TW200901016A - Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs - Google Patents

Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs Download PDF

Info

Publication number
TW200901016A
TW200901016A TW097106046A TW97106046A TW200901016A TW 200901016 A TW200901016 A TW 200901016A TW 097106046 A TW097106046 A TW 097106046A TW 97106046 A TW97106046 A TW 97106046A TW 200901016 A TW200901016 A TW 200901016A
Authority
TW
Taiwan
Prior art keywords
electrode
flexible
touch screen
flexible electrode
touch
Prior art date
Application number
TW097106046A
Other languages
Chinese (zh)
Inventor
Ramesh Sivarajan
Michel Monteiro
Thomas Rueckes
Brent M Segal
Original Assignee
Nantero Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantero Inc filed Critical Nantero Inc
Publication of TW200901016A publication Critical patent/TW200901016A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Abstract

A symmetric touch screen switch system in which both the touch side and panel side transparent electrodes are comprised of carbon nanotube thin films is provided. The fabrication of various carbon nanotube enabled components and the assembly of a working prototype touch switch using those components is described. Various embodiments provide for a larger range of resistance and optical transparency for the both electrodes, higher flexibility due to the excellent mechanical properties of carbon nanotubes. Certain embodiments of the symmetric, CNT-CNT touch switch achieve excellent optical transparency (< 3% absorption loss due to CNT films) and a robust touch switching characteristics in an electrical test.

Description

200901016 九、發明說明: 【交叉參考之相關申請案】 此申請案基於美國法典35之119(e)主張下财請案為優先權母 案;將上述者之所有揭露内容包含於此作為參考。 5 中凊於 2007 年 2 月 21 日之名為「Symmetric Touch Screen with200901016 IX. INSTRUCTIONS: [CROSS REFERENCE TO RELATED APPLICATIONS] This application is based on 119(e) of Title 35 of the United States Code and claims that the following is a priority parent; all disclosures of the above are incorporated herein by reference. 5 Zhongyu was named "Symmetric Touch Screen with" on February 21, 2007.

Carbon Nanotube-Based Transparent Conductive Electrode Pair」的美國 臨時專利申請案60/902,596。 【發明所屬之技術領域】 10 本發明麵於具有奈米管元件_控錢幕與齡祕及此類系 統的形成方法。 【先前技術】 15 20 、習知,觸控式螢幕使用氧化銦錫(ΙΤ〇)作為透明導電電極。氧化鋼 錫為種氧化陶兗材料,在薄膜形式時尤其會表現出弱機械強度。因 ^ITO __在騎、屈曲或錢受到尖賴料會失去機械完整 性(mechanical integrity) 〇 ^化轉電極在t磁光譜的可見光區域巾,亦舰錢著的波長 相依性之透明度。 古希由於氧化銦錫的低㈣電峰恤丨⑽㈤騰e),供絲能應用之 透明膜的製造’主要因為達到高電阻所需之1Τ0薄膜其不佳機 械強度而變得困難。 灌慮料電聚合物祕顯示與式歸應用。然而,聚合物 /、又到光、熱與水氣時’缺乏包含透明度對導電度及環境/化學穩 5 200901016 定度的特性上正確平衡 【發明内容】 本發明大致上關於奈米碳瞢植瞄、 5 10 15 20 能之觸控娜麵細_===== 控式勞幕系統,其中原本 .、、、氧化銦錫_)之觸 透明導電顯所械。 錢料電姑細⑽薄膜的 奈米管之魏娜。帛 電阻式觸控螢幕裝置更包含***於該第2刀隔狄置。該 隔元件,該分隔元件在該第一盥第 ^二%極間的複數分 被施至第一撓性電極之選定區域當壓力 分隔距離,藉此在該第—與第二撓性電極^相減少 根據一祕’該第―與第二祕電極崎—者皆電主路徑。 根據另-態樣’該複數分隔元件包含 與第二:性電極之至少一者之主要表面排列設置而形‘ 離。根據另—·,該陣列在鄰接的分隔元件之間具有選定的間隔距 根據另-態樣,該裝置龍力的敏感 元件間的選定間隔距離所決定。 夕口丨刀糟由鄰接分隔 根據另一態樣,該介電材料包含乎 ^丙烯酉夂酉曰材料及環氧樹墙材料 6 200901016 中的至少一者。 根據另一態樣,該第一與第二撓性電極的每一者係實質上光學透 明 根據另一態樣’被投射於該第二撓性電極之一表面上的光學影 像’可在該第一撓性電極的一表面上被偵測到。 根據另一態樣,該電阻式觸控螢幕裝置的結構及排置方式,俾使 該第一撓性電極的一選定區域,可重覆地受到壓力而產生複數次數之 彈性形變,而不產生永久形變。 10 15 20 根據另一態樣,該重覆之複數次數包含至少200個重複次數。 ^根據另一態樣,該電阻式觸控螢幕裝置,更包含沿著該第一撓性 電極的主要平面設置並與其接觸的撓性遮罩薄片。 根據另-態樣,該電阻式觸控螢幕裝置,更包含沿著該第二挽性 電極的主要平面設置並與其接觸的導電基板。 根據另-態樣,該導電基板包含一材料,此材料包含納玻 g ass)、光學品狀賴、刪^義朗、、 根據另一態樣,該電阻式觸控螢幕 其實質上沿鋼-鮮順· 圍電極’ 置’其中該至少-周圍電極佔據該分隔的至;;_=面的周圍邊緣設 根據另-態樣,該周圍電極包含一材 = 金與導電聚合複合物材射的至少—者/趟狀含㉟、銀、銅、 根據另-態樣’該奈米管織物包含、 徑的非織造奈米管聚集體。 /螂物形成複數個導電路 7 200901016 在其他實施例中,接徂 合.姐Λ+够'、了承阻式觸控螢幕裝置的形成方法。該方 極係相對於該第-撓性電:鱗的奈树織㈣片,該第二撓性電 第-熟1之間的概賴树,齡隔元件在該第一與 ίΓ軸麵。财法更包^賴與排㈣第一與第 件,俾使壓力施加至該第—撓性電極之選定 10 二祕' “°σ°ν實質上彈性形變以減少分隔距離,藉此在該第一與第 一抗性電極間形成導電路徑。 ^ 根,另-態樣’該方法包含建構與排置該第一與第二挽性電極, 使該第與弟一撓性電極之每一者的主要平面係實質上對齊。 根據另-祕’形賴第—與第二撓性電極包含提 透明的電極。 根據另.%樣,形成s亥苐一換性電極包含以奈米管之塗料喷塗面 板側基板(panel side substrate)以形成奈米織物薄片。 、 根據另一態樣,該面板侧基板包含一材料,該材料包含鈉玻璃 (soda glass)、光學品質之玻璃、硼矽酸鹽玻璃、鋁矽酸鹽玻璃、結晶 石英、半透明玻璃化之石英(translucent vitrified quartz)、聚g旨塑膠及聚 2〇 碳酸酯塑膠中之至少一者。 根據另一悲樣’形成該第一挽性電極包含以奈米管之塗料噴塗觸 控側基板(touch side substrate)以形成奈米織物薄片。 根據另一態樣,該觸控側基板包含一塑膠材料,該塑膠材料包含 PET材料。 8 200901016 【實施方式】 盆不且Γ麵稱式朗導電電極所構狀觸控式榮幕㈣ 太乎在換數百次且顯示出高堆疊透明度。 mm Τ'Γ 彡之透㈣電電極已被考慮用於顯示與觸押μ幕 網路’取代f知觸时躲中的輸_f極。 魏義物 a物基懸浮液、聚合物系之懸浮液、聚合物系之複 ^所雜並轉移至固體基板上的無支撐GNT _,而 15 電極的A致製造方法。類似於習知的ITG應用,此些方 ^亦热法製造出目標薄膜電阻(ta邮film resistance)或目標辆 、比(target light transmittance)或兩者。 。此類方法包含了被揭露於Spath等人在2〇〇5年6月2日申請之公 開5虎為測6/0274047的美國專利申請案,其詳細敘述了在非對稱觸控 式螢幕純巾_奈米碳管電極,其巾電阻式觸控螢幕之導電電極中 20僅有—者(電極)為奈米碳管所構成。 ^知非對稱觸控式螢幕具有如下所示之一些技術限制,其可被本 文中所述的對稱觸控式螢幕所克服。應瞭解,如下所示之習知非對稱 觸控式螢幕的限制包含但不限制為: (a)由不同硬度之材料彼此反覆接觸而引起電極中之一者的機械 9 200901016 磨耗。 電聚合物接觸所引 (b)因不同氧化還原電位之材料(如ΙΤ0)與導 起之化學損耗的可能性。 導致版幅麵爾靖礙的存在會 能障礙的潔淨歐姆接觸電阻— contact resistance) ° 不出同堆宜翻度。在本文所揭露的實施财 的兩導電電極皆由奈米碳管所構成。 觸m统 中 此世代之傳統電阻式觸控螢幕中所用的基本元件係U.S. Provisional Patent Application Serial No. 60/902,596 to Carbon Nanotube-Based Transparent Conductive Electrode Pair. [Technical Field to Which the Invention Is Applicable] 10 The present invention is directed to a method of forming a nanotube element, a control screen, and an age system, and such a system. [Prior Art] 15 20 Conventionally, a touch screen uses indium tin oxide (yttrium) as a transparent conductive electrode. Iron Oxide Tin is an oxidized ceramic material that exhibits weak mechanical strength especially in the form of a film. Because ^ITO __ loses its mechanical integrity during riding, buckling or money, it is also the transparency of the wavelength dependence of the rotating electrode in the visible region of the t-magnetic spectrum. Due to the low (four) electric peak of indium tin oxide (10) (five e), the production of transparent film for wire application can be difficult because of the poor mechanical strength of the 1Τ0 film required to achieve high resistance. The application of the electric polymer and the application of the formula are applied. However, the polymer/, when it comes to light, heat and moisture, lacks the correct balance of the properties including the transparency and the conductivity and the environment/chemical stability. [Invention] The present invention relates generally to nanocarbon implants. Sight, 5 10 15 20 can touch the surface of the face _===== Controlled curtain system, in which the original ., ,, indium tin oxide _) touch transparent conductive display machinery. The money material is the fine (10) film of the nano tube Wei Na.电阻 The resistive touch screen device is further included in the second knife. a spacer element, the plurality of points between the first and second poles being applied to a selected region of the first flexible electrode as a pressure separation distance, whereby the first and second flexible electrodes are The phase reduction is based on the first path of the first secret and the second secret electrode. According to another aspect, the plurality of spacer elements comprise a major surface arrangement with at least one of the second: sex electrodes. According to another embodiment, the array has a selected spacing between adjacent spaced apart elements. Depending on the other aspect, the selected spacing distance between the sensitive elements of the device is determined. The shovel is separated by abutting. According to another aspect, the dielectric material comprises at least one of a propylene enamel material and an epoxy tree wall material 6 200901016. According to another aspect, each of the first and second flexible electrodes is substantially optically transparent. According to another aspect, an optical image projected onto a surface of the second flexible electrode can be A surface of the first flexible electrode is detected. According to another aspect, the resistive touch screen device is configured and arranged such that a selected region of the first flexible electrode can be repeatedly subjected to pressure to generate a plurality of elastic deformations without generating Permanent deformation. 10 15 20 According to another aspect, the number of repetitions of the repetition includes at least 200 repetitions. According to another aspect, the resistive touch screen device further includes a flexible mask sheet disposed along and in contact with a major plane of the first flexible electrode. According to another aspect, the resistive touch screen device further includes a conductive substrate disposed along and in contact with a main plane of the second leadive electrode. According to another aspect, the conductive substrate comprises a material comprising a nanoglass g ass), an optical material, a ruthenium, and according to another aspect, the resistive touch screen is substantially along a steel- a sleek · circumference electrode 'in which the at least-surrounding electrode occupies the partition; _= the peripheral edge of the surface is set according to another state, the surrounding electrode comprises a material = gold and a conductive polymer composite At least - the scorpion contains 35, silver, copper, according to another state - the nanotube fabric contains, the diameter of the non-woven nanotube aggregates. / 螂 形成 forming a plurality of conductive circuits 7 200901016 In other embodiments, the method of forming a resistive touch screen device is adopted. The square is relative to the first flexible circuit: a neat weave (four) piece of the scale, and a second tree between the second flexible electric and the cooked one, and the chronological element is on the first and the Γ axis. The financial method further includes the first and the first part, and the pressure is applied to the first flexible electrode to select the first two secrets. The "°σ° ν substantially elastic deformation to reduce the separation distance, thereby Forming a conductive path between the first and first resistant electrodes. ^ Root, another-state' The method includes constructing and arranging the first and second conductive electrodes, such that each of the first and second flexible electrodes The main plane of the person is substantially aligned. According to another embodiment, the second flexible electrode comprises a transparent electrode. According to another %, the formation of the sigma-changing electrode comprises a nanotube tube. The paint sprays the panel side substrate to form a nano fabric sheet. According to another aspect, the panel side substrate comprises a material comprising soda glass, optical quality glass, boron bismuth. At least one of a salt glass, an aluminosilicate glass, a crystalline quartz, a translucent vitrified quartz, a poly-g-plastic, and a poly-p-carbonate plastic. The first lead electrode comprises a coating of nano tube The touch side substrate is coated to form a nano fabric sheet. According to another aspect, the touch side substrate comprises a plastic material, and the plastic material comprises a PET material. 8 200901016 [Embodiment] The touch-type glory of the surface-type conductive electrode (4) is changed hundreds of times and shows high stacking transparency. mm Τ'Γ 彡 透 (4) The electric electrode has been considered for display and contact The network 'replaces the _f pole that hides in the touch. The Wei Yi material a base suspension, the polymer suspension, the polymer system and the unsupported GNT transferred to the solid substrate _, and the 15 electrode A manufacturing method. Similar to the conventional ITG application, these methods also thermally produce the target film resistance or the target light transmittance or both. This method incorporates a US patent application filed by Spath et al. on June 2, 2005, which is filed on June 2, 2005, which is described in detail in an asymmetric touch screen. Pure towel _ nano carbon tube electrode, its towel resistive touch screen guide The only one of the electrodes (the electrode) is composed of a carbon nanotube. The known asymmetric touch screen has some technical limitations as shown below, which can be overcome by the symmetric touch screen described herein. It should be understood that the limitations of conventional asymmetric touch screens as shown below include, but are not limited to: (a) Mechanically 9 200901016 abrasion by one of the electrodes caused by repeated contact of materials of different hardnesses. (b) The possibility of chemical loss due to materials with different redox potentials (such as ΙΤ0) and lead. The clean ohmic contact resistance that causes the presence of the sizing of the plate to be obstructive—contact resistance) ° does not fall out of the same stack. The two conductive electrodes of the implementation disclosed herein are composed of carbon nanotubes. The basic components used in this generation of traditional resistive touch screens

顯示於圖1A 習知電阻式觸控螢幕包含-導電面板,其中_咖、 15 ==玻璃)係「塗有導電且光學地透明的材料。此電極通“ %為裝置側電極」或「面板電極」(11〇)。 、習知餘式觸控螢幕亦包含第二電極⑽),其為翻且包含 於塑膠撓性薄片⑽)上的導電材料。此電極通常被稱為「觸控側電極」 或「遮覆-薄片(cover-sheet)電極」(130)。 2〇 在各種實施例中可被用來形成塑膠撓性薄片(150)的塑膠或聚人 物包含但不限··聚乙烯對苯二甲酸酯㈣)、聚乙烯石腦油⑽^ ^il^(PES) ^ ^^gtil(PC) &gt; ^^(polysulfones) &gt; it^ , 聚醯亞胺、聚醚酯、聚醋酸乙烯酯(PVA)、聚笨乙烯(ps)、硝酸纖維^、 醋酸纖維素、聚烯烴、脂肪族聚氨酯、聚丙烯氰(pAN)、聚四氟乙烯 200901016 (簡)、聚偏氟乙稀⑽F)、聚甲基内稀酸甲醋(pMMA)、聚酬(ρΕκ) 及聚趟謎酮(PEEK)。 為了致使導電聽與控織子轉_電賤,將錢明、低電 阻電極⑽)製造於導電面板㈣緣上。_電滅致上包含導電面板 ;^邊緣處的轉電條,但電極的幾何形狀、尺寸與組態會變化。其通 為旦框电極」。在圖1B中顯示了不同的可能組態,其顯示 之電阻式觸控榮幕的前視圖與構成膜層的堆疊順 ,。觸I·:、現有之-般的晝框材料係基於金屬(例如銀)塗布或金 屬(例如銀)-尚分子聚合物兩者其中之一。 i f知㈣阻摘料幕亦包含介電間,在大部 此 些介電間隔件以陣列(140)的形式被印刷於導電面板上。觸控靈敏度及 解析度係取決於介賴隔件關隔距離、尺寸與機械特性。 當尖筆戳弄解摘麵錢置㈣極(⑽朗控 間引發接觸時,觸控侧與面板側電極間會纽電: 15 路。接觸點的位置係由經過校正的位置_勢 因此兀成電 map)所感測到。 固(P〇sition-P〇tential 二上所^已建議了製造CNT電極的各種普通方 含了由Spath等人於2〇〇5年6月2曰由a c頰万凌〇 2_麵中所述的方法,其詳細敎述了在專 中使用奈米碳管電極,射電阻式觸式或幕系統 極)為奈米碳管所構成。堂幕之導電電極中僅有-者(電The conventional resistive touch screen shown in FIG. 1A includes a conductive panel, wherein - _ coffee, 15 == glass) is "coated with conductive and optically transparent material. This electrode is "% is the device side electrode" or "panel" Electrode" (11〇). The conventional touch screen also includes a second electrode (10) which is a conductive material that is turned over and contained on the plastic flexible sheet (10). This electrode is often referred to as a "touch side electrode" or a "cover-sheet electrode" (130). 2. Plastic or poly-characteristics that can be used to form plastic flexible sheets (150) in various embodiments, including but not limited to polyethylene terephthalate (IV), polyethylene naphtha (10) ^ ^il ^(PES) ^ ^^gtil(PC) &gt; ^^(polysulfones) &gt; it^ , Polyimide, polyetherester, polyvinyl acetate (PVA), polystyrene (ps), nitrocellulose^ , cellulose acetate, polyolefin, aliphatic polyurethane, polyacrylonitrile (pAN), polytetrafluoroethylene 200901016 (simplified), polyvinylidene fluoride (10) F), polymethyl endogenous acid methyl vinegar (pMMA), remuneration (ρΕκ) and polypyridone (PEEK). In order to cause the conductive listening and controlling the weaving of the woven wire, the Qianming and the low resistance electrode (10) are fabricated on the edge of the conductive panel (4). _Electric extinguishing includes a conductive panel; ^ the electrical strip at the edge, but the geometry, size and configuration of the electrode will change. It passes through the frame electrode. A different possible configuration is shown in Figure 1B, which shows the front view of the resistive touch screen and the stacking of the layers forming the film. Touch I·: The existing 昼 frame material is based on either metal (e.g., silver) coating or metal (e.g., silver)-molecular polymer. The f-blocking curtain also includes a dielectric chamber in which most of the dielectric spacers are printed on the conductive panel in the form of an array (140). Touch sensitivity and resolution depend on the separation distance, size and mechanical properties of the spacer. When the tip pen pokes the face to remove the money (four) pole ((10) when the contact is triggered, the touch side and the panel side electrode will be neon: 15 way. The position of the contact point is corrected by the position _ potential It is sensed by the electricity map. Solid (P〇sition-P〇tential II) has suggested that various common prescriptions for the manufacture of CNT electrodes are included by Spath et al. in June 2, 2 曰 by ac 万 万 〇 〇 2 The method described above details the use of a carbon nanotube electrode, a radiation-resistive touch or a curtain system pole in a special medium, and is composed of a carbon nanotube. Only one of the conductive electrodes of the canon (electric

Spath等人更說明··在非對稱電阻式觸 須是由導電金魏錄解電聚合物材料轉電層必 顯示了此類非對稱觸控營幕的實例,其中觸控側電極_=板= 20 200901016 極(210)係由不同材料所構成’且此兩者之其中一者係由奈米碳管所構 成。圖2B顯示了具有不同構成膜層之此 的前視圖及構成膜層的堆疊順序。 …本申請案所揭露之結構的特定實施例包含了奈米碳管所致使之對 ^式CNT OT電阻_控螢幕系統,其具有皆由奈米碳管所構成的面 則與觸控侧透明電極。此類實施例不但具有單層CNT薄膜的優點, 亦具有基於CNT-CNT接觸切換器之觸覺切換器的優點。 下列段落提供並概述了因對稱性CNT_CNT觸控螢幕所產生且使其 有別於習知及/或非對_控錢幕_顯優點。㈣人展望由不同實 施例所產生的額外優點。應瞭解,下列段落僅包含但不限制本發明。 (a)在對频換n巾的c接_保電極巾的任—者不合受 統^此—機械磨耗卻會發生於具有兩不同硬度材料_對 15 20 ⑹對_換器巾的觸更進—步地齡錢奈米碳管 ^覆與氧化㈣之電極,如ITQ或導電聚合齡電雜 化學損害的機會減至最低。 王的 (c)對稱切換器中的CNT_CNT接觸更進一步地消除或 =覆與氧化㈣之·,如IT〇或導電聚合齡電極=產= 電特性之惡倾至最低。 7 $對稱切換器中的·-CNT接觸因為不存在兩不同種電導體間 接^函數的差異,而更進-步地增進了面板側與觸控側電極間的歐姆 (e)=稱切換器中的接觸更對觸控側與面板側電極兩者 &amp;供了極廣範圍的電阻值⑽歐姆/平方至幾百之百萬歐姆/平方)與 12 200901016 透明度(上至99%)。 稱切換种的CNT儒接觸更對觸控淑/或面板 了 =阻值,因此對給定的間隔件配置提供了高位置解析卢。 ⑽於相同可見光感測區域中的™而言,對㈣換Ϊμ 最小變異。乾圍5〇0-650雇下更提供了整個堆叠之透明度的 ⑹COT _電極系統更對面板織觸 =性塑膠基板,俾使整個切換器堆疊具 之CNT極佳機械特性。 〜用旳電極 而抖(^由於GNT GNT對觀_、蚊藉祕撓絲板上建立ΜΊ 而對面板側與觸控侧電極兩者提供整個觸控式螢幕堆疊的捲ς ㈣el)製造,因此建構全瓣、撓性觸控式螢幕的成本^ 15 20 在某隸補巾,GNT_GNT _電極祕她於料觸 亦提供製作或製造的伽。-QIT對稱f極系統,藉著 極兩者於撓性基板上建構CNT電極,而適合用於整j榮 ^堆豐的經濟型捲姆捲補造。該製造處理毋需昂貴的频腔(如: ==錫的情況)或處理聚合物材料時所需之嚴格控制的無水氣或 大致上就感測機制而言,對稱CNT_CNT觸控式榮幕 知觸控式榮幕。當尖筆戳弄或手指觸碰而在裝置側電極與i押 、極間引發接觸時,觸控側與面板側電極間會產生電接觸 '二 成一電路。接觸點的位置係由經過校正的位置—勢能圓所感測到。凡 圖3A顯示了目前所述之對稱電阻式觸控螢幕的示意圖,其中觸控 13 200901016 成。圖 si 顯^了 =圖及構成_堆_。在 包含下列者之材料_^_(5 _的)可由 矽酸鹽玻璃、鋁矽酸鹽玻璃、社a 先予扣負之玻璃、硼 (translucent vitrified 现、 〇日日央、半透明破璃化之石英 tmn=centvitnfledq刪z)、塑膠或其他適合的材料,其 何形式之聚喊聚碳酸g旨。低電阻電極⑽ 板: 土且:由包含下列者之材料所構成:銘、銀、鋼、或 ,複曰_式的該些金屬其雜合的分餘 ^所 熟知的其他㈣與適合於躺之调。介朗祕(^2 = 酸甲賴環氧樹脂的材料所構成,但不限於此。撓性塑膠遮覆 厚片(35〇)在外部暴露至使用者,且在内側上塗覆有cnt。應瞭解,由 於其他材料可能更適合姻於本雜⑽難螢幕的其他實施例,因 此本文中所列之材料為僅為舉列而非限制。 15 在美國專利6706402、綱期與6835別以及美國專利申請案 10/341005、10/341055與10/341130中充分敘述了奈米碳管之透明導電 網路與奈米碳管薄膜及物品的形成與提供方法,將其所有内容包含於 此作為參考。 導電物品可由奈米管織物、膜層或薄膜所製成。具有管直徑小約 20 1 11111的奈米碳管為能夠載帶極高電流密度的電導體(例如見z. Yao, C.L· Kane,C. Dekker, Phy. Rev. Lett. 84, 2941 (2000)。其亦具有已知最 高的熱傳導性(例如見 S. Berber Y.-K. Kwon, D. Tomanek,Phys. Rev. Lett· 84, 4613 (2000))與熱及化學穩定性(例如見 p.M. Ajayan, T.W. Ebbesen,Rep. Prog. Phys. 60, 1025 (1997))。然而,由於生成具有適當控 14 200901016 ί]Γ二長if的獨立奈米管有其困難度,因此,利用獨立的夺米 由二有條奈米管中未被發覺的優—^ =:Γ!奈米管聚集構成,因此其導電率不會被獨立奈:管 ;連=:管_反而有許多電子可通“ 己獨立奈米管的★‘二=所製成的物品在特定的物品内具有自 螢幕;電網路皆可導通電子。因此對觸控式 =:r管的綱性與透明度以及奈米碳管的'== 熟知,在=不咖導電瓣触術料此賴中人所 在美國專利申請案^/謝郎㈣测咖中詳 了 倾梅槪_娜的猶, 细敘述了用=含於此作為參考。在美國專利申請案'10/341054中詳 15 20 技術⑽娜無層的其他 6 二广 二器中其中該奈米管之溶液“成 invatized)以促進將奈米管帶人溶液,但在必須二原始 不未官的情況下,通常會難以移除衍生化劑 、’、σ t白〇=彳峨…分散奈米碳管的溶液財·液:舉例來而 1仿、乳酸⑽等。溶液為穩定的,但液劑具有無法增溶 15 200901016 (solub山zing)無非晶系碳之潔淨奈米碳管的缺點。美國專利申 的方法’以使得奈姆可藉由此領域中熟知之塗 5 15 20 考慮到純化奈米管的躺,主要包含金屬縣料夺米 適當大奈歸製備其允許絲歸織倾加至絲。可藉㈣夺米管 原料溶液旋塗至基板上、將奈米管原料溶液喷灑至表面上或其他方法 來達到施加。亦可控概施行此類奈米f的單壁㈤咕㈣丨㈣ ,㈣ti-Walled)或其兩者之混合施加。此麵加技術係敘述 專利申請案10/431054。 本對稱CNT CNT觸控式榮幕在形成觸控式螢幕應用所用之透明奈 米碳管系導電電極對時’利用了上述方法與技術。在下列實例中將詳 細敘述本裝置與結構的各種實施例。 實例1 : :以下列^方式製造複數疋件中的一者,即作為面板側透明電極之 塗佈有奈米官碳的玻璃基板。在此實例中使用了 ―她專賣之水中 的CMM級奈米石炭管懸浮液(由DI水稀釋2. 5倍之鮮ntsl_4,並將 pH值m. 5) #為此領域中所熟知。在形成⑽懸浮液時並未使 用分子界性劑或聚合_浮劑。錢國專利申請案u/綱31 更完全地敘述了詳細内容,將其所有内容包含於此作為參考。在业型 的塗佈製程中’將量測尺寸為8对训对之玻璃基板放置於設定在j25 。(:下的熱板上。使用連接至χ_γ_ζ機械手臂的空氣喷嘴自上部喷塗 布室中完成,此塗佈室配有操 作者用的完全嘴_隔崎置與傳送樣本用的續段過駐。喷塗使 16 200901016 ^ 〇 ntsl_4 叩#+&amp;讀7料雜輕喷嘴擴域。與_表面呈 ==#她織㈣靖輸_== ==ίΓΙ細皮重覆18次以製造目標中的樣本。在整個塗 喷塗時,將、、佈至被維持在80 F且小於3〇%的相對濕度。完成 個ί均八佈二^輕對樣本進行電性測定。在整個樣本上超過30 _電1 = 線性四點探針阻值量測(最大值21伏特;i微 。1測出來的平均電阻為87 6歐姆,具有電阻均勻度變異 為7. 6%。結果係顯示於圖4。 ^ 實例2 : „如上述實例1所製備之樣本樣品係於⑽。c的真空(〈1〇2 15 t退火1小4。在完成退火時,樣品可在真空烤伽冷卻至室溫並 被傳达以進行電_定(eleetrieal咖咖放㈣㈣。在整個樣本 上超過30個平均分佈的點上進行線性四點探針阻值量測(最大a伏 特,1微安培電流)。量測出來的平均電阻為105. 7歐姆,具有電阻均 勻度變異為6. 5%。結果係顯示於圖5。 實例3 : 八自較大的樣本中切割出上述實例2之已退火樣品的3对x8 口寸部 刀’並更進-步將其蝴成適合分光光度計使狀更小塊的樣品 2〇 =adz= UV3101 PC分光光度計中量測3〇〇_9〇〇 nm範圍内樣品的光 干牙透率(optical transmission)。利用類似樣品尺寸的空白玻璃基 板來量測基板的基準吸收損失。具有1()5. 7歐姆 (或480歐姆/平方) 之電導率的CNT膜在550 nm下表現出大於87%的光學穿透率。CNT膜 之光學穿透率對波長之變異係顯示於圖6中。 、 17 200901016 實例4 : 以下列方賴紗_控絲幕的另—元件,岭 明電極用之奈米碳管的塑膠p㈣板(8· 5对χ9仆 工 賣之水中的娜級奈米碳管懸浮液(以_以2:1之 2 ;繼η.5)纖輯^麵鑛懸浮= 一中敛述了詳細内容。在典型的塗佈製程 xV?/之PET基板放置於設定在105 °c下的熱板上。使用連接至 X-Y韻械手臂的空氣噴嘴自經灰化之PET基板的 Γ此喷塗細__塗魅巾完成,此塗魅配有;^用: ^«,1 〇 6〇 ps^ 15 20 ii rSSUre)產生之14麵速率的氣流。觀-4液體以 备^升分知的速率被輸送至噴嘴擴張區域。與塗佈表面呈30度夾 整程式化而以筆直水平與垂直的圖樣來掃描塗佈表:。 = ΐ被維持在82 F#_相對濕度。完成喷塗時,將^ 上、L V 7本進订電性測在整個樣本上超過3G個平均分佈的點 出來點探針阻值量嶋大值21伏特;1微安培電流)。量測 顯示於&quot;。阻為166.5歐姆,具有電阻均勻度變異為15%。結果係 實例5 : 如上述實例4所製備之樣本樣 烤箱退幻小時。在完成退火時,樣_ 被傳送以進行電性測定(e一 18 200901016 上超過30辦均分佈的點上進行雜職探針阻值制(最大幻伏 特;1微安培電流)。量測出來的平均電阻為⑽.3歐姆,具有電 勻度變異為15%。結果係顯示於圖7。 實例6 ·’ 5 15 20 在另一修改中’以下列方式製造對稱觸控式螢幕的-耕,即徐 佈有觸控側透龍则之奈米碳㈣轉pET基板。於灰化機中將^ 售之8. 5叶則的PET基板暴露至氧電漿5分鐘。使用驗⑽專賣 之水中的CMGS級奈米%官懸浮胁χ DI水以之 NTSL-4,餅PH _整至7, 5)錄造雜^。在軸⑽懸浮S 並使用刀子界面活性劑或聚合物懸浮劑。在美國專利申請 11/304315巾敘述了完整的詳細内容。在典型的塗佈製程巾,將量測 =為8叶χΙΟ忖之PET基板放置於設定在1〇5 下的熱板上。使用 、至X—Y-Z機械手臂的空氣喷嘴自經灰化之pet基板的上部喷冷 狐-4溶液。此她___塗魅巾絲,此塗佈室 作者用的完全儒義離裝置與傳送樣本㈣兩階段過濾室。喷 用60PSI的線麗(linepressure)產生之14獅速率的氣流。嶋—4 液體以G. 5 *升/分鐘的料被輸送対嘴舰區域。與塗佈 ϋ矣度炎肖的傾斜噴嘴經程式化*以筆直水平錢直的圖樣來掃描给 j面。整個表面的掃描被重覆14次以製造目標中的樣本。在整個给 :iff ’㈣塗佈室被轉在82 F#31%_對濕度。完成噴ί 寺將…板冷部亚對樣本進行電性測定。在整個樣本上超過%個 分佈的二上進行雜四聰針阻值制(最大值U伏特;丨微安 /。社^出來的平均電阻為105歐姆,具有電阻均勻度變異為瓜3 沁。、、、吉果係顯示於圖9。 19 200901016 實例7 : 烤箱退火6所製備之樣本樣品係於12G T的真空(&lt;1ίΓ2㈣ 被傳送以逸在完成退火時,樣品可在真空烤箱内冷卻至室溫並 5 15 20 上超過30 Γ伞性测定(也伽⑵1 CharaCteriZati〇n)。在整個樣本 特&quot;微安气上進彳麻四_離值制(最大21伏 产變昱為13σΓ 來的平均電阻為123歐姆,具有電阻均勾 又交/、為13.5/°。結果係顯示於圖10。 實例8 : 上並口::光;=之方式依序將奈米碳管塗佈於⑽ 控側透明電量測複數元件中之一者(即塗佈有觸 透電極用之奈米碳管的塑膠PET基板)之透射比與電導率之間 _ %nteiO專#之水中的®S級奈米碳管懸浮液(以Μ :以.1之比例稀釋之標準NTSL—4,並將ρΗ值調整至7· 5)來塗佈順 ,膜。在形成⑽懸浮液時並未使用分子界面活性劑或聚合物懸浮 别。在吳國專利中請案u/謝315中敘述了詳細内容。在典型的塗佈 製程中’將量測尺寸為2忖x2对之PET基板放置於設定在115 ^下 的,、、、板上使用連接至χ__γ_ζ機械手臂的空氣喷嘴自經灰化之PET美 板^部噴塗NTSL_4溶液。此會錄於特別輯的塗佈室中完成^ 塗佈室配有操作者關完全儒編離裝置與傳·本關兩階段過 濾,、喷塗使用60 PSI的線壓(Hne pressure)產生之14 SCFH速率 的氣流。·-4液體以〇. 5毫升/分鐘的速率被輸送至喷嘴擴張區域。 與塗佈表©呈3G度夾角的傾斜噴嘴經程式化而以筆直水平愈垂直的 圖樣來掃描塗絲面。整録_掃描被錢2如製造光學应電性 量測用的目標樣本。在整個塗佈處理期間,内部塗佈室被維持在犯f 20 200901016 與低於31/。的相對献。完成噴塗時,將熱板冷卻並對樣本移轉以進 行特性測定。在整個樣本上平均分佈的複數個點上進行線性四點探針Spath et al. further explain that in the case of asymmetric resistive tentacles, the conductive layer of conductive polymer material has to show an example of such an asymmetric touch screen, in which the touch side electrode _= board = 20 200901016 Pole (210) is made up of different materials' and one of them is composed of carbon nanotubes. Fig. 2B shows a front view having a different constituent film layer and a stacking order constituting the film layer. The specific embodiment of the structure disclosed in the present application includes a carbon nanotube-induced CNT OT resistance-control screen system having a surface composed of a carbon nanotube and a touch-side transparent electrode. . Such an embodiment not only has the advantages of a single layer of CNT film, but also has the advantages of a haptic switcher based on a CNT-CNT contact switch. The following paragraphs provide and outline the advantages of the symmetrical CNT_CNT touch screen and distinguish it from the conventional and/or non-consistency screens. (iv) People look forward to the additional advantages that result from different embodiments. It should be understood that the following paragraphs are only included but not limiting of the invention. (a) In the case of the c-contact _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The chances of chemical damage to the electrode of the carbon nanotubes and the oxidation (4), such as ITQ or conductive polymerization age, are minimized. The CNT_CNT contact in Wang's (c) symmetrical switcher further eliminates or = oxidizes (4), such as IT 〇 or conductive polymer age electrode = production = electrical characteristics of the evil to the lowest. The -CNT contact in the 7 symmetrical switcher improves the ohmic between the panel side and the touch side electrode because there is no difference in the indirect function of the two different kinds of electrical conductors. The contact in the touch-side and panel-side electrodes provides a wide range of resistance values (10 ohms/square to several hundred million ohms/square) and 12 200901016 transparency (up to 99%). The CNT Confucian contact of the switching species is more resistant to the touch panel or panel, thus providing a high position resolution for a given spacer configuration. (10) For the TM in the same visible light sensing region, (4) change the minimum variation of μ. The dry circumference of 5〇0-650 hires the transparency of the entire stack. (6) The COT_electrode system is more suitable for the panel weaving of the plastic substrate, so that the entire switch stack has excellent mechanical properties of the CNT. ~ Shake with the 旳 electrode (^ Since the GNT GNT is on the _, the mosquito is built on the stencil, and the stencil is provided on both the panel side and the touch side electrode to provide the entire touch screen stack (four) el), so The cost of constructing a full-lobe, flexible touch screen ^ 15 20 In a certain patch, GNT_GNT _ electrode secrets also provide the gamma produced or manufactured. The -QIT symmetrical f-pole system is constructed for the CNT electrode on the flexible substrate by the extreme poles, and is suitable for the economical volume coil replenishment of the whole J Rong. The manufacturing process requires no expensive frequency cavity (such as: == tin) or the strictly controlled anhydrous gas required to process the polymer material or substantially the sensing mechanism, the symmetric CNT_CNT touch-type glory Touch-style glory. When the tip pen is poked or the finger touches and the device side electrode is in contact with the i-electrode and the pole, an electrical contact is made between the touch side and the panel side electrode. The position of the contact point is sensed by the corrected position-potential circle. Figure 3A shows a schematic diagram of the symmetric resistive touch screen currently described, in which touch 13 200901016. Figure si shows ^ graph and composition _ heap _. In the material containing the following _^_(5 _) can be made from bismuth silicate glass, aluminosilicate glass, glass first, boron (translucent vitrified now, next day, central, translucent glass) Quartz tmn=centvitnfledq delete z), plastic or other suitable materials, in which form of polycarbonate. Low-resistance electrode (10) Plate: Soil: It consists of the following materials: Ming, Silver, Steel, or 曰 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Tune.介朗秘(^2 = acid-based epoxy resin material, but not limited to this. Flexible plastic cover slab (35 〇) is exposed to the outside and coated on the inside with cnt. It is understood that, as other materials may be more suitable for other embodiments of this (10) difficult screen, the materials listed herein are for purposes of illustration and not limitation. 15 U.S. Patent 6,706,402, and 6835, and US patents Forming and providing methods for transparent conductive networks and carbon nanotube films and articles of carbon nanotubes are fully described in the applications 10/341,005, 10/341,055, and 10/341,130, the entireties of each of each of each of The conductive article can be made of a nano tube fabric, a film layer or a film. A carbon nanotube having a tube diameter of about 20 1 11111 is an electrical conductor capable of carrying a very high current density (see, for example, z. Yao, CL·Kane). , C. Dekker, Phy. Rev. Lett. 84, 2941 (2000). It also has the highest known thermal conductivity (see, for example, S. Berber Y.-K. Kwon, D. Tomanek, Phys. Rev. Lett· 84, 4613 (2000)) with thermal and chemical stability (see, for example, pM Ajayan, TW Ebbesen, Rep. Prog. Phys. 60, 1025 (1997)). However, due to the difficulty of generating a separate nanotube with appropriate control 14 200901016 ί] Γ two long if, therefore, the use of independent rice is made by two Unexpected in the tube - ^ =: Γ! Nano tube assembly, so its conductivity will not be independent: tube; even =: tube _ instead there are many electrons can pass "self-independent nanotubes ★ '二=The manufactured items have self-screening in specific items; the grid road can conduct electrons. Therefore, it is well known for the characteristics and transparency of the touch type=:r tube and the '== of the carbon nanotubes. = Do not use the conductive petal touch material. This Laizhong is in the United States patent application ^ / Xie Lang (four) measuring the coffee in the details of the plum 槪 槪 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Case '10/341054 details 15 20 Technology (10) Na no layer of other 6 two wide two of the two of which are "invatized" to promote the nanotube with a solution, but must be two original In the case of the official, it is often difficult to remove the derivatizing agent, ', σ t white 〇 = 彳峨 ... dissolving the solution of the carbon nanotubes 1st, lactic acid (10), etc. The solution is stable, but the liquid agent has the disadvantage of not being able to solubilize 15 200901016 (solub mountain zing) non-amorphous carbon-free clean carbon nanotubes. M, by means of the well-known coating 5 15 20 in this field, considers the lying of the purified nanotube tube, mainly containing the metal material, and the preparation of the rice is allowed to be applied to the silk. The application can be achieved by (4) tapping the raw material solution onto the substrate, spraying the nano tube raw material solution onto the surface or other methods. It is also possible to control the application of such a single wall (5) 咕 (4) 丨 (4), (4) ti-Walled, or a combination of the two. This side plus technology describes patent application 10/431054. The symmetrical CNT CNT touch-type glory utilizes the above methods and techniques when forming transparent carbon nanotube-based conductive electrode pairs for touch screen applications. Various embodiments of the device and structure will be described in detail in the following examples. Example 1: A one of a plurality of plural members, that is, a glass substrate coated with a nano-carbon as a panel side transparent electrode, was produced in the following manner. In this example, a suspension of CMM grade carbon nanotubes in her proprietary water (diluted 2.5 times fresh ntsl_4 with DI water and pH m. 5) # is well known in the art. No molecular boundary agent or polymerization-floating agent is used in forming the (10) suspension. The details of the details are described in more detail in the Japanese Patent Application Serial No. In the coating process of the industry type, the glass substrate with the measurement size of 8 pairs is placed at j25. (: under the hot plate. Use the air nozzle connected to the χ_γ_ζ robotic arm to complete from the upper spray booth. This coating chamber is equipped with a complete nozzle for the operator. Spraying makes 16 200901016 ^ 〇ntsl_4 叩#+&amp; read 7 material miscellaneous light nozzle expansion domain. With _ surface is ==# she weaves (four) Jingshen _== == ΓΙ ΓΙ fine skin repeated 18 times to create the target In the whole sample, the cloth is maintained at 80 F and less than 3〇% relative humidity. Complete the measurement of the sample. More than 30 _ electric 1 = linear four-point probe resistance measurement (maximum 21 volts; i micro. 1 measured average resistance of 87 6 ohms, with resistance uniformity variation of 7.6%. The results are shown in Figure 4. ^ Example 2: „The sample sample prepared as in Example 1 above is attached to the vacuum of (10).c (<1〇2 15 t annealing 1 small 4. When the annealing is completed, the sample can be cooled to the chamber in vacuum baking The temperature is also communicated to make electricity (eleetrieal coffee and coffee (4) (four). Linear four on the entire sample over 30 evenly distributed points The measurement of the resistance of the probe (maximum a volt, 1 microamperes current). The measured average resistance is 105. 7 ohms, with a resistance uniformity variation of 6.5%. The results are shown in Figure 5. Example 3: Eight out of the larger sample, the 3 pairs of x8-port knives of the annealed sample of Example 2 above were cut out and further turned into a sample suitable for the spectrophotometer to make smaller pieces 2〇=adz= The optical transmission of the sample in the range of 3〇〇_9〇〇nm was measured in a UV3101 PC spectrophotometer. The reference absorption loss of the substrate was measured using a blank glass substrate of similar sample size. The 5. 7 ohm (or 480 ohm/square) conductivity CNT film exhibits an optical transmittance of greater than 87% at 550 nm. The optical transmittance versus wavelength variation of the CNT film is shown in Figure 6. , 17 200901016 Example 4 : The following components are used for the other components of the yarn control screen, and the plastic p (four) plate of the carbon nanotubes for the Lingming electrode (8·5 pairs of 娜9 servants selling Na Nai in the water) Carbon tube suspension (with _ to 2:1 of 2; followed by η.5) fiber series ^ surface mine suspension = one of the condensed details. The coating process xV?/ PET substrate is placed on a hot plate set at 105 °c. Using the air nozzle connected to the XY mechanical arm, the ashing PET substrate is sprayed fine __ The charm towel is finished, this charm is equipped with; ^ with: ^«,1 〇6〇ps^ 15 20 ii rSSUre) The 14-face velocity airflow is generated. The -4 liquid is delivered to the speed at a known rate. Nozzle expansion area. The program is scanned at a 30 degree angle to the coated surface and the coated sheet is scanned in a straight horizontal and vertical pattern: = ΐ is maintained at 82 F#_relative humidity. When the spraying is completed, the power of the upper and the L V 7 is measured over the entire sample over 3G average distribution points. The point probe resistance is 21 large value 21 volts; 1 microamperes current). Measurements are shown in &quot;. The resistance is 166.5 ohms with a resistance uniformity variation of 15%. Results are Example 5: Samples prepared as in Example 4 above were retort hours. When the annealing is completed, the sample _ is transmitted for electrical measurement (the miscellaneous probe resistance system (maximum magic volt; 1 microamperes current) is performed at a point where the distribution is more than 30 on e. The average resistance is (10).3 ohms with an electrical uniformity variation of 15%. The results are shown in Figure 7. Example 6 · ' 5 15 20 In another modification, the symmetrical touch screen is produced in the following manner - That is, Xu Bu has a nano-carbon (four) to pET substrate on the touch side through the dragon. In the ashing machine, the PET substrate sold by the 8.5 leaf is exposed to the oxygen plasma for 5 minutes. The use of the test (10) monopoly CMGS-grade nano-% suspension in the water χ χ DI water with NTSL-4, cake PH _ to 7, 5) recorded miscellaneous ^. Suspend S on the shaft (10) and use a knife surfactant or polymer suspending agent. The complete details are described in U.S. Patent Application Serial No. 11/304,315. In a typical coated process towel, a PET substrate measuring 8 leafhoppers was placed on a hot plate set at 1〇5. Use the air nozzle to the X-Y-Z robot arm to spray the cold Fox-4 solution from the upper part of the ashed pet substrate. This she ___ painted charm towel, this coating room author used the complete Confucianism off the device and transmitted the sample (four) two-stage filter room. Spray with a line pressure of 60 PSI to produce a 14 lion flow rate.嶋—4 The liquid is conveyed to the pout ship area with a G. 5 * liter/min. Stylized with the tilting nozzle of the coating * 炎 * * Scanned to the j-face with a straight horizontal straight pattern. The scan of the entire surface was repeated 14 times to make the sample in the target. Throughout the entire :iff ’ (four) coating chamber was turned at 82 F#31%_ to humidity. Complete the squirting of the temple will be ... the plate cold part of the sample for electrical measurements. On the whole sample, more than % of the distribution of the two on the four-clamp needle resistance system (maximum U volts; 丨 micro-ampere / 社 ^ ^ average resistance is 105 ohms, with resistance uniformity variation for melon 3 沁. Fig. 9 is shown in Fig. 9. 19 200901016 Example 7: Oven annealing 6 The sample sample prepared is vacuumed at 12G T (&lt;1ίΓ2(4) is transferred to allow the sample to be cooled in a vacuum oven when the annealing is completed. Up to 30 Γ Umbrella determination at room temperature and 5 15 20 (also gamma (2) 1 CharaCteriZati〇n). In the whole sample special &quot; micro-ampere gas into the ramie four_offset system (maximum 21 volt yield change 13 13σΓ The average resistance is 123 ohms, and the resistance is both hooked and /1 is 13.5 / °. The results are shown in Figure 10. Example 8: Upper parallel port:: light; = way to sequentially coat the carbon nanotubes Between the transmission ratio and the conductivity of (10) one of the control side transparent electric quantity measuring components (ie, the plastic PET substrate coated with the carbon nanotubes for the transflective electrode) _ %nteiO special# S-grade carbon nanotube suspension (with Μ: standard NTSL-4 diluted in .1 ratio, and adjust ρΗ value to 7.5) To apply a cis, film. The molecular surfactant or polymer suspension is not used in the formation of the (10) suspension. The details are described in the Wu Guo patent, please refer to the case u/Xie 315. In a typical coating process 'The PET substrate with the measurement size of 2忖x2 is placed at 115 °, and the plate is sprayed with the NTSL_4 solution from the ashed PET board using an air nozzle connected to the χ__γ_ζ robotic arm. This will be recorded in the special coating room. ^ The coating chamber is equipped with the operator to close the two-stage filtration of the complete Confucian separation device and the transmission, and the spraying uses 60 PSI line pressure (Hne pressure). 14 SCFH rate of air flow. · -4 liquid is delivered to the nozzle expansion area at a rate of 5 ml / min. The inclined nozzle at an angle of 3G with the coating table is stylized to be straight and horizontally vertical. Scanning the painted surface. The whole recording_scan is used to make the target sample for optical electrical measurement. The internal coating chamber is maintained at the time of the f20 200901016 and less than 31/ during the entire coating process. Relatively. When the spray is finished, the hot plate is cooled and the sample is moved. Characteristics to carry out the measurement. Linear four-point probe over a plurality of evenly distributed throughout the sample points

阻值量測(最大值21伏特;1微安培電流)。在Shimadzu腦01 PC 分光光度計中量測300-900 nm範圍内2叶以对樣品的光學穿透率。 利用#似樣σσ尺寸的空白PET基板來量測基板的基準線吸收損失。記 錄下550珈下之CNT膜的平均電阻與光學穿透率。在測定過後,將基 板傳运至塗佈室並重碰佈處理叫加額相層塗佈層。每兩層便重 覆測疋特性程序與再塗佈製程,直到總施加層數為2〇塗佈層為止。⑶τ 膜在550 nm下之鱗穿透率與斜率之間賴係翻示 。 實例9 : 實例8所述之實驗的更另—變化中,藉著如下之方式依序將奈 2官j佈於PET基板上並量測電導率與光學穿透率,以量測複數元 件:之一者(即塗佈有觸控側透明電極用之奈米碳管的塑膠卿基板) 15 j透射比與電導率之間的關係。在灰化設備中將量測尺寸為2吋β 对之PET基板暴露於氧電漿5分鐘。使帛 =碳管_(關水心丨之___^= 面^ =.,5)來塗佈PET薄膜。在形成™懸浮液時並未使用分子界 面活細。在美國翻申縣n +,輸丨尺彻心 在115 C下的熱板上。使用連接至χ_γ,械手臂的空氣喷 ^ Nm'4 送樣本用s至配有操作者用的完全噴霧劑隔離裝置與傳 &amp; ^的桃段過射。嘴塗使用6()脱的 產生之H S⑽速率的氣流。職韻體以。5毫升/ 20 200901016 與塗佈表面呈3。度夾_嘴嘴經程式化而 ,製造光學與電性量測用的目標樣本。 =重内乂 :並:本::行特性測定。在整個樣本上平均分二= 進灯拙四”抓針阻值量測(最大值21伏特;丨微妙電Resistance measurement (maximum 21 volts; 1 microamperes current). The optical transmittance of the sample was measured in a Shimadzu Brain 01 PC spectrophotometer with 2 leaves in the range of 300-900 nm. The baseline absorption loss of the substrate was measured using a blank PET substrate of size σσ. The average resistance and optical transmittance of the CNT film under 550 Å were recorded. After the measurement, the substrate was transferred to the coating chamber and the cloth was rubbed to form a coating layer of the pre-phase layer. The test procedure and the recoating process were repeated every two layers until the total number of applied layers was 2 Å of the coating layer. (3) The turbulence between the scale penetration and the slope of the τ film at 550 nm is shown. Example 9: In a further variation of the experiment described in Example 8, the conductivity was measured on the PET substrate in the following manner and the conductivity and optical transmittance were measured to measure the plurality of components: One of them (ie, a plastic-coated substrate coated with a carbon nanotube for a touch-side transparent electrode) 15 j transmittance and electrical conductivity. The PET substrate, which was measured to a size of 2 吋β, was exposed to oxygen plasma for 5 minutes in an ashing apparatus. The PET film was coated with 帛 = carbon tube _ (关水心丨___^=面^ =., 5). The molecular interface was not used in forming the TM suspension. In the United States, I turned over the county's n +, and I lost my heart to the hot plate at 115 C. Use the air spray ^ Nm'4 connected to χ_γ, the arm to send the sample to the peach spray with the complete spray isolation device for the operator and the pass. The mouth is coated with a 6 () depleted gas stream at a rate of H S (10). The rhyme body is. 5 ml / 20 200901016 is 3 with the coated surface. The clip _ mouth is stylized to produce a target sample for optical and electrical measurements. = heavy 乂 : and: this:: line characteristics determination. On the whole sample, the average score is two = the entrance lamp 拙 four" grab pin resistance measurement (maximum 21 volts; 丨 micro power

Shi顧izU UV3101 Pc分光光度計中量測·__舰範_ 2对心寸 。利用類似樣品尺寸的空白PE取來量測基板的 土卓、核收知失。崎55G nm下之CNT膜的平均電阻與光學穿透率。 ίΐϊΐ性過後’將基板傳送至塗佈室並重覆塗佈處理以增加額外兩 =兩層便重覆測定特性程序與再塗佈製程,直到總施加層 ”、、/主佈層為止。CNT膜在550 nm下之光學穿透率與電導率之間 的關係係顯示於圖12中。 實例10 : 15 ”利_13中所示之元件以如下方式鍵構GNT_GNT對稱觸控式切 換=的工作原型。利用上述實例中所述的程序,以奈米碳管⑷0)來塗 、1置測尺寸為3 4 x2时的玻璃基板(400)。CNT膜的量測電阻為10k $姆/平方。亦利用前列實例中所述之程序,以奈米碳管(440)來塗佈 1測尺寸為3七2叶的PET歸基板(侧)以達到目標電阻75Q歐姆/ 2〇平方利*用市售的銀膠將薄鋁箔的窄條黏附至玻璃_CNT(42〇)與 CNT薄臈(45Q)兩者之每一者的―邊緣。空白pET薄膜被切割為適 =寸以形成間隔件⑽)。_市售的金屬導電膠帶將薄銅線引腳 、、,顯不於圖中)黏附至鋁箔電極。將整個組件放置於兩塑膠支撐件間 ? 、口疋以形成結實的觸控式切換器。完全裝配之觸控式切換器 22 200901016 的照片係顯示於圖14。 實例11 : κ .十5述ΐ例Μ切敘叙原簡㈣脑係連接至電腦界面 定電流源。定電流10微安培通過測試 電=來計算電阻值。電腦針對每—接觸位置與斷=感|貝 w, ^ 聊數百人。圖π顯示了對稱CNT-CNT電阻 式觸控切換㈣典型電域結果。當觸 1电阻 GNT綱㈣接觸而具 實例12 : 15 20 读明驗中’此類整侧控式蘇_的光學咖度被放置在 H篁测用之Sh簡dzu㈣is,分光光度計中。藉由將空白PET ,板置於空2玻璃基板上部上所產生的簡單堆疊侧於基準線用途。 ^控式切換m與僅OiT-CNT電極對自身之絲透明度(藉著調整 土準線吸收對堆疊吸收所獲得)所量測出的透明度曲線係顯示於圖 16。CNT-CNT電極對在550 nm下貢獻了少於3%的光學吸收損失。 交叉參考之相關申請案: 、 本申清案係與下列申請案相關,其全部被讓渡予本申請案之受讓 人且全部被包含於此作為參考。 申請於2暖年4月23日之美國專利申請案1Q/776573「Nan〇tube Films and Articles」’現為美國專利 6,7〇6,4〇2。 •申請於2004年2月11日之美國專利申請案1〇/776573「Nan〇tubeShi Gu izU UV3101 Pc spectrophotometer in the measurement · __ ship _ 2 pairs of hearts. A blank PE of a similar sample size is used to measure the soil and core loss of the substrate. The average resistance and optical transmittance of the CNT film at 55G nm. After the singularity, the substrate is transferred to the coating chamber and the coating process is repeated to add an additional two = two layers to repeat the measurement characteristic program and the recoating process until the total application layer ", / / main fabric layer. CNT film The relationship between optical transmittance and conductivity at 550 nm is shown in Figure 12. Example 10: 15 The components shown in Figure 13 are bonded in the following manner: GNT_GNT Symmetrical Touch Switching = Work prototype. Using the procedure described in the above examples, the glass substrate (400) having a size of 34 x 2 was coated with a carbon nanotube (4) 0). The measurement resistance of the CNT film is 10 k Ω / square. Also using the procedure described in the preceding example, a PET-based substrate (side) with a size of 3, 7 and 2 leaves is coated with a carbon nanotube (440) to achieve a target resistance of 75 Q ohms / 2 square centimeter. The silver glue sold adheres the narrow strip of thin aluminum foil to the "edge" of each of the glass _CNT (42 〇) and the CNT 臈 (45Q). The blank pET film was cut to fit to form a spacer (10). _ Commercially available metal conductive tape adheres the thin copper wire pins, which are not shown in the figure, to the aluminum foil electrodes. Place the entire assembly between the two plastic supports, and the mouth to form a solid touch switch. The photo of the fully assembled touch switch 22 200901016 is shown in Figure 14. Example 11: κ. 十五述例Μ切叙叙原(4) Brain system connected to the computer interface constant current source. A constant current of 10 μA is calculated by testing the electric = value. The computer is aimed at every contact position and disconnection = sense | Bay w, ^ chat hundreds of people. Figure π shows the symmetrical CNT-CNT resistive touch switching (4) typical electrical domain results. When the touch 1 resistance GNT (4) contact with the example 12: 15 20 read the test, the optical latitude of the whole side control type Su _ is placed in the H 篁 d 简 d d d d d d d d d d (is) is, spectrophotometer. The simple stack side created by placing the blank PET, the plate on the upper portion of the empty 2 glass substrate is used for the baseline. The transparency curve measured by the controlled switching m and the OiT-CNT electrode only for its own wire transparency (obtained by adjusting the soil line absorption to the stack absorption) is shown in Fig. 16. The CNT-CNT electrode pair contributes less than 3% optical absorption loss at 550 nm. CROSS-REFERENCE TO RELATED APPLICATIONS: This application is hereby incorporated by reference in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all U.S. Patent Application Serial No. 1Q/776573 "Nan〇tube Films and Articles", filed on April 23, 2, is now U.S. Patent 6,7,6,4,2. • Application for US Patent Application No. 1/776573 "Nan〇tube" on February 11, 2004

Films and Articles」,現為美國專利 &amp; 942, 921。 23 200901016 申請於2002年4月23日之美國專利申請案1〇/128ii7「Methods of Nanotube Films and Articles」,現為美國專利 β,835, 591 ° 申請於2001年7月25日之美國專利申請案〇9/095095「HybridFilms and Articles, now US Patent &amp; 942, 921. 23 200901016 U.S. Patent Application Serial No. 1/128ii7, "Methods of Nanotube Films and Articles", filed on Apr. 23, 2002, and U.S. Patent No. 7,835,591, filed on July 25, 2001. Case 9/095095 "Hybrid

Circuit Having Nanotube Elec仕omechanical Memory」,現為美國專 5 利 6, 574,130。 申請於2001年7月25曰之美國專利申請案09/915173 「Electromechanical Memory Having Cell Selection Circuitry Constructed with Nanotube Technology」,現為美國專利 6,643,165。 申請於2003年1月13曰之美國專利申請案10/341005「Methods ίο of Making Carbon Nanotube Films and Articles」° 申請於2003年1月13日之美國專利申請案10/341054「Methods of Using Pre-formed Nanotubes to Make Carbon Nanotube Films,Circuit Having Nanotube Elec officially memory, now available in the US, 5,574,130. U.S. Patent Application Serial No. 09/915,173, entitled "Electromechanical Memory Having Cell Selection Circuitry Constructed with Nanotube Technology", U.S. Patent 6,643,165. U.S. Patent Application Serial No. 10/341,005, entitled "Methods of Using Pre-, US Patent Application No. 10/341,054, filed on Jan. 13, 2003. Form Nanotubes to Make Carbon Nanotube Films,

Layers, Fabrics, Ribbons, Elements, and Articles」。 申請於2003年1月13日之美國專利申請案10/341055「Methods is of Using Thin Metal Layers to Make Carbon Nanotube Fi 1ms, Layers, Fabrics, Ribbons, Elements, and Articles」。 % 申請於2003年1月13日之美國專利申請案10/341130「CarbonLayers, Fabrics, Ribbons, Elements, and Articles". U.S. Patent Application Serial No. 10/341,055, entitled "Methods is of Using Thin Metal Layers to Make Carbon Nanotube Fi 1ms, Layers, Fabrics, Ribbons, Elements, and Articles". % U.S. Patent Application Serial No. 10/341,130, entitled "Carbon", January 13, 2003

Nanotube Films, Layers, Fabrics, Ribbons, Elements, and Articles」。 2〇 申請於2004年6月3日之美國專利申請案10/860433「Applicator Liquid Containing Ethyl Lactate for Preparation of NT Films」’ 現美國專利公開號為2005/0269554。 申請於2004年6月3日之美國專利申請案10/860432「Spin Coatable Liquid for Use in Electronic Fabrication Processesj &gt; 24 200901016 現美國專利公開號為2005/0269553。 申請於2004年6月3日之美國專利申請案10/860332「High Purity Nanotube Fabrics and Films」,現美國專利公開號為 2005/0058797。 5 申請於2004年6月3曰之美國專利申請案10/860433「Spin Coatable Liquid for Formation of High Purity Nanotube Films」, 現美國專利公開號為2005/0058590。 申請於2005年12月15日之美國專利申請案n/3〇4315「Aqueous Carbon Nanotube Applicator Liquids and Methods for Producing i〇 Applicator Liquids Thereof」’現美國專利公開號為 2006/0204427。 申請於2004年6月3日之美國專利申請案丨〇/86〇33lrMe1;h〇ds 〇fNanotube Films, Layers, Fabrics, Ribbons, Elements, and Articles. U.S. Patent Application Serial No. 10/860,433, entitled "Applicator Liquid Containing Ethyl Lactate for Preparation of NT Films", U.S. Patent Application Serial No. 2005/0269554. U.S. Patent Application Serial No. 10/860,432, filed on Jun. 3, 2004, entitled,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Patent Application Serial No. 10/860,332, entitled "High Purity Nanotube Fabrics and Films", U.S. Patent Publication No. 2005/0058797. U.S. Patent Application Serial No. 10/860,433, the entire disclosure of which is incorporated herein by reference. U.S. Patent Application Serial No. 3/43, filed on Dec. 15, 2005, entitled A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A. Application for US patent application dated June 3, 2004 〇/86〇33lrMe1; h〇ds 〇f

Making an Applicator Liquid for Electronics Fabrication Processes」° /應更進-姐意’本㈣之範随不限於上述實闕。其他實施 15例係落在下列之申請專利範圍中。Making an Applicator Liquid for Electronics Fabrication Processes" ° / Should be further into - Sister's intentions This (4) is not limited to the above. Other implementations 15 cases are within the scope of the following patent application.

圖式簡單說明】 圖 1A-B 總十々 鮮了 f知赌式縣的基本元件,彳物1使用氧化铜 20 錫或各種導電聚合物作為翻導電電極之部分。 乳化鋼 極係===控式榮幕,其中觸控側電極與面板側電 化物:聚合==:^含⑽而另-電極係由導電氧 皆由__與面板側電極 25 200901016 圖4顯示了在制第-健技術於樣品之面板側上提供作為透明 電極之CNT膜層後,電阻(歐姆)對位置數②〇siti〇nnumber)的結果。 圖5顯示了在退火與冷卻後,樣品之面板側上的電阻(歐姆)對位置 編號(position number)的結果。 5 圖6顯示了當樣品在分光光度計中量測時,以透射百分比對波長 (nm)表示之CNT膜層的光學透射比變化。 圖7顯示了在使用第二喷塗技術於樣品之觸控側上提供作為透明 /電極之CNT膜層後,電阻(歐姆)對位置編號(p〇ski〇n麵㈣的結果。 圖8顯示了在退火與冷卻後,樣品之觸控側上的電阻(歐姆)對位置 10 編號(position number)的結果。 •圖9顯不了在制第三喷塗技術於樣品之觸控側上提供作為透明 電極之CNT膜層後,電阻(歐姆)對位置編號㈣衫冊麵㈣的結果。 圖10顯不了在退火與冷卻後,樣品之觸控側上的電阻(歐姆)對位 置編號(position number)的結果。 圖11顯示了在第-技術後,樣品之觸控側上之CNT膜層的光學 透射比(在550nm下的百分比)與電導度(歐姆平方)間的關聯性。 圖12顯示了在第二技術後,樣品之觸控側上之CNT膜層的光學 透射比(在550mn下的百分比)與電導度(歐姆平方)間的關聯性。 圖13顯示了用以建構咖_抓對稱觸控切換器產品原型的元 〇 4牛0 圖14提供了完全裝配之觸控切換器的照片。 圖I5以電阻(歐姆)對切換循環顯示了對稱cnt_cnt電阻式觸控 切換器的典型電切換結果。 圖16以透射百分比對波長(nm)顯示了針對觸控切換器堆疊與單獨 26 200901016 CNT-CNT電極對的光學透明度所量測的透明度曲線,其中基準線吸收 率被調整至堆疊吸收率。 【主要元件符號說明】 5 100 :非導電基板 110 :「裝置側電極」或「面板電極」 120 :非透明、低電阻電極 130 :第二電極 140 :陣列 ίο 150 :塑膠撓性薄膜 300 .導電基板 310 :面板側電極 320 :低電阻電極 330 :觸控側電極 15 340:介電間隔件 350 :撓性塑膠遮覆薄膜 、400 :玻璃基板 410 :奈米碳管 430 :間隔件 2〇 440 :奈米碳管 460 : PET塑膠基板 27Figure 1A-B The total ten elements are fresh. The basic components of the gambling county are the same. The material 1 uses copper oxide 20 tin or various conductive polymers as part of the conductive electrode. Emulsified steel pole system === control type curtain, in which the touch side electrode and the panel side electrode: polymerization ==:^ contains (10) and the other electrode is made of conductive oxygen by __ and panel side electrode 25 200901016 Figure 4 The results of the resistance (ohms) versus the number of positions 2 〇 siti〇nnumber after the CNT film layer as a transparent electrode was provided on the panel side of the sample-made technique. Figure 5 shows the results of the resistance (ohms) versus position number on the panel side of the sample after annealing and cooling. 5 Figure 6 shows the change in optical transmittance of the CNT film layer expressed in wavelength (nm) as a percentage of transmission when the sample is measured in a spectrophotometer. Figure 7 shows the results of the resistance (ohms) versus position number (p〇ski〇n face (4) after the CNT film layer as a transparent/electrode is provided on the touch side of the sample using the second spray technique. Figure 8 shows After annealing and cooling, the resistance (ohms) on the touch side of the sample is the result of the position number. • Figure 9 shows that the third spray technique is provided on the touch side of the sample. After the CNT film layer of the transparent electrode, the resistance (ohm) is the result of the position number (4) shirt surface (4). Figure 10 shows the resistance (ohm) pair position number on the touch side of the sample after annealing and cooling. The result of Fig. 11 shows the correlation between the optical transmittance (percentage at 550 nm) and the electrical conductivity (ohm square) of the CNT film layer on the touch side of the sample after the first technique. After the second technique, the optical transmittance (percentage at 550 mn) and the electrical conductivity (ohm square) of the CNT film layer on the touch side of the sample are correlated. Figure 13 shows the construction of the coffee _ Symmetrical touch switcher prototype Prototype 4 cattle 0 Figure 14 provides full assembly Photograph of the touch switcher Figure I5 shows the typical electrical switching result of the symmetric cnt_cnt resistive touch switcher with a resistance (ohms) pair switching cycle. Figure 16 shows the touch switcher for the percentage of transmission versus wavelength (nm) The transparency curve measured by the optical transparency of the pair of 200901016 CNT-CNT electrode pairs, wherein the baseline absorption rate is adjusted to the stack absorption rate. [Main component symbol description] 5 100 : Non-conductive substrate 110: "Device side electrode Or "panel electrode" 120: non-transparent, low-resistance electrode 130: second electrode 140: array ίο 150: plastic flexible film 300. conductive substrate 310: panel-side electrode 320: low-resistance electrode 330: touch-side electrode 15 340: dielectric spacer 350: flexible plastic covering film, 400: glass substrate 410: carbon nanotube 430: spacer 2〇440: carbon nanotube 460: PET plastic substrate 27

Claims (1)

200901016 十、申請專利範圍: L 一種電阻式觸控螢幕袭 第一與第二撓性電極 置,包含: =奈米管織物薄膜,二撓性電極;相= =:該餘包含財麵翁料之導電網 該第一撓性電極分隔 隔元件’該分隔元件在該 ***於該第一與第二 第一盥筮犰改电極間的稷數分 電極之間形成-分隔量; 1〇 導電路徑 ^雜形變㈣㈣相魏域會實質 -、弟一撓性電極之間形成 2^如申印專伽圍第丨項之電阻式魅縣 紐的每—者皆具有—主要平面 -Ί該第-與第二 15 與該第二撓性電極的魅要平⑽實質1轉撓性雜的該主要平面 3. 如申請專利範圍第1項之電阻式觸控 隔 者之一 ==:斗’且沿著該第一與第二_極=數個分 主要表面排列设置而形成一陣列。 夕 20 的敏感度絲靖 28 200901016 6 八如申請專利範圍第3項之電阻式觸控螢幕裝置,其中該 含聚丙烯酸酯材料及環氧樹脂材料中的至少一者。 笔材枓已 1㈣阻她細置,㈣第—與第二 撓f生電極的母一者係實質上光學透明。 8. -專概圍第7項之電阻式糖錄裝置,其中被投射於該第 一極之4面上的-光學影像可在該第一撓性電極的面上 10 被偵測到。 」申1專利細帛1項之電阻朗控螢幕裝置,其t該電阻式觸控 =幕,置的建構及設置方式,俾使該第—撓性雜的—選定區域可重 4地艾到壓力而產生複數:欠數之彈性形變但不產生永久形變。 =·如巾4專她圍第9項之電阻式觸控螢幕裝置,其中該複數次數 匕含至少200個重複次數。 如=·如申請專利範圍第i項之電阻式觸控螢幕裝置,更包含沿著該第 20 -撓性電極的一主要平面設置並與其接觸的一撓性遮罩薄片。 以如申請專利範圍第1項之電阻式觸控螢幕裝置,更包含沿著該第 一撓性電極的一主要平面設置並與其接觸的一導電基板。 29 200901016 13.如申請專利範圍第12項之電阻式觸控螢幕裝置,其中該導電基板 包含一材料’此材料包含一鈉玻璃(soda glass)、光學品質之一玻璃、 一硼矽酸鹽玻璃、一鋁矽酸鹽玻璃、一結晶石英、半透明玻璃化之一 石英(translucent vitrified quartz)、一聚酯塑膠及一聚碳酸酯塑膠中之至 5 少一者。 14.如申請專利範圍第2項之電阻式觸控螢幕裝置,更包含至少一周 圍電極,其實質上沿著該第—與第二撓性電極之—者之該主要平面的 周圍邊緣設置’其巾至少—周圍雜佔獅分隔量的至少一部分。 1勺5人14項之電阻式觸控螢幕裝置,其中該周圍電極 者i ’ “材科包含紹、銀、銅、金與導電聚合複合物材料中的 15 1 _阻輪綱置,射該奈米管 4销物形成複數個導電路徑的非織造奈米管聚集體。 17.二種電阻式觸控$幕裝置的形成方法,包含.=:撓性電極’其包含了具有未對齊奈米管 織 20米管織物薄片 之導電網路的奈 七:供第一撓性電極,其包含—太々 管之導電網路,該第 二挽性物賴其具絲對齊奈米 形成被***於該第一盥第二掉沾第一撓性電極分隔設置; 30 200901016 建構與排置該第一與第二電極與 加至該第一撓性電極之選定的一區域時是^個分隔元件,俾使壓力施 少該分隔量,藉此在該第一與第二δ亥區域實質上彈性形變以減 電極間形成一導電路徑。 队如申請專利範圍第17項之方法, 撓性電極俾使該第—與第二撓性 3建構與排置該第-與第二 齊。 。母者的主要平面係實質上對 19.如申請專利範圍第17項之方法, ⑴電材料,且沿著該第-與第二撓性電極分隔元件包含一介 列設置而形成一陣列。 王夕—者一之一主要表面排 隔件間的 =^1侧第19狀杨㈣她含相鄰分 15 第2G項之方法,其中繼對壓力的敏感度係至 猎由nP接刀隔TL件間的該選定間隔距離所決定。 20 23 包含===:其中形成該第-與第二撓性電極 31 200901016 24. 如申請專利範圍第23項之方法,其中形成該第二撓性電極包含以 奈米管之一塗料喷塗面板側基板以形成奈米織物薄片。 25. 如申請專利範圍第24項之方法,其中該面板側基板包含一材料, 5該材料包含一鈉玻璃(soda glass)、光學品質之一玻璃、一硼石夕酸鹽玻 璃、一鋁矽酸鹽玻璃、一結晶石英、半透明玻璃化之一石英(tmnslucent vitrified quartz)、一聚酯塑膠及一聚碳酸酯塑膠中之至少一者。 26. 如申請專利範圍第23項之方法’其中形成該第一撓性電極包含以 10奈米管之一塗料喷塗觸控側基板以形成奈米織物薄片。 27. 如申請專利範圍第26項之方法’其中該觸控側基板包含一塑膠材 料,該塑膠材料包含一 PET材料。 15 32200901016 X. Patent application scope: L A resistive touch screen is placed on the first and second flexible electrodes, including: = nano tube fabric film, two flexible electrodes; phase = =: the remainder contains the grain a conductive mesh of the first flexible electrode separating element, the separating element forming a separation amount between the plurality of minute electrodes interposed between the first and second first tamper electrodes; Path ^Miscellaneous deformation (four) (four) phase of the Wei domain will be substantial -, the formation of a flexible electrode between the brothers and the 2, such as the Shenyin special gamma 丨 之 之 电阻 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅 魅- the main plane of the second 15 and the second flexible electrode is substantially flat (10) substantially 1 turn flexible. 3. One of the resistive touch spacers of claim 1 of the patent scope ==: bucket' And forming an array along the first and second _ pole = several sub-main surfaces arranged. The sensitivity of the eve 20 is in the form of a resistive touch screen device of the third aspect of the patent application, wherein at least one of the polyacrylate material and the epoxy resin material is contained. The pen 枓 has been (1) resisting her fine placement, and (4) the first and the second flexing electrode are essentially optically transparent. 8. A resistive sugar recording device according to item 7, wherein an optical image projected onto the four faces of the first pole is detectable on the face 10 of the first flexible electrode. "Resistance 1 of the patent 1 之 朗 朗 朗 , , , , 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻The pressure produces a complex number: the elastic deformation of the undernumber but does not produce a permanent deformation. =· For example, the towel 4 is dedicated to the resistive touch screen device of item 9, wherein the number of plurals includes at least 200 repetitions. For example, the resistive touch screen device of claim i, further comprising a flexible mask sheet disposed along and in contact with a major plane of the 20th flexible electrode. The resistive touch screen device of claim 1, further comprising a conductive substrate disposed along and in contact with a main plane of the first flexible electrode. The invention relates to a resistive touch screen device according to claim 12, wherein the conductive substrate comprises a material “this material comprises a soda glass, an optical quality glass, a boron silicate glass” Up to 5 of aluminosilicate glass, a crystalline quartz, translucent vitrified quartz, a polyester plastic, and a polycarbonate plastic. 14. The resistive touch screen device of claim 2, further comprising at least one surrounding electrode disposed substantially along a peripheral edge of the main plane of the first and second flexible electrodes. At least a portion of the lion's separation is at least surrounded by the towel. 1 scoop of 5 people and 14 items of resistive touch screen device, wherein the surrounding electrode i'" material contains 15 1 _ 阻 纲 , , , , , , , , , , , , , , , Nanotube 4 pin forms a plurality of non-woven nanotube aggregates of conductive paths. 17. Method for forming two resistive touch screen devices, comprising: =: flexible electrode 'which contains unaligned nai a tube-woven 20-meter tube fabric sheet of the conductive network of the seven: for the first flexible electrode, which comprises a conductive network of the toffee tube, the second additive is inserted into the wire to form a nanowire The first flexible electrode is disposed on the first flexible electrode; and the third flexible electrode is disposed in the first and second electrodes and the selected one of the regions of the first flexible electrode;俾 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力 压力Constructing and arranging the first and second flexible 3s to the first and second The primary plane of the mother is substantially the same as the method of claim 17, (1) the electrical material, and the array of the first and second flexible electrode separators is arranged to form an array. Wang Xi - one of the main surface partitions between the = ^ 1 side of the 19th Yang (four) she contains the adjacent 15 15G method, its relay sensitivity to pressure to the hunting by nP knife The selected spacing distance between the TL members is determined. 20 23 includes ===: wherein the first and second flexible electrodes 31 are formed. 200901016 24. The method of claim 23, wherein the second scratch is formed The electrode comprises a side of the panel coated with a coating of a nanotube to form a nanofabric sheet. 25. The method of claim 24, wherein the panel side substrate comprises a material, 5 the material comprises a soda glass (soda glass), optical quality glass, borax acid glass, aluminosilicate glass, a crystalline quartz, tmnslucent vitrified quartz, a polyester plastic and a poly At least one of carbonate plastics 26. The method of claim 23, wherein forming the first flexible electrode comprises spraying the touch side substrate with one of 10 nanometer tubes to form a nanofabric sheet. 27. The method of item 26, wherein the touch side substrate comprises a plastic material, and the plastic material comprises a PET material.
TW097106046A 2007-02-21 2008-02-21 Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs TW200901016A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US90259607P 2007-02-21 2007-02-21

Publications (1)

Publication Number Publication Date
TW200901016A true TW200901016A (en) 2009-01-01

Family

ID=39793443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097106046A TW200901016A (en) 2007-02-21 2008-02-21 Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs

Country Status (3)

Country Link
US (1) US20080238882A1 (en)
TW (1) TW200901016A (en)
WO (1) WO2008127780A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399675B (en) * 2009-08-17 2013-06-21 Hon Hai Prec Ind Co Ltd Touch panel and display device using the same
US8766927B2 (en) 2009-08-07 2014-07-01 Tsinghua University Touch panel and display device using the same
TWI511015B (en) * 2013-09-02 2015-12-01 Shih Hua Technology Ltd Method for making touch panel
US10145005B2 (en) 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
US10164135B2 (en) 2009-08-07 2018-12-25 Guardian Glass, LLC Electronic device including graphene-based layer(s), and/or method or making the same
US10167572B2 (en) 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
TWI762561B (en) * 2017-01-27 2022-05-01 英商Arm股份有限公司 Apparatus and method for inserting power grid and non-transitory computer-readable medium

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349042B2 (en) * 2005-05-03 2013-11-20 ナノコンプ テクノロジーズ インコーポレイテッド Carbon composite material and method for producing the same
JP4864093B2 (en) * 2005-07-28 2012-01-25 ナノコンプ テクノロジーズ インコーポレイテッド Systems and methods for the formation and harvesting of nanofibrous materials
EP2125359B1 (en) * 2007-02-27 2016-07-27 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
CA2693403A1 (en) * 2007-07-09 2009-03-05 Nanocomp Technologies, Inc. Chemically-assisted alignment of nanotubes within extensible structures
WO2009021069A1 (en) 2007-08-07 2009-02-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
CN101458605B (en) * 2007-12-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 Touch screen and display device
CN101470559B (en) * 2007-12-27 2012-11-21 清华大学 Touch screen and display equipment
CN101458602B (en) * 2007-12-12 2011-12-21 清华大学 Touch screen and display device
CN101656769B (en) * 2008-08-22 2012-10-10 清华大学 Mobile telephone
CN101458593B (en) * 2007-12-12 2012-03-14 清华大学 Touch screen and display device
CN101419519B (en) * 2007-10-23 2012-06-20 清华大学 Touch panel
CN101464763B (en) * 2007-12-21 2010-09-29 清华大学 Production method of touch screen
CN101458599B (en) * 2007-12-14 2011-06-08 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101458597B (en) * 2007-12-14 2011-06-08 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101458594B (en) * 2007-12-12 2012-07-18 清华大学 Touch screen and display device
CN101458595B (en) * 2007-12-12 2011-06-08 清华大学 Touch screen and display device
CN101419518B (en) * 2007-10-23 2012-06-20 清华大学 Touch panel
CN101458604B (en) * 2007-12-12 2012-03-28 清华大学 Touch screen and display device
CN101458608B (en) * 2007-12-14 2011-09-28 清华大学 Touch screen preparation method
CN101470558B (en) * 2007-12-27 2012-11-21 清华大学 Touch screen and display equipment
CN101458600B (en) * 2007-12-14 2011-11-30 清华大学 Touch screen and display device
CN101470566B (en) * 2007-12-27 2011-06-08 清华大学 Touch control device
CN101676832B (en) * 2008-09-19 2012-03-28 清华大学 Desktop computer
CN101655720B (en) * 2008-08-22 2012-07-18 清华大学 Personal digital assistant
CN101458596B (en) * 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 Touch screen and display device
CN101458609B (en) * 2007-12-14 2011-11-09 清华大学 Touch screen and display device
CN101458603B (en) * 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 Touch screen and display device
CN101458606B (en) * 2007-12-12 2012-06-20 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101470560B (en) * 2007-12-27 2012-01-25 清华大学 Touch screen and display equipment
CN101620454A (en) * 2008-07-04 2010-01-06 清华大学 Potable computer
CN101458598B (en) * 2007-12-14 2011-06-08 清华大学 Touch screen and display device
CN101458975B (en) * 2007-12-12 2012-05-16 清华大学 Electronic element
CN101458607B (en) * 2007-12-14 2010-12-29 清华大学 Touch screen and display device
CN101458601B (en) * 2007-12-14 2012-03-14 清华大学 Touch screen and display device
CN101464757A (en) * 2007-12-21 2009-06-24 清华大学 Touch screen and display equipment
CN101464764B (en) * 2007-12-21 2012-07-18 清华大学 Touch screen and display equipment
CN101464765B (en) * 2007-12-21 2011-01-05 鸿富锦精密工业(深圳)有限公司 Touch screen and display equipment
CN101470565B (en) * 2007-12-27 2011-08-24 清华大学 Touch screen and display equipment
CN101464766B (en) * 2007-12-21 2011-11-30 清华大学 Touch screen and display equipment
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
WO2010036405A1 (en) * 2008-05-07 2010-04-01 Nanocomp Technologies, Inc. Nanostructure composite sheets and methods of use
WO2009137725A1 (en) 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
US8237677B2 (en) * 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8390580B2 (en) * 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
CN101924816B (en) * 2009-06-12 2013-03-20 清华大学 Flexible mobile phone
CN101943966B (en) * 2009-07-08 2012-07-18 群康科技(深圳)有限公司 Touch control device
JP2011017626A (en) * 2009-07-09 2011-01-27 Sony Corp Mechanical quantity detection member and mechanical quantity detection apparatus
US8354593B2 (en) * 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
CN101995988B (en) * 2009-08-19 2012-08-15 群康科技(深圳)有限公司 Touch screen
US20110042126A1 (en) * 2009-08-24 2011-02-24 Cambrios Technologies Corporation Contact resistance measurement for resistance linearity in nanostructure thin films
FI127197B (en) * 2009-09-04 2018-01-31 Canatu Oy Touch screen and method of manufacturing a touch screen
FR2963445B1 (en) * 2010-08-02 2013-05-03 Nanomade Concept TOUCH SURFACE AND METHOD FOR MANUFACTURING SUCH SURFACE
US20120068934A1 (en) * 2010-09-17 2012-03-22 Microsoft Corporation Interactive keyboard with viewable display
TW201234247A (en) * 2010-12-28 2012-08-16 Sharp Kk Touch panel, display device provided with same, as well as manufacturing method for touch panel
EP2661369B1 (en) * 2011-01-04 2019-04-10 Nanocomp Technologies, Inc. Thermal insulators based on nanotubes, their use and method for thermal insulation.
US9501179B2 (en) * 2011-08-04 2016-11-22 Atmel Corporation Touch sensor for curved or flexible surfaces
DE102011081331A1 (en) * 2011-08-22 2013-02-28 BSH Bosch und Siemens Hausgeräte GmbH Household appliance with a touch-sensitive operating and display device
US9534972B2 (en) 2012-02-16 2017-01-03 7-Sigma Inc. Pressure sensor with a deformable electrically resistive membrane
US8850897B2 (en) * 2012-02-16 2014-10-07 7-Sigma Incorporated Electrically conductive nanotube composite sensor for medical application
US8746075B2 (en) * 2012-02-16 2014-06-10 7-Sigma, Inc. Flexible electrically conductive nanotube sensor for elastomeric devices
US9632542B2 (en) * 2013-05-02 2017-04-25 The Boeing Company Touch screens comprising graphene layers
ES2943257T3 (en) 2013-06-17 2023-06-12 Nanocomp Technologies Inc Exfoliating-dispersing agents for nanotubes, bundles and fibers
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
WO2016200897A1 (en) 2015-06-08 2016-12-15 The Florida State University Research Foundation, Inc. Single-layer light-emitting diodes using organometallic halide perovskite/ionic-conducting polymer composite
WO2017079063A1 (en) * 2015-11-04 2017-05-11 The Florida State University Research Foundation, Inc. Printed halide perovskite light-emitting diodes and method of manufacture
US10054503B2 (en) * 2016-03-11 2018-08-21 Microsoft Technology Licensing, Llc Force sensor
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
PT3660642T (en) * 2018-11-28 2024-01-29 Sanko Tekstil Isletmeleri San Ve Tic As Large area touch fabric
CN109947306B (en) * 2019-04-03 2022-05-17 蓝思科技(长沙)有限公司 Novel touch screen structure and manufacturing method thereof

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057637A (en) * 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
US6409567B1 (en) * 1997-12-15 2002-06-25 E.I. Du Pont De Nemours And Company Past-deposited carbon electron emitters
JP2002518280A (en) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
AUPP976499A0 (en) * 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
US6277318B1 (en) * 1999-08-18 2001-08-21 Agere Systems Guardian Corp. Method for fabrication of patterned carbon nanotube films
KR20010055501A (en) * 1999-12-10 2001-07-04 김순택 Method for forming cathode of field emission display
KR20010056153A (en) * 1999-12-14 2001-07-04 구자홍 Field emission display device and its fabrication method
US6495116B1 (en) * 2000-04-10 2002-12-17 Lockheed Martin Corporation Net shape manufacturing using carbon nanotubes
EP1170799A3 (en) * 2000-07-04 2009-04-01 Infineon Technologies AG Electronic device and method of manufacture of an electronic device
US6515339B2 (en) * 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
KR100376768B1 (en) * 2000-08-23 2003-03-19 한국과학기술연구원 Parallel and selective growth and connection method of carbon nanotubes on the substrates for electronic-spintronic device applications
US6495258B1 (en) * 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US7060241B2 (en) * 2001-03-26 2006-06-13 Eikos, Inc. Coatings comprising carbon nanotubes and methods for forming same
US20020160111A1 (en) * 2001-04-25 2002-10-31 Yi Sun Method for fabrication of field emission devices using carbon nanotube film as a cathode
WO2002095097A1 (en) * 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
JP4207398B2 (en) * 2001-05-21 2009-01-14 富士ゼロックス株式会社 Method for manufacturing wiring of carbon nanotube structure, wiring of carbon nanotube structure, and carbon nanotube device using the same
US20040023253A1 (en) * 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US7118693B2 (en) * 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
WO2003011755A1 (en) * 2001-07-27 2003-02-13 University Of Surrey Production of carbon nanotubes
US7737260B2 (en) * 2003-11-13 2010-06-15 Hanmi Pharm. Co., Ltd Protein complex using an immunoglobulin fragment and method for the preparation thereof
US6645628B2 (en) * 2001-11-13 2003-11-11 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube coated anode
US6894359B2 (en) * 2002-09-04 2005-05-17 Nanomix, Inc. Sensitivity control for nanotube sensors
AU2003216070A1 (en) * 2002-01-18 2003-09-02 California Institute Of Technology Array-based architecture for molecular electronics
US6889216B2 (en) * 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US6858197B1 (en) * 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US7049625B2 (en) * 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US6919730B2 (en) * 2002-03-18 2005-07-19 Honeywell International, Inc. Carbon nanotube sensor
US6899945B2 (en) * 2002-03-19 2005-05-31 William Marsh Rice University Entangled single-wall carbon nanotube solid material and methods for making same
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6946410B2 (en) * 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
JP2006513557A (en) * 2002-05-21 2006-04-20 エイコス・インコーポレーテッド Method for patterning carbon nanotube coating and carbon nanotube wiring
US20040007528A1 (en) * 2002-07-03 2004-01-15 The Regents Of The University Of California Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium
EP1572953A4 (en) * 2002-07-09 2008-05-21 Bristol Myers Squibb Co Polynucleotides encoding a novel testis-specific tubulin tyrosine-ligase-like protein, bgs42
JP4547852B2 (en) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 Manufacturing method of electrical parts
US7051945B2 (en) * 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
AU2003298716A1 (en) * 2002-11-27 2004-06-23 Molecular Nanosystems, Inc. Nanotube chemical sensor based on work function of electrodes
CA2511771A1 (en) * 2002-12-06 2004-06-24 Eikos, Inc. Optically transparent nanostructured electrical conductors
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6919740B2 (en) * 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6918284B2 (en) * 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
WO2005019793A2 (en) * 2003-05-14 2005-03-03 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US7375369B2 (en) * 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7354877B2 (en) * 2003-10-29 2008-04-08 Lockheed Martin Corporation Carbon nanotube fabrics
US7556746B2 (en) * 2004-06-03 2009-07-07 Nantero, Inc. Method of making an applicator liquid for electronics fabrication process
US7067756B2 (en) * 2004-11-12 2006-06-27 Eastman Kodak Company Flexible sheet for resistive touch screen
EP1825038B1 (en) * 2004-12-16 2012-09-12 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US7593004B2 (en) * 2005-06-02 2009-09-22 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766927B2 (en) 2009-08-07 2014-07-01 Tsinghua University Touch panel and display device using the same
US10164135B2 (en) 2009-08-07 2018-12-25 Guardian Glass, LLC Electronic device including graphene-based layer(s), and/or method or making the same
US10167572B2 (en) 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
TWI669781B (en) * 2009-08-07 2019-08-21 加爾汀工業公司 Electronic device including graphene-based layer(s), and/or method of making the same
TWI399675B (en) * 2009-08-17 2013-06-21 Hon Hai Prec Ind Co Ltd Touch panel and display device using the same
TWI511015B (en) * 2013-09-02 2015-12-01 Shih Hua Technology Ltd Method for making touch panel
US10145005B2 (en) 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
TWI762561B (en) * 2017-01-27 2022-05-01 英商Arm股份有限公司 Apparatus and method for inserting power grid and non-transitory computer-readable medium

Also Published As

Publication number Publication date
US20080238882A1 (en) 2008-10-02
WO2008127780A3 (en) 2008-12-04
WO2008127780A2 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
TW200901016A (en) Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
CN103383869B (en) Low haze
KR101269316B1 (en) Method for fabricating transparent conductive film
KR102027623B1 (en) Metal Nanostructured Networks and Transparent Conductive Material
TW201209856A (en) Conductive layer transferring material and touch panel
CN104584143B (en) Conductive structure and the method manufacturing this conductive structure
CN104205021B (en) Transparent body for use in a touch screen panel manufacturing method and system
WO2010113437A1 (en) Capacitance type touch member and method for producing the same, and capacitance type touch detection device
CN104285261A (en) Transparent conductive electrodes comprising surface functionalized metal nanowires, their structure design, and method of making such structures
TW201140622A (en) Conductive laminate and touch panel formed by using same
TW201213136A (en) Transparent conductive film and manufacturing method thereof
JP2009146898A (en) Electron element
US11904389B2 (en) Scalable electrically conductive nanowires bundle-ring-network for deformable transparent conductor
WO2014136039A1 (en) Composition, substrates and methods thereof
JP2010049691A (en) Personal digital assistant
CN104603320B (en) The manufacture method of the substrate with transparency electrode and the substrate with transparency electrode
JP5425351B1 (en) Light transmissive conductive film, method for producing the same, and use thereof
KR101887281B1 (en) gas sensor member using Two-dimensional porous metal oxide nanosheets and method for manufacturing gas sensor member
CN105830173A (en) Substrate with transparent electrode and method for producing same
CN105940363A (en) Conductive substrate, conductive substrate laminate, method for producing conductive substrate, and method for producing conductive substrate laminate
CN104871258A (en) Substrate with transparent electrode and method for producing same
KR102074168B1 (en) Hybrid touch sensing electrode and preparing method thereof
CN105807986B (en) Transparent conductive body and touch screen
CN109690457A (en) Touch panel component
CN105700735A (en) Transparent conductor and touch panel