TW200905283A - A plasmonic reflection filter - Google Patents

A plasmonic reflection filter Download PDF

Info

Publication number
TW200905283A
TW200905283A TW96128120A TW96128120A TW200905283A TW 200905283 A TW200905283 A TW 200905283A TW 96128120 A TW96128120 A TW 96128120A TW 96128120 A TW96128120 A TW 96128120A TW 200905283 A TW200905283 A TW 200905283A
Authority
TW
Taiwan
Prior art keywords
film
reflective surface
resonance
metal
photoresist layer
Prior art date
Application number
TW96128120A
Other languages
Chinese (zh)
Inventor
Yu-Tang Tsai
Yuan-Hsing Fu
Chih-Ming Wang
Din-Ping Tsai
Ming-Wei Tsai
Yu-Wei Jiang
Yi-Han Ye
Si-Chen Lee
Original Assignee
Din-Ping Tsai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Din-Ping Tsai filed Critical Din-Ping Tsai
Priority to TW96128120A priority Critical patent/TW200905283A/en
Publication of TW200905283A publication Critical patent/TW200905283A/en

Links

Landscapes

  • Optical Filters (AREA)

Abstract

This invention is a plasmonic reflection filter, which includes a dielectric layer sandwiched by two metallic layers. One of the metallic layers is a grating structure. The specific wavelength of light can be filtered by the plasmonic reflection filter due to the surface plasmon resonance effect. This invention presents a filter with a low sideband effect of which conventional filter suffer from, and has advantages of simple structure, easy fabrication and mass production with high production quality.

Description

200905283 九、發明說明: 【發明所屬之技術領域】 本發明係為一種反射式表面電漿共振濾波器,尤指應 用在光電系統或微光機電系統之產品整合上;且係為利g 半導體製程技術所加以製作出的反射式表面電漿共^濾波 器。 ^、 ‘、 【先前技術】 ( 光學濾波器(Optical Filter)在光學系統裡便是一種很 重要的構成要素,光學濾波器係能夠對於光的各種功能或 特性提供其進行調整,或是能達到光學上的信息傳遞或波 長過濾等,而不同的濾波器係會提供不同的光學功能,依 功能來分包括有:透射(Transmission)與反射(Reflection)濾 波器、帶通(bandpass)與帶止(bandstop)濾波器、窄頻(narrow bandwidth)與寬頻(wide bandwidth)遽波器等。 而就目前來說,較重要的光學濾波器之種類有:薄膜 〔 滤波器(thin-film filter),如美國公告第H1911號專利案與 法布里-柏羅渡波器(Fabry-Perot Filter)如美國公告第 5781268、6996312號專利案;其中薄膜濾波器是以薄膜堆 疊(StackedThin-Film)的方式所構成,而所謂的薄膜是指在 基板上鍍上多層介電質膜(Dielectric Thin-Film),利用膜層 間不同的厚度或折射率,並且根據光學干涉原理而能夠改 變光的傳遞現象’或使得穿透率或是反射率有所變化而加 以達到渡波的目的;而法布里·柏羅濾波器則是以兩互相平 行的部份反射鏡面’其彼此間夾出一特定間隙的空腔所構 200905283 成,而此種反射鏡面又通常是以金屬獏或多層的介電質膜 之堆疊所形成的。 所謂的光學薄膜是指很薄的膜層,而上述提及之滤波 器便是用許多層_膜加輯疊起來而能_行濾波的功 能,然而由於這類型的薄膜遽波器在構成上所使用的薄膜 堆疊數需超過約-百多層不同的膜層,所以在製程的構造 上便存在著過於複雜㈣題,而如此複雜的結構就使得各 膜層^的組賴必需㈣緊密且要極為精確,因此在製 程上容忍度(tolerance)的條件要求就較為嚴格,製程也較為 複雜’此外對於各膜層的厚度、均勻性、折射率以及各膜200905283 IX. INSTRUCTIONS: [Technical Field] The present invention is a reflective surface plasma resonance filter, especially for product integration in an optoelectronic system or a micro-optical electromechanical system; A reflective surface plasma common filter produced by the technology. ^, ', [Prior Art] (Optical Filter is an important component in optical systems. Optical filters can be adjusted for various functions or characteristics of light, or can be achieved Optical information transmission or wavelength filtering, etc., and different filter systems provide different optical functions, including: transmission and reflection filters, bandpass and band stop. (bandstop) filters, narrow bandwidth and wide bandwidth choppers. For the time being, the most important types of optical filters are: thin-film filters. For example, U.S. Patent No. H1911 and Fabry-Perot Filter, such as U.S. Patent Nos. 5,718,268 and 6,996,312; wherein the thin film filter is a stacked thin film (Stacked Thin-Film) The composition, the so-called film refers to the plating of a multilayer dielectric film (Dielectric Thin-Film) on the substrate, using different thicknesses or refractive indices between the layers, and according to the principle of optical interference And it is possible to change the phenomenon of light transmission' or to change the transmittance or reflectivity to achieve the purpose of crossing the wave; and the Fabry-Perot filter is to mirror the two parallel parts of each other' The cavity is formed by a cavity with a specific gap therebetween, and the mirror surface is usually formed by stacking a metal tantalum or a plurality of dielectric films. The so-called optical film refers to a very thin film layer. The filter mentioned above is a multi-layer film that can be stacked and filtered, but the number of thin film stacks used in this type of film chopper is more than about -100. Layers of different layers, so there are too complicated (four) questions in the structure of the process, and such a complex structure makes the layers of each layer necessary (four) tight and extremely accurate, so tolerance in the process (tolerance) The conditions are stricter and the process is more complicated'. In addition, the thickness, uniformity, refractive index and film of each film layer

層間的應力(stress)狀況等因素的變化,也都容易影響最後 的濾波結果。 S 因此有人提出藉由光柵繞射現象的不規則性所產生出 的波導模態共振效應(〇uided_M〇de Res〇nance,簡稱為 GMR) ’如美國專利第6058226號專利案,並根據此效應而 設計出的一種波導模態共振濾波器(Guided-Mode Resonator)來解決上述之問題。然而此方法的主波長兩旁的 邊帶效應(S ideband effect)會嚴重影響我們的濾波效果。 是故’我們提出藉由金屬與介電物質介面處所產生的 表面電,灵共振效應(Surface piasm〇ns Res〇nance),並根據此 效應而設計出的一種反射式表面電漿共振濾波器便能夠有 效地解決上述之問題; 【發明内容】 200905283 本發明之目的在於提供一種反射式表面電浆共振 器’係使該反射式表面電料振舰㈣㈣㈣用的半 =程技術而可製作完成,同時該表面電漿共錢波器還 此正合於制的光電祕或微光機電系統之產品上, 良好的遽波效果。 請參閱『第1A、1B圖』,係為一種反射式表面電聚 共振滤波器1示意圖。如本圖所示,該表面共振遽波 器1的主要結構包括有:—金屬光概(metalgrating) 1 3; 介電平板1 2與-金屬平板丨i等三個部份;其中該介 電平板1 2係為-種具有有轉度的平面結構;而該金屬 光栅13則是以如晶格般的極薄厚度設置於該介電平板工 2之上’使得該金屬光栅丨3的存在不至於會對該介電平 板1 2對於之後入射光的表面電漿共振效應㈣咖 Plasmons Resonance)的運作造成影響。 s月參閱『第2A、2B圖』’係為一種反射式表面電敷 共振遽波器1運作示意圖。當—人射光2 i照射於該金屬 光柵1 3上日夺,該光栅1 3便可以起分光的作用,並將該 入射光21耦合至该介電平板1 2中,當耦合至該介電平 板12内部的該入射光21之部份光束和該介電平板工2 之結構所允許存在的模態達到相位匹配(phase_matehing)的 狀態時,就會產生出共振(Res〇nance)的效應,因而可以選 擇出一個特定的共振波長在該介電平板i 2中折射後成為 橫向的傳遞波2 2 ;而另一方面,該入射光2丄之非為共 振波長部份之光束,則會因金屬的屏閉效應而在金屬表面 200905283 反射而離開’該反射光束即經濾波之反射光(Reflection)2 3 ° 由上所述可知,表面電漿共振濾波器的結構較為簡 單,製作上也不若薄膜濾波器來得複雜,只需要幾層的結 構便可以製作完成(僅為改變表面的金屬麟結構便可達 遽波的效果’可利用翻模技術大量而快速地完成),同時在 實際運作上也有非常好㈣波、賴呈現與人射角度敏感 度的效果’是故在應壯料枝。由上述可知,表面電 毁共振澹波器是整合了薄膜構造或多層堆疊的方式以加強 出其遽波過財的共振絲,更進—步地說,此類的表面 電聚共振缝器可以被用來整合至各種的被動式(passive) 或主動式(aetive)的找科上,以形成出各種待應用的微 系統晶片’歧依需求而可被設計成為可調整式的表 漿共振濾波器。 【實施方式】 、本發明係為-種反射式表面錢共振纽器,該 方法包含下列步驟:提供-基板;於該基板的—第 形成出-第-薄臈;於該第—薄膜的—頂面上形成出 二薄膜;於該第二薄膜的1面上㈣出—光栅結構 據上述構想,其中該基板係可為—種任意晶格方向之^ =光的單㈣基板。該基板亦可為—種任意材質之抛光的 根據上述構想’其中該第一薄膜的形成,係可利用— 200905283 低壓化學㈣目崎法或 定厚度的金屬薄膜。 在第表面,沉積出一特 根據上述構想,其中今_ 壓化學氣相喊法在該二二、=成’係可利用一低 氧切或i切等介電材質薄膜。積出-特定厚度的二 步該光減構的定義更包含下列 罩_-;===第利"-光 轉移至該第一光)1 且厗 冬°亥第一光罩之圖案 第-光阻圖案;以;根據:=圖f層上定義出- 該頂面進行1厚度的金屬材質成長.二薄膜的 光阻層;使得該第一光阻之# ’广谷劑清除該第- 上而得到該金屬光她構。、Ί轉移至該第二薄膜 根據上述構想,其中對該第—光 :為-電子束微影製程或可製作出;== 衫製程方法,以完成圖㈣轉移。 4之光k 壓^康上i述構想,其中該金屬材質的成長,係可利用一低 厚度二:法或罐在該第-先阻’沉積出-特定 種^^『第3心、3〇:、31)圖』,係為本發明所述一 共;實施例 , 口百先,準備一基板,而在實施例中游 Η係以- 1GG晶格方向之雙面拋光的單晶梦基板3 〇作為 代表’如『第3Α圖』所示,該單晶石夕基板3 〇之厚度係 200905283 可約500微米’且需先經過一 RCA標$清洗步驟對該單晶 石夕基板3 Q的表面進行清洗,以㈣其表面上的雜質或灰 塵;接著利用一電子搶蒸鍍沉積法(E-Gun Thermal Deposition)在該單晶矽基板3 〇的一第一表面3 〇丄上進 行"匕積4成出一第一薄膜3 1,而在此實施例中我們 係以金屬材質之銀(silver ’ Ag)薄膜基材,來代表我們所要 沉積的該第-薄膜3 !’而銀薄膜本身亦是—種高反射率 之材質’且在此例巾,該第—薄膜3丨所沉積的厚度可約 1微米。 接著,利用一電漿化學氣相沉積法(plasma Enhanced Chemical Vapor Deposition ’ 簡稱為 pEVCD)在該第一薄膜 3 1的-第二表面3 1 2上進行沉積,以形成出一第二薄 膜3 2,而在此實施例中我們係以介電物質之二氧化矽 (silicon oxide,Si〇2)薄膜基材,來代表我們所要沉積的該 第二薄膜3 2。 承上所述’接著我們利用旋轉塗佈(Spin 的方 式’於該第二薄膜3 2上塗佈_第_光阻層3 3,接著, 係可利用—第―光罩3 3Q對該第-光阻層3 3進行曝光 顯影之過程’因而能夠將該第—光罩3 3 Q之圖案轉移至 胃第-光阻層3 3上以完成圖案的轉移(pattem加則㈣, 而月《=*於違第-光阻層3 3上定義出—第―光阻圖案3 3工 (如『第3B圖』),而在此例中該第—光阻圖案3 3丄係可 為一條形光栅’使得進行曝光顯影後的該第-光阻層3 3 忐形成出如『第3B圖』所示的外觀(本圖所示係以斷面的 200905283 方式呈現其結構)。 根據該第一光阻圖案對該第二薄膜的該頂面3 係利用一電子搶蒸鍍沉積法在該頂面33,沉積出一定 度的金屬材質成長。此實施例中我們係以金屬材併 (Silver ’ Ag)為薄膜基材。該金屬薄膜3 5所沉積的厚二 約〇·1微米;以ACE溶劑清除該第—光阻層;使得該^ 光阻之負片圖案能轉移至該第二薄膜上而得到如『。第3D 圖』所示之金屬光柵3 5結構。 是故,藉由以上的說明可知,我們成功地解決了先前 技術中所提到的問題,而達到本案發展所需之目的。本發 明得由熟習此技藝之人士任施匠思而為諸般修飾,然皆不 脫如附申請專利範圍所欲保護者。 【圖式簡單說明】 本案得藉由下列圖式及說明,俾得一更深入之了解: 第一 Α圖’係為本發明之長條型光辆示意圖。 第一 B圖’係為本發明之矩行光柵示意圖。 第二A圖’係為本發明之長條型光栅運作示意圖。 第一 B圖’係為本發明之矩行光拇運作示意圖。 第三A圖至第三D圖,係為本發明之較佳實施例的製作流 程示意圖。 【主要元件符號說明】 本案圖式中所包含之各元件列示如下: 一種反射式表面電漿共振濾波器 1 200905283 第一金屬膜層 11 介電層 12 光柵13 入射光 2 1 橫向的傳遞波22 反射光 2 3 早晶碎基板3 0 第一表面 301 第一薄膜 31 第一薄膜第一表面3 1 2 第二薄膜 3 2 第二薄膜第一表面3 22 光阻層 3 3 光罩3 3 0 光阻圖案 331 曝光3 4 第二金屬膜層 35 12Changes in factors such as stress between layers are also likely to affect the final filtering results. Therefore, a waveguide mode resonance effect (〇 ded ded ded ded GM GM GM ' ' ' ' ' ' ' ' ' ' ' ' 如 光栅 光栅 光栅 光栅 光栅 光栅 光栅 光栅 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模 模A guided modal resonant filter (Guided-Mode Resonator) is designed to solve the above problems. However, the sideband effect on both sides of the dominant wavelength of this method can seriously affect our filtering effect. Therefore, we propose a surface acoustic resonance filter (Surface piasm〇ns Res〇nance) generated by the interface between the metal and the dielectric material, and a reflective surface plasma resonance filter designed according to this effect. The above problems can be effectively solved. [Invention] The present invention aims to provide a reflective surface-plasma resonator which can be fabricated by using a half-time technique for the reflective surface electric material vibrating ship (4) (4) (4). At the same time, the surface plasma common money wave device is also in line with the products of the photoelectric secret or micro-optical electromechanical system, and has good chopping effect. Please refer to "1A, 1B", which is a schematic diagram of a reflective surface electro-polymer resonance filter 1. As shown in the figure, the main structure of the surface resonance chopper 1 includes: - metalgrating 1 3; dielectric plate 1 2 and - metal plate 丨i, etc.; wherein the dielectric The flat plate 1 2 is a planar structure having a rotation; and the metal grating 13 is disposed on the dielectric plate 2 with an extremely thin thickness as a lattice such that the metal grating 3 exists. The operation of the dielectric plate 12 on the surface plasma resonance effect of the incident light (4) Plasmons Resonance is not affected. s month refers to "2A, 2B"" is a schematic diagram of the operation of a reflective surface electro-discharge resonant chopper 1. When the human light 2 i is irradiated onto the metal grating 13 , the grating 13 can function as a splitting light, and the incident light 21 is coupled into the dielectric plate 12 when coupled to the dielectric. When a partial beam of the incident light 21 inside the panel 12 and a mode in which the structure of the dielectric panel 2 is allowed to reach a phase matching state (phase_matehing), a resonance effect is generated. Therefore, it is possible to select a specific resonant wavelength to be refracted in the dielectric plate i 2 to become a transverse transmission wave 2 2 ; on the other hand, the incident light 2 丄 is not a resonant wavelength portion of the beam, The metal screen effect is reflected on the metal surface 200105283 and leaves away. 'The reflected beam is the filtered reflected light (Reflection) 2 3 °. As can be seen from the above, the structure of the surface plasma resonance filter is relatively simple, and the fabrication is not If the thin film filter is complicated, it only needs a few layers of structure to be completed (only the metal lining structure of the surface can be changed to achieve the effect of chopping - can be completed in a large amount and quickly by using the over-mold technology), and in actual operation There is also a very good (four) wave, the effect of the angle and the sensitivity of the angle of the human shot is 'should be strong. It can be seen from the above that the surface electro-destructive resonant chopper is a way of integrating the thin film structure or the multi-layer stacking to strengthen the resonant wire of the chopping wave. Further, such a surface electro-convergence resonant stitching device can be It is used to integrate into a variety of passive or aetive look-ups to form a variety of microsystem wafers to be applied. It can be designed as an adjustable slurry resonance filter. . [Embodiment] The present invention is a reflective surface money resonator, the method comprising the steps of: providing a substrate; forming a -th-thin layer on the substrate; and - A two-film is formed on the top surface of the second film. The grating structure is on the one side of the second film. The substrate may be a single (four) substrate of any color direction. The substrate may also be a polishing material of any material. According to the above concept, the first film may be formed by using a low-pressure chemical (four) mesh method or a thickness of a metal film. On the surface of the surface, a special material is deposited. According to the above concept, the current chemical vapor phase method can utilize a dielectric material such as a low oxygen cut or an i cut in the second and second. The two steps of the specific thickness are defined by the following mask: _-; === Di Li " - Light is transferred to the first light) 1 and the pattern of the first mask of the winter - photoresist pattern; according to: = map f layer defined - the top surface is made of a thickness of a metal material growth. The second film of the photoresist layer; the first photoresist # '广谷剂cle clear the first - Get the metal light and build it up. Transferring to the second film According to the above concept, the first light-to-electron beam lithography process may be made; == the shirt process method to complete the transfer of the figure (4). 4 light k pressure ^ Kang on the concept, in which the growth of the metal material, can be used a low thickness two: method or can in the first - first resistance 'deposited - specific species ^ ^ "3rd heart, 3 〇:, 31) Fig., is a total of the invention; in the embodiment, a substrate is prepared, and in the embodiment, the double-sided polished single crystal substrate 3 in the direction of -1GG lattice is used. 〇 as a representative 'as shown in the third figure 』, the thickness of the single crystal slab substrate 3 200 200905283 can be about 500 microns ' and need to pass an RCA standard $ cleaning step for the single crystal slab substrate 3 Q The surface is cleaned to (4) impurities or dust on the surface thereof; and then subjected to an E-Gun Thermal Deposition on a first surface 3 of the single crystal germanium substrate 3 &" The first film 3 1 is hoarded, and in this embodiment we use a silver 'Ag' film substrate to represent the first film 3' and the silver film we are to deposit. It is also a kind of material with high reflectivity, and in this case, the thickness of the first film can be about 1 micro. . Next, a plasma enhanced chemical Vapor Deposition (abbreviated as pEVCD) is deposited on the second surface 31 of the first film 31 to form a second film 3 2 In this embodiment, we use a silicon oxide (Si 2 ) film substrate of a dielectric material to represent the second film 3 2 to be deposited. According to the above, 'we then use spin coating (Spin's method to apply the _th photoresist layer 3 3 on the second film 3 2, and then, it can be utilized - the first - reticle 3 3Q - the process of exposure and development of the photoresist layer 3' can thus transfer the pattern of the first photomask 3 3 Q to the stomach first photoresist layer 3 3 to complete the transfer of the pattern (pattem plus (4), and =* is defined on the violation of the first-photoresist layer 3 3 - the first photoresist pattern 3 (such as "3B"), and in this example the first photoresist pattern 3 3 can be a The shaped grating 'make the first photoresist layer 3 3 曝光 after exposure and development to have an appearance as shown in FIG. 3B (this figure shows the structure in the form of a cross section of 200105283). A photoresist pattern is grown on the top surface 33 of the second film by using an electron blast plating deposition method to deposit a certain degree of metal material. In this embodiment, we use a metal material and (Silver) 'Ag) is a film substrate. The metal film 35 is deposited to a thickness of about 1 μm; the first photoresist layer is removed by an ACE solvent; The sheet pattern can be transferred to the second film to obtain a metal grating 35 structure as shown in Fig. 3D. Therefore, as can be seen from the above description, we successfully solved the problems mentioned in the prior art. The problem is to achieve the purpose of the development of the present invention. The present invention has been modified by those skilled in the art, and is not intended to be protected by the scope of the patent application. A more in-depth understanding can be obtained by the following figures and descriptions: The first diagram is a schematic diagram of the strip type light vehicle of the present invention. The first diagram B is a schematic diagram of the rectangular grating of the present invention. Figure A is a schematic diagram of the operation of the strip-shaped grating of the present invention. The first Figure B is a schematic diagram of the operation of the optical light of the present invention. The third to third figures are the preferred embodiment of the present invention. Schematic diagram of the production process. [Main component symbol description] The components included in the diagram of this case are listed as follows: A reflective surface plasma resonance filter 1 200905283 First metal film layer 11 Dielectric layer 12 Grating 13 Incident light 2 1 horizontal Directional wave 22 Reflected light 2 3 Early crystallized substrate 3 0 First surface 301 First film 31 First film First surface 3 1 2 Second film 3 2 Second film First surface 3 22 Photoresist layer 3 3 Photomask 3 3 0 photoresist pattern 331 exposure 3 4 second metal film layer 35 12

Claims (1)

200905283 十、申請專利範圍: 1.-種反射式表面電聚共振遽波器 一半導體基板; 包含: 於該半導體基板的第一表面上 膜、-第二介質薄膜和_第三金 1〜金 於該第三金屬薄膜的―頂面上^領; 其中對於該光柵的定義包含下列步=了光柵結構; 於該第二介質薄膜上塗佈^ : 利用-光罩對該光阻層進行曝^: 一光罩之圖案轉移至該光阻層上,=衫,以將該第 定義出一光阻圖案;以及 而靶於該光阻層上 根據該光阻圖案對該第三金 得該光阻圖案能轉移至該第三金屬钱刻’使 光栅,並清除該雜層所剩下的二。、上而得到該 2. 如申請專利範圍第1項所述之一瀚 滤波器,其中該半導體基板係反^式表面電聚共振 〆卞守脰丞败係可為—種任意晶格方向之雙 面拋光的單晶矽基板。 3. 如申請專利範圍第i項所述之一種反射式表面電聚共振 滤波器,其令該第二介質薄膜的形成,係可利用一低壓化 子氣相"L·積法在該第-金屬薄膜表面上,沉積出一特定厚 度的介質薄膜。 4. 如申請專利範圍第1項所述之一種反射式表面電衆共振 濾波器,其中該第一金屬薄膜的形成,係可利用一電子搶 蒸鑛沉積法(E-Gun Thermal Deposition)在該半導體基板的 13 200905283 第一表面上,沉積出-特定厚度的金屬薄膜。 5.如申請專利範圍第丨項所述之—種反射式表面電聚 f、波器’其中該第三金屬薄膜的形成,係可利用-電+格 …、鍍/儿積法(E_Gun Thermal Deposition),沉積出—特定 度的金屬薄膜。 付疋厚 6·如申睛專利範圍第j項所述之一種反射式表面電 濾波器,其中對該第三金屬薄膜所進行的_,係可利= 有機冷劑之祕财式騎,以完顧案的轉移 的部份係為該第三金屬薄膜未被該先-層所 ^申請專圍第i項所述之—種反射式表面電裝 其中對該第二光阻層所進行的曝光 為振 J子束,程或可製作出週期性結構之光微景二 在’以完成圖案的轉移。 8.如申睛專利範圍第丨項所述之一 濾波器,其中對該第:金屬薄_3式表面電製共振 係可刺闲-I亥頂面所進行的餘刻, 、_ m和-感_合之乾絲刻 =以完成圖案的轉移’而所要進行蝴的部份係為4 9 金屬薄膜未被該第二光阻層所覆蓋的部份。〜 •如^專利範㈣丨項職之—魏射式表 遽波器,其中料访楚-么屉锋时 电水振 係於料5第屬相的該頂面所進行的敍刻, 定^亥頂面曰未被該光阻層所覆蓋之處加以触刻出一特 次波得到的該光拇結構係可為複數個相互排列之 14 200905283 濾波器,其〜表,,共振 氫氡化鉀水溶液之濕式链刻方式進:用一 :份係為該半導體基板的該第-表面未被該第:::的 膜所覆蓋的部份。 金屬薄 =申請專利範園第!項所述之—種反射式表 遽波器,其中兮坌—八挤 電水共振 12.如申^ 讨為二氧_。 遽射式表面電裝共振 13-種反射二"第屬薄材質係可為金、銀。 .種反射式表面電襞共振濾波器,包含有: 一半導體基板,係具有一第一表面與—第二表面. 第一薄膜,形成於該第一表面上; ::::膜:形成於該第二表面上,該第二薄臈係具有 頂面與—底面,而該頂面係具有—光拇結構。 專利範圍第13項所述之—種反射式表面電聚此 =面皮器,其中該半導體基板係可為—種任意晶格料 之雙面拋光的單晶矽基板。 15卞申請專利範圍第13項所述之-種反射式表面電聚丘 皮器’其中該第…賴_成,係可姻一低厂靴 予積法在該第-表面和該第二表面上,分別沉積出 特疋厚度的介質薄膜。 利範圍第13項所述之—種反射式表面電聚共 ,而該光栅結構係可為複數個相互排列之次波 15 200905283 17. 如申請專利範圍第13項所述之一種反射式表面電漿共 振濾波器之製作方法,其中該第二薄膜的形成,係可利 用一電子槍蒸鑛沉積法(E-Gun Thermal Deposition)在該光 組圖案表面上,沉積出一特定厚度的金屬薄膜。 18. 如申請專利範圍第13項所述之一種反射式表面電漿共 振濾波器之製作方法,其中該第一薄膜之材質係可為二 氧化石夕。 19. 如申請專利範圍第13項所述之一種反射式表面電漿共 振濾波器之製作方法,其中該第二薄膜之材質係可為 金、銀。 16200905283 X. Patent application scope: 1. A reflective surface electro-convergence resonant chopper-semiconductor substrate; comprising: a film on the first surface of the semiconductor substrate, a second dielectric film, and a third gold 1 to gold On the top surface of the third metal film; wherein the definition of the grating includes the following steps = a grating structure; coating the second dielectric film:: exposing the photoresist layer with a mask ^: a pattern of a mask is transferred to the photoresist layer, = shirt, to define a photoresist pattern; and a target is applied to the photoresist layer according to the photoresist pattern. The photoresist pattern can be transferred to the third metal to engrave the grating and remove the remaining two of the hybrid layer. The 瀚 filter according to the first aspect of the patent application, wherein the semiconductor substrate is an anti-type surface electro-convergence resonance 可 脰丞 脰丞 可 可 可Polished single crystal germanium substrate. 3. A reflective surface electro-convergence resonance filter according to claim i, wherein the second dielectric film is formed by using a low-pressure gas phase "L·product method; - A dielectric film of a specific thickness is deposited on the surface of the metal film. 4. A reflective surface electric resonance filter according to claim 1, wherein the first metal thin film is formed by using an E-Gun Thermal Deposition. On the first surface of the semiconductor substrate 13 200905283, a metal film of a specific thickness is deposited. 5. As described in the scope of the patent application, a reflective surface electropolymer f, a waver 'in which the third metal film is formed, can be used - E + Gun Thermal (E_Gun Thermal) Deposition), depositing a specific degree of metal film.疋 疋 6 · · · · · · · 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射The transfer portion of the finished film is that the third metal film is not subjected to the first-layer application, and the reflective surface device is described in the item i, wherein the second photoresist layer is performed on the second photoresist layer. The exposure is a vibrating J beamlet, and the process can be used to create a periodic structure of light micro-views in the 'to complete the pattern transfer. 8. A filter according to the scope of claim 2, wherein the first: metal thin _3 surface electro-resonance system can be used for the suffocation - I hai top surface, _ m and The part of the sensation-to-dry stencil=the completion of the pattern transfer' is to be the portion where the metal film is not covered by the second photoresist layer. ~ • Such as ^ Patent Fan (four) 丨 之 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The optical top structure of the top surface 曰 which is not covered by the photoresist layer and which is extracted by a special wave can be a plurality of mutually arranged 14 200905283 filters, whose table, resonance hydrogenation The wet chain engraving of the potassium aqueous solution is carried out by using a portion in which the first surface of the semiconductor substrate is not covered by the film of the first:::. Metal thin = apply for patent Fanyuan! According to the item, a kind of reflection type chopper, in which 兮坌-eight-squeeze electro-hydraulic resonance 12. If the application is dioxin. Radiation-type surface electrical installation resonance 13-species reflection two " the first thin material system can be gold, silver. A reflective surface electrothermal resonance filter comprising: a semiconductor substrate having a first surface and a second surface. a first film formed on the first surface; :::: film: formed on On the second surface, the second thin tether has a top surface and a bottom surface, and the top surface has an optical thumb structure. The reflective surface electropolymerization described in the thirteenth aspect of the patent is a skin cleaner, wherein the semiconductor substrate is a double-sided polished single crystal germanium substrate of any crystal lattice. 15 卞 卞 卞 卞 第 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 反射 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中On the top, a dielectric film of a special thickness is deposited. The reflective surface electropolymerization described in item 13 of the benefit range, and the grating structure may be a plurality of mutually arranged secondary waves 15 200905283 17. A reflective surface electric power according to claim 13 The method for fabricating a slurry resonance filter, wherein the second film is formed by depositing a metal film of a specific thickness on the surface of the light group pattern by an electron gun evaporation deposition method (E-Gun Thermal Deposition). 18. The method of fabricating a reflective surface-plasma resonator filter according to claim 13, wherein the material of the first film is made of sulphur dioxide. 19. The method of fabricating a reflective surface plasma resonator filter according to claim 13, wherein the material of the second film is gold or silver. 16
TW96128120A 2007-07-31 2007-07-31 A plasmonic reflection filter TW200905283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96128120A TW200905283A (en) 2007-07-31 2007-07-31 A plasmonic reflection filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96128120A TW200905283A (en) 2007-07-31 2007-07-31 A plasmonic reflection filter

Publications (1)

Publication Number Publication Date
TW200905283A true TW200905283A (en) 2009-02-01

Family

ID=44722679

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128120A TW200905283A (en) 2007-07-31 2007-07-31 A plasmonic reflection filter

Country Status (1)

Country Link
TW (1) TW200905283A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481855B (en) * 2012-07-20 2015-04-21 Univ Chang Gung Surface plasmon resonance detection system with multilayer film structure
US9146191B2 (en) 2012-11-15 2015-09-29 National Taiwan University Gas detection system and radiation emitting device for the gas detection system
CN106773266A (en) * 2017-02-15 2017-05-31 苏州芯盟慧显电子科技有限公司 A kind of reflective liquid-crystal display based on surface plasmons technology
CN110673241A (en) * 2019-09-16 2020-01-10 东南大学 Color filter structure based on coupling of surface plasmon and cavity resonance mode
CN111261983A (en) * 2020-01-16 2020-06-09 北京环境特性研究所 Closed periodic metal grating SSP terahertz filter and tuning method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481855B (en) * 2012-07-20 2015-04-21 Univ Chang Gung Surface plasmon resonance detection system with multilayer film structure
US9146191B2 (en) 2012-11-15 2015-09-29 National Taiwan University Gas detection system and radiation emitting device for the gas detection system
CN106773266A (en) * 2017-02-15 2017-05-31 苏州芯盟慧显电子科技有限公司 A kind of reflective liquid-crystal display based on surface plasmons technology
CN106773266B (en) * 2017-02-15 2019-09-10 苏州芯盟慧显电子科技有限公司 A kind of reflective liquid-crystal display based on surface plasmons technology
CN110673241A (en) * 2019-09-16 2020-01-10 东南大学 Color filter structure based on coupling of surface plasmon and cavity resonance mode
CN110673241B (en) * 2019-09-16 2021-07-20 东南大学 Color filter structure based on coupling of surface plasmon and cavity resonance mode
CN111261983A (en) * 2020-01-16 2020-06-09 北京环境特性研究所 Closed periodic metal grating SSP terahertz filter and tuning method

Similar Documents

Publication Publication Date Title
WO2020019575A1 (en) Narrow-band filter based on dielectric metasurface structure and manufacturing method therefor
JP6770037B2 (en) LCD projector
JP6056903B2 (en) Polarizing element and transmissive liquid crystal projector
KR100623026B1 (en) Wire-grid Polarizer and Fabrication Method thereof
TWI308647B (en) Guided-mode resonator and the method for manufacturing the same
JP2005316495A (en) Flexible wire grid polarizer and fabricating method thereof
JP2002328222A (en) Polarizing element and method for manufacturing the same
TW200905283A (en) A plasmonic reflection filter
WO2008018247A1 (en) Transmission type polarizing element, and complex polarizing plate using the element
JP7474103B2 (en) Optical element manufacturing method and optical element
CN111025463B (en) Three-dimensional integrated super-surface device, and preparation method and application thereof
KR20120081658A (en) Photomask including super lens and manufacturing method thereof
CN111638572B (en) 3D structured light 940nm narrow-band filter and preparation method thereof
JPH07209516A (en) Optical multilayer film filter
CN102645694B (en) Doped-layer-free photonic crystal optical fiber with filtering range of 540-760 nm and manufacturing method thereof
JP2003246632A (en) Method of manufacturing periodic structure finer than wavelength and optical element
JPH03233501A (en) Optical multilayered film filter element and production thereof
JP2008064976A (en) Mirror for optical communication
CN102645695B (en) Doped-layer-free photonic crystal optical fiber with filtering range of 430-630 nm and manufacturing method thereof
US20240076231A1 (en) Fabrication Technique For Wire Grid Polarizer
KR102261988B1 (en) The Optical filter and The fabrication Method of The Same
JP2008009117A (en) Method of forming dielectric multilayer film
JP2007119836A (en) Film-forming method
JPS61107303A (en) Formation of optical filter for color separation
JPH04256904A (en) Polarizing element