TW200848001A - Flexible electro-active lens - Google Patents

Flexible electro-active lens Download PDF

Info

Publication number
TW200848001A
TW200848001A TW097102424A TW97102424A TW200848001A TW 200848001 A TW200848001 A TW 200848001A TW 097102424 A TW097102424 A TW 097102424A TW 97102424 A TW97102424 A TW 97102424A TW 200848001 A TW200848001 A TW 200848001A
Authority
TW
Taiwan
Prior art keywords
electroactive
crystal
elastic
power
eye
Prior art date
Application number
TW097102424A
Other languages
Chinese (zh)
Other versions
TWI486154B (en
Inventor
Ronald D Blum
Joshua N Haddock
William Kokonaski
John Hunkeler
Original Assignee
E Vision Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Vision Llc filed Critical E Vision Llc
Publication of TW200848001A publication Critical patent/TW200848001A/en
Application granted granted Critical
Publication of TWI486154B publication Critical patent/TWI486154B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/145Corneal inlays, onlays, or lenses for refractive correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1627Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing index of refraction, e.g. by external means or by tilting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0543Retinal electrodes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/18Cellular lens surfaces
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions

Abstract

A lens including a flexible refractive optic having a fixed refractive index, an electro-active element embedded within the flexible refractive optic, wherein the electro-active element has an alterable refractive index, and a controller electrically connected to the electro-active element wherein when power is applied thereto the refractive index of the electro-active element is altered.

Description

200848001 九、發明說明: 本專利申請案主張2007年i月22日所申請之名為,,先進的 動悲電活性人工水晶體(Advanced Dynamic Eleeti^Aetive200848001 IX. Invention Description: This patent application claims the name applied for on January 22, 2007, advanced dynamic electro-active artificial crystal (Advanced Dynamic Eleeti^Aetive)

Intra-Ocular Lens)”的美國臨時申請案第6〇/881,514號之優 先權;且係有關於2006年5月4曰所公開的美國公開案第us 2006/0095128-A1 ; 2004年12月日所申請的美國臨時申 明案苐60/636,490號,2004年1 1月2日所申請的美國臨時申 明案第60/623,947號,2005年3月9日所申請的美國臨時申 請案第60/659,43 1號;及2005年4月8日所申請的 60/669,403號,所有案件的全文均以引用之方式併入 本文中。 【先前技術】 人工水晶體(INTRAOCULAR LENS ; IOL)可在眼睛之表 面上用於(例如)經由用於白内障外科手術之病患之植入物 來回復視力功能。IOL包括單焦水晶體,其提供一單一焦 點或單一光學功率;多焦水晶體,其提供多個焦點或光學 功率;及適應性水晶體,其調整一水晶體之焦點。 IOL可透過眼睛的一較小3 mm或更小切口在一摺疊狀態 下***。一具有一活塞之注射器狀裝置可用於幫助施加並 定位IOL於囊袋内,該囊袋先前容納已移除的自然晶狀 體。一旦在眼睛内,該IOL便可展開至其自然狀態。當用 於***一 IOL於眼睛内的切口大小大於2至3 mm時,非所 需的角膜散光變化便會出現。因此,眼科醫師偏向於使用 儘可能最小的切口來***一 IOL於眼睛内。因此,此實際 128668.doc 200848001 上使一彈性且可摺疊I0L成為一必需品。 /膜,rnealinlay)、角膜冠蓋體(―“ 早光及雙光隱形眼鏡均用以校正病患之視力卜、 Γ該些器件均純戴以校正病患遠與近視力需要。= 器件之各器件係一極薄光學器件 二 要求曲率。 予㈣且“加於眼睛上或内時 目則’在-電活性水晶體内的所有熟知電活性元 由剛性材料製成。在本發明者關於一電活性隱形眼鏡之特 定先前具體實施例中,一電活性元件係容納於一彈性外: 主體材料内。然而,該電活性元件係剛性的,且因此可能 給該隱形眼鏡增加一些厚度。 b 【發明内容】 本發明之具體實施例提供一種彈性電活性水晶體其包 括:-彈性折射性光學器件,其具有一固定折射率;一電 活性元件’其係嵌入於該彈性折射性光學器件内,其中該 電活性元件具有一可變折射率;及一控制器,其係電連接Intra-Ocular Lens)" US Provisional Application No. 6/881,514; and US Publication No. 2006/0095128-A1, published on May 4, 2006; U.S. Provisional Declarations filed on the day of the month 苐60/636,490, U.S. Provisional Declaration No. 60/623,947, filed on January 2, 2004, and U.S. provisional application filed on March 9, 2005 Application Nos. 60/659, 43 1; and 60/669,403, filed on Apr. 8, 2005, the entire contents of each of which is hereby incorporated by reference. IOL) can be used on the surface of the eye to restore visual function, for example, via an implant for a patient undergoing cataract surgery. The IOL includes a single-focus crystal that provides a single focus or a single optical power; , which provides multiple focus or optical power; and an adaptive crystal that adjusts the focus of a crystal. IOL can be inserted through a small 3 mm or smaller incision in the eye in a folded state. A syringe with a piston The device can be used to help apply and Positioning the IOL in a pouch that previously contained the removed natural lens. Once inside the eye, the IOL can be deployed to its natural state. The size of the incision used to insert an IOL into the eye is greater than 2 to 3 An undesired corneal astigmatism change occurs at mm. Therefore, the ophthalmologist prefers to insert an IOL into the eye using the smallest possible incision. Therefore, this actual 128668.doc 200848001 makes an elastic and foldable IOL Become a necessity. / Membrane, rnealinlay), corneal caps (" "Early light and dual-light contact lenses are used to correct the patient's vision, Γ These devices are worn purely to correct the patient's far and near vision needs. = Each device of the device is a very thin optical device. The curvature is required. (4) and all the well-known electroactive elements in the body of the electroactive crystal are "made on or in the eye" made of a rigid material. In a particular prior embodiment of an electroactive contact lens, an electroactive element is contained within an elastomeric: body material. However, the electroactive element is rigid and thus may The contact lens adds some thickness. b [Invention] A specific embodiment of the present invention provides an elastic electroactive crystallite comprising: an elastic refractive optical device having a fixed refractive index; an electroactive element embedded in the In an elastic refractive optical device, wherein the electroactive element has a variable refractive index; and a controller electrically connected

至該電活性元件,1中合谂4 U ,、τ田知加電力至其時,該電活性元件 之該折射率會變化。該彈性電活性水晶體可能包括一或多 個人工水晶體(intra〇cular lens)、眼内光學器件(int脈社 optic)、眼鏡片、隱形眼鏡、角膜冠蓋體、角膜嵌體及眼 間水晶體(interocular lens)。 【實施方式】 該等圖式所示範之下列較佳具體實施例說明本發明,但 不希望限制此申請案之申請專利範圍所涵蓋之本發明。 128668.doc 200848001 依據本發明之不同具體實施例,在圖1、圖2a、圖π 圖3A、圖3B、圖4A、圖4B、圖^、圖sb、圖坨_ 5卜陳圖7时說明一彈性電活性水晶體2。: 電活性水晶體,但本發明之具體實施例可用作其他水晶 體,例如包括人工水晶體、眼鏡片、隱形眼鏡、角膜冠: 體、角膜嵌體及眼間水晶體。 、 電活性元件(例如參考圖!、圖2A、圖2B、圖Μ、圖 4B、圖SA、圖53、圖5(:、圖5D、圖7A及圖7b所述 晶層(例如參考圖4A及圖4B所述)與一像素化元件均可用以 說明具有藉由電控制可改變之光學特性的材料。儘管本文 所述之可變肖性一般包括折射率與《學功#,但本發明之 具體實施例可包括具有其他可變特性之電活性水晶體2, 例如稜鏡功率、著色及不透明性。該等材料之該等特性可 能受電及/或光學控制。 諸如’,剛性"、”硬”、”非彈性”、”非撓性,,及/或,,不可摺疊·, 之術語均可用於說明一種調適用於在施加一超過一預定臨 限值之力時會抵抗結構或形狀變化之材料或結構。諸如,,可 V曲"軟”、”彈性"、”撓性”及/或"可摺疊"之術語均可用 於沉明一種調適用於在施加一超過該預定臨限值之力時會 改變結構或形狀之材料或結構。諸如”展開,,、”展開狀態,,、 ”自鈇”、”瓜士·· «…、 十直’,及/或”鬆弛”之術語均可用以說明一材料或 結構在一相對較高熵狀態中(例如,如圖2B、圖3A、圖 3B、圖4B、圖SA、圖5B、圖5C、圖5D、圖7A及圖7B所 不)。諸如”摺疊"、,,摺疊狀態"、”彎曲"及/或"彎曲”之術語 128668.doc 200848001 均可用以說明-材料或結構在—相對低熵狀態中(例如, 如圖1、圖2A及圖4A所示)。 圖1顯示在一一摺疊狀態中之彈性電活性水晶體2,其具 有一彈性外殼4與一嵌入於該外殼内之剛性電活性元件。 剛性電活性元件6在摺疊該電活性水晶體時一般不會彎 曲。該剛性元件可保護其内所含之元件不會壓縮、由於材 料膨脹或收縮或其他元件内力或外力而彎曲。該剛性元件 可能包括一剛性包覆並可能具有撓性組件,例如電活性材 料。一般而言,該剛性元件可能與該電活性水晶體之周邊 邊緣隔開以允許其摺疊。 圖2A顯示在一摺疊狀態中之彈性電活性水晶體2,其具 有一彈性外殼4與一嵌入於該外殼内之彈性電活性元件6。 由於該彈性電活性元件一般不會防止該電活性水晶體彎 曲’故該電活性元件可能向一般發生摺疊的該電活性水晶 體之周邊邊緣進一步徑向延伸。例如,當摺疊該電活性水 晶體時,該彈性電活性元件可沿該摺疊水晶體之周邊邊緣 而彎曲。該彈性電活性水晶體可嵌入於一剛性外殼内用作 一眼鏡片。 圖2B顯示在一展開狀態中之電活性水晶體2,其具有一 剛性外殼4與一嵌入於該外殼内之彈性電活性元件6。例 如,該元件可能最低程度地呈剛性,用於保護其内所含之 元件不受一些内力或外力及/或用於使該電活性水晶體朝 展開狀態。該電活性元件彈性可能係低於該電活性水晶 體0 128668.doc 200848001 以及參考圖2A及圖To the electroactive element, the refractive index of the electroactive element changes when 谂4 U is added to the electroactive element. The elastic electroactive crystal lens may include one or more intracular lenses, intraocular optics (int optics), ophthalmic lenses, contact lenses, corneal caps, corneal inlays, and interocular lens (interocular) Lens). The following detailed description of the preferred embodiments of the present invention is intended to be illustrative of the invention. 128668.doc 200848001 According to different embodiments of the present invention, illustrated in FIG. 1, FIG. 2a, FIG. 3A, FIG. 3B, FIG. 4A, FIG. 4B, FIG. 2, FIG. sb, and FIG. An elastic electroactive crystal 2 . : Electroactive crystals, but embodiments of the invention may be used as other crystals, including, for example, artificial crystals, ophthalmic lenses, contact lenses, corneal crowns, corneal inlays, and interocular lenses. Electroactive element (for example, reference figure!, FIG. 2A, FIG. 2B, FIG. 2B, FIG. 4B, FIG. SA, FIG. 53, FIG. 5 (:, FIG. 5D, FIG. 7A and FIG. 7b) (for example, refer to FIG. 4A And FIG. 4B) and a pixelated element can be used to illustrate a material having optical properties that can be altered by electrical control. Although the variable flexibility described herein generally includes a refractive index and "study #, the present invention Particular embodiments may include electroactive crystals 2 having other variable characteristics, such as germanium power, coloration, and opacity. Such properties of such materials may be electrically and/or optically controlled. Such as ', rigid", The terms "hard", "non-elastic", "non-flexible," and/or "unfoldable" can be used to describe an adaptation that is resistant to a structure or shape when a force exceeding a predetermined threshold is applied. The material or structure of the change. For example, the terms "soft", "elastic", "flexible" and/or "foldable" can be used for a certain type of adjustment. The force of the predetermined threshold changes the structure or shape Material or structure. Terms such as "expand,,," "expanded state,", "self-deprecating", "gull··«, ten straight, and/or "relaxed" may be used to describe a material or structure. In a relatively high entropy state (for example, as shown in FIG. 2B, FIG. 3A, FIG. 3B, FIG. 4B, FIG. SA, FIG. 5B, FIG. 5C, FIG. 5D, FIG. 7A, and FIG. 7B), such as "folding", , the folding state ","bend" and/or "bend" the term 128668.doc 200848001 can be used to illustrate - material or structure in - relatively low entropy state (eg, Figure 1, Figure 2A and Figure Figure 4 shows an elastic electroactive crystal 2 in a folded state having an elastomeric outer casing 4 and a rigid electroactive element embedded in the outer casing. The rigid electroactive element 6 is folded in the electrical activity. The crystal is generally not bent. The rigid element protects the components contained therein from compression, bending due to expansion or contraction of the material or internal or external forces of other components. The rigid component may include a rigid coating and may be flexible. Components such as electroactive materials. In general, the rigid member may be spaced apart from the peripheral edge of the electroactive crystal to allow it to be folded. Figure 2A shows an elastic electroactive crystal 2 in a folded state having an elastomeric outer casing 4 and an embedded in the outer casing Elastic electroactive element 6. Since the elastic electroactive element generally does not prevent the electroactive crystal from bending, the electroactive element may extend further radially toward the peripheral edge of the electroactive crystal that generally folds. For example, when When the electroactive crystal is folded, the elastic electroactive element can be bent along the peripheral edge of the folded crystal. The elastic electroactive crystal can be embedded in a rigid outer casing to serve as an ophthalmic lens. Fig. 2B shows an electroactive crystal 2 in an unfolded state having a rigid outer casing 4 and an elastic electroactive element 6 embedded in the outer casing. For example, the element may be minimally rigid to protect the elements contained therein from some internal or external force and/or to cause the electroactive crystal to be deployed. The electroactive element may be less elastic than the electroactive crystal body 0 128668.doc 200848001 and reference to FIG. 2A and

參考圖1及圖2 A中的彈性外殼4,j 中的彈性電活性元件6,電活性水晶$ 各元件可調適用於在一摺疊狀態與一 組成,例如聚砜、聚醚醯亞胺及/或其他熱塑性材料。聚 颯係類在一廣泛溫度範圍(例如從- n〇°c至+ i5〇°c )與 範圍(例如,從2至13)上較穩定的透明介電聚合物。聚碾^ 度抗礦物酸、強驗、電解f、酸及驗。㈣高度抗氧: 劑,例如漂白劑,其在(例如)該電活性水晶體係用作一隱 形眼鏡時,可能施加至該彈性外殼用於水晶體清潔。 再次參考圖1、圖2A及圖2B,該外殼可能具有或可能不 具有光學功率。一具有光學功率之外殼可能具有一固定光 •f功率並可能係一折射性或繞射水晶體(例如,圖3a及圖 3B所示)。例如,一不具有光學功率之外殼可能不聚光。 電活性元件6可能具有一可變折射率。該電活性元件可 佈置於電極之間(例如圖3A、圖3B、圖5C及圖5D所示), 該等電極可調適用於施加電力至該元件。電活性水晶體2 可此包括一控制器(例如圖3A、圖3B、圖5C及圖5D所 示),该控制器可能係(例如)經由該等電極而電連接至該電 活性7L件。該控制器可調適用於電驅動該等電極來調變施 加至該電活性元件之電力。當施加電力至該元件(例如)超 過一預定臨限值時,其折射率會變化。該控制器可包括驅 動電子器件、一電源(例如一充電電池)與其他用於驅動該 等電極之元件。 128668.doc 200848001 再次參考圖2 A,電活性水晶體2可能係一彈性電活性水 晶體,其包括一彈性外殼4與一嵌入於該外殼内之彈性電 活性元件6。該彈性外殼可能具有一固定光學功率。該電 活性元件可能具有一光學功率,其係調適用於在從一最小 光學功率至一最大光學功率的一光學功率範圍内變化。電 極10可電連接至該電活性元件以用於向其施加電力。當施 加電力至該元件低於一第一預定臨限值時,該元件可能具 有最小光學功率。當施加電力至該元件超過一第二預定臨 限值時,該元件可能具有最大光學功率。該固定光學功率 可能係大於該最大光學功率。依此方式,該固定光學功率 可提供該彈性電活性水晶體之大多數光學功率。 在本發明中,用於故障安全操作,當不施加任何電力 (例如,橫跨該等電極)時,該電活性元件所提供之光學功 率損失可能最小。例如,水晶體2可能用作一具有一固定 光學功率之靜態水晶體,例如其係調適用於在遠距離或中Referring to the elastic electroactive element 6 in the elastic outer casing 4, j in Fig. 1 and Fig. 2A, the electroactive crystals can be adapted to be applied in a folded state with a composition such as polysulfone, polyetherimide and / or other thermoplastic materials. Polyethers are relatively stable transparent dielectric polymers over a wide temperature range (e.g., from - n〇°c to + i5〇°c) and ranges (e.g., from 2 to 13). The aggregate is resistant to mineral acid, strong test, electrolysis f, acid and test. (d) Highly resistant to oxygen: An agent, such as a bleaching agent, which may be applied to the elastomeric outer casing for crystal cleaning when, for example, the electroactive crystal system is used as a contact lens. Referring again to Figures 1, 2A and 2B, the housing may or may not have optical power. A housing with optical power may have a fixed light power and may be a refractive or diffractive crystal (e.g., as shown in Figures 3a and 3B). For example, an enclosure that does not have optical power may not concentrate. The electroactive element 6 may have a variable refractive index. The electroactive element can be disposed between the electrodes (e.g., as shown in Figures 3A, 3B, 5C, and 5D) that are adapted to apply electrical power to the element. The electroactive crystal 2 can include a controller (e.g., as shown in Figures 3A, 3B, 5C, and 5D) that may be electrically coupled to the electroactive 7L member, for example, via the electrodes. The controller is adapted to electrically drive the electrodes to modulate the power applied to the electroactive element. When electrical power is applied to the component, for example, beyond a predetermined threshold, its refractive index changes. The controller can include drive electronics, a power source (e.g., a rechargeable battery), and other components for driving the electrodes. Referring again to Figure 2A, the electroactive crystal 2 may be an elastic electroactive crystal comprising an elastomeric outer casing 4 and an elastic electroactive element 6 embedded in the outer casing. The resilient housing may have a fixed optical power. The electroactive element may have an optical power that is adapted to vary over an optical power range from a minimum optical power to a maximum optical power. Electrode 10 can be electrically connected to the electroactive element for applying electrical power thereto. When power is applied to the component below a first predetermined threshold, the component may have minimal optical power. When power is applied to the component beyond a second predetermined threshold, the component may have maximum optical power. The fixed optical power may be greater than the maximum optical power. In this manner, the fixed optical power provides most of the optical power of the elastic electroactive crystal. In the present invention, for fail-safe operation, the optical power loss provided by the electroactive element may be minimal when no power is applied (e.g., across the electrodes). For example, the crystal 2 may be used as a static crystal with a fixed optical power, for example, it is suitable for use at a long distance or in the middle.

128668.doc 各臈可能大約100微米厚而該電活性水晶體 於或等於500微米厚。參考圖2八及圖3B,在 該電活性水晶體可能係(例如)大約小於或等 。該展開電活性水晶體可能係(例如)大約9 晶體可能係(例如)小於或等於大約 11 · 200848001 當用作-角膜喪體時’該電活性水晶體之直徑應不超過 角膜之直仅。在本發明之一些具體實施例中,該外殼之外 表面可能彎曲以實質上匹配角膜之曲率(當用於一角膜傲 體時)或眼睛之表面(當用於—隱形眼鏡時)。 •圖1包括-摺疊電活性透鏡2之二維測量之一範例。一摺 疊電活性水晶體之水平尺寸較佳的係低於或等於2.8 mm, 但仍可使用其他尺寸。 多考圖4A及圖4B,该電活性元件可能包括多個個別啟 動液曰日層,用於在最小與最大光學功率之間提供額外光學 功率。 圖3 A及圖3B》別顯示依據本發明之另_具體實施例在 一展開狀態中之彈性電活性水晶體2之一展開圖與收起 圖,該彈性電活性水晶體具有一表面起伏繞射圖案與一液 曰曰層。该電活性水晶體可能係一彈性水晶體,其包括一第 一撓性膜8a,其具有在一深度d内變化的一表面起伏繞射 圖案20 ,第一撓性膜8b ; —液晶層22,其具有電活性材 料16·,電極10; —控制器12;電連接14及對齊層“。該液 晶層可佈置於該第一膜與該第二膜之間,該第一膜與該第 二膜可形成一彈性外殼8用於包覆該層。該等膜可由(例如) 聚颯、聚醚醯亞胺及/或其他彈性材料組成。 該等電極10可電連接至該液晶層用於向其施加電力。控 制器12可調適用於電驅動該等電極來調變施加至該層之電 力。該液晶層可能具有一可變折射率。當施加電力至該層 (例如)超過一預定臨限值時,其折射率會變化。 128668.doc -12· 200848001 。亥等對齊層is可能定向電活性材料16之該等分子用於在 向其施加低於一第一預定臨限值之電力時提供液晶層22之 初始折射率。可施加一具有超過第一預定臨限值之電力 的電場(例如,橫跨該等電極),用於對齊電活性材料之分 子以改變該液晶層之折射率。 該第一膜與該第二膜之折射率一般係固定的。在一範例 中,忒液晶層之折射率可能在匹配與失配該第一膜與該第 二膜之固定折射率之間交替。 在圖3Α及圖3Β中,用於故障安全操作,當不施加任何 電力(例如,橫跨該等電極)時,該液晶層可具有使(僅藉由 範例)一折射率η(例如,1·67)與一厚度(例如,小於1〇 ,其大約等於該膜之表面起伏繞射圖案。在此具體 實施例中,組成該表面起伏繞射圖案之材料也具有一 167 折射率。當該液晶層之折射率匹配該表面起伏繞射之折射 率時,该電活性水晶體將具有一可忽略的光學功率。當該 液晶之折射率不匹配該繞射材料之折射率時,該電活性水 晶體將具有如該繞射圖案所產生的一光學功率。 圖4Α顯示在一摺疊狀態中之彈性電活性水晶體2,其具 有複數個電活性層;而圖4Β顯示圖4Α之複數個電活性元 件。在圖4Α中,該電活性水晶體可包括一撓性外殼4,其 具有一固定折射率;嵌入於其内的複數個電活性元件以、 6b、6c及6d,例如其係以一堆疊組態來配置;及電極, 其係獨立地電連接至該等電活性元件之各元件。在圖化 中,該等電活性元件6a、6b&6c可包括由一絕緣材料 128668.doc -13- 200848001 24(例如,一撓性介電膜)所分離的電活性材料i6之層。在 圖4A及圖4B中,該等電活性元件可能係剛性、彈性或彈 性低於該外殼。 在圖4A及圖4B中,該等電活性元件之各元件可能具有 一可變折射率並可加以個別地啟動。由於各電活性元件相 互絕緣,故可選擇性地或以任意組合來開啟一或多個電活 性元件。藉由如此操作,可能具有一附加光學功率之組合 或提供-單-光學功率。此允許在外科手術移植後調譜包 含電活性元件之一光學堆疊多層的水晶體或光學器件之光 學功率。 該等電活性元件可回應來自該電活性水晶體之一外部來 源的控制#號來加以啟動。參考圖5A、圖5B、圖5C及圖 5D,該等電活性水晶體可能包括一接收器,例如感測裝置 及/或一記憶金屬,用於接收來自該水晶體之一外部來源 的控制h號。该荨控制信號可用以調變施加至該等元件之 各元件的電力,用於遠端調諧其光學功率。 再次參考圖4A及圖4B,可堆疊該等電活性元件並可個 別加以啟動,用於以該等元件之可變光學功率之任一組合 來改變該電活性水晶體之總光學功率。 在圖4B中’該電活性水晶體包括電活性元件6a、6b及 6c,當啟動時,其分別具有範例性光學功率+〇 25D成 •0.25D、+0.50D 或-0.50D 及+2.50D 或+1.25D。例如,該等 元件可以各種組合來加以啟動,用於在一最小光學功率 + 0.25D或-0.25D(僅藉由範例,藉由僅啟動一直需要的 128668.doc -14- 200848001 + 0.25D或-0.25D)至一最大光學功率+4 5〇D(僅藉由範例, 藉由僅啟動一+0.25D、一+0.50D、一+2.5〇D及一25D之128668.doc Each crucible may be approximately 100 microns thick and the electroactive crystallites are at or equal to 500 microns thick. Referring to Figures 2-8 and 3B, the electroactive crystallites may be, for example, less than or equal to. The expanded electroactive crystallites may, for example, be about 9 crystals, for example, less than or equal to about 11 · 200848001 when used as a corneal corpuscle. The diameter of the electroactive crystallite should not exceed the diameter of the cornea. In some embodiments of the invention, the outer surface of the outer casing may be curved to substantially match the curvature of the cornea (when used for a cornea) or the surface of the eye (when used for a contact lens). • Figure 1 includes an example of a two-dimensional measurement of a folded electroactive lens 2. The horizontal dimension of the folded electroactive crystallite is preferably less than or equal to 2.8 mm, but other sizes can still be used. Referring to Figures 4A and 4B, the electroactive element may include a plurality of individual startup liquid helium layers for providing additional optical power between minimum and maximum optical power. 3A and 3B show an unfolded view and a retracted view of an elastic electroactive crystal 2 having a surface relief diffraction pattern in an unfolded state according to another embodiment of the present invention. With a liquid layer. The electroactive crystallite may be an elastic crystallite comprising a first flexible film 8a having a surface relief diffraction pattern 20 varying within a depth d, a first flexible film 8b, a liquid crystal layer 22, An electroactive material 16·, an electrode 10; a controller 12; an electrical connection 14 and an alignment layer.” The liquid crystal layer may be disposed between the first film and the second film, the first film and the second film An elastic outer casing 8 can be formed for coating the layers. The films can be composed, for example, of polyfluorene, polyether phthalimide, and/or other elastomeric materials. The electrodes 10 can be electrically connected to the liquid crystal layer for The controller 12 is adapted to electrically drive the electrodes to modulate the power applied to the layer. The liquid crystal layer may have a variable index of refraction. When power is applied to the layer, for example, more than a predetermined When the limit is reached, the refractive index changes. 128668.doc -12· 200848001. The alignment layer is such that the molecules of the electroactive material 16 may be used to apply power below a first predetermined threshold. Providing an initial refractive index of the liquid crystal layer 22. It is possible to apply a super An electric field of the first predetermined threshold power (eg, across the electrodes) for aligning molecules of the electroactive material to change the refractive index of the liquid crystal layer. The refractive indices of the first film and the second film are generally In one example, the refractive index of the 忒 liquid crystal layer may alternate between matching and mismatching the fixed refractive index of the first film and the second film. In Figure 3A and Figure 3, for fail-safe Operation, when no power is applied (eg, across the electrodes), the liquid crystal layer can have (by example only) a refractive index η (eg, 1.67) and a thickness (eg, less than 1 〇) , which is approximately equal to the surface relief diffraction pattern of the film. In this embodiment, the material constituting the surface relief diffraction pattern also has a refractive index of 167. When the refractive index of the liquid crystal layer matches the surface undulation diffraction At the refractive index, the electroactive crystallite will have a negligible optical power. When the refractive index of the liquid crystal does not match the refractive index of the diffractive material, the electroactive crystallite will have an optical such as that produced by the diffraction pattern. Power. 4Α shows an elastic electroactive crystal 2 in a folded state having a plurality of electroactive layers; and FIG. 4A shows a plurality of electroactive elements of FIG. 4. In FIG. 4A, the electroactive crystal can include a flexible outer shell. 4, having a fixed refractive index; a plurality of electroactive elements embedded therein, 6b, 6c, and 6d, for example, configured in a stacked configuration; and electrodes electrically connected to the electrodes independently Elements of the electroactive element. In the illustration, the electroactive elements 6a, 6b & 6c may comprise electricity separated by an insulating material 128668.doc -13 - 200848001 24 (eg, a flexible dielectric film) A layer of active material i6. In Figures 4A and 4B, the electrically active elements may be less rigid, resilient or elastic than the outer casing. In Figures 4A and 4B, the elements of the electro-active elements may have a variable index of refraction and may be individually activated. Since the electroactive elements are insulated from each other, one or more of the electroactive elements can be selectively or in any combination. By doing so, it is possible to have a combination of additional optical power or to provide - single-optical power. This allows the optical power of an optically stacked multilayer of crystals or optics to be one of the electroactive elements after the surgical implantation. The electrically active elements are activated in response to a control # from an external source of the electroactive crystal. Referring to Figures 5A, 5B, 5C and 5D, the electro-active crystals may include a receiver, such as a sensing device and/or a memory metal, for receiving a control h number from an external source of the crystal. The chirp control signal can be used to modulate the power applied to the various components of the components for remote tuning of their optical power. Referring again to Figures 4A and 4B, the electrically active elements can be stacked and individually activated for varying the total optical power of the electroactive crystal with any combination of the variable optical powers of the elements. In Fig. 4B, the electroactive crystal cell comprises electroactive elements 6a, 6b and 6c which, when activated, have exemplary optical powers + 〇25D into 0.25D, +0.50D or -0.50D and +2.50D, respectively. +1.25D. For example, the elements can be activated in various combinations for a minimum optical power of +0.25D or -0.25D (by example only by initiating the 128668.doc -14-200848001 + 0.25D that is always required) -0.25D) to a maximum optical power of +5 5〇D (by example only by starting a +0.25D, a +0.50D, a +2.5〇D and a 25D

ί 組合)之一範圍内提供一總光學功率。在此範例中,該 電/舌丨生水體可肖b具有在該等最小及最大功率之間每遞增 0.25D(正或負)之光學功率。當以適當組合個別啟動該等元 件之各元件時,該元件可提供光學功率變化之增量且該電 活性水晶體之總光學功率可調諧至所需光學功率。在此範 例中該光學功率變化之增量係〇 25D,但在特定其他具體 實施例中其係0.12〇。該等元件可調適用於提供近、中及/ 或遠距離觀察校正。應瞭解,本文所使用之值意在示範, 故可使用該等電活性元件之不同光學功率、光學功率變化 之增量及/或數目(例如,用於適配眼睛而大小受限)。 在本發明中,可像素化該等元件以之一或多個元件。該 等電極可施加電力至該等像素化元件。藉由分流特定電 極,可提供大約50%的該等元件之最大光學功率。在上述 範例中,元件6c可提供一 +2·5〇Ι)的最大光學功率與一 + 1.25D的減少50%光學功率。 該等電活性^件之-或多個元件可能包含—模態元件。 模態元件可在施加一電位梯度至一可變聚焦模態水晶體時 改變光學功率。模態元件可使用(例如)液晶來產生一 性光學器件。 再次參考圖4A及圖4B,該等電活性元件以、仏、〜及 Μ可能包括聚合物分散液晶與雙穩態液晶之—組合。當施 加足夠電力至該等元件之各元侔 田也 午(例如,檢跨該等電極) 128668.doc -15- 200848001 時,該等雙穩態晶體可調諧用於獲得一所需光學功率而該 等聚合物分散液晶可在設定所需光學功率後在該元件内加 以遠端固化或固定。固化該等晶體可固定該等分子之定向 用於穩固該已調諧光學功率,同時將該電活性水晶體定位 或嵌入於眼睛内。一具有眼睛安全波長(例如,15 4111波 長)之電磁信號(例如,一雷射)可用於(例如)使用一對該電 磁信號之波長敏感的起始劑來遠端固化該等晶體。聚合物 分散液晶可包括(例如)一向列型液晶混合物E7(由“以以生 產)與一 uv固化光學黏著劑NOA65(由N〇rland pr〇ducts生 產)的一混合物。在一具體實施例中,在將該電活性水晶 體嵌入於眼睛内時,可遠端調諧該雙穩態液晶並可使用定 位於眼睛外部的裝置來遠端固化該聚合物。 雙穩態液晶材料可用於減少隨時間供電該電活性水晶體 所需之電力消耗數量。在施加一超過一第一臨限值之適當 第一電壓時,該等個別雙穩態液晶之各液晶之整體定向可 能在移除該電壓後保持由該第一電壓所感應的一定向。可 藉由施加一低於一第二預定臨限值之第二電壓來返回其至 其原始狀恶。雙穩態液晶可能包括(例如)表面穩定鐵電液 晶(SSFLF),其係一層列型液晶。使用一雙穩態液晶可減 少電力消耗,因為可使用電壓來在其狀態之間切換該裝置 且一般不維持該等操作狀態。 圖5A、圖5B、圖5C及圖5D各顯示一具有一彈性電活性 το件6之彈性電活性水晶體2之一正面圖。該彈性電活性水 晶體包括一嵌入該電活性元件的彈性膜4、一電源&、電 128668.doc -16- 200848001 極10及_記憶金屬材料28。該記憶金屬材料可使該電活性 水晶體偏向其展開狀態。例如,該電活性水晶體可摺疊用 於***眼睛内的一切口 Μ。一旦在眼睛内釋放該電活性水 晶體,該記憶金屬材料便可展開該水晶體至其展開狀態用 於在眼睛内操作。 參考圖SC及圖5D,該電活性水晶體可包括—控制器及/ 或驅動電子器件12與電連接14。 性元件以用於向其施加 一者可形成一起伏圖案A total optical power is provided in one of the ranges of ί. In this example, the electric/tongue water body b has an optical power that increases by 0.25 D (positive or negative) between the minimum and maximum powers. When the elements of the elements are individually activated in appropriate combinations, the elements can provide an increase in optical power variation and the total optical power of the electroactive crystal can be tuned to the desired optical power. The incremental change in optical power in this example is 〇 25D, but in certain other specific embodiments it is 0.12 〇. These components are adjustable for providing near, medium and/or long range viewing corrections. It will be appreciated that the values used herein are intended to be exemplary so that different optical powers, increments and/or numbers of optical power variations of the electro-active elements can be used (e.g., for adapting the eye to a limited size). In the present invention, the elements may be pixelated in one or more of the elements. The electrodes can apply power to the pixelated elements. By shunting specific electrodes, approximately 50% of the maximum optical power of these components can be provided. In the above example, element 6c can provide a maximum optical power of +2·5 〇Ι) and a reduction of 50% optical power by a +1.25 D. - or a plurality of components of the electroactive element may comprise - modal elements. The modal element can change the optical power when a potential gradient is applied to a variable focus mode crystal. The modal element can use, for example, a liquid crystal to produce an inductive optical device. Referring again to Figures 4A and 4B, the electro-active elements, 仏, 〜 and Μ may comprise a combination of polymer dispersed liquid crystal and bistable liquid crystal. The bistable crystals can be tuned to obtain a desired optical power when sufficient power is applied to the elements of the components at noon (eg, across the electrodes) 128668.doc -15-200848001 The polymer dispersed liquid crystals can be cured or fixed distally within the element after the desired optical power is set. Curing the crystals fixes the orientation of the molecules for stabilizing the tuned optical power while positioning or embedding the electroactive crystals in the eye. An electromagnetic signal (e.g., a laser) having an eye-safe wavelength (e.g., 15 4111 wavelengths) can be used, for example, to remotely cure the crystals using a pair of wavelength-sensitive initiators of the electromagnetic signals. The polymer dispersed liquid crystal may comprise, for example, a mixture of a nematic liquid crystal mixture E7 ("produced") and a uv cured optical adhesive NOA65 (manufactured by N〇rland pr〇ducts). In a specific embodiment When the electroactive crystallite is embedded in the eye, the bistable liquid crystal can be tuned distally and the polymer can be cured distally using a device positioned outside the eye. The bistable liquid crystal material can be used to reduce power supply over time. The amount of power consumption required for the electroactive crystallite. When a suitable first voltage exceeding a first threshold is applied, the overall orientation of the liquid crystals of the individual bistable liquid crystals may be maintained by removing the voltage The first voltage induced by the first voltage may be returned to its original state by applying a second voltage lower than a second predetermined threshold. The bistable liquid crystal may include, for example, surface stabilized ferroelectric Liquid crystal (SSFLF), which is a one-layer liquid crystal. The use of a bistable liquid crystal reduces power consumption because voltage can be used to switch the device between its states and generally does not maintain such operations. 5A, 5B, 5C, and 5D each show a front view of an elastic electroactive crystal 2 having an elastic electroactive material. The elastic electroactive crystal comprises an elasticity embedded in the electroactive element. Membrane 4, a power supply &, electricity 128668.doc -16- 200848001 pole 10 and _memory metal material 28. The memory metal material can bias the electroactive crystallite to its unfolded state. For example, the electroactive crystallite can be folded for Inserting all the mouth lice in the eye. Once the electroactive crystallite is released in the eye, the memory metal material can unfold the crystal to its deployed state for operation in the eye. Referring to Figures SC and 5D, the electroactive crystal can be Including - a controller and / or drive electronics 12 and electrical connections 14. The sexual elements are used to apply one to form a volt pattern

該等電極10可電連接至該電活 力。參考圖3Α,該等電極之至少 從而保形於第一膜8a之表面起伏繞射圖案2〇。 再次參考圖5A、圖5B、圖5C及圖5D,該等電極可包括 複數個同心電極環。當該等電極施加電力至具有此類環之 電活性元件時,該元件可能藉此具有繞射光學特性。 在本發明中,該等電極可在小於大約一(1)秒内開啟與 關閉。該等電極可由一料或金屬材料(例如銘)、一光學 透明材料(例如,氧化銦錫(IT〇))、一傳導有機材料(例 如敬(3,4_一氧乙基噻吩)聚(對苯乙烯磺酸)(ped〇T:PSS) 及/或碳奈米管)組成。該等電極可塗佈並環繞於該液晶材 料周圍。該透明材料可包括細金屬迹線,例如銀或銘,用 於4加傳V性。可検跨等透明電極施加電力用於改變該電 活性水晶體之光學特性,如本文所述。該電極層之厚度可 月b係(例如)小於1 μιη,但較佳的係小於〇 ·工。該控制器 及/或驅動電子器件12、電源26、記憶金屬材料28及其他 電子組件可藉由該等電連接14而連接至該等電極。該等電 128668.doc -17- 200848001 連接可能包括較小導線或迹線,其也可能係透明的。該等 電極及電連接可能係彈性的。 參考圖5B及圖5D,該電活性水晶體可能包括一動能 50,其係電連接至該電活性元件以用於將眼睛之運動轉換 成電力以向該電活性元件提供電力。該動能驅動器可包括 一導體與位於該驅動器内的永久磁鐵。當該導體相對於由 該等水久磁鐵所產生之一磁場移動時,產生電力。此類驅 動器在此項技術者中眾所周知且一般係用於非電池供電腕 錶。例如,諸如快速動眼睡眠(REM)之眼球運動可充電電 源26(例如,在睡眠及/或喚醒週期)。 參考圖5A及圖5B,该電活性水晶體可能包括壓電膜 48 ’用於產生電力。該壓電膜可調適用於連接該電活性水 晶體至一眼睛結構。該壓電膜之張力可由眼睛之運動來改 變。該膜可將張力變化變換成電力。例如,當該壓電膜可 在瞳孔附近或上面附著至睫狀體、虹膜時且隨著瞳孔放大 及/或收縮,該壓電膜將會拉伸並鬆弛,從而產生電力。 參考圖5A及圖5C,該電力可使用感測裝置32的一光電 電池來加以產生。如此項技術中所熟知,該光電電池將太 陽能轉換成電力。該光電電池可調適用於使用一(例如)定 位於該電活性水晶體外部之15 μηι紅外雷射源(未顯示)來 進行充電。該雷射可(例如)安裝於一對眼鏡上,該對眼鏡 係調適用以在由一使用者佩戴時充電電源。 在該些具體實施例之各具體實施例中,所產生的電力可 儲存於電源26内。該電源可包括一電池,例如一薄膜電 128668.doc -18 - 200848001 池’其可能係可充電及/或彈性的。該薄膜電池可由遠端 充電來進行感應充電。在一具體實施例中,在此類電活性 水晶體之使用者正在睡眠中時,一感應致能枕頭(未顯示) 提供感應電荷。 : 在一具體實施例中,記憶金屬材料28可用於使該電活性 • 水晶體偏向展開狀態。 在另一具體實施例中,該記憶金屬材料可用於從該電活 性水晶體的一外部來源接收控制信號。控制器12可使用該The electrodes 10 can be electrically connected to the electrical activity. Referring to Fig. 3, the electrodes are at least conformed to the surface relief diffraction pattern 2 of the first film 8a. Referring again to Figures 5A, 5B, 5C, and 5D, the electrodes can include a plurality of concentric electrode rings. When the electrodes apply electrical power to an electroactive element having such a ring, the element may thereby have diffractive optical properties. In the present invention, the electrodes can be turned on and off in less than about one (1) second. The electrodes may be composed of a single material or a metal material (for example, inscription), an optically transparent material (for example, indium tin oxide (IT〇)), and a conductive organic material (for example, jing (3,4-methoxyethylthiophene). Composition of p-styrenesulfonic acid) (ped〇T:PSS) and/or carbon nanotubes. The electrodes can be coated and wrapped around the liquid crystal material. The transparent material may comprise fine metal traces, such as silver or stencil, for 4 plus V. Power can be applied across the transparent electrodes to alter the optical properties of the electroactive crystal, as described herein. The electrode layer may have a thickness of, for example, less than 1 μm, but is preferably less than μ. The controller and/or drive electronics 12, power source 26, memory metal material 28, and other electronic components can be coupled to the electrodes by the electrical connections 14. The 128668.doc -17- 200848001 connection may include smaller wires or traces, which may also be transparent. These electrodes and electrical connections may be elastic. Referring to Figures 5B and 5D, the electroactive crystallites may include a kinetic energy 50 electrically coupled to the electroactive element for converting the motion of the eye into electrical power to provide electrical power to the electroactive element. The kinetic energy driver can include a conductor and a permanent magnet located within the driver. Electric power is generated when the conductor moves relative to a magnetic field generated by the hydrodynamic magnets. Such drives are well known to those skilled in the art and are generally used in non-battery powered watches. For example, an eye movement rechargeable power source 26 such as Rapid Eye Sleep (REM) (e.g., during a sleep and/or wake cycle). Referring to Figures 5A and 5B, the electroactive crystallite may include a piezoelectric film 48' for generating electrical power. The piezoelectric film is adapted to connect the electroactive crystal to an eye structure. The tension of the piezoelectric film can be changed by the movement of the eye. The film converts the change in tension into electricity. For example, when the piezoelectric film can be attached to the ciliary body, the iris near or on the pupil, and as the pupil enlarges and/or contracts, the piezoelectric film will stretch and relax, thereby generating electric power. Referring to Figures 5A and 5C, the power can be generated using a photovoltaic cell of sensing device 32. As is well known in the art, the photovoltaic cell converts solar energy into electricity. The photovoltaic cell is tunable for charging using, for example, a 15 μηι infrared laser source (not shown) positioned outside of the electroactive crystal. The laser can be mounted, for example, on a pair of glasses that are adapted to charge the power source when worn by a user. In various embodiments of the specific embodiments, the generated power may be stored in power source 26. The power source can include a battery, such as a thin film, which can be rechargeable and/or flexible. The thin film battery can be inductively charged by remote charging. In one embodiment, an inductively enabled pillow (not shown) provides an inductive charge while the user of such electroactive crystallite is sleeping. In a specific embodiment, the memory metal material 28 can be used to bias the electroactive liquid crystal to an unfolded state. In another embodiment, the memory metal material can be used to receive a control signal from an external source of the electroactive crystal. The controller 12 can use the

fA 等控制信號來調變施加至該電活性元件之電力。該記憶金 屬材料可電連接至該控制器及該電活性元件。例如,該記 憶金屬材料可用作一天線、電容器、感應線圈等。 在另一具體實施例中,該記憶金屬材料可用於充電電源 °该§己憶材料可形成一線圈及/或一天線並可調適用於 使用從該電活性水晶體之一外部裝置所無線發射之電力來 感應充電該電源。 I 在另一具體實施例中,該記憶金屬材料可用於程式化及/ 或再程式化該控制器及/或驅動電子器件。 違土憶金屬材料可由(例如)鈦鈀鎳、鎳鈦銅、金鎘、鐵 • 辞銅銘鈦鈮銘、铪鈦錄、鎳鈦銅、金錦、鐵鋅銅銘、錄 , 鈦及/或鐵錳矽或其任一組合。 再次參考圖SA及圖5C,該電活性水晶體可包括一感測 裝置32,用於偵測感覺資訊。該感測裝置可能包括(例如) 下列裝置之一或多個:一光伏打或uv敏感光電池、一傾 斜開關、-光感測器、一被動測距裝置、一飛行時間測距 128668.doc -19- 200848001 裝置、一眼球追蹤器、一觀察偵測器,其偵測一使用者可 能觀察之位置、一加速度計、一近接開關、一實體開關、 一手動超越控制、一電容開關,其在一使用者觸碰鼻樑等 時切換。 該感測裝置可能包括二或多個光偵測器陣列,各陣列上 放置一聚焦透鏡用於測量距離。一差異和演算法可用於決 定哪個陣列具有最高對比度,用於決定一物件離該電活性 水晶體所放置之距離。 該感測裝置可能包括一測距器,其係用於偵測距離以聚 焦該電活性水晶體;及/或—太陽能電池,其係用於偵測 周圍及/或入射至該電活性水晶體之光。 該感測裝置可包括一微機電系統(MEMS)陀螺儀,其係 調適用於偵測頭部傾斜或眼睛之循環轉動,其係圖6中所 示之解說。此外,該感測裝置可包括一定時機制,其可組 合該陀螺儀用以從後仰或其他移動之效果角度區分一距離 變化。 回應該偵測,該感測裝置可(例如)藉由改變施加至其的 電力來觸發該電活性水晶體之一或多者之啟動及/或:活 化。該感測裝置可直接或間接耦合至該等電子器件及/戋 該等電連接用以電驅動該等電極。在一具體實施例中,該 感測裝置可❹卜使用者正在觀看所採用的聚焦距離並可 相應地改變或維持該電活性元件之光學功率。在一範例 中,若該❹核置制到該㈣者聚焦於近距離範圍内, 則可改變該元件之光學功率,伤彳異兮 兀*子刀千便侍該電活性水晶體提供近 128668.doc -20- 200848001 距離觀察校正。 在本發明中,該電活性水晶體可進一步包含一超越遠端 開關(未顯示)以手動超越及切換該電活性水晶體之光學狀 悲。例如,該遠端開關可啟動、停用或設定一所需光學功 率。當啟動該遠端開關時,可經由一由記憶金屬材料28所 形成之天線發送一遠端開關信號至該電活性水晶體。 再次參考圖5C及圖5D,該電活性水晶體可包括開口 34,用於允許由身體所產生之營養素及細胞廢物穿過該電 活性水晶體。該等開口可能係半滲透膜,其基於該等材料 刀子之大小來允許材料透過其。可鑽孔、加工或戳記該等 開及/或細孔。般而言,該等開口及細孔可能位於該 電活性水晶體之非電性或另外非關鍵區域處,例如在該等 電極不延伸或施加電力之瞳孔轴附近。此類開口在關於非 電活性角膜嵌體技術中眾所周知。 圖7A及圖7B各顯示彈性電活性水晶體2之一正面圖(具有 一軸A)與在軸A處所截取之彈性電活性水晶體2之一斷面圖 AA。5亥電活性水晶體包括一彈性膜4與一嵌入於該膜内的 電活H το件6。® 7A包括#置於該彈性膜與該電活性元件 之間的&絡36。因而,該元件係由該包絡所環繞,該薄 膜進而由該彈性外殼所環繞。該包絡可能係-拒水劑、保 護性阻障,其係由(例如)親水性丙烯酸材料組成。在一具 體實施例中,該彈性材料可由(例如)聚石夕氧或—疏水性丙 烯S夂材料組成。一般而言,親水性丙烯酸材料具有相對低 的折射率且係適度剛性的。—般而言,疏水性丙稀酸材料 128668.doc -21 - 200848001 具有相對較高的折射率且係彈性的。 外殼4可能由一半滲透膜所組成。該外殼可能塗佈有與 眼睛内解剖學物物鄉的材料。纟物相容材料可能包 括(例如)聚偏二氟乙烯或非水凝膠微孔全氟醚。該外殼可 視而要地:k佈有一始、封劑以防止或延遲從該電活性水晶體 濾出材料。撓性外殼4可能係一半滲透物質。該液晶電活 性兀件及相關聯電子器件可加以密封以防止隨時間濾出至 眼睛内。A control signal such as fA modulates the power applied to the electroactive element. The memory metal material can be electrically connected to the controller and the electroactive element. For example, the memory metal material can be used as an antenna, a capacitor, an induction coil, or the like. In another embodiment, the memory metal material can be used for a charging power source. The material can be formed into a coil and/or an antenna and can be adapted to be wirelessly transmitted using an external device from one of the electroactive crystals. Power is used to inductively charge the power supply. In another embodiment, the memory metal material can be used to program and/or reprogram the controller and/or drive electronics. Metal materials that can be repelled by the earth can be, for example, titanium, palladium, nickel, nickel, titanium, copper, gold, cadmium, iron, copper, copper, titanium, titanium, nickel, titanium, gold, iron, zinc, copper, copper, copper Or iron manganese bismuth or any combination thereof. Referring again to Figures SA and 5C, the electroactive crystallography can include a sensing device 32 for detecting sensory information. The sensing device may include, for example, one or more of the following: a photovoltaic or uv sensitive photovoltaic cell, a tilt switch, a light sensor, a passive distance measuring device, a time-of-flight ranging 128668.doc - 19-200848001 device, an eye tracker, an observation detector, which detects a position that a user may observe, an accelerometer, a proximity switch, a physical switch, a manual override control, a capacitive switch, Switch when a user touches the bridge of the nose or the like. The sensing device may include two or more photodetector arrays with a focusing lens placed on each array for measuring distance. A difference and algorithm can be used to determine which array has the highest contrast and is used to determine the distance an object is placed from the electroactive crystal. The sensing device may include a range finder for detecting a distance to focus the electroactive crystallite; and/or a solar cell for detecting light incident around and/or incident on the electroactive crystal . The sensing device can include a microelectromechanical system (MEMS) gyroscope adapted to detect head tilt or cyclic rotation of the eye, as illustrated in Figure 6. Additionally, the sensing device can include a timing mechanism that can be combined with the gyroscope to distinguish a distance change from the perspective of the effect of the recline or other movement. In response to detection, the sensing device can trigger activation and/or activation of one or more of the electroactive crystals, for example, by varying the power applied thereto. The sensing device can be coupled directly or indirectly to the electronic devices and/or the electrical connections for electrically driving the electrodes. In a specific embodiment, the sensing device can indicate that the user is viewing the focus distance employed and can change or maintain the optical power of the electroactive element accordingly. In an example, if the nucleus is placed until the (4) is focused on a close range, the optical power of the component can be changed, and the sputum 兮兀 子 子 子 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该Doc -20- 200848001 Distance observation correction. In the present invention, the electroactive crystallite may further comprise an optical sorrow that transcends the remote switch (not shown) to manually override and switch the electroactive crystal. For example, the remote switch can activate, deactivate, or set a desired optical power. When the remote switch is activated, a remote switch signal can be sent to the electroactive crystal via an antenna formed by the memory metal material 28. Referring again to Figures 5C and 5D, the electroactive crystallite can include an opening 34 for allowing nutrients and cellular waste produced by the body to pass through the electroactive crystal. The openings may be semi-permeable membranes that allow material to pass therethrough based on the size of the knives of the materials. These openings and/or pores can be drilled, machined or stamped. Generally, the openings and pores may be located at non-electrical or otherwise non-critical regions of the electroactive crystal, such as near the bore axis where the electrodes do not extend or apply electrical power. Such openings are well known in the art regarding non-electrically active corneal inlays. 7A and 7B each show a front view (having an axis A) of one of the elastic electroactive crystals 2 and a sectional view AA of the elastic electroactive crystal 2 taken at the axis A. The 5 galvanic active crystal comprises an elastic film 4 and an electroactive H θ piece 6 embedded in the film. ® 7A includes # & 36 placed between the elastic film and the electroactive element. Thus, the element is surrounded by the envelope, which in turn is surrounded by the resilient outer casing. The envelope may be a water repellent, a protective barrier consisting of, for example, a hydrophilic acrylic material. In a specific embodiment, the elastomeric material can be comprised of, for example, polyoxo or a hydrophobic propylene S. material. In general, hydrophilic acrylic materials have a relatively low refractive index and are moderately rigid. In general, hydrophobic acrylic materials 128668.doc -21 - 200848001 have a relatively high refractive index and are elastic. The outer casing 4 may consist of a semi-permeable membrane. The outer casing may be coated with material from the anatomy of the eye. The barrier compatible materials may include, for example, polyvinylidene fluoride or non-hydrogel microporous perfluoroether. The outer casing can optionally be provided with a seal to prevent or delay the filtration of material from the electroactive crystal. The flexible outer casing 4 may be a half-permeate material. The liquid crystal active element and associated electronics can be sealed to prevent filtering out into the eye over time.

再次參考圖SA及圖5B ’肖電活性水晶體可包括觸覺器 件30,用於在眼睛内的—所需位置穩定該水晶體,如此項 技術中所熟知。該觸覺器件還可包括一天線及/或充電迴 路’用於從該電活性水晶體的—外部裝置接收控制信號。 該電活性水晶體可包括人卫水晶體,其可使用最大可能 對中(對㈣水晶體之-中心轴與㈣之_ “轴或瞳孔 軸)以提供最佳光學結果來加以植入。在本發明之一較佳 具體實施例中,該電活性水晶體或—容納該電活性水晶體 的囊袋將在最大可能對中下直接植人於瞳孔後面。觸覺器 件30可用以在該囊袋之内部對中該電活性水晶體。或者, 該觸覺器件可直接附著至眼睛,例如睫狀肌,從而延伸於 該囊袋之外。因為眼睛内解剖學不對稱性,該電活性水晶 體可此與-瞳孔軸偏心地植入。可能會在該囊袋内⑼ :’在該囊袋之一中心軸與***其内之電活性水晶體之一 =軸的-未對齊内)以及與—未對齊瞳孔(具有—彎曲或 未對齊瞳孔軸)-起發現額外偏心L般會容忍適量 128668.doc -22- 200848001 的偏心。由於解剖學不對稱性,一自然及未變更眼睛可能 具有大約〇·1或0·2 mm的偏心。該電活性水晶體可能較佳 地適應至少1 mm的偏心。 該電活性水晶體可植入於一已經具有一現有水晶體植入 物之眼目月内,用於校正由現有水晶體植人物(未顯示)所提 供之光學官能障礙。此技術可稱為”揹負式,,水晶體植入。 4電活性水晶體可植入於現有水晶體植入物前面(例如, * 更靠近眼睛的曝露表面),例如進入睫狀溝内的後房内。 纟其他具體實施例中,該電活性水晶體可植人於現有水晶 體植入物後面(例如,更遠離眼睛的曝露表面)。在上述具 體實施例之任一者中,該電活性水晶體可組合另一(例如) 固定晶狀體來使用。該水晶體可定位於睫狀溝之前房或後 房内。 當本文所述之具體實施例用作一隱形眼鏡時,該水晶體 可在水晶體周邊處或附近包括一附著軟式親水裙部,以用 於在一所需對中位置穩定該水晶體。該隱形眼鏡可進一步 藉由具有一重量定向區域或一截頂附著表面來加以穩定 化。該隱形眼鏡可藉由一隱形眼鏡盒來加以感應充電,例 如在該水晶體位於該盒内時。該隱形眼鏡之感測裝置 32(例如一光偵測器)可能位於該隱形眼鏡或附著裙部之表 面内或上,位置與該瞳孔軸隔開以不干擾一佩戴者的視 力。在一具體實施例中,該等尺寸適配參數及/或組件可 依據一使用者之解剖學需要及/或偏好來加以自訂。 圖8A、圖8B及圖8C各顯示在一具有不同瞳孔大小之眼 128668.doc -23- 200848001 睛38内電活性水晶體2之放置。圖8A顯示—具有—相對較 大大小之放大瞳孔。圖8B顯示一具有一相對中等大小之瞳 孔。圖8C顯示一具有一相對較小大小之瞳孔。圖8A、圖 8B及圖8C各顯示眼睛内瞳孔4〇、虹臈42、角膜緣私及鞏 ; 膜46之相對位置。該電活性水晶體可能包括一彈性外殼4 • 肖一電活性元件6。隨著瞳孔之大小減小,該水晶體覆蓋 眼睛之瞳孔40或孔徑之一增加百分比。 在上述具體實施例之任一者中,可使用液晶材料。液晶 材料包括一處於結晶固體與非晶液體中間的聚集狀態。許 多液晶係由桿狀分子組成,並廣泛分類成:向列型、膽固 醇型及層列型。 該電活性水晶體可用以校正眼睛的折射誤差,包括老花 眼、近視、遠視、散光及更高階像差。 當在本文中使用時,近觀察距離可能說明從一視點起從 18央忖直至大約12英忖之距離,中觀察距離可能說明從大 於18央吋至29英吋之距離而遠觀察距離可能說明從人臉部 起大於大約29英吋之距離。 雖然相對於有限數目的具體實施例已說明本發明,但應 » 冑解可實現本發明之許多變更、修改及其他應用。習知此 • $技術者應瞭解,隨附巾請專利範圍意在涵蓋本發明之真 實精神内的所有此類修改或變化。 一 【圖式簡單說明】 參考附圖已說明本發明之—特定具體實施例,其中: 圖1 ·、、、員不依據本發明之一具體實施例在一摺疊狀態中之 128668.doc •24- 200848001 挽性電活性水曰鱗。. 曰曰體2,其具有一彈性外殼與一剛性電活 元件; 圖”、、員示依據本發明之一具體實施例在一摺疊狀態中之 挽性電活性皮曰挪Λ u 一 往&日日體2,其具有一彈性外殼與一彈性電活性 元件; 圖2Β顯示依據本發 — 知月之具體實施例在一展開狀態中之 電活性水晶體9i ^ 其具有一剛性外殼與一彈性電活性元 件; Γ 圖3 A及圖3B分別顯示依據本發$ ^ ^ f # 開狀態中之彈j生Φ、、本u , /性水晶體2之一展開圖與收起圖,其 具有-表面起伏繞射圖案與一液晶層; - 圖.、,頁7Γ依據本發明之一具體實施例在一摺疊狀態中之 撓ί生電活性水晶體2 ’其具有複數個電活性元件; 圖4Β顯示依據本發明之—具體實施例之圖4αReferring again to Figures SA and 5B, the Schematic electro-hydraulic crystal can include a haptic device 30 for stabilizing the crystallite at a desired location within the eye, as is well known in the art. The haptic device can also include an antenna and/or charging circuit 'for receiving control signals from the external device of the electroactive crystal. The electroactive crystallites can include human water crystals that can be implanted using the largest possible centering (to the central axis of the (qua) crystallites and the "axis" or "pupil axis" to provide optimal optical results. In a preferred embodiment, the electroactive crystallite or the pocket containing the electroactive crystallite will be implanted directly behind the pupil in the largest possible center. The haptic device 30 can be used to center the interior of the pocket. An electroactive crystal. Alternatively, the haptic device can be attached directly to the eye, such as the ciliary muscle, to extend beyond the capsular bag. Because of the anatomical asymmetry within the eye, the electroactive crystal can be eccentrically with the pupil axis Implantation. May be inside the pouch (9): 'in one of the central axis of the pouch and one of the electroactive crystals inserted into it = axis misaligned inside and with - misaligned pupil (with - bend or Unaligned boring axis) - It is found that the extra eccentricity L will tolerate the eccentricity of the appropriate amount 128668.doc -22- 200848001. Due to anatomical asymmetry, a natural and unaltered eye may have approximately 〇·1 or 0·2 mm Eccentricity. The electroactive crystallites may preferably accommodate an eccentricity of at least 1 mm. The electroactive crystallites may be implanted in an eyeball that already has an existing crystal implant for correcting the image implanted by existing crystals (not shown) The optical dysfunction provided. This technique can be referred to as "back-necked," hydro-crystal implants. 4 Electroactive water crystals can be implanted in front of existing crystal implants (eg, * exposed surfaces closer to the eye), such as into the posterior chamber within the ciliary sulcus. In other embodiments, the electroactive crystallites can be implanted behind an existing crystal implant (e.g., an exposed surface that is further from the eye). In any of the above specific embodiments, the electroactive crystallites can be used in combination with another, for example, a fixed lens. The crystal can be positioned in the anterior or posterior chamber of the ciliary sulcus. When the embodiment described herein is used as a contact lens, the crystallite can include a soft hydrophilic skirt attached at or near the periphery of the crystal to stabilize the crystal at a desired centering position. The contact lens can be further stabilized by having a weight oriented area or a truncated attachment surface. The contact lens can be inductively charged by a contact lens case, such as when the crystal is in the case. The contact device 32 (e.g., a photodetector) of the contact lens may be located in or on the surface of the contact lens or attachment skirt spaced from the pupil axis to not interfere with a wearer's vision. In a specific embodiment, the sized adaptation parameters and/or components can be customized based on a user's anatomy needs and/or preferences. Figures 8A, 8B, and 8C each show the placement of an electroactive crystal 2 within an eye 128668.doc -23- 200848001 eye 38 having different pupil sizes. Figure 8A shows an enlarged pupil having a relatively large size. Figure 8B shows a bore having a relatively medium size. Figure 8C shows a pupil having a relatively small size. 8A, 8B and 8C each show the relative positions of the pupils 4 in the eye, the rainbow trout 42, the limbus and the sac; The electroactive crystallite may comprise an elastomeric outer casing 4 • a galvanically active element 6 . As the size of the pupil decreases, the lens covers an increase in the pupil 40 or one of the apertures of the eye. In any of the above specific embodiments, a liquid crystal material can be used. The liquid crystal material includes an aggregated state between the crystalline solid and the amorphous liquid. Many liquid crystal systems are composed of rod-shaped molecules and are widely classified into a nematic type, a cholesterol type, and a smectic type. The electroactive crystal can be used to correct refractive errors in the eye, including presbyopia, myopia, hyperopia, astigmatism, and higher order aberrations. As used herein, the near-observation distance may indicate a distance from 18 centimeters to approximately 12 inches from a point of view, which may indicate a distance from greater than 18 to 29 miles and a long distance may indicate It is more than about 29 miles from the face. Although the invention has been described in connection with a limited number of specific embodiments, many variations, modifications, and other applications of the invention are possible. It is understood that the skilled artisan understands that the scope of the appended claims is intended to cover all such modifications or variations within the true spirit of the invention. BRIEF DESCRIPTION OF THE DRAWINGS A specific embodiment of the present invention has been described with reference to the accompanying drawings, wherein: FIG. 1 is a 128668.doc • 24 in a folded state in accordance with an embodiment of the present invention. - 200848001 Pulling electric active water scales. The body 2 has an elastic outer casing and a rigid electro-active element; and the member shows a pleasing electrical activity in a folded state according to an embodiment of the present invention. a solar body 2 having an elastic outer casing and an elastic electroactive element; Fig. 2A shows an electroactive hydrocrystal 9i in an unfolded state according to a specific embodiment of the present invention, which has a rigid outer casing and an elastic Electroactive element; Γ FIG. 3A and FIG. 3B respectively show an unfolded view and a collapsed view of the elastic ray Φ, the present u, / sex crystal 2 in the open state according to the present invention, which has - a surface undulating diffraction pattern and a liquid crystal layer; - Fig. 7, page 7 挠 in accordance with an embodiment of the present invention, a flexible electroactive crystal 2' having a plurality of electroactive elements; Figure 4a in accordance with the present invention - a specific embodiment

電活性元件; I 1U 圖5A、圖5B、圖5C乃同β 口 及圖5D各顯示依據本發明之一星 實施例之一具有一雷、、去α _ 一 /性元件之撓性電活性水晶體2之一 正面圖; 圖6顯示眼睛之循環轉動; 圖7A及圖7B各顯示依摅 依據本發明之一具體實施例之 電活性水晶體2之一正而m , ①庄 圖(具有一軸A)與在軸A處所截取 之撓性電活性水晶體2 機取 ^ 斷面圖;以及 圖8A、圖8B及圖8C夂杜- 各顯示依據本發明之一具體實施例 在一具有不同瞳孔大小之 <眼睛内電活性水晶體2之放置。 128668.doc '25- 200848001 參考上述特定具體實施例之詳細說明及示範此類具體實 施例之附圖已更清楚地明白本發明之方法及設備。 【主要元件符號說明】 2 彈性電活性水晶體 4 彈性外殼/彈性膜 6 剛性電活性元件/彈性 6a 電活性元件 6b 電活性元件 6c 電活性元件 6d 電活性元件 8a 第一彈性膜 8b 第二彈性膜 10 電極 12 控制器/驅動電子5|件 14 電連接 16 電活性材料 18 對齊層 20 表面起伏繞射圖案 22 液晶層 24 絕緣材料 26 電源 28 記憶金屬材料 30 觸覺器件 32 感測裝置 doc -26 - 200848001 34 開口 36 包絡 38 眼睛 40 瞳孔 42 虹膜 44 角膜緣 46 鞏膜 48 壓電膜 50 動能驅動器 128668.doc -27-Electroactive element; I 1U FIG. 5A, FIG. 5B, FIG. 5C are the same as the β port and FIG. 5D each showing a flexible electrical activity of a thunder, de-α_/sex element in one of the star embodiments according to the present invention. Figure 6 shows a cyclical rotation of the eye; Figures 7A and 7B each show one of the electroactive crystals 2 according to an embodiment of the present invention. And a flexible electroactive crystal 2 taken at axis A; and Figs. 8A, 8B and 8C - each showing an embodiment having a different pupil size in accordance with an embodiment of the present invention <Placement of electroactive crystal 2 in the eye. The method and apparatus of the present invention are more clearly understood by reference to the detailed description of the specific embodiments of the invention and the accompanying drawings. [Main component symbol description] 2 Elastic electroactive crystal 4 Elastic outer casing / Elastic film 6 Rigid electroactive element / Elastic 6a Electroactive element 6b Electroactive element 6c Electroactive element 6d Electroactive element 8a First elastic film 8b Second elastic film 10 electrode 12 controller / drive electronics 5 | piece 14 electrical connection 16 electroactive material 18 alignment layer 20 surface relief diffraction pattern 22 liquid crystal layer 24 insulation material 26 power supply 28 memory metal material 30 haptic device 32 sensing device doc -26 200848001 34 Opening 36 Envelope 38 Eye 40 Pupil 42 Iris 44 Limbal edge 46 Scleral 48 Piezoelectric membrane 50 Kinetic energy driver 128668.doc -27-

Claims (1)

200848001 十、申請專利範圍: 1 · 一種彈性電活性水晶體,其包含: 一彈性折射性光學器件,其具有一固定折射率; 一電活性元件,其係嵌入於該彈性折射性光學器件 内,其中該電活性元件具有一可變折射率;以及° -控制器,其係電連接至該電活性元件,丨中當施加 電力至其時該電活性元件之該折射率會變化。 2. 如請求項丄之彈性電活性水晶體,其中該電活性元件彈 性係低於該彈性折射性光學器件。 3. 如請求们之彈性電活性水晶體,其中該電活性 非彈性的。 ” 4. 如請f項1之彈性電活性水晶體,其中該電活性元件係 與該彈性折射性光學器件一樣彈性。 5· :!求項1之彈性電活性水晶體,其中該彈性折射性光 予器件包含一聚砜與一聚醚醯亞胺材料之至少一者。 6.如請求们之彈性電活性水晶體,其中大多數光學功率 係由该彈性折射性光學器件來提供。 7·如請求項1之彈性電活性水晶體,其進-步包含一光電 ^ 其係電連接至該電活性元件以用於向其提供雷 力。 、电 如I,項1之彈性電活性水晶體.,其進一步包含一動能 〇其係電連接至該電活性元件以用於將眼睛之運 動:換成電力以向該電活性元件提供該電力。 I如凊未項1之彈性電活性水晶體,其進-步包含一壓電 128668.doc 200848001 :係凋適用於連接該水晶體至一眼睛結構,其中該 、電膜之張力係藉由眼睛之運動來加以改變以用於將該 張力變化變換成電力。 1〇·如叫求項1之彈性電活性水晶體,其中該電活性元件係 調適用於遠端調譜。 11.如請求項1之彈性電活性水晶體,#中該水晶體係一人 工水晶體、眼内光學器件、隱形眼鏡、角膜嵌體及角膜 冠蓋體之一。 12· —種彈性電活性水晶體,其包含: 一彈性外殼,其具有一固定光學功率; 一彈性電活性元件,其係嵌入於該外殼内,其中該電 活性7G件具有一光學功率,其係調適用於在從一最小光 學功率至一最大光學功率之一光學功率範圍内變化,其 中該固定光學功率係大於該最大光學功率。 13·如請求項12之彈性電活性水晶體,其進一步包含一光電 電池,其係電連接至該電活性元件以用於向其提供電 力。 14. 如請求項12之彈性電活性水晶體,其進一步包含一動能 驅動器,其係電連接至該電活性元件以用於向其提供電 力,其中該動能驅動器係調適用於將眼睛之運動轉換成 電力。 15. 如請求項12之彈性電活性水晶體,其進一步包含一壓電 膜,其係電連接至該電活性元件以用於向其提供電力, 其中該壓電膜之該張力係藉由眼睛之運動來改變以用於 128668.doc 200848001 將該張力變化變換成電力。 16·如請求項12之彈性電活性水晶體,其進一步包含同心環 狀電極,其係電連接至該電活性元件,其中當施加電力 至遠電活性元件時該元件係繞射的。 17·如請求項12之彈性電活性水晶體,其進一步包含一撓性 膜。 & 18. 如請求項17之彈性電活性水晶體,其中該彈性膜包含一 聚石風與一聚醚醯亞胺材料之至少一者。 19. 如請求項12之彈性電活性水晶體,其中該外殼包含一折 射性光學器件。 2〇·如請求項12之彈性電活性水晶體,其進一步包含一剛性 外殼,其中該水晶體係嵌入於該剛性外殼内用作一眼鏡 片。 & 2 1 ·如請求項12之彈性電活性水晶體,其中該電活性元件彈 性係低於該外殼。 22·如請求項12之彈性電活性水晶體,其中該電活性元件彈 性係與該外殼一樣撓性。 23·如請求項12之彈性電活性水晶體,其進一步包含記憶金 屬。 24·如請求項12之彈性電活性水晶體,其中該水晶體係一人 工水晶體、眼内光學器件、隱形眼鏡、角膜嵌體及角膜 冠蓋體之一。 25· —種彈性電活性水晶體,其包含: 一彈性外殼; 128668.doc 200848001 一剛性電活性元件,其係嵌入於該彈性外殼内,其中 該剛性電活性元件具有一可變折射率;以及 、 一控制器,其係電連接至該剛性電活性元件,其中當 施加電力至其時該剛性電活性元件之該折射率會變化。 26·如請求項25之撓性電活性水晶體,其進一步包含一動能 驅動器’其係電連接至該剛性電活性元件以用於將眼睛 之運動轉換成電力以向該剛性電活性元件提供該電力。 27·如明求項25之彈性電活性水晶體,其進一步包含一光電 電池,其係電連接至該剛性電活性元件以用於向其提供 電力。 28. 29. 30. 31. 如明求項25之彈性電活性水晶體,其進一步包含一壓電 膜,其係調適用於連接該水晶體至一眼睛結構,其中該 壓電膜之該張力係藉ώ目艮睛之運動來加w ?文變以用於將 該張力變化變換成電力。 如π求項25之彈性電活性水晶體,其中該彈性外殼包含 一聚砜與一聚醚醯亞胺材料之至少一者。 月求項25之彈性電活性水晶體,其中該電活性元件係 調適用於遠端調諧。 如請:項25之彈性電活性水晶體,其中該水晶體係—人 “曰體 '眼内光學器件、隱形眼鏡、角膜嵌體及角膜 冠蓋體之一。 、 32· —種彈性電活性水晶體,其包含: 第一彈性膜,其具有一表面起伏繞射圖案; 一第二彈性膜; 128668.doc 200848001 一液晶層,其係佈置於該第一膜與該第二膜之間,其 中該液晶層具有一可變折射率;以及 電極,其係電連接至該液晶層,其中當向該液晶層施 加電力時,該液晶層之該折射率會變化。 33. 如請求項32之彈性電活性水晶體,其中該第一彈性膜及 該第二彈性膜之各者係調適用於在一摺疊狀態與一展開 狀態之間移動,且該水晶體進一步包含一記憶金屬材料 以用於使該水晶體偏向該展開狀態。200848001 X. Patent application scope: 1 . An elastic electroactive crystal water comprising: an elastic refractive optical device having a fixed refractive index; an electroactive element embedded in the elastic refractive optical device, wherein The electroactive element has a variable index of refraction; and a controller is electrically coupled to the electroactive element, the index of refraction of the electroactive element being varied when electrical power is applied thereto. 2. The elastic electroactive crystal of claim 1 wherein the electroactive element is less elastic than the elastically refractive optical device. 3. Elastomeric electroactive crystals as claimed, where the electroactive is inelastic. 4. The elastic electroactive crystal of item 1 wherein the electroactive element is as elastic as the elastically refractive optical device. 5: The elastic electroactive crystal of claim 1, wherein the elastic refractive light is The device comprises at least one of a polysulfone and a polyetherimine material. 6. Elastomeric electroactive crystals as claimed, wherein most of the optical power is provided by the elastic refractive optical device. The elastic electroactive crystal of 1 which further comprises an electro-op that is electrically connected to the electroactive element for providing a tensile force thereto. The electroelastic electroactive crystal of the item 1, which further comprises A kinetic energy is electrically coupled to the electroactive element for use in moving the eye: replacing it with electrical power to provide the electrical energy to the electroactive element. I, as in the elastic electroactive hydrocrystal of claim 1, further comprising A piezoelectric 128668.doc 200848001: is suitable for connecting the crystal to an eye structure, wherein the tension of the electric film is changed by the movement of the eye for transforming the tension change into electricity 1) The elastic electroactive crystal of claim 1, wherein the electroactive element is adapted for distal modulation. 11. The elastic electroactive crystal of claim 1, wherein the crystal system is an artificial crystal, Intraocular optics, contact lenses, corneal inlays, and corneal caps. 12. An elastic electroactive hydrocrystal comprising: an elastomeric housing having a fixed optical power; an elastic electroactive element embedded in In the housing, wherein the electroactive 7G member has an optical power adapted to vary within a range of optical power from a minimum optical power to a maximum optical power, wherein the fixed optical power system is greater than the maximum optical 13. The elastic electroactive crystal of claim 12, further comprising a photovoltaic cell electrically coupled to the electroactive element for providing electrical power thereto. 14. The elastic electroactive crystal of claim 12, It further includes a kinetic energy driver electrically coupled to the electroactive element for providing power thereto, wherein the kinetic energy driver is The adjustment is adapted to convert the motion of the eye into electricity. 15. The elastic electroactive crystal of claim 12, further comprising a piezoelectric membrane electrically coupled to the electroactive element for providing electrical power thereto, wherein The tension of the piezoelectric film is changed by the movement of the eye for use in 128668.doc 200848001 to convert the tension change into electric power. The elastic electroactive crystal of claim 12, further comprising a concentric annular electrode, Electrically coupled to the electroactive element, wherein the element is diffracted when power is applied to the electro-active element. 17. The elastic electroactive crystal of claim 12, further comprising a flexible membrane. The elastic electroactive crystal of claim 17, wherein the elastic film comprises at least one of a polylith and a polyetherimine material. 19. The elastic electroactive crystal of claim 12, wherein the outer casing comprises a refractive optical device. 2. The elastic electroactive crystal of claim 12, further comprising a rigid outer casing, wherein the crystal system is embedded in the rigid outer casing for use as a lens. <2> The elastic electroactive crystal of claim 12, wherein the electroactive element is less elastic than the outer casing. 22. The elastic electroactive crystal of claim 12, wherein the electroactive element is as flexible as the outer casing. 23. The elastic electroactive crystal of claim 12, further comprising a memory metal. 24. The elastic electroactive crystal of claim 12, wherein the crystal system is one of a human crystal, an intraocular lens, a contact lens, a corneal inlay, and a corneal cap. An elastic electroactive crystal comprising: an elastic outer casing; 128668.doc 200848001 A rigid electroactive element embedded in the elastic outer casing, wherein the rigid electroactive element has a variable refractive index; A controller electrically coupled to the rigid electroactive element, wherein the refractive index of the rigid electroactive element changes when electrical power is applied thereto. 26. The flexible electroactive crystal of claim 25, further comprising a kinetic energy driver ' electrically coupled to the rigid electroactive element for converting motion of the eye into electrical power to provide the electrical power to the rigid electroactive element . 27. The elastic electroactive crystal of claim 25, further comprising a photovoltaic cell electrically coupled to the rigid electroactive element for providing electrical power thereto. The elastic electroactive crystal of claim 25, further comprising a piezoelectric film adapted to connect the crystal to an eye structure, wherein the tension of the piezoelectric film is The eye-catching movement adds a change to transform the tension change into electricity. An elastic electroactive crystal of claim 25, wherein the elastomeric shell comprises at least one of a polysulfone and a polyetherimine material. The elastic electroactive crystal of claim 25, wherein the electroactive element is adapted for remote tuning. For example, the elastic electroactive crystal of the item 25, wherein the crystal system is one of the "intraocular" optics, contact lenses, corneal inlays and corneal crowns of the human body. 32. an elastic electroactive crystal. The method includes: a first elastic film having a surface relief diffraction pattern; a second elastic film; 128668.doc 200848001 a liquid crystal layer disposed between the first film and the second film, wherein the liquid crystal layer Having a variable refractive index; and an electrode electrically connected to the liquid crystal layer, wherein the refractive index of the liquid crystal layer changes when power is applied to the liquid crystal layer. 33. Elastic electroactive crystal of claim 32 Wherein the first elastic film and the second elastic film are adapted to move between a folded state and an unfolded state, and the crystal further comprises a memory metal material for biasing the crystal to the unfolding status. 34. 如請求項32之彈性電活性水晶體,其中該第一膜與該第 二膜包含一聚砜與一聚醚醯亞胺材料之至少一者。 35·如請求項32之彈性電活性水晶體,其進一步包含一動能 驅動器’、係電連接至該液晶層用於將眼睛之運動轉換 成電力以向該液晶層提供電力。 3 6 ·如請求項3 2之彈性電活 性水晶體,其進一步包含一光電 電池,其係電連接至該液晶層用於向其提供電力。 37.如請求項32之彈性電活性水晶體,其進—步包含一壓電 膜”係㉟適用於連接該水晶體至—眼睛結構,其中該 C電膜之《亥張力係藉由眼睛之運動來加以改變以用於將 該張力變化變換成電力。 38·如請求項32之彈拇雷、、本& t Q 坪性電/舌性水晶體,其中該水晶體係一人 工水晶體、眼内本與怒 尤予斋件、隱形眼鏡、角膜嵌體及角膜 冠盡體之一。 39. 如請求項32之彈性電活性水晶體 間水晶體。 其中該水晶體係一眼 128668.doc 200848001 40·如明求項32之彈性電活性水晶體,其進一步包含一剛性 外设’其中該彈性電活性水晶體係欲人於該剛性外殼内 以用作一眼鏡片。 41·如請求項32之彈性電活性水晶體,其中該液晶層之該折 射率係調適用於遠端調譜。 42·如吻求項32之彈性電活性水晶體,其中該液晶層包含雙 穩態液晶。 43. 如請求項32之彈性電活性水晶體,其中該等電極之至少 一者包含一圖案化電極。 44. 如請求項32之彈性電活性水晶體,其中該等電極包含透 明傳導氧化物。 45. 如請求項32之彈性電活性水晶體,其中該等電極係挽性 的。 128668.doc34. The elastic electroactive crystal of claim 32, wherein the first membrane and the second membrane comprise at least one of a polysulfone and a polyetherimine material. 35. The elastic electroactive crystal of claim 32, further comprising a kinetic energy driver' electrically coupled to the liquid crystal layer for converting motion of the eye into electrical power to provide electrical power to the liquid crystal layer. The elastic electroactive crystal of claim 3, further comprising a photovoltaic cell electrically connected to the liquid crystal layer for supplying power thereto. 37. The elastic electroactive crystal of claim 32, further comprising a piezoelectric film system 35 for attaching the crystal to the eye structure, wherein the C tension of the C film is by movement of the eye The change is used to transform the change in tension into electric power. 38. The thumb of claim 32, the present & t Q flat electric/tongue crystal, wherein the crystal system is an artificial crystal, an intraocular lens One of the anger, the contact lens, the corneal inlay and the keratoconus. 39. The elastic electroactive intercrystalline crystal water crystal of claim 32. The crystal system has a glance of 128668.doc 200848001 40·If the item 32 The elastic electroactive crystallite further comprising a rigid peripheral device wherein the elastic electroactive crystal system is intended to be used in the rigid outer casing to serve as an ophthalmic lens. 41. The elastic electroactive crystal of claim 32, wherein the liquid crystal layer The index of refraction is adapted to the far-end spectrum. 42. The elastic electroactive crystal of the item 32, wherein the liquid crystal layer comprises a bistable liquid crystal. 43. The elastic electrodynamic activity of claim 32 The at least one of the electrodes comprising a patterned electrode. 44. The elastic electroactive crystal of claim 32, wherein the electrode comprises a transparent conductive oxide. 45. The elastic electroactive crystal of claim 32 Where the electrodes are pullable. 128668.doc
TW097102424A 2007-01-22 2008-01-22 Flexible dynamic electro-active lens TWI486154B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88151407P 2007-01-22 2007-01-22

Publications (2)

Publication Number Publication Date
TW200848001A true TW200848001A (en) 2008-12-16
TWI486154B TWI486154B (en) 2015-06-01

Family

ID=39644852

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097102424A TWI486154B (en) 2007-01-22 2008-01-22 Flexible dynamic electro-active lens

Country Status (16)

Country Link
US (5) US9155614B2 (en)
EP (3) EP2106566B1 (en)
JP (1) JP5436223B2 (en)
KR (1) KR101438413B1 (en)
CN (2) CN101641631B (en)
AR (1) AR064985A1 (en)
AU (1) AU2008207990B2 (en)
BR (1) BRPI0806820A2 (en)
CA (1) CA2675772C (en)
ES (2) ES2653418T3 (en)
HK (1) HK1134144A1 (en)
IL (6) IL268009B (en)
MX (1) MX2009007743A (en)
SG (1) SG177973A1 (en)
TW (1) TWI486154B (en)
WO (1) WO2008091859A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289584B2 (en) 2010-09-13 2016-03-22 The University Of British Columbia Remotely controlled drug delivery systems
US9500882B2 (en) 2013-09-17 2016-11-22 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including shaped liquid crystal elements with nano-scaled droplets of liquid crystal
US9541772B2 (en) 2013-09-17 2017-01-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9592116B2 (en) 2013-09-17 2017-03-14 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
TWI575277B (en) * 2011-12-23 2017-03-21 壯生和壯生視覺關懷公司 Variable optic ophthalmic device including liquid crystal elements
US9869885B2 (en) 2013-09-17 2018-01-16 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed liquid crystal layers and shaped dielectric layers
US9880398B2 (en) 2013-09-17 2018-01-30 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed and shaped liquid crystal layers
TWI649073B (en) * 2013-09-17 2019-02-01 壯生和壯生視覺關懷公司 Variable optic ophthalmic device including shaped liquid crystal elements and polarizing elements
TWI716766B (en) * 2018-09-21 2021-01-21 英商庫博光學國際有限公司 Flexible, adjustable lens power liquid crystal cells and lenses

Families Citing this family (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
FR2907559B1 (en) * 2006-10-19 2009-02-13 Essilor Int ELECRO-COMMANDABLE OPTICAL COMPONENT COMPRISING A SET OF CELLS
AR064985A1 (en) 2007-01-22 2009-05-06 E Vision Llc FLEXIBLE ELECTROACTIVE LENS
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
TWI511869B (en) 2008-02-20 2015-12-11 Johnson & Johnson Vision Care Energized biomedical device
US7931832B2 (en) * 2008-03-31 2011-04-26 Johnson & Johnson Vision Care, Inc. Ophthalmic lens media insert
US20100076553A1 (en) * 2008-09-22 2010-03-25 Pugh Randall B Energized ophthalmic lens
US9296158B2 (en) * 2008-09-22 2016-03-29 Johnson & Johnson Vision Care, Inc. Binder of energized components in an ophthalmic lens
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US20100078837A1 (en) * 2008-09-29 2010-04-01 Pugh Randall B Apparatus and method for formation of an energized ophthalmic device
US9427920B2 (en) 2008-09-30 2016-08-30 Johnson & Johnson Vision Care, Inc. Energized media for an ophthalmic device
US8348424B2 (en) 2008-09-30 2013-01-08 Johnson & Johnson Vision Care, Inc. Variable focus ophthalmic device
US9375886B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care Inc. Ophthalmic device with embedded microcontroller
US9375885B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care, Inc. Processor controlled ophthalmic device
JP5622749B2 (en) * 2009-01-15 2014-11-12 イービジョンスマート オプティクス インコーポレイテッド system
US8659835B2 (en) 2009-03-13 2014-02-25 Optotune Ag Lens systems and method
US8699141B2 (en) 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
US20100331974A1 (en) * 2009-06-26 2010-12-30 Schaper Jr Dale Thomas Intraocular Kinetic Power Generator
JP2012533355A (en) * 2009-07-14 2012-12-27 エレンザ, インコーポレイテッド Folding design for intraocular lenses
IN2012DN02154A (en) 2009-08-13 2015-08-07 Acufocus Inc
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
US9220590B2 (en) 2010-06-10 2015-12-29 Z Lens, Llc Accommodative intraocular lens and method of improving accommodation
CA2814043C (en) * 2010-10-11 2018-09-04 William Egan Fluid filled adjustable contact lenses
JP2014504171A (en) 2010-11-15 2014-02-20 エレンザ, インコーポレイテッド Compatible intraocular lens
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
AU2011328900B2 (en) 2010-11-16 2015-03-19 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US20130338767A1 (en) * 2010-12-29 2013-12-19 Elenza Inc. Devices and methods for dynamic focusing movement
US10098727B1 (en) * 2011-02-11 2018-10-16 Lensvector Inc. Tuneable liquid crystal lens intraocular implant and methods therefor
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
WO2012122411A1 (en) * 2011-03-08 2012-09-13 Pixeloptics, Inc. Advanced electro-active optic device
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9110310B2 (en) 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9889615B2 (en) 2011-03-18 2018-02-13 Johnson & Johnson Vision Care, Inc. Stacked integrated component media insert for an ophthalmic device
US9195075B2 (en) 2011-03-21 2015-11-24 Johnson & Johnson Vision Care, Inc. Full rings for a functionalized layer insert of an ophthalmic lens
US9804418B2 (en) * 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
US9102111B2 (en) 2011-03-21 2015-08-11 Johnson & Johnson Vision Care, Inc. Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens
US8608800B2 (en) * 2011-08-02 2013-12-17 Valdemar Portney Switchable diffractive accommodating lens
US9142329B2 (en) * 2011-09-19 2015-09-22 Mitsui Chemicals, Inc. Transparent conductive ink compositions and the use thereof in electro-active optical systems
WO2013082545A1 (en) 2011-12-02 2013-06-06 Acufocus, Inc. Ocular mask having selective spectral transmission
US8574295B2 (en) 2012-01-17 2013-11-05 Vista Ocular, Llc Accommodating intra-ocular lens system
US9364319B2 (en) 2012-09-25 2016-06-14 Valdemar Portney Refractive-diffractive switchable optical element
EP3594735A1 (en) 2012-01-18 2020-01-15 Valdemar Portney Refractive-diffractive switchable opical element
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
WO2013112748A1 (en) 2012-01-26 2013-08-01 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
EP2807518A1 (en) * 2012-01-26 2014-12-03 Johnson & Johnson Vision Care Inc. Stacked integrated component media insert for an ophthalmic device
IL224797A (en) * 2012-02-22 2017-03-30 Johnson & Johnson Vision Care Ophthalmic lens with segmented ring layers in a functionalized insert
US9134546B2 (en) * 2012-02-22 2015-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with segmented ring layers in a functionalized insert
US20130226293A1 (en) * 2012-02-23 2013-08-29 Novartis Ag Accommodative iol - refractive index change through change in polarizability of a medium
CN104272180B (en) 2012-02-27 2017-12-29 E-视觉智能光学公司 Electro-active lens with multiple depth diffraction structures
SG193124A1 (en) * 2012-02-28 2013-09-30 Johnson & Johnson Vision Care Method of arranging ring segments on a wafer for functionalized layers of an ophthalmic lens
US9351827B2 (en) * 2012-04-03 2016-05-31 Johnson & Johnson Vision Care, Inc. Lens driver for variable-optic electronic ophthalmic lens
US9980810B2 (en) * 2012-04-03 2018-05-29 Johnson & Johnson Vision Care, Inc. System controller for variable-optic electronic ophthalmic lens
TWI588560B (en) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 Lenses, devices, methods and systems for refractive error
WO2013158456A1 (en) * 2012-04-17 2013-10-24 E-Vision Smart Optics, Inc. Systems, devices, and methods for managing camera focus
GB2502881B (en) 2012-04-23 2016-03-16 E Vision Smart Optics Inc Systems, devices, and/or methods for managing implantable devices
US9364318B2 (en) 2012-05-10 2016-06-14 Z Lens, Llc Accommodative-disaccommodative intraocular lens
US8798332B2 (en) 2012-05-15 2014-08-05 Google Inc. Contact lenses
US20140000101A1 (en) * 2012-06-29 2014-01-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form printed batteries on ophthalmic devices
US9241669B2 (en) 2012-07-18 2016-01-26 Johnson & Johnson Vision Care, Inc. Neuromuscular sensing for variable-optic electronic ophthalmic lens
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US9523865B2 (en) 2012-07-26 2016-12-20 Verily Life Sciences Llc Contact lenses with hybrid power sources
US9158133B1 (en) 2012-07-26 2015-10-13 Google Inc. Contact lens employing optical signals for power and/or communication
US9298020B1 (en) 2012-07-26 2016-03-29 Verily Life Sciences Llc Input system
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
JP2014032316A (en) * 2012-08-03 2014-02-20 Hikoyuki Konno Contact lens with function and method for manufacturing contact lens with function
US20140036172A1 (en) * 2012-08-03 2014-02-06 Pixeloptics, Inc. Electro-Active Ophthalmic Lenses Comprising Low Viscosity Liquid Crystalline Mixtures
US8971978B2 (en) 2012-08-21 2015-03-03 Google Inc. Contact lens with integrated pulse oximeter
US9696564B1 (en) 2012-08-21 2017-07-04 Verily Life Sciences Llc Contact lens with metal portion and polymer layer having indentations
US9111473B1 (en) 2012-08-24 2015-08-18 Google Inc. Input system
US8820934B1 (en) 2012-09-05 2014-09-02 Google Inc. Passive surface acoustic wave communication
US20140192315A1 (en) 2012-09-07 2014-07-10 Google Inc. In-situ tear sample collection and testing using a contact lens
US9398868B1 (en) 2012-09-11 2016-07-26 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US10010270B2 (en) 2012-09-17 2018-07-03 Verily Life Sciences Llc Sensing system
US9326710B1 (en) 2012-09-20 2016-05-03 Verily Life Sciences Llc Contact lenses having sensors with adjustable sensitivity
US8960898B1 (en) 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8870370B1 (en) 2012-09-24 2014-10-28 Google Inc. Contact lens that facilitates antenna communication via sensor impedance modulation
US8989834B2 (en) 2012-09-25 2015-03-24 Google Inc. Wearable device
US8979271B2 (en) 2012-09-25 2015-03-17 Google Inc. Facilitation of temperature compensation for contact lens sensors and temperature sensing
US20140088372A1 (en) 2012-09-25 2014-03-27 Google Inc. Information processing method
US8821811B2 (en) 2012-09-26 2014-09-02 Google Inc. In-vitro contact lens testing
US8985763B1 (en) 2012-09-26 2015-03-24 Google Inc. Contact lens having an uneven embedded substrate and method of manufacture
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US9884180B1 (en) * 2012-09-26 2018-02-06 Verily Life Sciences Llc Power transducer for a retinal implant using a contact lens
US9063351B1 (en) 2012-09-28 2015-06-23 Google Inc. Input detection system
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US8965478B2 (en) 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
CA2887655C (en) 2012-10-17 2021-11-02 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9176332B1 (en) 2012-10-24 2015-11-03 Google Inc. Contact lens and method of manufacture to improve sensor sensitivity
US9757056B1 (en) 2012-10-26 2017-09-12 Verily Life Sciences Llc Over-molding of sensor apparatus in eye-mountable device
JP2016506541A (en) * 2012-12-18 2016-03-03 レンズヴェクター インコーポレイテッドLensvector Incorporated Liquid crystal optical device with advanced electric field control capability
US10386653B2 (en) 2012-12-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including liquid crystal elements
SG2013091095A (en) 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Method of forming a multi-piece insert device with seal for ophthalmic devices
EP3225385A1 (en) * 2013-01-09 2017-10-04 Johnson & Johnson Vision Care Inc. Method of forming a multi-piece insert device with seal for ophthalmic devices and a multi-piece insert device with glue seal for ophthalmic devices
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US9289954B2 (en) 2013-01-17 2016-03-22 Verily Life Sciences Llc Method of ring-shaped structure placement in an eye-mountable device
US9636016B1 (en) 2013-01-25 2017-05-02 Verily Life Sciences Llc Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices
US20140209481A1 (en) 2013-01-25 2014-07-31 Google Inc. Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement
EP2967817B1 (en) 2013-03-12 2021-03-10 Oculeve, Inc. Implant delivery devices and systems
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
WO2014143747A1 (en) * 2013-03-15 2014-09-18 E-Vision Smart Optics Inc. Post-surgical adjustable intra-ocular lens
JP6625434B2 (en) * 2013-03-15 2019-12-25 レンズヴェクター インコーポレイテッドLensvector Incorporated Method and apparatus for improving light convergence in multiple liquid crystal cell lenses
US9069186B2 (en) * 2013-03-15 2015-06-30 Johnson & Johnson Vision Care, Inc. Thermoformed ophthalmic insert devices
US9161712B2 (en) 2013-03-26 2015-10-20 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9113829B2 (en) * 2013-03-27 2015-08-25 Google Inc. Systems and methods for encapsulating electronics in a mountable device
CN104102022A (en) * 2013-04-03 2014-10-15 郑嘉鸿 Dynamic vision correction glasses
CA2883874A1 (en) 2013-04-19 2014-10-23 Oculeve, Inc. Nasal stimulation devices and methods
US9804416B2 (en) * 2013-05-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Energizable ophthalmic lens with an event-based coloration system
WO2014200864A1 (en) * 2013-06-14 2014-12-18 University Of Houston System Accommodation stimulation and recording device
US20140371560A1 (en) 2013-06-14 2014-12-18 Google Inc. Body-Mountable Devices and Methods for Embedding a Structure in a Body-Mountable Device
US9084561B2 (en) 2013-06-17 2015-07-21 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US9948895B1 (en) 2013-06-18 2018-04-17 Verily Life Sciences Llc Fully integrated pinhole camera for eye-mountable imaging system
US9685689B1 (en) 2013-06-27 2017-06-20 Verily Life Sciences Llc Fabrication methods for bio-compatible devices
US9814387B2 (en) 2013-06-28 2017-11-14 Verily Life Sciences, LLC Device identification
US9028772B2 (en) 2013-06-28 2015-05-12 Google Inc. Methods for forming a channel through a polymer layer using one or more photoresist layers
US9307901B1 (en) 2013-06-28 2016-04-12 Verily Life Sciences Llc Methods for leaving a channel in a polymer layer using a cross-linked polymer plug
US9492118B1 (en) 2013-06-28 2016-11-15 Life Sciences Llc Pre-treatment process for electrochemical amperometric sensor
KR20160039655A (en) 2013-08-01 2016-04-11 더 유니버시티 오브 맨체스터 Liquid crystal device and method of manufacture
US9335562B2 (en) 2013-09-17 2016-05-10 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices comprising dielectrics and liquid crystal polymer networks
US9366881B2 (en) 2013-09-17 2016-06-14 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including shaped liquid crystal polymer networked regions of liquid crystal
US9442309B2 (en) 2013-09-17 2016-09-13 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices comprising dielectrics and nano-scaled droplets of liquid crystal
US9268154B2 (en) * 2013-09-17 2016-02-23 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including hybrid alignment layers and shaped liquid crystal layers
JP2015058142A (en) 2013-09-18 2015-03-30 株式会社トプコン Artificial retina system
JP2015058141A (en) * 2013-09-18 2015-03-30 株式会社トプコン Intraocular lens system
FR3011095B1 (en) * 2013-09-26 2016-12-23 Valeo Vision ADAPTIVE OPTICAL FILTER FOR GLASSES OF GLASSES
US9642525B2 (en) 2013-11-22 2017-05-09 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with retinal vascularization monitoring system
US9654674B1 (en) 2013-12-20 2017-05-16 Verily Life Sciences Llc Image sensor with a plurality of light channels
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
WO2015105881A1 (en) * 2014-01-08 2015-07-16 Elenza, Inc. Electro-optical monofocal intraocular lens
ES2812752T3 (en) 2014-02-25 2021-03-18 Oculeve Inc Polymer formulations for nasolacrimal stimulation
WO2015134784A1 (en) * 2014-03-06 2015-09-11 Valdemar Portney Multi-mode operating optic for presbyopia correction
US9366570B1 (en) 2014-03-10 2016-06-14 Verily Life Sciences Llc Photodiode operable in photoconductive mode and photovoltaic mode
US9184698B1 (en) 2014-03-11 2015-11-10 Google Inc. Reference frequency from ambient light signal
EP3117264B1 (en) * 2014-03-12 2023-06-14 Verily Life Sciences LLC Contact lenses with hybrid power sources
US9789655B1 (en) 2014-03-14 2017-10-17 Verily Life Sciences Llc Methods for mold release of body-mountable devices including microelectronics
WO2015148735A1 (en) * 2014-03-25 2015-10-01 David Markus System and method for contact lens wireless communication
JP2014160258A (en) * 2014-03-25 2014-09-04 Hikoyuki Konno Contact lens with function
JP2014139690A (en) * 2014-04-02 2014-07-31 Hikoyuki Konno Functional contact lense
US10096802B2 (en) 2014-04-08 2018-10-09 International Business Machines Corporation Homogeneous solid metallic anode for thin film microbattery
EP2952850A1 (en) * 2014-06-03 2015-12-09 Optotune AG Optical device, particularly for tuning the focal length of a lens of the device by means of optical feedback
US9854437B1 (en) 2014-06-13 2017-12-26 Verily Life Sciences Llc Apparatus, system and method for exchanging encrypted communications with an eye-mountable device
US9880401B2 (en) * 2014-06-13 2018-01-30 Verily Life Sciences Llc Method, device and system for accessing an eye-mountable device with a user interface
US9933634B2 (en) 2014-06-13 2018-04-03 Verily Life Sciences Llc Apparatus, system and method for gaze tracking based on photodetection by an eye-mountable device
US10317702B2 (en) 2014-06-13 2019-06-11 Verily Life Sciences Llc Failsafe operation of eye-mountable device
US9841614B2 (en) * 2014-06-13 2017-12-12 Verily Life Sciences Llc Flexible conductor for use within a contact lens
US9690118B2 (en) 2014-06-13 2017-06-27 Verily Life Sciences Llc Eye-mountable device to provide automatic accommodation and method of making same
US9678361B2 (en) 2014-06-13 2017-06-13 Verily Life Sciences Llc Power delivery for accommodation by an eye-mountable device
EP3171928B1 (en) 2014-07-25 2020-02-26 Oculeve, Inc. Stimulation patterns for treating dry eye
EP2979662A1 (en) * 2014-08-01 2016-02-03 Akkolens International B.V. Intraocular lens with electricity generator and additional functional systems
EP3175289A4 (en) 2014-08-03 2018-04-18 Pogotec, Inc. Wearable camera systems and apparatus and method for attaching camera systems or other electronic devices to wearable articles
US9635222B2 (en) 2014-08-03 2017-04-25 PogoTec, Inc. Wearable camera systems and apparatus for aligning an eyewear camera
US9508566B2 (en) 2014-08-15 2016-11-29 International Business Machines Corporation Wafer level overmold for three dimensional surfaces
US10105082B2 (en) 2014-08-15 2018-10-23 International Business Machines Corporation Metal-oxide-semiconductor capacitor based sensor
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US10299910B2 (en) 2014-09-22 2019-05-28 Kevin J. Cady Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11109957B2 (en) 2014-09-22 2021-09-07 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US10945832B2 (en) 2014-09-22 2021-03-16 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11938018B2 (en) 2014-09-22 2024-03-26 Onpoint Vision, Inc. Intraocular pseudophakic contact lens (IOPCL) for treating age-related macular degeneration (AMD) or other eye disorders
US10159562B2 (en) * 2014-09-22 2018-12-25 Kevin J. Cady Intraocular pseudophakic contact lenses and related systems and methods
CN107106843A (en) 2014-10-22 2017-08-29 奥库利维公司 Stimulating apparatus and method for treating xerophthalmia
EP3209371A4 (en) 2014-10-22 2018-10-24 Oculeve, Inc. Implantable nasal stimulator systems and methods
EP3209370A4 (en) * 2014-10-22 2018-05-30 Oculeve, Inc. Contact lens for increasing tear production
EP3220859B8 (en) 2014-11-19 2020-06-10 AcuFocus, Inc. Fracturable mask for treating presbyopia
US10845620B2 (en) 2014-12-08 2020-11-24 Aleksandr Shtukater Smart contact lens
EP3238317A4 (en) 2014-12-23 2018-08-08 Pogotec, Inc. Wireless camera system and methods
US10345619B2 (en) * 2015-03-19 2019-07-09 Johnson & Johnson Vision Care, Inc. Thinned and flexible circuit boards on three-dimensional surfaces
CN107708615A (en) * 2015-05-01 2018-02-16 麦迪凯姆眼科(塞浦路斯)有限公司 Optimize the method and apparatus of vision for the customization via eyes spherical aberration
KR102248847B1 (en) 2015-06-01 2021-05-06 삼성전자주식회사 Contact lens with an energy harvesting unit
RU2017145375A (en) 2015-06-10 2019-07-10 Поготек, Инк. POINTS WITH MAGNETIC TRACK FOR ELECTRONIC PORTABLE DEVICE
US10481417B2 (en) 2015-06-10 2019-11-19 PogoTec, Inc. Magnetic attachment mechanism for electronic wearable device
US9877824B2 (en) 2015-07-23 2018-01-30 Elwha Llc Intraocular lens systems and related methods
US10376357B2 (en) 2015-07-23 2019-08-13 Elwha Llc Intraocular lens systems and related methods
US10154897B2 (en) 2015-07-23 2018-12-18 Elwha Llc Intraocular lens systems and related methods
US10307246B2 (en) 2015-07-23 2019-06-04 Elwha Llc Intraocular lens devices, systems, and related methods
US10324309B2 (en) 2015-07-23 2019-06-18 Elwha Llc Modifiable-focus lens devices, systems, and related methods
US10702375B2 (en) 2015-09-18 2020-07-07 Vista Ocular, Llc Electromyographic sensing and vision modification
EP3359987B1 (en) 2015-10-05 2024-02-28 AcuFocus, Inc. Methods of molding intraocular lenses
WO2017075405A1 (en) 2015-10-29 2017-05-04 PogoTec, Inc. Hearing aid adapted for wireless power reception
US9956073B2 (en) 2015-11-18 2018-05-01 Verily Life Sciences Llc Intraocular lens system with folding features
EP3384342B1 (en) 2015-11-24 2021-08-25 AcuFocus, Inc. Toric small aperture intraocular lens with extended depth of focus
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
EP3394663B1 (en) 2015-12-22 2022-12-07 e-Vision Smart Optics, Inc. Dynamic focusing head mounted display
CN108604023B (en) 2016-02-01 2022-04-15 E-视觉智能光学公司 Prism-enhanced lens and method of using prism-enhanced lens
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10162194B2 (en) 2016-03-01 2018-12-25 Verily Life Sciences Llc Eye mountable device and flexible assembly for fabrication thereof
US10353463B2 (en) 2016-03-16 2019-07-16 RaayonNova LLC Smart contact lens with eye driven control system and method
US11558538B2 (en) 2016-03-18 2023-01-17 Opkix, Inc. Portable camera system
US10859857B2 (en) 2016-03-22 2020-12-08 Johnson & Johnson Vision Care, Inc. Pulsed plus lens designs for myopia control, enhanced depth of focus and presbyopia correction
US10139522B2 (en) 2016-04-20 2018-11-27 Coopervision International Holding Company, Lp Silicone elastomer-silicone hydrogel hybrid contact lenses
JP6768828B2 (en) 2016-04-20 2020-10-14 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Silicone Elastomer-Silicone Hydrogel Hybrid Contact Lenses
US10139521B2 (en) 2016-04-20 2018-11-27 Coopervision International Holding Company, Lp Silicone elastomer-hydrogel hybrid contact lenses
CA3022683A1 (en) 2016-05-02 2017-11-09 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
US10835374B2 (en) * 2016-05-02 2020-11-17 Gilad BARZILAY Intraocular lens and methods and/or components associated therewith
JP7074960B2 (en) 2016-08-24 2022-05-25 カール ツァイス メディテック アーゲー Dual Mode Adjustable-Non-Adjustable Intraocular Lens
US11099405B2 (en) 2016-09-17 2021-08-24 Raayon Nova LLC Master slave smart contact lens system
US11119337B1 (en) 2016-09-30 2021-09-14 Verily Life Sciences Llc Ophthalmic device including optical elements having patterned tabs
EP3539285A4 (en) 2016-11-08 2020-09-02 Pogotec, Inc. A smart case for electronic wearable device
JP2020500609A (en) 2016-12-02 2020-01-16 オキュリーブ, インコーポレイテッド Apparatus and method for dry eye prediction and treatment recommendations
WO2018193057A1 (en) * 2017-04-20 2018-10-25 Essilor International Optical device adapted to be worn by a wearer
US10905545B2 (en) 2017-05-05 2021-02-02 Verily Life Sciences Llc Electrowetting ophthalmic devices including an elastic electrode
US11129708B2 (en) * 2017-07-31 2021-09-28 Rxsight, Inc. Birefringent intraocular lens
US10663762B2 (en) 2017-08-08 2020-05-26 International Business Machines Corporation Dielectric electro-active polymer contact lenses
US10859868B2 (en) * 2017-08-11 2020-12-08 Coopervision International Limited Flexible liquid crystal cells and lenses
US10905546B1 (en) 2017-09-06 2021-02-02 Verily Life Sciences Llc Controlled unfolding of intraocular lenses
JP2018020137A (en) * 2017-09-12 2018-02-08 株式会社トプコン Intraocular Lens System
WO2019140036A1 (en) 2018-01-11 2019-07-18 E-Vision Smart Optics, Inc. Three-dimensional (3d) printing of electro-active lenses
WO2019138411A1 (en) * 2018-01-14 2019-07-18 David Smadja Lens systems for visual correction and enhancement
US11583387B2 (en) * 2018-01-16 2023-02-21 Sav-Iol Sa Ophthalmic assembly for implantation in an anterior chamber of an eye of a patient and method for accommodating the vision of the patient
CN108089326B (en) 2018-02-01 2023-12-26 北京七鑫易维信息技术有限公司 Device suitable for being used with glasses
US20190282094A1 (en) * 2018-03-14 2019-09-19 Menicon Co. Ltd. Wireless Smart Contact Lens for Intraocular Pressure Measurement
EP3790508A4 (en) 2018-05-09 2022-02-09 AcuFocus, Inc. Intraocular implant with removable optic
US11300857B2 (en) 2018-11-13 2022-04-12 Opkix, Inc. Wearable mounts for portable camera
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
MX2022011568A (en) 2020-03-19 2022-10-18 Alcon Inc High refractive index siloxane insert materials for embedded contact lenses.
MX2022011571A (en) 2020-03-19 2022-10-18 Alcon Inc Insert materials with high oxygen permeability and high refractive index.
WO2021186383A1 (en) 2020-03-19 2021-09-23 Alcon Inc. Embedded silicone hydrogel contact lenses
US11833770B2 (en) 2020-03-19 2023-12-05 Alcon Inc. Method for producing embedded or hybrid hydrogel contact lenses
WO2022061028A1 (en) * 2020-09-18 2022-03-24 The Regents Of The University Of California Micro-engineered poly(hema) hydrogel for wearable contact lens biosensing and other applications
US11353960B1 (en) 2020-11-24 2022-06-07 Strathspey Crown, LLC Intraocular brain interface
CN114839796A (en) * 2021-02-01 2022-08-02 上海婷伊美科技有限公司 Variable-focus hard contact lens and manufacturing method thereof
JP2024508842A (en) 2021-03-23 2024-02-28 アルコン インク. High refractive index polysiloxane vinyl crosslinker
KR20230132841A (en) 2021-03-24 2023-09-18 알콘 인코포레이티드 Method for manufacturing intraocular hydrogel contact lenses
US20220326412A1 (en) 2021-04-01 2022-10-13 Alcon Inc. Method for making embedded hydrogel contact lenses
EP4313568A1 (en) 2021-04-01 2024-02-07 Alcon Inc. Embedded hydrogel contact lenses
DE102021118003A1 (en) 2021-07-13 2023-01-19 Carl Zeiss Meditec Ag Artificial eye lens with integrated image projection device, electronic information system and method
US20230119885A1 (en) * 2021-10-19 2023-04-20 Coopervision International Limited Flexible liquid crystal-containing lenses
US20230341711A1 (en) * 2022-04-22 2023-10-26 Alphamicron Incorporated Variable transmission optical device and antenna
US20230339148A1 (en) 2022-04-26 2023-10-26 Alcon Inc. Method for making embedded hydrogel contact lenses
WO2023209570A1 (en) 2022-04-26 2023-11-02 Alcon Inc. Method for making embedded hydrogel contact lenses
WO2023218324A1 (en) 2022-05-09 2023-11-16 Alcon Inc. Method for making embedded hydrogel contact lenses
WO2024084191A1 (en) * 2022-10-19 2024-04-25 Coopervision International Limited Contact lens containing a diffractive optical element and related methods
WO2024089400A1 (en) * 2022-10-28 2024-05-02 Coopervision International Limited Electrically switchable liquid crystal cell, contact lens and method relating thereto

Family Cites Families (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576581A (en) 1946-07-09 1951-11-27 Benjamin F Edwards Polyfocal spectacles
US2437642A (en) 1946-08-16 1948-03-09 Henroteau Francois Char Pierre Spectacles
US2578581A (en) 1948-08-18 1951-12-11 Turners Asbestos Cement Co Reinforcing asbestos-cement sheets
US3161718A (en) 1961-07-12 1964-12-15 William Kurasch Variable power fluid lens
US3245315A (en) 1962-09-05 1966-04-12 Alvin M Marks Electro-optic responsive flashblindness controlling device
US3248460A (en) 1963-02-28 1966-04-26 Bausch & Lomb Method of making lenses
US3246460A (en) 1963-04-25 1966-04-19 Fmc Corp Pruning machine
US3309162A (en) 1963-06-28 1967-03-14 Ibm Electro-optical high speed adjustable focusing zone plate
DE1955859C3 (en) 1969-11-06 1982-04-08 Fa. Carl Zeiss, 7920 Heidenheim Device for determining the refractive state of an eye
US3614215A (en) 1970-04-23 1971-10-19 Leo Mackta Fluid bifocal spectacle
US3738734A (en) 1972-02-23 1973-06-12 S Tait Optical fluid lens construction
CA1012392A (en) 1973-08-16 1977-06-21 American Optical Corporation Progressive power ophthalmic lens
FR2369583A1 (en) 1976-11-02 1978-05-26 Glorieux Gilbert OPTICAL LENS ALLOWING DIFFERENTIAL CORRECTION
JPS5364559A (en) 1976-11-22 1978-06-09 Seiko Epson Corp Multilayer display body for watches
US4190621A (en) 1977-03-10 1980-02-26 Martin Greshes Method for molding optical plastic lenses of the standard and bifocal type
US4181408A (en) 1977-12-05 1980-01-01 Senders John W Vision compensation
US4190330A (en) 1977-12-27 1980-02-26 Bell Telephone Laboratories, Incorporated Variable focus liquid crystal lens system
US4300818A (en) 1978-03-13 1981-11-17 Schachar Ronald A Multifocal ophthalmic lens
US4320939A (en) 1978-06-19 1982-03-23 Mueller Gary E Optical filtering element including fluorescent material
JPS5576323U (en) 1978-11-22 1980-05-26
JPS5576323A (en) 1978-12-01 1980-06-09 Seiko Epson Corp Electronic spectacles
US4264154A (en) 1979-06-05 1981-04-28 Polaroid Corporation Apparatus for automatically controlling transmission of light through a lens system
DE3102819A1 (en) 1980-01-29 1982-02-18 Babcock-Hitachi K.K., Tokyo METHOD FOR RECOVERY OF HEAT IN COAL GASIFICATION AND DEVICE THEREFOR
US4279474A (en) 1980-03-25 1981-07-21 Belgorod Barry M Spectacle lens having continuously variable controlled density and fast response time
FR2481813A1 (en) 1980-04-30 1981-11-06 Essilor Int PROGRESSIVE OPHTHALMIC LENS
FR2487566A1 (en) 1980-07-25 1982-01-29 Thomson Csf MATRIX FOR DETECTING ELECTROMAGNETIC RADIATION AND INTENSIFYING RADIOLOGICAL IMAGES COMPRISING SUCH A MATRIX
US4373218A (en) 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4466703A (en) 1981-03-24 1984-08-21 Canon Kabushiki Kaisha Variable-focal-length lens using an electrooptic effect
US4418990A (en) 1981-07-20 1983-12-06 Gerber Scientific, Inc. Eyeglasses and other lenses of variable focal length and means and method for varying such focal length
US4457585A (en) 1981-08-31 1984-07-03 Ducorday Gerard M Magnifier reader
JPS58118618A (en) 1982-01-07 1983-07-14 Canon Inc Focal length variable lens
US4466706A (en) 1982-03-10 1984-08-21 Lamothe Ii Frederick H Optical fluid lens
US4572616A (en) 1982-08-10 1986-02-25 Syracuse University Adaptive liquid crystal lens
US4709996A (en) * 1982-09-30 1987-12-01 Michelson Paul E Fluid lens
US4577928A (en) 1983-04-21 1986-03-25 Data Vu Company CRT magnifying lens attachment and glare reduction system
US4529268A (en) 1983-04-21 1985-07-16 Data Vu Company Retrofit visual display lens holder
FR2554999B1 (en) 1983-11-15 1986-01-17 Thomson Csf PHOTOSENSITIVE DEVICE FOR INFRARED
WO1985003139A1 (en) 1984-01-04 1985-07-18 K-Corporation Of Japan Special lens for spectacles
JPS60191548A (en) 1984-03-12 1985-09-30 Hitachi Ltd Image sensor
US5217490A (en) * 1984-04-11 1993-06-08 Kabi Pharmacia Ab Ultraviolet light absorbing intraocular implants
US4601545A (en) * 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
DE3430334A1 (en) 1984-08-17 1986-02-27 Optische Werke G. Rodenstock, 8000 München PROGRESSIVE EYEWEAR WITH TWO ASPHERIC AREAS
US4795248A (en) 1984-08-31 1989-01-03 Olympus Optical Company Ltd. Liquid crystal eyeglass
CA1265688A (en) 1984-10-17 1990-02-13 Alain Rainville Bi-focal corneal lens and method of making the same
JPS61156227A (en) 1984-12-28 1986-07-15 Olympus Optical Co Ltd Fresnel liquid crystal spectacle
GB2169417A (en) 1984-12-28 1986-07-09 Olympus Optical Co Liquid crystal lens having a variable focal length
US4756605A (en) 1985-02-01 1988-07-12 Olympus Optical Co., Ltd. Liquid crystal spectacles
US4772094A (en) 1985-02-05 1988-09-20 Bright And Morning Star Optical stereoscopic system and prism window
USD298250S (en) 1985-03-15 1988-10-25 Kildall Gary A Image magnifier for computer displays
JPS61156227U (en) 1985-03-19 1986-09-27
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US4666445A (en) * 1985-10-01 1987-05-19 Tillay Michael J Intraocular lens with shape memory alloy haptic/optic and method of use
GB2183059B (en) 1985-11-05 1989-09-27 Michel Treisman Suspension system for a flexible optical membrane
JPS62129813A (en) 1985-11-29 1987-06-12 Olympus Optical Co Ltd Optical apparatus having stereoscopic parallax utilizing liquid crystal
FR2593343B1 (en) 1986-01-20 1988-03-25 Thomson Csf MATRIX OF PHOTOSENSITIVE ELEMENTS AND ITS MANUFACTURING METHOD, READING METHOD THEREOF, AND APPLICATION OF THIS MATRIX TO IMAGE TAKING
FR2593987B1 (en) 1986-01-24 1989-08-04 Thomson Csf SOLID PHOTOSENSITIVE DEVICE
JP2666907B2 (en) 1986-03-05 1997-10-22 オリンパス光学工業株式会社 Liquid crystal lens
IT1190508B (en) 1986-03-24 1988-02-16 Daniele Senatore ADJUSTABLE TRANSPARENCY GLASSES
US4712870A (en) 1986-04-03 1987-12-15 Robinson Donald L Fresnell lens and filter for use with computers and the like
JPS62295001A (en) 1986-06-14 1987-12-22 Nippon Sheet Glass Co Ltd Multi-focus spherical lens made of synthetic resin and its production
GB8618345D0 (en) 1986-07-28 1986-09-03 Purvis A Optical components
DE3727945A1 (en) 1986-08-22 1988-02-25 Ricoh Kk LIQUID CRYSTAL ELEMENT
NL8602149A (en) 1986-08-25 1988-03-16 Philips Nv OPTIC IMAGING SYSTEM WITH ELECTRONICALLY VARIABLE FOCAL DISTANCE AND OPTICAL IMAGE RECORDER PROVIDED WITH SUCH A SYSTEM.
JPS63124028A (en) 1986-11-13 1988-05-27 Fuji Photo Film Co Ltd Liquid crystal shutter array
US4787733A (en) 1986-11-24 1988-11-29 Polycore Optical Pte Ltd Method for designing progressive addition lenses
US4929865A (en) 1987-01-29 1990-05-29 Visual Ease, Inc. Eye comfort panel
FR2617990B1 (en) 1987-07-07 1991-04-05 Siegfried Klein DEVICE FOR VIEW
JPH0728002Y2 (en) 1987-07-13 1995-06-28 住友ゴム工業株式会社 Radial tire
US4869588A (en) 1987-09-14 1989-09-26 Opticorp, Inc. Non-progressive multifocal ophthamic lenses
US4952048A (en) 1987-09-14 1990-08-28 Opticorp, Inc. Method of designing a non-progressive multifocal ophthalmic lens
US4981342A (en) 1987-09-24 1991-01-01 Allergan Inc. Multifocal birefringent lens system
US5178800A (en) 1990-10-10 1993-01-12 Innotech, Inc. Method for forming plastic optical quality spectacle lenses
US4873029A (en) 1987-10-30 1989-10-10 Blum Ronald D Method for manufacturing lenses
US5219497A (en) 1987-10-30 1993-06-15 Innotech, Inc. Method for manufacturing lenses using thin coatings
US5147585A (en) 1987-10-30 1992-09-15 Blum Ronald D Method for forming plastic optical quality spectacle lenses
US4816031A (en) 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
FR2627924B1 (en) 1988-02-26 1990-06-22 Thomson Csf PHOTOSENSITIVE DEVICE AND IMAGE DETECTOR COMPRISING SUCH A DEVICE, PARTICULARLY A DOUBLE ENERGY IMAGE DETECTOR
IT214515Z2 (en) 1988-03-03 1990-05-09 Baltea PROTECTION SCREEN FOR DISPLAY
US4907860A (en) 1988-03-03 1990-03-13 Noble Lowell A Three dimensional viewing glasses
US5130856A (en) 1988-03-14 1992-07-14 Designs By Royo Easy viewing device with shielding
JPH01237610A (en) 1988-03-18 1989-09-22 Olympus Optical Co Ltd Auto focus device
US4930884A (en) 1988-04-12 1990-06-05 Designs By Royo Easy viewing device with shielding
US5200859A (en) 1988-05-06 1993-04-06 Ergonomic Eyecare Products, Inc. Vision saver for computer monitor
US4880300A (en) 1988-05-06 1989-11-14 Payner Leonard E Vision saver for computer monitor
US5150234A (en) 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
FR2638042A1 (en) 1988-10-14 1990-04-20 Thomson Csf METHOD FOR REDUCING THE REMANENCE OF A PHOTOTRANSISTOR, IN PARTICULAR OF THE NIPIN TYPE
US4968127A (en) 1988-11-23 1990-11-06 Russell James P Controllable, variable transmissivity eyewear
US4958907A (en) 1989-01-17 1990-09-25 Davis Dale G Computer screen magnifier
US5073021A (en) 1989-03-17 1991-12-17 Environmental Research Institute Of Michigan Bifocal ophthalmic lens constructed from birefringent material
JP2817178B2 (en) 1989-04-07 1998-10-27 株式会社ニコン Metal frame for glasses
US5015086A (en) 1989-04-17 1991-05-14 Seiko Epson Corporation Electronic sunglasses
US4961639A (en) 1989-06-30 1990-10-09 Lazarus Stuart M Prism section lens spectacles
US5091801A (en) 1989-10-19 1992-02-25 North East Research Associates, Inc. Method and apparatus for adjusting the focal length of a optical system
US5076665A (en) 1989-12-13 1991-12-31 Robert C. Mardian, Jr. Computer screen monitor optic relief device
DE4002029A1 (en) 1990-01-24 1991-07-25 Peter Hoefer METHOD FOR THE PRODUCTION OF CONTACT LENSES AND CONTACT LENS PRODUCTION SYSTEM
US5239412A (en) 1990-02-05 1993-08-24 Sharp Kabushiki Kaisha Solid image pickup device having microlenses
US5089023A (en) 1990-03-22 1992-02-18 Massachusetts Institute Of Technology Diffractive/refractive lens implant
US5305028A (en) 1990-04-24 1994-04-19 Hitoshi Okano Multifocal lens provided with progressive focal segment
WO1992001417A1 (en) 1990-07-19 1992-02-06 Horwitz Larry S Vision measurement and correction
US5050981A (en) 1990-07-24 1991-09-24 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens
JP3159477B2 (en) 1990-07-31 2001-04-23 キヤノン株式会社 Ophthalmic equipment
US5229797A (en) 1990-08-08 1993-07-20 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lenses
US5171266A (en) 1990-09-04 1992-12-15 Wiley Robert G Variable power intraocular lens with astigmatism correction
US5173723A (en) 1990-10-02 1992-12-22 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
US5066301A (en) 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
US5208688A (en) 1991-02-08 1993-05-04 Osd Envizion Company Eye protection device for welding helmets
JP3200856B2 (en) 1991-02-12 2001-08-20 ソニー株式会社 Solid-state imaging device
US5108169A (en) 1991-02-22 1992-04-28 Mandell Robert B Contact lens bifocal with switch
US5424927A (en) 1991-06-27 1995-06-13 Rayovac Corporation Electro-optic flashlight electro-optically controlling the emitted light
US5440357A (en) 1991-09-03 1995-08-08 Lawrence D. Quaglia Vari-lens phoropter and automatic fast focusing infinitely variable focal power lens units precisely matched to varying distances by radar and electronics
US5229885A (en) 1991-09-03 1993-07-20 Quaglia Lawrence D Infinitely variable focal power lens units precisely matched to varying distances by radar and electronics
US5182585A (en) 1991-09-26 1993-01-26 The Arizona Carbon Foil Company, Inc. Eyeglasses with controllable refracting power
US5200359A (en) 1991-10-03 1993-04-06 Micron Technology, Inc. Method of decreasing contact resistance between a lower elevation aluminum layer and a higher elevation electrically conductive layer
JPH05100201A (en) 1991-10-09 1993-04-23 Seiko Epson Corp Variable focus lens
US5786883A (en) 1991-11-12 1998-07-28 Pilkington Barnes Hind, Inc. Annular mask contact lenses
US5184156A (en) 1991-11-12 1993-02-02 Reliant Laser Corporation Glasses with color-switchable, multi-layered lenses
FR2683918B1 (en) 1991-11-19 1994-09-09 Thomson Csf MATERIAL CONSTITUTING A RIFLE SCOPE AND WEAPON USING THE SAME.
EP0578833A4 (en) 1992-02-03 1994-06-29 Seiko Epson Corp Variable focus visual power correction apparatus
USD350342S (en) 1992-03-31 1994-09-06 Less Gauss, Inc. Combined optical viewing enhancer and support for a computer monitor
CA2118115A1 (en) 1992-04-15 1993-10-28 Fredric J. Lim Lenses with high impact resistance and high scratch resistance
DE4214326A1 (en) 1992-04-30 1993-11-04 Wernicke & Co Gmbh DEVICE FOR EDGE PROCESSING OF EYE GLASSES
US5227916A (en) 1992-05-13 1993-07-13 Minnesota Mining And Manufacturing Company Adjustable mounting mechanism for an optical filter screen
GB9211427D0 (en) 1992-05-29 1992-07-15 Crystalens Ltd Liquid crystal lens circuit
FR2693020B1 (en) 1992-06-26 1999-01-22 Thomson Consumer Electronics NEMATIC LIQUID CRYSTAL DISPLAY DEVICE.
USD342063S (en) 1992-09-10 1993-12-07 Curtis Manufacturing Company, Inc. Combined antiglare monitor filter and holder
US5877876A (en) 1992-10-09 1999-03-02 Apeldyn Corporation Diffractive optical switch with polarizing beam splitters
US5382986A (en) 1992-11-04 1995-01-17 Reliant Laser Corporation Liquid-crystal sunglasses indicating overexposure to UV-radiation
US5443506A (en) 1992-11-18 1995-08-22 Garabet; Antoine L. Lens with variable optical properties
US5359444A (en) 1992-12-24 1994-10-25 Motorola, Inc. Auto-focusing optical apparatus
US5416622A (en) 1993-02-01 1995-05-16 Minnesota Mining And Manufacturing Company Electrical connector
US5352886A (en) 1993-03-30 1994-10-04 The United States Of America As Represented By The Secretary Of The Air Force Micro non-imaging light concentrators for image sensors with a lenslet array
JPH06324298A (en) 1993-03-31 1994-11-25 Citizen Watch Co Ltd Optical device
US5712721A (en) 1993-04-07 1998-01-27 Technology Partnership, Plc Switchable lens
US5324930A (en) 1993-04-08 1994-06-28 Eastman Kodak Company Lens array for photodiode device with an aperture having a lens region and a non-lens region
ATA95693A (en) * 1993-05-14 1997-11-15 Bifocon Optics Forsch & Entw LENS
GB9314402D0 (en) 1993-07-12 1993-08-25 Philips Electronics Uk Ltd An imaging device
JPH0728002A (en) 1993-07-13 1995-01-31 Toray Ind Inc Ophthalmic lens
US5739959A (en) 1993-07-20 1998-04-14 Lawrence D. Quaglia Automatic fast focusing infinitely variable focal power lens units for eyeglasses and other optical instruments controlled by radar and electronics
US5608587A (en) 1993-08-06 1997-03-04 Seagate Technology, Inc. Method using magnetic disk servo pattern with buried identification patterns
US5522323A (en) 1993-08-24 1996-06-04 Richard; Paul E. Ergonimic computer workstation and method of using
US5900720A (en) 1993-09-10 1999-05-04 Kallman; William R. Micro-electronic power supply for electrochromic eyewear
IT1262530B (en) 1993-10-06 1996-07-02 G S R L Ab EYEWEAR, EYE, MONOCULAR OR SIMILAR OPTICAL INSTRUMENT WITH LIQUID CRYSTAL LENSES.
US5411537A (en) 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5512371A (en) 1994-03-18 1996-04-30 Innotech, Inc. Composite lenses
US5668620A (en) 1994-04-12 1997-09-16 Kurtin; Stephen Variable focal length lenses which have an arbitrarily shaped periphery
US5999328A (en) 1994-11-08 1999-12-07 Kurtin; Stephen Liquid-filled variable focus lens with band actuator
US5653751A (en) 1994-12-07 1997-08-05 Samiy; Nassrollah Systems and methods for projecting an image onto a retina
US6437762B1 (en) 1995-01-11 2002-08-20 William A. Birdwell Dynamic diffractive optical transform
US5682223A (en) 1995-05-04 1997-10-28 Johnson & Johnson Vision Products, Inc. Multifocal lens designs with intermediate optical powers
GB9511091D0 (en) 1995-06-01 1995-07-26 Silver Joshua D Variable power spectacles
US5488439A (en) 1995-06-14 1996-01-30 Weltmann; Alfred Lens holder system for eyeglass frame selection
US5800530A (en) 1995-08-18 1998-09-01 Rizzo, Iii; Joseph Intra-ocular lens system including microelectric components
US5654786A (en) 1996-01-11 1997-08-05 Robert C. Burlingame Optical lens structure and control system for maintaining a selected constant level of transmitted light at a wearer's eyes
EP0785457A3 (en) 1996-01-17 1998-10-14 Nippon Telegraph And Telephone Corporation Optical device and three-dimensional display device
US5728155A (en) 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US5628794A (en) * 1996-03-08 1997-05-13 Lindstrom; Richard L. Multifocal corneal implant lens having a hydrogelo coating
US5880809A (en) 1996-12-30 1999-03-09 Scientific Optics, Inc. Contact lens
WO1997035224A1 (en) 1996-03-21 1997-09-25 Sola International Holdings Ltd. Improved single vision lenses
US5861934A (en) 1996-05-06 1999-01-19 Innotech, Inc. Refractive index gradient lens
US5683457A (en) 1996-05-09 1997-11-04 Prism Opthalmics, L.L.C. Prismatic intraocular lenses and related method of using such lenses to restore vision in patients with central field loss
US5971540A (en) 1996-06-07 1999-10-26 Olympus Austria Gesellschaft Magnifying spectacles with variable focus, variable magnification factor and automatic parallax compensation
US5905561A (en) 1996-06-14 1999-05-18 Pbh, Inc. Annular mask lens having diffraction reducing edges
US5859685A (en) 1996-07-18 1999-01-12 Innotech, Inc. Achromatic ophthalmic lenses
US5861936A (en) 1996-07-26 1999-01-19 Gillan Holdings Limited Regulating focus in accordance with relationship of features of a person's eyes
US6089716A (en) 1996-07-29 2000-07-18 Lashkari; Kameran Electro-optic binocular indirect ophthalmoscope for stereoscopic observation of retina
US5728156A (en) * 1996-08-06 1998-03-17 Prism Opthalmics, L.L.C. Prismatic intraocular lenses and related methods of in situ alteration of their optical characteristics
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
WO1998011458A1 (en) 1996-09-13 1998-03-19 Joshua David Silver Improvements in or relating to variable focus lenses
US6271914B1 (en) 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US20010041884A1 (en) 1996-11-25 2001-11-15 Frey Rudolph W. Method for determining and correcting vision
US5815239A (en) 1996-12-05 1998-09-29 Chapman; Judith E. Contact lenses providing improved visual acuity
US5777719A (en) 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
JP2000501523A (en) 1997-02-06 2000-02-08 ボシュ アンド ロム インコーポレイテッド Electrical connection structure for electro-optical devices
AUPO625797A0 (en) 1997-04-17 1997-05-15 Sola International Holdings Ltd Spectacles bearing sunglass lenses
US6626532B1 (en) 1997-06-10 2003-09-30 Olympus Optical Co., Ltd. Vari-focal spectacles
AU740673B2 (en) 1997-11-21 2001-11-08 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
FR2772489B1 (en) 1997-12-16 2000-03-10 Essilor Int MULTIFOCAL OPHTHALMIC LENSES WITH VARIABLE SPHERICAL ABERRATION FOLLOWING ADDITION AND AMETROPIA
US5963300A (en) 1998-02-17 1999-10-05 Amt Technologies, Corp. Ocular biometer
GB9805977D0 (en) 1998-03-19 1998-05-20 Silver Joshua D Improvements in variable focus optical devices
US6614408B1 (en) 1998-03-25 2003-09-02 W. Stephen G. Mann Eye-tap for electronic newsgathering, documentary video, photojournalism, and personal safety
US20040108971A1 (en) 1998-04-09 2004-06-10 Digilens, Inc. Method of and apparatus for viewing an image
US6213602B1 (en) 1998-04-30 2001-04-10 Ppg Industries Ohio, Inc. Metal bus bar and tab application method
US6324429B1 (en) * 1998-05-08 2001-11-27 Massachusetts Eye And Ear Infirmary Chronically implantable retinal prosthesis
US5956183A (en) 1998-05-26 1999-09-21 Epstein; Saul Field-customizable variable focal length lens
JPH11352445A (en) 1998-06-09 1999-12-24 Olympus Optical Co Ltd Variable focus spectacles
US6040947A (en) 1998-06-09 2000-03-21 Lane Research Variable spectacle lens
IL124991A (en) 1998-06-18 2002-12-01 Rotlex 1994 Ltd Multifocal lens combining the advantages of progressive addition lenses and diffractive lenses
US6191881B1 (en) 1998-06-22 2001-02-20 Citizen Watch Co., Ltd. Variable focal length lens panel and fabricating the same
US6437925B1 (en) 1998-06-30 2002-08-20 Olympus Optical Co., Ltd. Optical apparatus
US6598975B2 (en) 1998-08-19 2003-07-29 Alcon, Inc. Apparatus and method for measuring vision defects of a human eye
JP2000065531A (en) 1998-08-26 2000-03-03 Minolta Co Ltd Interference image input device using birefringent plate
US6086203A (en) 1998-09-03 2000-07-11 Johnson & Johnson Vision Care, Inc. Progressive addition lenses
US6282449B1 (en) 1998-10-21 2001-08-28 William Kamerling Method and device for causing the eye to focus on a near object
US20010055094A1 (en) 1998-11-20 2001-12-27 Xiaoxiao Zhang Holographic ophthalmic lens
US6099117A (en) 1998-12-15 2000-08-08 Ppg Industries Ohio, Inc. Hinge with wire extending therethrough
US6139148A (en) 1999-02-04 2000-10-31 Johnson & Johnson Vision Care, Inc. Progressive addition lenses having regressive surfaces
AU3596300A (en) * 1999-02-17 2000-09-04 Kent State University Electrically controllable liquid crystal microstructures
US6199984B1 (en) 1999-03-17 2001-03-13 Johnson & Johnson Vision Care, Inc. Progressive addition lenses with varying power profiles
US6464363B1 (en) 1999-03-17 2002-10-15 Olympus Optical Co., Ltd. Variable mirror, optical apparatus and decentered optical system which include variable mirror, variable-optical characteristic optical element or combination thereof
US6115177A (en) 1999-04-06 2000-09-05 Gateway, Inc. Interactive 3-D viewing glasses
FR2793038B1 (en) 1999-04-29 2002-01-25 Essilor Int COMPOSITE OPHTHALMIC LENS AND METHOD FOR OBTAINING SUCH A LENS
US6426492B1 (en) 1999-05-24 2002-07-30 Donnelly Corporation Electro-optic aperture for vehicular imaging system
AUPQ065599A0 (en) 1999-05-31 1999-06-24 Sola International Holdings Ltd Progressive lens
JP4245731B2 (en) * 1999-06-08 2009-04-02 オリンパス株式会社 Liquid crystal lens unit and liquid crystal lens assembly
US6491394B1 (en) 1999-07-02 2002-12-10 E-Vision, Llc Method for refracting and dispensing electro-active spectacles
US6986579B2 (en) 1999-07-02 2006-01-17 E-Vision, Llc Method of manufacturing an electro-active lens
US6871951B2 (en) * 2000-06-23 2005-03-29 E-Vision, Llc Electro-optic lens with integrated components
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6050687A (en) 1999-06-11 2000-04-18 20/10 Perfect Vision Optische Geraete Gmbh Method and apparatus for measurement of the refractive properties of the human eye
US6857741B2 (en) * 2002-01-16 2005-02-22 E-Vision, Llc Electro-active multi-focal spectacle lens
US6851805B2 (en) * 1999-07-02 2005-02-08 E-Vision, Llc Stabilized electro-active contact lens
US6305802B1 (en) 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
US6616275B1 (en) 1999-08-11 2003-09-09 Asclepion Meditec Gmbh Method and device for completely correcting visual defects of the human eye
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
FR2799010B1 (en) 1999-09-24 2003-06-06 Essilor Int VISUAL EQUIPMENT FOR THE CONTROL OF THE WORKING DISTANCE IN NEAR VISION
EP1216432B1 (en) 1999-10-01 2009-03-04 Carl Zeiss Vision Australia Holdings Ltd. Progressive lens
US6199986B1 (en) 1999-10-21 2001-03-13 University Of Rochester Rapid, automatic measurement of the eye's wave aberration
DE19958436B4 (en) 1999-12-03 2014-07-17 Carl Zeiss Meditec Ag Apparatus and method for active, physiologically evaluated, comprehensive correction of the aberrations of the human eye
JP2001209037A (en) 2000-01-26 2001-08-03 Olympus Optical Co Ltd Variable hologram element and optical device using the same
JP4994556B2 (en) * 2000-03-17 2012-08-08 ストラテジック パテント アクイジションズ エルエルシー High clarity lens system
US6390623B1 (en) 2000-03-29 2002-05-21 Johnson & Johnson Vision Care, Inc. Customized progressive addition lenses
US6338559B1 (en) 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
US6501196B1 (en) 2000-09-12 2002-12-31 Storage Technology Corporation Fault tolerant AC transfer switch
US6396622B1 (en) 2000-09-13 2002-05-28 Ray M. Alden Electro-optic apparatus and process for multi-frequency variable refraction with minimized dispersion
US6616279B1 (en) 2000-10-02 2003-09-09 Johnson & Johnson Vision Care, Inc. Method and apparatus for measuring wavefront aberrations
US6554425B1 (en) 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
AU2002213370A1 (en) 2000-10-20 2002-05-06 Wavefront Sciences Inc. Method for computing visual performance from objective ocular aberration measurements
US7293871B2 (en) 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
SE0004829D0 (en) 2000-12-22 2000-12-22 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
GB0100031D0 (en) 2001-01-02 2001-02-14 Silver Joshua D Variable focus optical apparatus
WO2002055058A2 (en) 2001-01-09 2002-07-18 Microchips, Inc. Flexible microchip devices for ophthalmic and other applications
US6778246B2 (en) 2001-01-26 2004-08-17 University Of Alabama In Huntsville Liquid crystal adaptive lens with closed-loop electrodes and related fabrication methods and control methods
JP3765574B2 (en) * 2001-02-22 2006-04-12 三菱化学株式会社 Recombinant gene containing inverted repeat sequence and use thereof
US6709105B2 (en) 2001-04-10 2004-03-23 Johnson & Johnson Vision Care, Inc. Progressive addition lenses
US7111938B2 (en) 2001-04-27 2006-09-26 Novartis Ag Automatic lens design and manufacturing system
US7060095B2 (en) 2001-05-08 2006-06-13 Unisearch Limited Supplementary endo-capsular lens and method of implantation
CA2448912C (en) 2001-05-30 2012-01-03 Innersa Technology Implantable devices having a liquid crystal polymer substrate
US7217375B2 (en) 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US6609794B2 (en) 2001-06-05 2003-08-26 Adaptive Optics Associates, Inc. Method of treating the human eye with a wavefront sensor-based ophthalmic instrument
PT1401327E (en) 2001-06-29 2006-08-31 Ecole Polytech DEVICE FOR REGISTRATION OF INTRA-OCULAR PRESSURE
US6638304B2 (en) * 2001-07-20 2003-10-28 Massachusetts Eye & Ear Infirmary Vision prosthesis
US6595642B2 (en) 2001-08-31 2003-07-22 Adaptive Optics Associates, Inc. Ophthalmic instrument having Hartmann wavefront sensor with extended source
US20030060878A1 (en) * 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US7019890B2 (en) 2001-10-05 2006-03-28 E-Vision, Llc Hybrid electro-active lens
BR0213012A (en) 2001-10-05 2004-12-28 E Vision Llc Hybrid Electroactive Lenses
US6712466B2 (en) 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US6682195B2 (en) 2001-10-25 2004-01-27 Ophthonix, Inc. Custom eyeglass manufacturing method
JP2003161810A (en) 2001-11-28 2003-06-06 Citizen Electronics Co Ltd Ultraviolet curing liquid crystalline microlens for contact image sensor
US6781681B2 (en) 2001-12-10 2004-08-24 Ophthonix, Inc. System and method for wavefront measurement
JP2003230590A (en) 2002-02-07 2003-08-19 Nidek Co Ltd Intraocular implanting device
US6761454B2 (en) 2002-02-13 2004-07-13 Ophthonix, Inc. Apparatus and method for determining objective refraction using wavefront sensing
US7126903B2 (en) 2002-02-14 2006-10-24 Koninklijke Philips Electronics N. V. Variable focus lens
US20030199978A1 (en) 2002-04-17 2003-10-23 Lindsey Raymie H. Stable anterior chamber phakic lens
KR100465811B1 (en) 2002-04-24 2005-01-13 현대모비스 주식회사 Anti-Lock Brake Equipment Solenoid Valve
KR20040097353A (en) * 2002-04-25 2004-11-17 이-비젼 엘엘씨 Electro-active multi-focal spectacle lens
US6836371B2 (en) 2002-07-11 2004-12-28 Ophthonix, Inc. Optical elements and methods for making thereof
US6894751B2 (en) 2002-07-12 2005-05-17 Eastman Kodak Company Process for making an optical compensator film comprising an anisotropic nematic liquid crystal
WO2004015460A2 (en) 2002-08-09 2004-02-19 E-Vision, Llc Electro-active contact lens system
ES2386086T3 (en) * 2002-08-09 2012-08-08 E-Vision, Llc Electro active contact lens systems
US7001427B2 (en) 2002-12-17 2006-02-21 Visioncare Ophthalmic Technologies, Inc. Intraocular implants
WO2004072687A2 (en) 2003-02-06 2004-08-26 E-Vision, Llc Method and apparatus for correcting vision using an electro-active phoropter
JP3882764B2 (en) 2003-02-19 2007-02-21 セイコーエプソン株式会社 Progressive power lens
US6886938B1 (en) 2003-10-29 2005-05-03 Johnson & Johnson Vision Care, Inc. Progressive addition lenses with an additional zone
US6951391B2 (en) 2003-06-16 2005-10-04 Apollo Optical Systems Llc Bifocal multiorder diffractive lenses for vision correction
US6956682B2 (en) 2003-06-26 2005-10-18 Johnson & Johnson Vision Care, Inc. Method for designing progressive addition lenses
US7195353B2 (en) 2003-08-15 2007-03-27 E-Vision, Llc Enhanced electro-active lens system
US7289260B2 (en) 2003-10-03 2007-10-30 Invisia Ltd. Multifocal lens
US6859333B1 (en) 2004-01-27 2005-02-22 Research Foundation Of The University Of Central Florida Adaptive liquid crystal lenses
US6893124B1 (en) 2004-02-13 2005-05-17 Sunbird, Llc Type of magnetically attached auxiliary lens for spectacles
US7229476B2 (en) * 2004-05-17 2007-06-12 Massachusetts Eye & Ear Infirmary Intraocular lens positioning
US6955433B1 (en) 2004-06-17 2005-10-18 Johnson & Johnson Vision Care, Inc. Methods for designing composite ophthalmic lens surfaces
US7261736B1 (en) * 2004-07-21 2007-08-28 Massachusetts Eye & Ear Infirmary Vision prosthesis with artificial muscle actuator
US7229173B2 (en) 2004-08-25 2007-06-12 Essilor International (Compagnie Generale D'optique) S.A. Short corridor progressive addition lenses with reduced unwanted astigmatism
US7159983B2 (en) 2004-10-29 2007-01-09 Essilor International (Compagnie Generale D'optique) Multifocal lenses for pre-presbyopic individuals
US9801709B2 (en) 2004-11-02 2017-10-31 E-Vision Smart Optics, Inc. Electro-active intraocular lenses
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
EP1807728A4 (en) 2004-11-02 2009-07-29 E Vision Llc Electro-active spectacles and method of fabricating same
US7008054B1 (en) 2004-11-20 2006-03-07 Lane Research, Llc Actuation mechanism for variable focus spectacles
US20060113054A1 (en) 2004-12-01 2006-06-01 Silvestrini Thomas A Method of making an ocular implant
US7334892B2 (en) * 2004-12-03 2008-02-26 Searete Llc Method and system for vision enhancement
US7486988B2 (en) 2004-12-03 2009-02-03 Searete Llc Method and system for adaptive vision modification
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
US20060183986A1 (en) * 2005-02-11 2006-08-17 Rice Mark J Intraocular lens measurement of blood glucose
JP4842555B2 (en) * 2005-04-14 2011-12-21 シチズン電子株式会社 Liquid crystal lens and manufacturing method thereof
US20070157924A1 (en) * 2005-12-22 2007-07-12 Solbeam, Inc. Method for light ray steering
JP2007323062A (en) 2006-05-02 2007-12-13 Asahi Lite Optical Co Ltd Composite plastic lens
AR064985A1 (en) 2007-01-22 2009-05-06 E Vision Llc FLEXIBLE ELECTROACTIVE LENS
AU2008226634A1 (en) * 2007-03-12 2008-09-18 Pixeloptics, Inc. Electrical insulating layers, UV protection, and voltage spiking for electro-active diffractive optics

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289584B2 (en) 2010-09-13 2016-03-22 The University Of British Columbia Remotely controlled drug delivery systems
TWI575277B (en) * 2011-12-23 2017-03-21 壯生和壯生視覺關懷公司 Variable optic ophthalmic device including liquid crystal elements
US9690116B2 (en) 2011-12-23 2017-06-27 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including liquid crystal elements
US9817245B2 (en) 2013-09-17 2017-11-14 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9823492B2 (en) 2013-09-17 2017-11-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9541772B2 (en) 2013-09-17 2017-01-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9784993B2 (en) 2013-09-17 2017-10-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9817244B2 (en) 2013-09-17 2017-11-14 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9500882B2 (en) 2013-09-17 2016-11-22 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including shaped liquid crystal elements with nano-scaled droplets of liquid crystal
US9823490B2 (en) 2013-09-17 2017-11-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9592116B2 (en) 2013-09-17 2017-03-14 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9823491B2 (en) 2013-09-17 2017-11-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9835876B2 (en) 2013-09-17 2017-12-05 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9869885B2 (en) 2013-09-17 2018-01-16 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed liquid crystal layers and shaped dielectric layers
US9880398B2 (en) 2013-09-17 2018-01-30 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed and shaped liquid crystal layers
US9958704B2 (en) 2013-09-17 2018-05-01 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
TWI649073B (en) * 2013-09-17 2019-02-01 壯生和壯生視覺關懷公司 Variable optic ophthalmic device including shaped liquid crystal elements and polarizing elements
TWI716766B (en) * 2018-09-21 2021-01-21 英商庫博光學國際有限公司 Flexible, adjustable lens power liquid crystal cells and lenses

Also Published As

Publication number Publication date
CN101641631A (en) 2010-02-03
IL268009B2 (en) 2023-02-01
EP3273294A1 (en) 2018-01-24
AU2008207990B2 (en) 2013-09-05
IL268009A (en) 2019-09-26
HK1134144A1 (en) 2010-04-16
CA2675772A1 (en) 2008-07-31
US11474380B2 (en) 2022-10-18
KR20090089916A (en) 2009-08-24
EP3048472A1 (en) 2016-07-27
US20230113330A1 (en) 2023-04-13
US10126569B2 (en) 2018-11-13
SG177973A1 (en) 2012-02-28
IL244692A (en) 2017-05-29
US9155614B2 (en) 2015-10-13
JP5436223B2 (en) 2014-03-05
IL268009B (en) 2022-10-01
EP2106566B1 (en) 2016-04-20
US20080208335A1 (en) 2008-08-28
IL244692A0 (en) 2016-04-21
IL199884A (en) 2016-04-21
ES2570306T3 (en) 2016-05-17
IL252136A0 (en) 2017-07-31
AU2008207990A1 (en) 2008-07-31
CA2675772C (en) 2018-05-29
IL199884A0 (en) 2010-04-15
BRPI0806820A2 (en) 2011-09-13
EP2106566A1 (en) 2009-10-07
US20190086693A1 (en) 2019-03-21
EP2106566A4 (en) 2012-09-12
US20150378177A1 (en) 2015-12-31
CN101641631B (en) 2012-02-01
AR064985A1 (en) 2009-05-06
CN102411220A (en) 2012-04-11
IL252136B (en) 2019-07-31
WO2008091859A1 (en) 2008-07-31
TWI486154B (en) 2015-06-01
IL296003A (en) 2022-10-01
MX2009007743A (en) 2009-07-27
ES2653418T3 (en) 2018-02-07
US20230028581A1 (en) 2023-01-26
CN102411220B (en) 2016-06-01
JP2010517081A (en) 2010-05-20
KR101438413B1 (en) 2014-09-05
EP3048472B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
US20230028581A1 (en) Flexible electro-active lens
US10052196B2 (en) Processor controlled intraocular lens system
CA2586280C (en) Intra-ocular lens system having tunable electro-active lens elements
US10918476B2 (en) Electrowetting intraocular lens with isotonic aqueous phase
TW200848002A (en) Ophthalmic dynamic aperture
US11364109B2 (en) Intraocular device with wirelessly coupled auxiliary electronics
AU2012245172A1 (en) Electro-active intraocular lenses