奈米電解層之間。 15. 如申請專利範圍第1或14項所述之電致色變結構 (一),其中,該電致色變結構更包含一絕緣層,係形 成於該電致色變結構的外圍。 16. 如申請專利範圍第1項所述之電致色變結構(一),其 16 200907523 中,該反射式奈米電解層係由可以提供變色所需之 K+、H+、Li+離子所組成之組群中選出之材料所組成。 17. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該不透明奈米粒子係為二氧化鈦奈米粒子。 18. 如申請專利範圍第1項所述之電致色變結構(一),其 中,該不透明奈米粒子係為具有顏色之粒子。 19. 如申請專利範圍第1項所述之電致色變結構(一),其 中,不透明奈米粒子係均勻散佈於反射式奈米電解層 中〇 20. —種電致色變結構(一),至少包含: 一第一透明導電基材,在第一透明導電基材的第一 端面上設透明導電薄膜; 一第二導電基材,在第導電基材的第一端面上設導 電薄膜; 一第一電致色變層,係位於第一透明導電基材之導 電薄膜的一侧;以及 一反射式奈米電解層,係建置在第一電致色變曆與 第二導電基材之導電薄膜之間,且反射式奈米電解層包 含不透明之顏料,用以作為電致色變層之背景顏色。 21. 如申請專利範圍第20項所述之電致色變結構(一),其 中,該顏料為無機顏料者。 22. 如申請專利範圍第21項所述之電致色變結構(一),其 中,無機顏料為特殊碳黑、酸化鐵顏料、無機複合體、 佛青色、鉻酸鹽者。 23. 如申請專利範圍第20項所述之電致色變結構(一),其 中,該顏料為有機顏料者。 17 200907523 24· ΐ申請專利範圍第23項所述之電致色變結構㈠,其 顏料^有機顏料為含氮顏料、苯二甲素、Qui騰ridone 25.-種製造電致色變結構之方法㈠,至少包含: &步驟:先在第-透明導電基材及第二導電基材的第-端面上設導電薄膜; b步驟:於第1明導電基材設有導電薄膜的—側處配 置—第一電致色變層; C步驟:A筮 & 鄉=第〜電致色變層與第二透明導電基材之導電 ,膜之間配置反射式奈米電解層,且反射式奈 米電解層包含複數個不透明之奈米粒子,用以 % 1 + A作為電致色變層之背景顏色。 法(一°月專2範圍第25項所述之製造電致色變結構之方 物者。其中,該第一電致色變層係為過渡金屬氧化 t广二專利範圍第26項所述之製造電致色變結構之方 二中,該過渡金屬氧化物為鎢氧化物、鉬氧 釩氧化物、鎳氧化物、鈦氧化物、鈮氧化物、 私乳化,、録氧化物、纽氧化物、絡氧化物、锰氧化 、鐵氧化物、釕氧化物、錢氡化物及錶氧化物所組 成之組群中選出之材料經處理後所組成。 28. 如申Μ專利_第25項所述之製造電致色變結構之方 法(一),其中,該第一電致色變層係為過渡金屬氰化 物者。 29. 如申4專利範圍第28項所述之製造電致色變結構之方 法(),其中,該過渡金屬氰化物為普魯士藍、普魯 18 200907523 士藍衍生物及六氰鐵化銦所組成之組群中選出之材料 經處理後所組成。 30. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,該第一電致色變層係為有機化合物者。 31. 如申請專利範圍第30項所述之製造電致色變結構之方 法(一),其中,該有機化合物為紫精、吼11定所組成之 組群中選出之材料經處理後所組成。 32. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,該第一電致色變層係為導電高分子者。 33. 如申請專利範圍第32項所述之製造電致色變結構之方 法(一),其中,該導電高分子為聚乙撐二氧噻吩所組 成之組群中選出之材料經處理後所組成。 34. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,該第一透明導電基材係由玻璃或塑膠 材料中選擇其一製成。 35. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,在c步驟之後更包括一 d步驟,在第 二導電基材之導電薄膜與反射式奈米電解層之間配置 一第二電致色變層。 36. 如申請專利範圍第35項所述之製造電致色變結構之方 法(一),其中,該第二電致色變層係為過渡金屬氧化 物者。 37. 如申請專利範圍第36項所述之製造電致色變結構之方 法(一),其中,該過渡金屬氧化物為鶴氧化物、鉬氧 化物、飢氧化物、鎳氧化物、鈦氧化物、銳氧化物、 鈽氧化物、钻氧化物、组氧化物、鉻氧化物、猛氧化 19 200907523 物、鐵氧化物、釕氧化物、錢氧化物及銀氧化物所組 成之組群中選出之材料經處理後所組成。 38. 如申請專利範圍第35項所述之製造電致色變結構之方 法(一),其中,該第二電致色變層係為過渡金屬氰化 物者。 39. 如申請專利範圍第38項所述之製造電致色變結構之方 法(一),其中,該過渡金屬氰化物為普魯士藍、普魯 士藍衍生物及六氰鐵化銦所組成之組群中選出之材料 經處理後所組成。 40. 如申請專利範圍第35項所述之製造電致色變結構之方 法(一),其中,該第二電致色變層係為有機化合物者。 41. 如申請專利範圍第40項所述之製造電致色變結構之方 法(一),其中,該有機化合物為紫精、π比咬所組成之 組群中選出之材料經處理後所組成。 42. 如申請專利範圍第35項所述之製造電致色變結構之方 法(一),其中,該第二電致色變層係為導電高分子者。 43. 如申請專利範圍第42項所述之製造電致色變結構之方 法(一),其中,該導電高分子為聚乙撐二氧噻吩所組 成之組群中選出之材料經處理後所組成。 44. 如申請專利範圍第35項所述之製造電致色變結構之方 法(一),其中,在d步驟之後更包括一 e步驟,係將 電致色變結構予以封裝,並據此在其外圍形成絕緣層。 45. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,該反射式奈米電解層係由過氯酸鋰及 碳酸丙烯二者混合而成。 46. 如申請專利範圍第25項所述之製造電致色變結構之方 20 200907523 法(一),其中,該反射式奈米電解層係由過氯酸鋰、 碳酸丙烯及聚甲基丙烯酸甲酯三者混合而成。 47. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,該反射式奈米電解層係由可以提供變 色所需之K+、H+、Li+離子所組成之組群中選出之材料 所組成。 48. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,在c步驟之後更包括一 e步驟,係將 電致色變結構予以封裝,並據此在其外圍形成絕緣層。 49. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,該不透明奈米粒子係為二氧化欽奈米 粒子。 50. 如申請專利範圍第25項所述之製造電致色變結構之方 法(一),其中,不透明奈米粒子係均勻散佈於反射式 奈米電解層中。 21200907523 X. Patent application scope: 1. An electrochromic structure (1) comprising at least: a first transparent conductive substrate, a transparent conductive film disposed on the first end surface of the first transparent conductive substrate; a conductive substrate having a conductive film on the first end surface of the second conductive substrate; a first electrochromic layer on one side of the conductive film of the first transparent conductive substrate; and a reflective nano-electrolysis The layer is formed between the first electrochromic layer and the conductive film of the second conductive substrate, and the reflective nano electrolytic layer comprises a plurality of opaque nano particles for use as an electrochromic layer background color. 2. The electrochromic structure (1) according to claim 1, wherein the first transparent conductive substrate is provided with a transparent conductive film on the first end surface. 3. The electrochromic structure (1) according to claim 1, wherein the second conductive substrate is transparent. 4. The electrochromic structure (1) according to claim 1, wherein the second conductive substrate is opaque. 5. The electrochromic structure (1) according to claim 1, wherein the second conductive substrate is a reflective one. 6. The electrochromic structure (1) according to claim 1, wherein the first electrochromic layer is a transition metal oxide. 7. The electrochromic structure (1) according to claim 6, wherein the transition metal oxide is a helium oxide, a cerium oxide, a cerium oxide, a nickel oxide, a titanium oxide, or a cerium Oxide, niobium oxide, cobalt oxide 15 200907523 compound, button oxide, chromium oxide, oxidized oxide, iron oxide, named oxide, antimony oxide and antimony oxide selected from the group consisting of materials It is composed after treatment. 8. The electrochromic structure (1) according to claim 1, wherein the first electrochromic layer is a transition metal cyanide. 9. The electrochromic structure (1) according to claim 8, wherein the transition metal cyanide is selected from the group consisting of Prussian blue, Prussian blue derivative and indium hexacyanoferrate. The material is composed after being processed. 10. The electrochromic structure (1) according to claim 1, wherein the first electrochromic layer is an organic compound. 11. The electrochromic structure (1) according to claim 10, wherein the organic compound is composed of a material selected from the group consisting of viologen and biting. 12. The electrochromic structure (1) according to claim 1, wherein the first electrochromic layer is a conductive polymer. 13. The electrochromic structure (1) according to claim 12, wherein the conductive polymer is a material selected from the group consisting of polyethylene dioxythiophene and is processed. 14. The electrochromic structure (1) of claim 1, wherein the electrochromic structure further comprises a second electrochromic layer located on the second conductive substrate and reflective Between the nano electrolytic layers. 15. The electrochromic structure (1) of claim 1 or claim 14, wherein the electrochromic structure further comprises an insulating layer formed on the periphery of the electrochromic structure. 16. The electrochromic structure (1) according to claim 1, wherein the reflective nano-electrolytic layer is composed of K+, H+, Li+ ions required to provide color change. The composition of the selected materials in the group. 17. The electrochromic structure (1) according to claim 1, wherein the opaque nanoparticle is titanium dioxide nanoparticles. 18. The electrochromic structure (1) according to claim 1, wherein the opaque nanoparticle is a particle having a color. 19. The electrochromic structure (1) according to claim 1, wherein the opaque nano-particles are uniformly dispersed in the reflective nano-electrolytic layer. 20. An electrochromic structure (1) And comprising: a first transparent conductive substrate, a transparent conductive film is disposed on the first end surface of the first transparent conductive substrate; and a second conductive substrate is provided with a conductive film on the first end surface of the first conductive substrate a first electrochromic layer on one side of the conductive film of the first transparent conductive substrate; and a reflective nano-electrolyte layer built on the first electrochromic history and the second conductive base Between the conductive films of the material, and the reflective nano-electrolytic layer contains an opaque pigment to serve as the background color of the electrochromic layer. 21. The electrochromic structure (1) according to claim 20, wherein the pigment is an inorganic pigment. 22. The electrochromic structure (1) according to claim 21, wherein the inorganic pigment is a special carbon black, an acidified iron pigment, an inorganic composite, a fossil or a chromate. 23. The electrochromic structure (I) according to claim 20, wherein the pigment is an organic pigment. 17 200907523 24· ΐApplicable to the electrochromic structure (1) of the scope of patent application, the pigment ^ organic pigment is a nitrogen-containing pigment, benzoic acid, Qui ridone 25. The method (1) comprises at least: & step: firstly providing a conductive film on the first end surface of the first transparent conductive substrate and the second conductive substrate; b step: providing a conductive film on the first conductive substrate Arranged—the first electrochromic layer; C step: A筮& Township=the electrochromic layer and the second transparent conductive substrate are electrically conductive, and a reflective nano-electrolytic layer is disposed between the films, and the reflection is The nano-electrolytic layer comprises a plurality of opaque nano-particles for % 1 + A as the background color of the electrochromic layer. The method of manufacturing an electrochromic structure according to the twenty-fifth item of the second aspect, wherein the first electrochromic layer is a transition metal oxide In the second aspect of manufacturing an electrochromic structure, the transition metal oxide is tungsten oxide, molybdenum oxyvana oxide, nickel oxide, titanium oxide, cerium oxide, private emulsification, oxide oxide, neo-oxidation A material selected from the group consisting of a complex, a complex oxide, a manganese oxide, an iron oxide, a cerium oxide, a cerium oxide, and a surface oxide is processed. 28. If the patent is _25 The method for producing an electrochromic structure (1), wherein the first electrochromic layer is a transition metal cyanide. 29. The electrochromic color is as described in claim 28 of claim 4 The method of structure (), wherein the transition metal cyanide is composed of a material selected from the group consisting of Prussian blue, Plu 18 200907523 s blue derivatives and indium hexacyanoferrate. 30. Method for manufacturing electrochromic structure according to item 25 of the patent scope (a) wherein the first electrochromic layer is an organic compound, and the method of producing an electrochromic structure according to claim 30, wherein the organic compound is The material selected from the group consisting of purple essence and 吼11 is processed and processed. 32. The method for manufacturing an electrochromic structure according to claim 25 (1), wherein the first The electrochromic layer is a conductive polymer. The method of producing an electrochromic structure according to claim 32, wherein the conductive polymer is polyethylene dioxythiophene. The method of manufacturing an electrochromic structure according to claim 25, wherein the first transparent conductive substrate is made of glass. Or a method of manufacturing an electrochromic structure according to claim 25, wherein the step c further comprises a step d, the second conductive Conductive film of substrate and reflective nanoelectrolysis A second electrochromic layer is provided between the method of manufacturing an electrochromic structure according to claim 35, wherein the second electrochromic layer is a transition metal 37. The method of producing an electrochromic structure according to claim 36, wherein the transition metal oxide is a helium oxide, a molybdenum oxide, an annihilation oxide, or a nickel oxide. , titanium oxide, sharp oxide, cerium oxide, diamond oxide, group oxide, chromium oxide, oxidized 19 200907523, iron oxide, cerium oxide, money oxide and silver oxide The material selected from the group is processed and processed. 38. The method for producing an electrochromic structure according to claim 35, wherein the second electrochromic layer is a transition metal Cyanide. 39. The method of producing an electrochromic structure according to claim 38, wherein the transition metal cyanide is a group consisting of Prussian blue, Prussian blue derivative and indium hexacyanoferrate. The selected materials are processed and processed. 40. The method of producing an electrochromic structure according to claim 35, wherein the second electrochromic layer is an organic compound. 41. The method of manufacturing an electrochromic structure according to claim 40, wherein the organic compound is composed of a material selected from the group consisting of viologen and π-bite. . 42. The method of manufacturing an electrochromic structure according to claim 35, wherein the second electrochromic layer is a conductive polymer. 43. The method of producing an electrochromic structure according to claim 42 wherein the conductive polymer is a material selected from the group consisting of polyethylene dioxythiophene. composition. 44. The method of manufacturing an electrochromic structure according to claim 35, wherein the step d further comprises an e step of encapsulating the electrochromic structure and thereby An insulating layer is formed on the periphery thereof. 45. The method of producing an electrochromic structure according to claim 25, wherein the reflective nanoelectrolytic layer is a mixture of lithium perchlorate and propylene carbonate. 46. The method of manufacturing an electrochromic structure according to claim 25, wherein the reflective nano-electrolytic layer is composed of lithium perchlorate, propylene carbonate and polymethacrylic acid. Methyl esters are mixed. 47. The method of manufacturing an electrochromic structure according to claim 25, wherein the reflective nano-electrolytic layer is composed of K+, H+, Li+ ions required to provide color change. The composition of the selected materials in the group. 48. The method of manufacturing an electrochromic structure according to claim 25, wherein the step c further comprises an e step of encapsulating the electrochromic structure and thereby An insulating layer is formed on the periphery thereof. 49. The method of producing an electrochromic structure according to claim 25, wherein the opaque nanoparticle is a Chennene dioxide particle. 50. The method of producing an electrochromic structure according to claim 25, wherein the opaque nanoparticle particles are uniformly dispersed in the reflective nanoelectrolytic layer. twenty one
TW96129474A 2007-08-09 2007-08-09 Electrochromic structure and manefacturing method thereof TW200907523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96129474A TW200907523A (en) 2007-08-09 2007-08-09 Electrochromic structure and manefacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96129474A TW200907523A (en) 2007-08-09 2007-08-09 Electrochromic structure and manefacturing method thereof

Publications (1)

Publication Number Publication Date
TW200907523A true TW200907523A (en) 2009-02-16

Family

ID=44723431

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96129474A TW200907523A (en) 2007-08-09 2007-08-09 Electrochromic structure and manefacturing method thereof

Country Status (1)

Country Link
TW (1) TW200907523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284471B2 (en) 2010-11-26 2012-10-09 J Touch Corporation Touch control electrochromic device
TWI483051B (en) * 2012-12-26 2015-05-01
CN111505880A (en) * 2020-05-25 2020-08-07 哈尔滨工程大学 Thermal response electrolyte material and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284471B2 (en) 2010-11-26 2012-10-09 J Touch Corporation Touch control electrochromic device
TWI483051B (en) * 2012-12-26 2015-05-01
CN111505880A (en) * 2020-05-25 2020-08-07 哈尔滨工程大学 Thermal response electrolyte material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Kim et al. Responsive smart windows from nanoparticle–polymer composites
Chaudhary et al. Prussian blue-viologen inorganic–organic hybrid blend for improved electrochromic performance
Granqvist et al. Electrochromic coatings and devices: survey of some recent advances
JP5818298B2 (en) All-solid-state reflective dimming electrochromic element sealed with a protective layer and dimming member using the same
JP6041269B2 (en) Reflective dimming electrochromic element having a nonaqueous hydrogen ion conductive electrolyte layer and dimming member using the same
Shi et al. Rational design of oxygen deficiency-controlled tungsten oxide electrochromic films with an exceptional memory effect
Granqvist et al. Electrochromics: fundamentals and energy-related applications of oxide-based devices
JP2007102197A (en) All-solid-state reflective electrochromic device and optical switchable component using it
CN103135306A (en) Electrochromism assembly provided with composite electrochromism materials
JP4380202B2 (en) Electrochromic element
TW201426148A (en) Electrochromic discolouration structure
US11099426B2 (en) Backlight module, manufacturing method thereof and display device
WO2017141528A1 (en) Electrochromic device and smart window provided with electrochromic device
KR102101866B1 (en) Method for manufacturing Flexible Electro-Chromic element
EP3260914B1 (en) Smart window
JP2012220740A (en) All solid-state reflective dimming electrochromic element given wavelength selectivity and dimming member using the same
US20230152650A1 (en) Electrochromic device having adjustable reflectivity, and electronic terminal comprising same
US20220220368A1 (en) Method for preparing photoresponsive self-powered electrochromic precursor, method for fabricating photoresponsive self-powered electrochromic device and photoresponsive self-powered electrochromic device fabricated by the fabrication method
Götz et al. Switchable photocurrent generation in an ultrathin resonant cavity solar cell
Han et al. Bistable mirror/transparent reversibly electrodeposited devices with TiO2 as the mediator
KR102011397B1 (en) Electrochromatic device
Yin et al. Bistable Silver Electrodeposition‐Based Electrochromic Device with Reversible Three‐State Optical Transformation By Using WO3 Nanoislands Modified ITO Electrode
JP2009042578A (en) Light control multilayer film structure, and light modulation structure
TW200907523A (en) Electrochromic structure and manefacturing method thereof
Xu et al. The Progress and Outlook of Multivalent‐Ion‐Based Electrochromism