TW200846312A - Oxidation of sec-butylbenzene and production of phenol and methyl ethyl ketone - Google Patents

Oxidation of sec-butylbenzene and production of phenol and methyl ethyl ketone Download PDF

Info

Publication number
TW200846312A
TW200846312A TW97104351A TW97104351A TW200846312A TW 200846312 A TW200846312 A TW 200846312A TW 97104351 A TW97104351 A TW 97104351A TW 97104351 A TW97104351 A TW 97104351A TW 200846312 A TW200846312 A TW 200846312A
Authority
TW
Taiwan
Prior art keywords
kpa
temperature
butylbenzene
catalyst
oxygen
Prior art date
Application number
TW97104351A
Other languages
Chinese (zh)
Inventor
Jihad Dakka
Stephen Zushma
Jon E Stanat
Original Assignee
Exxonmobil Chem Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Chem Patents Inc filed Critical Exxonmobil Chem Patents Inc
Publication of TW200846312A publication Critical patent/TW200846312A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/08Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by decomposition of hydroperoxides, e.g. cumene hydroperoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/53Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In a process for oxidizing sec-butylbenzene to the corresponding hydroperoxide, a feed containing sec-butylbenzene is contacted with an oxygen-containing gas in a reactor comprising a gas inlet and a gas outlet for said oxygen-containing gas. The contacting is conducted at a temperature, T, in degrees Centigrade, between about 90 DEG C and about 140 DEG C and an oxygen partial pressure at the gas outlet of the reactor, Opp, in kPa determined by the formula (I) (1527.33-10. 83T) > Opp > (1320.48-10.83T) (I), provided that Opp is always greater than zero. The resulting hydroperoxide can be cleaved, optionally in the presence of a catalyst, to co-produce phenol and methyl ethyl ketone.

Description

200846312 九、發明說明 【發明所屬之技術領域】 本發明係關於一種氧化第二丁基苯及共生成酚及甲基 乙基酮之方法。 【先前技術】 酚爲一種化學工業的重要產物,可用於例如酚系樹 φ 脂、雙酚A、ε-己內醯胺、肥酸、烷基酚類及塑化劑之製 造。 近年來,製造酚最普遍的方式爲Hock法。此爲一種 三步驟製法,其中第一步驟涉及使用丙烯將苯烷化以製造 枯烯,接著讓枯烯氧化成對應的氫過氧化物且然後使該氫 過氧化物斷裂以製得等莫耳數之酚及丙酮。然而,酚之全 球需求量成長得較丙酮更快。此外,由於丙烯日漸短缺, 相較於丁烯,丙烯的成本可能會再提高。 • 因此,一種使用丁烯而非丙烯當作進料且共生成甲基 乙基酮(MEK)而非丙酮之製法可能爲製造酚之另一種具吸 引力的途徑。例如,MEK的市場日漸成長,其可用來當 作真漆及油漆的溶劑且可用於潤滑油類之脫蠟。 已知可從第二丁基苯製得酚及MEK,於該方法中第 二丁基苯被氧化以製得氫過氧化第二丁基苯且該過氧化物 會分解成所需的酚及甲基乙基酮。此等製法之總論述於 Process Economics Report No. 22B 第 113-121 頁及第 261 -263頁,標題爲”Phenol”之文章,由史丹佛硏究所於 200846312 1 977年12月出版。 然而,雖然第二丁基苯(SB B)及枯烯很類似,不過要 把第二丁基苯氧化成其對應之氫過氧化物卻比把枯烯氧化 成氫過氧化枯烯明顯地更爲困難。例如,在不使用觸媒的 情況下用1 atm之空氣於1 1 0 °C氧化6小時後,可能會有 大於20%之枯烯轉化率,但於於同樣條件下一般只有小於 1%之SBB轉化率。在缺乏觸媒的情況下,把SBB轉化成 其對應之氫過氧化物之氧化率只有在溫度超過1 2 5 °C下, 較佳地在超過140°C下,才開始具有商業上的可行性。不 過當溫度升高時,對氫過氧化物的選擇性則會顯著降低。 已知使用特定觸媒,例如N-羥基酞醯亞胺(NHPI), 可以在溫度顯著低於無觸媒所需溫度下讓SBB氧化,藉 此提高該所需氫過氧化物之選擇性及其產率。根據本發 明,我們發現到SBB的轉化會隨著增加溫度及NHPI濃度 而升高,不過令人訝異地,隨著總壓而達到最大値。相反 地,對氫過氧化第二丁基苯(SBBHP)之選擇性則隨著溫度 升高而降低,當NHPI濃度增加時則相對平坦,而總壓增 加時則緩慢減少。結果是:SBBHP產率隨著溫度及NHPI 濃度而增加,但是隨著總壓達到最大値。當溫度不同時在 不同壓力下達到最大値,且特別地當溫度增高時該最適壓 力會降低。此種對壓力的反應十分讓人訝異,因爲先前的 硏究係發現商業性操作溫度下枯烯的氧化並沒有受到壓力 的影響(參考例如 Manfred Weber,Chem. Eng· Technol·, 25,(2 002)5,pp5 5 3 -5 5 8),而枯烯與SBB間的不同只是在 200846312 烷基側鏈上有一個甲基而已。 美國專利第 5,298,667(Sumitomo)及 EP-A-548,986 (Sumitomo)揭示一種製造酚及MEK的方法,其包含的步 驟有(I)用含氧氣體來氧化選自(A)實質上不含乙基氫過氧 化物、羧酸類及酚之第二丁基苯,(B)實質上不含苯乙烯 之第二丁基苯,及(C)實質上不含甲基苯甲基醇之第二丁 基苯之材料,以製得氫過氧化第二丁基苯,及(Π)用酸性 觸媒把該氫過氧化第二丁基苯分解成酚及MEK。該氧化 步驟係在無觸媒存在下溫度於90°C到15〇°C間及壓力在1 到 10 kg/cm2 g(101.3 到 1013 kPag)下進行。 EP-A-l,088,809(Phenolchemie)揭示一種製造酣、 MEK及丙酮之方法,其係將含有枯烯及最多25重量%第 二丁基苯之混合物氧化且接著讓該等氫過氧化物進行 Hock斷裂,因此產物中之酚:丙酮:MEK之比例可透過 進料混合物之組成來控制。該進料混合物係用對應之丙烯 及1-丁烯/2-丁烯混合物於存在商用烷化劑如 A1C13、 H3P04/Si02或沸石下將苯烷化來直接產生。氧化作用係在 有空氣或氧氣但無觸媒下於溫度lOOt到140 °C及壓力1 到20巴(100到2,000 kPa)下進行。 FR-A-2,1 82,802(Union Carbide)揭示一種藉由第二丁 基苯之氧化來製造酚及MEK的方法,其中該第二丁基苯 係於存在空氣及任意地氫過氧化第二丁基苯下氧化,接著 進行過氧化物分解。根據本文獻,該第二丁基苯中不可含 有超過1重量%異丁基苯,因爲存在異丁基苯會顯著降低 200846312 整個製法之效能且減少酚及MEK之產率。該氧化步驟可 於溫度7 5 °C到1 4 0 °C及壓力1到1 〇巴(1 0 0到1 0 5 〇 〇 〇 kP a) 下進行。於實施例中,該氧化係於溫度1 0 5到1 3 5 °C及氧 分壓20到1 〇 1 kPa下進行。 美國專利申請案公開案第2004/0162448(SheU)號及第 2004/023 6 1 52( Shell)號揭示一種製造酚及丙酮及/或MEK 之方法,其中枯烯及第二丁基苯之混合物係於存在氧下被 氧化成對應的過氧化物,接著進行過氧化物分解。根據此 等文獻,於氧化混合物中添加中和用鹼可以改善氫過氧化 物之產率且減少不當副產物形成。該氧化步驟係於溫度 9〇°C 到約 150°C 及壓力 〇 psig 到約 1〇〇 psig (〇 到 690 kPag),較佳地約 15 psig 到約 40 psig(103 到 276 kPag)下 進行。於實施例中,該氧化係於溫度約1 3 0 °C及壓力3 7 7 kPa下進行。 美國專利第 6,852,893 號(Cireavis)及第 6,720,462 號 (Creavis)揭示一種製造酚之方法,其係把烷基芳香族烴類 催化性氧化成對應的氫過氧化物,接著讓該氫過氧化物斷 裂形成酚及酮類。催化性氧化作用係用氧,於存在自由基 引發劑及觸媒(典型地爲N-羥基羰二醯亞胺觸媒,例如N-羥基酞醯亞胺)下,在溫度〇到500°C,較佳地爲50到 3 00°C,特佳地溫度爲50到200°C下,於壓力1到1〇〇巴 (1 00到1 00 0 kPa)下進行。可用此方法氧化之較佳受質包 括枯烯、環己基苯、環十二烷基苯及第二丁基苯。 美國專利第4,1 3 6,1 2 3號(G ο 〇 d y e a r )揭示一種製法 200846312 其係於存在磺酸化金屬酞花青觸媒及選自4到6個碳原子 之烷基氫過氧化物及8到1 4個碳原子之芳烷基氫過氧化 物之自由基引發劑下,把烷基芳香族化合物類氧化成對應 的氫過氧化物類。該製法係於溫度5 0 °C到150。(:下,較佳 地8 0 °C到1 4 0 °C下,且最佳地9 0。(:到1 2 0 °C下,且氧壓爲 2 到 400 psig(13.8 到 275 8 kPag),較佳地 50 到 200 psig(3 45 到 1 3 79 kPag)下進行。 美國專利弟 4,450,303 號(PhillipsPetroleum)描述一 種製造次級烷基取代之苯氫過氧化物類之方法,其係藉著 加熱次級烷基取代之苯,如環己基苯、枯烯、第二丁基 苯、第二戊基苯、對-甲基-第二丁基苯、1,4-二苯基環己 烷,對-二環己基苯及第二-己基苯,於溫度約60 °C到200 °C ’較佳地約 80°C到 150°C,及壓力約大氣壓到 1000 psig(0 到 6895kPag),較佳地 50 到約 300psig(345 到 2069 kPag)於存在氧下進行。該加熱亦可於存在約〇.〇5到5重 量%結構式爲R”COOSm(其中尺”爲烷基、芳基、 烷芳基或芳烷基)之釤觸媒及任意地選自偶氮-型化合物及 過氧化物之自由基引發劑下進行。於一具體例中,該次級 烷基取代之苯爲環己基苯,該觸媒爲醋酸釤且該自由基引 發劑爲氫過氧化枯烯。 於吾等之國際專利公開案第W006/0 1 5826號中,我 們描述一種製造酚及甲基乙基酮之方法,其中苯與C4烷 化劑係在有觸媒下以烷化條件接觸(該觸媒包括沸石β或 X-光繞射型式之d-間距最大値爲12·4±0·25、6.9土0,15、 200846312 3.57±0.07及3.42:t〇.〇7埃之分子篩),而生成含有第二丁 基苯之烷化排放流。該第二丁基苯而後被氧化以產生氫過 氧化物且該氫過氧化物會分解成酚及甲基乙基酮。該氧化 步驟可於有或無觸媒下在溫度約70 °C到約20 0 °C間,如約 90°C到約130°C,壓力約0.5到約10大氣壓(50,6到1013 kPa)下進行。一種具體方法爲於溫度100 °C及大氣壓下用 BaMn04觸媒氧化第二丁基苯。 【發明內容】 據此,本發明之一態樣爲一種把第二丁基苯氧化成對 應之氫過氧化物之方法,該方法包括使含有第二丁基苯之 進料在含有該含氧氣體之進氣口及出氣口之反應槽中與含 氧氣體接觸,接觸時溫度T係約攝氏90 °C到約140 °C之間 且反應槽出氣口處之氧分壓OPP之kPa値係以公式(I)決定 • (1 527.33-1 0.83T)>Opp>(l 320.48-1 0.83T) (I) 惟〇ΡΡ永遠大於0。 於另一態樣中,本發明係關於一種製造酚及甲基乙基 酮之方法,該方法(其在此被稱爲ΜΕΚΡ具體例)包含: (a) 使苯及線性丁烯於烷化條件下與含有沸石β或 MCM-22家族之分子篩的觸媒接觸,以生成含有第二丁基 苯之烷化排放流; (b) 在含有一含有氧氣體之進氣口及出氣口之反應槽 -10 - 200846312 中用該含氧氣體氧化來自(a)之第二丁基苯, 進行時攝氏溫度T係在約90°C到約140°C間, 口處之氧分壓〇pp之kPa値係以公式(I)決定: (1 527.3 3 -l〇.83T)>Opp>( 1 3 20.48- 1 0.83 T) 惟〇 ρ ρ永遠大於0, # 該氧化作用能把至少一部份之第二丁基苯 的氫過氧化物;及 (C)把來自(b)之氫過氧化物轉化成酚及甲3 適當地,反應槽出氣口處之氧分壓〇pp之 公式(π)決定: (1 492.85-1 0.83T)>Opp>(l 354.96-1 0.83T) Φ 惟0ΡΡ永遠大於〇。典型地,反應槽出禁 壓〇ΡΡ之kPa値係以公式(ιΠ)決定: (1458.38-10.83Τ)>Ορρ> (1389.43-10.83T) 惟〇ΡΡ永遠大於〇。 上面公式(I)、(II)及(III)係來自所設計之 的數據,該等數據點係在不同溫度、壓力及· 到。來自此等實驗之SBB轉化率、氫過氧仰 該氧化作用 反應槽出氣 (I) 轉化成對應 S乙基嗣。 kPa値係以 (II) 口處之氧分 (III) 實驗蒐集到 媒濃度下得 物選擇性及 200846312 產率會先進行迴歸分析接著用微積分處理,以界定氧化方 法之操作條件,就氧化反應溫度及氧分壓而言,其對完成 本發明方法而言是有效且甚至是最理想的。此迴歸分析及 微積分應用將於下文參考實施例及圖式來作更詳細的說 明。 適當地,該氧化接觸溫度T係在約90 °c到約1 3 5 °C之 間,例如約1 1 0 °C到約1 3 0 °C之間,例如約1 1 5 °C到約1 2 5 °C之間。反應槽出氣口處之氧分壓Opp適當地在約21、 25、28或30 kPa到約345 kPa之間,例如約35 kPa到約 241 kPa 之間。 適當地,氧化第二丁基苯係在觸媒,例如N-羥基取 代之環狀醯亞胺,典型地N-羥基酞醯亞胺,存在下進 行。 具體例之詳細說明 本發明提供一種使第二丁基苯氧化成對應之氫過氧化 物之方法,且於一具體例中,接著該氫過氧化物會斷裂且 共生成酚及甲基丙基酮。特別地,已發現到當使用含氧氣 體來氧化第二丁基苯時,二氫過氧化第二丁基苯的產率可 藉由下面步驟予以最大化··在溫度約9 0 °C到約1 4 0 °C (例 如約100°C到約135°C,例如約llOt:到約130°C,適當地 約115它到約125°C)之間相對狹小溫度範圍內操作,並控 制含氧氣體饋入氧化反應槽,使得反應槽出氣口處之氧分 壓〇PP之kPa由公式(I)決定: -12- 200846312 (1 527.33- 1 0.83 Τ)>Ορρ>(1 320.48-1 0.8 3T) (I) 其中τ爲氧化反應槽內之攝氏溫度,且ορρ永遠大於 0 〇 於一具體例中,含氧氣體之饋入係控制在使反應槽出 氣口處之氧分壓Ορρ之kP a値由公式(II)決定: (1492.85- 10.83 Τ)>0ρρ>(1 3 54.9 6- 1 0.83T) (II) 惟〇ΡΡ永遠大於〇。 於另一具體例中,含氧氣體之饋入係控制在使反應槽 出氣口處之氧分壓Ορρ之kPa値由公式(III)決定: (1458.38-1 0.83Τ)>Ορρ>(1 389.43-1 0.83T) (III) • 惟Ορρ永遠大於0。 本發明之氧化方法及該ΜΕΚΡ具體例中所用的第二丁 基苯之純度較佳地爲至少95重量%之第二丁基苯,例如 至少97重量%,例如至少99重量%之第二丁基苯,典型 地含有低於1·〇重量%(例如低於0.5重量%)之丁烯寡聚物 及低於0.5重量%之異丁基苯及第三丁基苯。 適當地,於本發明方法及該ΜΕΚΡ具體例中當作進料 之第二丁基苯係將苯用至少C4烷化劑於烷化條件下且較 -13- 200846312 佳地於非均質觸媒(例如沸石β或更佳地至少一種MCM-22族之分子篩(如下文所述))存在下烷化來製得。烷化條 件適當地包括約60°C到約260°C之間(例如約100°C到約 200°C之間)之溫度,及/或7000 kPa或更低(例如約1000 到約3 5 00 kPa)之壓力,及/或C4烷化試劑之每小時重量 空間速度(WHS V)在約0.1到約50 hr·1之間,例如約1到 約10 hr」之間。 該C4烷化劑適當地可含有至少一種線性丁烯,即丁 烯-1、丁烯-2或其混合物。該烷化劑亦可爲含有線性丁烯 之烯系C4烴類混合物,例如該烷化劑可藉由蒸汽裂解乙 烷、丙烷、丁烷、LPG及輕石油腦,催化性裂解石油腦及 其他的煉油廠原料,以及含氧物(oxygenates)例如甲醇之 轉化成低級烯烴而予以得到。舉例來說,以下C4烴類混 合物通常係來自於蒸汽裂解製造烯烴之任何煉油廠且可用 來當作C4烷化劑:粗蒸汽裂解丁烯液流、萃餘物-1 (從該 粗蒸汽裂解丁烯液流中以溶劑萃取或氫化除去丁二烯後剩 下的產物)及萃餘物·2(從該粗蒸汽裂解丁烯液流中除去丁 二烯及異丁烯後剩下的產物)。 術語”MCM-22族材料”(或者”該MCM-22族之材料” 或”該MCM-22族之分子篩”或”MCM-22族沸石”)在此使用 時,包括一或多種以下物質: •由常見的一級結晶砌塊晶胞(該晶胞具有MWW骨架 拓撲)形成之分子篩。(晶胞爲原子的空間配置,其若以3 -維空間堆砌時係描述該結晶結構。此等結晶結構於”Atlas • 14- 200846312 of Zeolite Framework Type”,2001 年第五版中已有說 明,其全部內容倂此以爲參考); •由常見的二級晶胞形成的分子篩,該二級晶胞爲2 · 維堆砌之此等MWW骨架拓撲晶胞,會形成一個晶胞厚度 之單層,較佳地爲一個c-晶胞厚度之單層; •由常見的二級晶胞形成的分子篩,其爲一或一個以 上晶胞厚度之層,其中該一個以上晶胞厚度之層係藉由堆 疊、擠壓或結合至少兩層一個晶胞厚之單層所製成。此等 二級晶胞之堆疊可採用規則形式、不規則形式、隨機形式 或其任何組合;及 •由具有M WW骨架拓撲之晶胞的任何規則或隨機之 2 -維或3 -維組合形成之分子歸。 該MCM-22族分子篩包括於X-光繞射圖中d-間距最 大値爲 12.4 土 0·25、 6·9±0·15、 3.57 士 0.07 及 3.42 土 0·07 埃 之分子篩。用以定義該材料所用之X -光繞射數據係使用 標準技術以銅之Κ-α雙線當作入射光,以配有閃爍計數器 及輔助電腦之繞射儀作爲資料蒐集系統,來取得。 MCM-22族之材料包括 MCM-22(述於美國專利第 4,954,3 25 號),PSH-3(述於美國專利第 4,439,409 號), SSZ-2 5(述於美國專利第4,826,667號),ERB-1 (述於歐洲 專利第0293032號),ITQ-1(述於美國專利第6,077,498 號),ITQ-2(述於國際專利公開案第 WO97/1 7290號), MCM-36(述於美國專利第5,250,277),MCM-49(述於美國 專利第 5,23 6,5 75 號),MCM-56(述於美國專利第 -15- 200846312 5,3 625697號),UZM-8(述於美國專利第6,756,03 0號),及 其混合物。M C Μ - 2 2族分子餘爲較佳院化觸媒,因爲已發 現相較於其他的丁基苯異構物,它們對於第二丁基苯的製 造有更高選擇性。較佳地,該分子篩係選自(a)MCM-49, (b)MCM-56 及(c)MCM-49 及 MCM-56 之同型,如 ITQ-2。 雖然於MCM-22族沸石上用C4烷化劑將苯烷化之反 應對第二丁基苯具有高度選擇性,不過該烷化反應之排放 流通常含有丁烯寡聚物,其很容易抑制後續之第二丁基苯 氧化成對應之氫過氧化物的氧化反應。再者,雖然蒸餾可 有效移除一些這種雜質,不過特定的丁烯寡聚物,尤其是 C12烯烴,易在與第二丁基苯同樣的溫度下或者近似的溫 度下沸騰且因此無法以蒸餾輕易地除去。從而,於一具體 例中,目前的氧化方法會採用初步處理步驟,特別地爲化 學處理步驟,讓烷化排放流中丁烯寡聚物的含量減少到典 型地低於1重量%,較佳地低於0.7重量%,且最佳地低 於〇. 5重量%。 一種降低烷化排放物中寡聚物含量之適當化學處理涉 及了讓該排放流與酸(例如礦物酸或固體酸)與任意地水於 溫度例如約〇到約300°C下接觸,來把該寡聚物轉化成醇 類或酯類(例如硫酸酯類)。在中和過量酸及,若有需要, 清洗、乾燥及蒸餾後,可把該排放流送至該氧化步驟。 另一種降低烷化排放物中寡聚物含量之適當化學處理 涉及了讓該排放流與氫於觸媒(例如貴金屬非均質觸媒) 存在在能有效使該等寡聚物飽和的條件下接觸。適當條件 -16- 200846312 包括溫度約〇到約200°c及/或壓力約100到約1 000 kPa 及/或氫對烴之莫耳比約0.0 0 1到約1 0。 另一種降低烷化排放物中寡聚物含量之適當化學處理 涉及了醚化反應,其中該排放流會與醇例如甲醇於例如溫 度約2 0到約3 0 0 °c接觸。 可採用以上處理方法之組合,例如酸處理及氫化之組 合,來把烷化排放流中丁烯寡聚物的含量降低到所需程 度。 把第二丁基苯氧化成對應的氫過氧化物可藉著把含氧 氣體例如空氣引入具有一含氧氣體之進氣口及出氣口且內 含該第二丁基苯(典型地呈液相)之反應槽中而予以完成。 理想上該第二丁基苯完全或實質上不含枯烯。與枯烯不同 地,在缺乏觸媒下很難用大氣讓第二丁基苯氧化。例如, 於11 〇°c及大氣壓力下第二丁基苯並不會氧化,但在同樣 條件下枯烯卻氧化得很好。於較高溫度下,以大氣氧化第 二丁基苯的速率會改善;然而,較高溫度亦會產生顯著份 量之不欲副產物。 反應速率及選擇性之改善亦可藉著於觸媒存在下進行 第二丁基苯之氧化反應來達成。適當的第二丁基苯觸媒包 括有機金屬錯合物,例如水溶性螯合化合物(其中多牙配 位基會配位到至少一種選自銘、鎳、鍤、銅及鐵之金屬 上)(參考美國專利第4,0 1 3,725號)。更佳地,可使用非均 質觸媒例如金屬氧化物觸媒。適當的非均質金屬氧化物觸 媒係述於美國專利第5,1 83,945號(其中該觸媒爲酮基(羥 -17 - 200846312 基)橋接之四核錳錯合物)及美國專利第5,922,920號(其中 該觸媒包含具有混合金屬核之酮基(羥基)橋接之四核金屬 錯合物,其中一個核金屬爲選自 Zn、Cu、Fe、Co、Ni ' Μη及其混合物之二價金屬,另一個金屬爲選自In、Fe、 Μη、Ga、A1及其混合物之三價金屬)。該等美國專利之全 部揭示揭示倂此以爲參考。 於一具體例中,用於該第二丁基苯氧化步驟之觸媒爲 述於美國專利第6,720,462號(倂此以爲參考)之N-羥基取 代之環狀醯亞胺。適當的環狀醯亞胺包括例如N-羥基酞 醯亞胺,4-胺基-N-羥基酞醯亞胺、3-胺基-N-羥基酞醯亞 胺、四溴-N-羥基酞醯亞胺、四氯·Ν-羥基酞醯亞胺、 N-hydroxyhetimide ' N-hydroxyhimimide 、 N-hydroxytrimellitimide、N-經基苯-1,2,4-三猿亞胺 (tricar bo ximide)、N,N’-二經基(苯均四酸二醯亞胺)、 N,N’_二羥基(二苯甲酮-3,3^4,4^四羧基二醯亞胺),N-羥 基馬來醯亞胺、吡啶-2,3-二羰亞胺、N-羥基琥珀醯亞 胺、N-羥基(酒石醯亞胺)、N-羥基-5-原冰片烯-2,3·二羰 亞胺、挂-Ν-羥基-7-氧雜二環[2·2·1]庚-5-烯-2,3-二羰亞 胺、Ν-羥基-順-環己烷-1,2-二羰亞胺、Ν-羥基·順-4-環己 烷-1,2_二羰亞胺、Ν-羥基萘醯亞胺鈉鹽或Ν-羥基-鄰-苯 二磺醯亞胺。較佳地,該觸媒爲Ν-羥基酞醯亞胺。另一 種適當的觸媒爲Ν,Ν’,Ν”-三羥基異三聚氰酸 (thihydroxyisocyanuric acid) ° 此等材料可單獨或於自由基引發劑存在下使用,且可 -18- 200846312 呈液相、均質觸媒來使用,或者是被支撐在固體載體上以 提供非均質觸媒。 第二丁基苯氧化之適當條件包括溫度爲約9 0 °C到約 1 40 °C之間,例如約90 °C到約1 3 5 °C之間,例如約1 〇〇 °C 到約1 3 5 °C之間,譬如約110乞到約130^:之間,適當地 約11 5°C到約12 5 °C之間。反應槽出氣口處之氧分壓較佳 地係在約21、25、28或30 kPa到約345 kPa之間,例如 約35 kPa到約241 kPa之間,例如約62到約214 kPa之 間。特別地,發現藉由在此等較狹小的溫度及壓力範圍內 操作且藉著把該溫度及壓力控制在能遵循上面所列示之一 或多個公式(I)到(III)之條件時,該氧化方法中氫過氧化第 二丁基苯之產率可達最大。 可加入鹼性緩衝劑來與氧化期間可能產生之酸性副產 物反應。此外,還可引入水相,其能幫助鹼性化合物例如 碳酸鈉溶解。氧化方法中第二丁基苯之每次通過(per-pass) 轉化率較佳地保持在低於50%,好讓副產物的形成減到最 小。該氧化反應適當地可於催化性蒸餾單元中進行且所產 生之氫過氧化第二丁基苯可藉由蒸餾移除未反應之第二丁 基苯(在MEKP具體例中係在斷裂步驟(c)之前進行)來濃 縮。 本發明氧化方法中所產生之氫過氧化第二丁基苯的斷 裂適當地可藉著讓該氫過氧化物與觸媒於液相於溫度約 20°C到約150°C,例如約40°C到約120°C,及/或壓力約 50到約2500 kPa,例如約100到約1 000 kPa,及/或者該 -19- 200846312 氫過氧化物之每小時液體空間速度(LHSV)約0.1到約100 h〆1,較佳地約1到約50 hr·1下進行。較佳地把該氫過氧 化物稀釋在對斷裂反應惰性之有機溶劑,例如甲基乙基 酮、酚或第二丁基苯,以幫助熱移除。該斷裂反應適當地 係在催化性蒸餾單元中進行。 斷裂步驟中採用的觸媒可爲均質觸媒或非均質觸媒。 適當的均質斷裂觸媒包括硫酸、過氯酸、磷酸、氫氯 φ 酸及對-甲苯磺酸。氯化鐵、三氟化硼及三氧化硫亦爲有 效的均質斷裂觸媒。較佳的均質斷裂觸媒爲硫酸。 可用於氫過氧化第二丁基苯之斷裂作用之’適當的非均 質觸媒包括膨潤石黏土,像是酸性蒙脫石矽土-鋁黏土, 如美國專利第4,870,2 1 7號(Texaco)所述,其全部揭示倂 此以爲參考。 【實施方式】 # 本發明現在將參考如下非限制性實例及後附圖式來更 詳細地說明。 實施例 秤量第二丁基苯(150 g)及N-羥基酞醯亞胺(從0.075 g到0.64 g)且裝入配備有攪拌器、熱電偶、進氣口、採樣 口及含有Dean & Stark型接頭之除水用冷凝器之300 ml 帕爾反應槽。反應槽內容物用700 rpm攪拌且噴入流速 25 0 cc/分鐘之氮氣5分鐘。反應槽用氮氣加壓到所需之操 -20- 200846312 作壓力,在氮氣持續噴入時將反應槽加熱到所需之操作溫 度。達到操作溫度以後,把供應的氣體從氮氣切換成空氣 且以所需流速把空氣噴入反應槽中6小時。每小時採樣一 次且於六小時以後,把供應的氣體再切換回氮氣且停止加 熱。當反應槽冷卻以後,將其減壓且移出內容物。 於本發明所設計之實驗中(該設計示於第1圖),在不 同溫度、壓力及NHPI濃度下採取總共20個數據點。以 φ 此等條件得到之第二丁基苯轉化率及氫過氧化第二丁基苯 (SBBHP)選擇性及產率會接受迴歸分析。該分析中採用之 數據組的數據範圍係溫度範圍爲1 1 5 °c到1 25 °c ;觸媒 (NHPI)濃度範圍爲0.05到 0.43重量%;及總壓範圍爲 2 07到1 3 79 kPag (3 0到20 0 psig)。所產生之氧分壓(絕對 値)係在〇到276 kPa (0到40 psi)之範圍。 此迴歸分析的結果爲表示該 SBB產率之迴歸方程 式,其爲多個獨立製程變數之函數,如方程式1所表示: ⑩ 方程式 1 : SBB 產率=-130.29 + 1.160xT(〇C ) + 88.375xNHPI(wt%)-1 04.253 xNHPI(wt%)2 + 4.215x氧分壓(psi)-0.0102x氧分壓 (?3〇2-0.0 3 206父氧分壓(?3〇父丁(。〇) 方程式1定義SBB產率爲該實驗數據組之溫度(°C )、 NHPI濃度(wt%)及氧分壓(psi)之函數。該方程式1所述之 SBB產率反應以曲線示於第2到4圖。從此等曲線可以發 -21 - 200846312 現到:氫過氧化物之產率(%)會隨著溫度及NHPI濃度增 加而升高(第2圖)且隨著氧分壓達到最高値(第3到5 圖)。該等最高値的位置僅因NHPI濃度不同稍有變化,但 因溫度不同而有顯著差異例如Η 5 °C時的最高値係在約 172 kPa(25 psi)氧分壓處,120°C時的最高値係在約138 kPa(20 psi)氧分壓處及125°C時的最高値係在約90 kPa(13 psi)氧分壓處。 φ 可藉由微積分來決定定義此等SBB產率最高値之位 置與氧分壓及溫度間之函數關係的數學方程式。SBB產率 相對於氧分壓之第一偏導數係以微積分來決定,且示於方 程式2 : 方程式2 : 3(SBB產率)/3氧分壓= 4.215-0.0102x2x氧分壓 a(psi)-0.03206xT(〇C ) 從微積分可知道在最適情況下此偏導數等於〇,所以 藉著讓方程式2等於〇即可得到氧分壓,其結果爲方程式 3a,其中該最適氧分壓(psi)爲溫度(°C)的函數: 方程式3a(psi): 最適氧分壓(psi) = 206.52-1.5708xT(°C) 由於1 psi等於6.894 kPa,所以藉著乘上6.894可把 -22- 200846312 方程式3a轉化成SI單位(kPa)而得到方程式 氧分壓kPa値定義SBB產率最佳條件。 3b,其係以 方程式3b(kPa): 最適氧分壓(1^&) = 1423.91-10.83\1:(°(:)200846312 IX. Description of the Invention [Technical Field] The present invention relates to a method for oxidizing second butylbenzene and co-generating phenol and methyl ethyl ketone. [Prior Art] Phenol is an important product of the chemical industry and can be used, for example, in the manufacture of phenolic tree φ lipids, bisphenol A, ε-caprolactam, fatty acids, alkylphenols, and plasticizers. In recent years, the most common way to make phenols is the Hock method. This is a three-step process in which the first step involves the alkylation of benzene with propylene to produce cumene, followed by oxidation of the cumene to the corresponding hydroperoxide and then cleavage of the hydroperoxide to produce a molar A few phenols and acetone. However, the global demand for phenol has grown faster than acetone. In addition, due to the increasing shortage of propylene, the cost of propylene may increase again compared to butene. • Therefore, a process using butene instead of propylene as a feed and co-formation of methyl ethyl ketone (MEK) rather than acetone may be another attractive route for making phenol. For example, the market for MEK is growing, and it can be used as a solvent for real paints and paints and for dewaxing of lubricating oils. It is known that phenol and MEK can be obtained from the second butyl benzene, in which the second butyl benzene is oxidized to produce dibutyl benzene hydroperoxide and the peroxide is decomposed into the desired phenol and Methyl ethyl ketone. The general discussion of these methods is described in Process Economics Report No. 22B, pp. 113-121 and 261-263, entitled "Phenol", published by Stanford Research Institute in 200846312, December 1977. However, although second butylbenzene (SB B) and cumene are similar, it is significantly more effective to oxidize the second butylbenzene to its corresponding hydroperoxide than to oxidize cumene to cumene hydroperoxide. For the sake of difficulty. For example, after oxidation with 1 atm of air at 110 ° C for 6 hours without using a catalyst, there may be a conversion of cumene greater than 20%, but generally less than 1% under the same conditions. SBB conversion rate. In the absence of a catalyst, the oxidation rate of the SBB to its corresponding hydroperoxide is only commercially viable at temperatures above 1 25 ° C, preferably above 140 ° C. Sex. However, when the temperature is raised, the selectivity to hydroperoxide is significantly reduced. It is known that the use of a specific catalyst, such as N-hydroxy quinone imine (NHPI), can oxidize the SBB at temperatures significantly lower than those required for no catalyst, thereby increasing the selectivity of the desired hydroperoxide and Its yield. According to the present invention, we have found that the conversion to SBB increases with increasing temperature and NHPI concentration, but surprisingly, the maximum enthalpy is reached with total pressure. Conversely, the selectivity to dibutylbenzene hydroperoxide (SBBHP) decreases with increasing temperature, is relatively flat as the NHPI concentration increases, and decreases slowly as the total pressure increases. The result: the SBBHP yield increases with temperature and NHPI concentration, but reaches a maximum enthalpy with total pressure. When the temperature is different, the maximum enthalpy is reached at different pressures, and particularly when the temperature is increased, the optimum pressure is lowered. This response to stress is surprising, as previous studies have found that oxidation of cumene at commercial operating temperatures is not affected by stress (see, for example, Manfred Weber, Chem. Eng·Technol·, 25, ( 2 002) 5, pp5 5 3 - 5 5 8), and the difference between cumene and SBB is only a methyl group on the alkyl side chain of 200846312. U.S. Patent No. 5,298,667 (Sumitomo) and EP-A-548,986 (Sumitomo) disclose a process for the manufacture of phenol and MEK comprising the steps of (I) oxidizing with an oxygen-containing gas selected from (A) substantially free of ethyl. Hydroperoxide, carboxylic acid and phenolic second butylbenzene, (B) second butylbenzene substantially free of styrene, and (C) second butyl substantially free of methylbenzyl alcohol The material of the benzene is used to prepare the second butylbenzene hydroperoxide, and the hydrogen peroxide second butylbenzene is decomposed into phenol and MEK by an acidic catalyst. The oxidation step is carried out in the absence of a catalyst at a temperature between 90 ° C and 15 ° C and at a pressure of from 1 to 10 kg/cm 2 g (101.3 to 1013 kPag). EP-Al, 088, 809 (Phenolchemie) discloses a process for the manufacture of hydrazine, MEK and acetone by oxidizing a mixture comprising cumene and up to 25% by weight of a second butyl benzene and then subjecting the hydroperoxides to Hock cleavage Thus, the ratio of phenol:acetone:MEK in the product can be controlled by the composition of the feed mixture. The feed mixture is produced directly by alkylation of the corresponding propylene and 1-butene/2-butene mixture in the presence of a commercial alkylating agent such as A1C13, H3P04/SiO2 or zeolite. The oxidation is carried out under air or oxygen but without a catalyst at a temperature of from 100 to 140 ° C and a pressure of from 1 to 20 bar (100 to 2,000 kPa). FR-A-2, 1 82, 802 (Union Carbide) discloses a process for producing phenol and MEK by oxidation of a second butylbenzene, wherein the second butylbenzene is in the presence of air and optionally hydrogen peroxide. Oxidation under butylbenzene followed by peroxide decomposition. According to this document, the second butylbenzene may not contain more than 1% by weight of isobutylbenzene because the presence of isobutylbenzene significantly reduces the effectiveness of the overall process of 200846312 and reduces the yield of phenol and MEK. The oxidation step can be carried out at a temperature of 75 ° C to 140 ° C and a pressure of 1 to 1 〇 (1 0 0 to 1 0 5 〇 〇 〇 kP a). In the examples, the oxidation is carried out at a temperature of from 1 5 5 to 1 3 5 ° C and an oxygen partial pressure of 20 to 1 〇 1 kPa. US Patent Application Publication Nos. 2004/0162448 (SheU) and 2004/023 6 1 52 (Shell) disclose a process for the manufacture of phenol and acetone and/or MEK, wherein a mixture of cumene and second butylbenzene It is oxidized to the corresponding peroxide in the presence of oxygen, followed by peroxide decomposition. According to such literature, the addition of a neutralizing base to the oxidizing mixture can improve the yield of hydroperoxide and reduce the formation of undesirable by-products. The oxidation step is carried out at a temperature of from 9 ° C to about 150 ° C and a pressure of 〇 psig to about 1 psig (〇 to 690 kPag), preferably from about 15 psig to about 40 psig (103 to 276 kPag). . In the examples, the oxidation is carried out at a temperature of about 130 ° C and a pressure of 37 7 kPa. U.S. Patent Nos. 6,852,893 (Cireavis) and 6,720,462 (Creavis) disclose a process for the manufacture of phenols by catalytically oxidizing alkylaromatic hydrocarbons to the corresponding hydroperoxides followed by cleavage of the hydroperoxides. Forming phenols and ketones. Catalytic oxidation is carried out with oxygen in the presence of a free radical initiator and a catalyst (typically an N-hydroxycarbonyldiamine imide catalyst such as N-hydroxyimine) at temperatures up to 500 ° C. Preferably, it is 50 to 300 ° C, and particularly preferably at a temperature of 50 to 200 ° C, at a pressure of 1 to 1 bar (100 to 100 kPa). Preferred acceptors which can be oxidized by this method include cumene, cyclohexylbenzene, cyclododecylbenzene and second butylbenzene. U.S. Patent No. 4,1, 3,1, 2, 3 (G ο 〇 year year 揭示 揭示 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 The alkyl aromatic compound is oxidized to the corresponding hydroperoxide under the free radical initiator of the aralkyl hydroperoxide of 8 to 14 carbon atoms. The process is carried out at a temperature of 50 ° C to 150 ° C. (:, preferably 80 ° C to 140 ° C, and optimally 90. (: to 1 20 ° C, and oxygen pressure of 2 to 400 psig (13.8 to 275 8 kPag) Preferably, it is carried out at 50 to 200 psig (3 45 to 1 3 79 kPag). U.S. Patent No. 4,450,303 (Phillips Petroleum) describes a method for producing a secondary alkyl substituted benzene hydroperoxide. Heating secondary alkyl substituted benzene, such as cyclohexylbenzene, cumene, second butylbenzene, second amylbenzene, p-methyl-t-butylbenzene, 1,4-diphenylcyclohexane Alkane, p-dicyclohexylbenzene and second-hexylbenzene at a temperature of from about 60 ° C to 200 ° C. preferably from about 80 ° C to 150 ° C, and a pressure of from about atmospheric pressure to 1000 psig (0 to 6895 kPag) Preferably, from 50 to about 300 psig (345 to 2069 kPag) is carried out in the presence of oxygen. The heating may also be present in an amount of about 5 to 5% by weight of the formula R"COOSm (wherein the ruler is alkyl, aromatic) a ruthenium catalyst of a base, an alkylaryl group or an aralkyl group and optionally a free radical initiator selected from the group consisting of an azo-type compound and a peroxide. In one embodiment, the secondary alkyl substituted benzene For the ring Benzene, the catalyst is cerium acetate and the free radical initiator is cumene hydroperoxide. In our International Patent Publication No. W006/0 1 5826, we describe a phenol and methyl ethyl ketone. The method wherein the benzene and C4 alkylating agent are contacted under alkylation conditions under a catalyst (the catalyst comprises a zeolite beta or an X-ray diffraction pattern having a maximum d-spacing of 12.4 ± 0. 25, 6.9 0,15, 200846312 3.57±0.07 and 3.42: t〇.〇7 angstrom molecular sieve), and an alkylation discharge stream containing second butylbenzene is formed. The second butylbenzene is then oxidized to produce hydrogen peroxidation. And the hydroperoxide is decomposed into phenol and methyl ethyl ketone. The oxidation step can be carried out with or without a catalyst at a temperature of from about 70 ° C to about 20 ° C, such as from about 90 ° C to about 130 ° C, a pressure of about 0.5 to about 10 atm (50, 6 to 1013 kPa). A specific method is to oxidize the second butylbenzene with a BaMn04 catalyst at a temperature of 100 ° C and atmospheric pressure. Thus, one aspect of the invention is a method of oxidizing a second butylbenzene to a corresponding hydroperoxide, the method comprising allowing a second butyl group to be included The feed is contacted with an oxygen-containing gas in a reaction tank containing the inlet and outlet of the oxygen-containing gas, and the temperature T is about 90 ° C to about 140 ° C in contact with the gas outlet of the reaction tank. The kPa of the oxygen partial pressure OPP is determined by the formula (I) • (1 527.33-1 0.83T)>Opp>(l 320.48-1 0.83T) (I) Only 大于 is always greater than zero. In another aspect, the invention relates to a process for the manufacture of phenols and methyl ethyl ketones, which process (herein referred to as oxime specific examples) comprises: (a) alkylation of benzene and linear butenes Contact with a catalyst containing zeolite zeolite or a molecular sieve of the MCM-22 family to form an alkylation discharge stream containing second butylbenzene; (b) reaction in an inlet and an outlet containing an oxygen-containing gas The oxygen-containing gas is used to oxidize the second butylbenzene from (a) in the tank -10,463,212, and the temperature T is between about 90 ° C and about 140 ° C, and the oxygen partial pressure at the mouth is pp pp The kPa system is determined by the formula (I): (1 527.3 3 -l〇.83T)>Opp>( 1 3 20.48- 1 0.83 T) 〇ρ ρ is always greater than 0, # The oxidation can bring at least one a portion of the hydroperoxide of the second butylbenzene; and (C) a formula for converting the hydroperoxide from (b) to phenol and methyl 3, suitably at the oxygen partial pressure 〇pp at the gas outlet of the reaction vessel ( π) decides: (1 492.85-1 0.83T)>Opp>(l 354.96-1 0.83T) Φ Only 0ΡΡ is always greater than 〇. Typically, the kPa of the reaction tank is determined by the formula (ιΠ): (1458.38-10.83Τ)>Ορρ> (1389.43-10.83T) Only 〇 is always greater than 〇. The above formulas (I), (II) and (III) are derived from the designed data, which are at different temperatures, pressures and arrivals. The SBB conversion rate from this experiment, hydrogen peroxygenation, the oxidation reaction tank outgas (I) is converted to the corresponding S ethyl hydrazine. The kPa enthalpy is obtained by the oxygen (III) at the mouth of (II). The selectivity of the material collected at the concentration of the medium and the yield of 200846312 are first analyzed by regression and then treated by calculus to define the operating conditions of the oxidation method. In terms of temperature and oxygen partial pressure, it is effective and even optimal for carrying out the process of the invention. This regression analysis and calculus application will be described in more detail below with reference to the examples and drawings. Suitably, the oxidative contact temperature T is between about 90 ° C and about 135 ° C, for example between about 110 ° C and about 130 ° C, for example about 1 15 ° C to about Between 1 2 5 °C. The oxygen partial pressure Opp at the gas outlet of the reaction tank is suitably between about 21, 25, 28 or 30 kPa to about 345 kPa, for example between about 35 kPa and about 241 kPa. Suitably, the oxidized second butylbenzene is carried out in the presence of a catalyst such as a N-hydroxy substituted cyclic quinone imine, typically N-hydroxy quinone. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a method for oxidizing a second butylbenzene to a corresponding hydroperoxide, and in one embodiment, the hydroperoxide is subsequently cleaved and co-formed with a phenol and a methyl propyl group. ketone. In particular, it has been found that when an oxygen-containing gas is used to oxidize the second butylbenzene, the yield of the dibutylbenzene dihydroperoxide can be maximized by the following steps: at a temperature of about 90 ° C to Operates and controls in a relatively narrow temperature range between about 140 ° C (eg, about 100 ° C to about 135 ° C, such as about llOt: to about 130 ° C, suitably about 115 to about 125 ° C) The oxygen-containing gas is fed into the oxidation reaction tank so that the oxygen partial pressure 〇PP at the gas outlet of the reaction tank is determined by the formula (I): -12- 200846312 (1 527.33 - 1 0.83 Τ) >Ορρ> (1 320.48- 1 0.8 3T) (I) where τ is the Celsius temperature in the oxidation reaction tank, and ορρ is always greater than 0. In a specific example, the feed of the oxygen-containing gas is controlled at the oxygen partial pressure Ορρ at the gas outlet of the reaction tank. The kP a値 is determined by the formula (II): (1492.85- 10.83 Τ)>0ρρ>(1 3 54.9 6- 1 0.83T) (II) Only 〇 is always greater than 〇. In another embodiment, the feed of the oxygen-containing gas is controlled by the formula (III) of the partial pressure of oxygen Ορρ at the gas outlet of the reaction vessel: (1458.38-1 0.83Τ)>Ορρ> 389.43-1 0.83T) (III) • Only Ορρ is always greater than zero. The oxidation method of the present invention and the second butylbenzene used in the specific embodiment are preferably at least 95% by weight of a second butylbenzene, for example at least 97% by weight, for example at least 99% by weight of the second butyl. The benzene, typically contains less than 1.1% by weight (e.g., less than 0.5% by weight) of butene oligomers and less than 0.5% by weight of isobutylbenzene and tert-butylbenzene. Suitably, the second butylbenzene used as a feed in the process of the present invention and the hydrazine specific example uses benzene with at least a C4 alkylating agent under alkylation conditions and preferably from -13 to 200846312 in a heterogeneous catalyst. It is prepared, for example, by alkylation in the presence of zeolite beta or, more preferably, at least one molecular sieve of the MCM-22 family (described below). The alkylation conditions suitably include a temperature between about 60 ° C to about 260 ° C (eg, between about 100 ° C to about 200 ° C), and/or 7000 kPa or less (eg, from about 1000 to about 3 5 The pressure of 00 kPa), and/or the hourly weight space velocity (WHS V) of the C4 alkylating agent is between about 0.1 and about 50 hr·1, such as between about 1 and about 10 hr. The C4 alkylating agent may suitably contain at least one linear butene, i.e., butene-1, butene-2, or a mixture thereof. The alkylating agent may also be a mixture of olefinic C4 hydrocarbons containing linear butene. For example, the alkylating agent can catalyze cracking of petroleum brain and other by steam cracking ethane, propane, butane, LPG and light petroleum brain. The refinery feedstock, as well as the conversion of oxygenates such as methanol to lower olefins. For example, the following C4 hydrocarbon mixtures are typically from any refinery where steam cracking produces olefins and can be used as a C4 alkylating agent: crude steam cracking butene stream, raffinate-1 (from this crude steam cracking) The product remaining in the butene stream by solvent extraction or hydrogenation to remove butadiene) and the raffinate 2 (the product remaining after removal of butadiene and isobutylene from the crude steam cracked butene stream). The term "MCM-22 family material" (or "the MCM-22 family material" or "the MCM-22 family molecular sieve" or "MCM-22 family zeolite"), when used herein, includes one or more of the following: • Molecular sieves formed by a common primary crystal block cell that has a MWW framework topology. (The unit cell is a spatial arrangement of atoms, which is described in the case of 3-dimensional space stacking. These crystal structures are described in "Atlas • 14-200846312 of Zeolite Framework Type", fifth edition, 2001 , the entire content of which is hereby referred to as a reference); • a molecular sieve formed by a common secondary unit cell, which is a 2·dimensionally stacked MWW skeleton topological unit cell, which forms a single layer of unit cell thickness. , preferably a single layer of c-cell thickness; • a molecular sieve formed by a common secondary unit cell, which is a layer of one or more cell thicknesses, wherein the layer of one or more cell thicknesses is borrowed It is made by stacking, squeezing or bonding at least two layers of a single cell thick layer. The stacking of such secondary unit cells may be in a regular form, an irregular form, a random form, or any combination thereof; and • formed by any regular or random 2- or 3-dimensional combination of unit cells having a M WW skeleton topology. The molecular return. The MCM-22 family molecular sieves are included in the X-ray diffraction pattern with the d-spacing maximum of 12.4 soil 0·25, 6·9±0·15, 3.57 ± 0.07 and 3.42 soil 0·07 angstrom molecular sieve. The X-ray diffraction data used to define the material was obtained using standard techniques using copper Κ-α double line as incident light, and a diffractometer equipped with a scintillation counter and an auxiliary computer as a data collection system. Materials of the MCM-22 family include MCM-22 (described in U.S. Patent No. 4,954,325), PSH-3 (described in U.S. Patent No. 4,439,409), and SSZ-2 5 (described in U.S. Patent No. 4,826,667). ERB-1 (described in European Patent No. 0293032), ITQ-1 (described in US Patent No. 6,077,498), ITQ-2 (described in International Patent Publication No. WO97/1 7290), MCM-36 (described in U.S. Patent No. 5,250,277), MCM-49 (described in U.S. Patent No. 5,23,5,75), MCM-56 (described in U.S. Patent No. -15-200846312 5, No. 3,625, 697), UZM-8 U.S. Patent No. 6,756,03, and mixtures thereof. The M C Μ - 2 2 molecule remains the preferred host catalyst because it has been found to be more selective for the manufacture of second butyl benzene than other butyl benzene isomers. Preferably, the molecular sieve is selected from the group consisting of (a) MCM-49, (b) MCM-56 and (c) isoforms of MCM-49 and MCM-56, such as ITQ-2. Although the alkylation reaction of benzene with a C4 alkylating agent on the MCM-22 family zeolite is highly selective for the second butylbenzene, the discharge stream of the alkylation reaction usually contains a butene oligomer, which is easily inhibited. Subsequent oxidation of the second butylbenzene to the corresponding hydroperoxide is carried out. Furthermore, although distillation can effectively remove some of these impurities, certain butene oligomers, especially C12 olefins, tend to boil at the same temperature or near temperature as the second butylbenzene and therefore cannot The distillation is easily removed. Thus, in one embodiment, the current oxidation process employs a preliminary treatment step, particularly a chemical treatment step, to reduce the butene oligomer content of the alkylation effluent stream to typically less than 1% by weight, preferably 5重量百分比。 The ground is less than 0.7% by weight, and is preferably less than 5% by weight. A suitable chemical treatment for reducing the level of oligomers in the alkylation effluent involves contacting the effluent stream with an acid (eg, a mineral acid or a solid acid) and optionally water at a temperature of, for example, about 〇 to about 300 ° C. The oligomer is converted to an alcohol or ester (eg, a sulfate). The effluent stream can be sent to the oxidation step by neutralizing the excess acid and, if necessary, washing, drying and distilling. Another suitable chemical treatment for reducing the oligomer content of the alkylation effluent involves contacting the effluent stream with hydrogen in a catalyst (e.g., a noble metal heterogeneous catalyst) in a condition effective to saturate the oligomers. . Suitable conditions -16 - 200846312 include temperatures from about 200 to about 200 ° C and/or pressures from about 100 to about 1 000 kPa and/or hydrogen to hydrocarbon molar ratios from about 0.001 to about 10. Another suitable chemical treatment to reduce the level of oligomers in the alkylation effluent involves an etherification reaction wherein the effluent stream is contacted with an alcohol such as methanol at a temperature of, for example, about 20 to about 300 °C. A combination of the above treatments, such as a combination of acid treatment and hydrogenation, can be employed to reduce the butene oligomer content of the alkylation effluent stream to the desired extent. Oxidation of the second butylbenzene to the corresponding hydroperoxide can be carried out by introducing an oxygen-containing gas such as air into an inlet and an outlet having an oxygen-containing gas and containing the second butylbenzene (typically in liquid form) The phase is completed in the reaction tank. Desirably, the second butylbenzene is completely or substantially free of cumene. Unlike cumene, it is difficult to oxidize the second butylbenzene with the atmosphere in the absence of a catalyst. For example, dibutylbenzene does not oxidize at 11 ° C and atmospheric pressure, but cumene oxidizes well under the same conditions. At higher temperatures, the rate of oxidation of the dibutylbenzene in the atmosphere is improved; however, higher temperatures also produce significant amounts of unwanted by-products. The improvement of the reaction rate and selectivity can also be achieved by the oxidation reaction of the second butylbenzene in the presence of a catalyst. Suitable second butylbenzene catalysts include organometallic complexes, such as water soluble chelating compounds (wherein the polydentate ligand will coordinate to at least one metal selected from the group consisting of Ming, nickel, ruthenium, copper and iron) (Refer to U.S. Patent No. 4,013,725). More preferably, a heterogeneous catalyst such as a metal oxide catalyst can be used. Suitable heterogeneous metal oxide catalysts are described in U.S. Patent No. 5,1,83,945 (the catalyst is a ketone group (hydroxy-17-200846312) bridged tetranuclear manganese complex) and U.S. Patent No. 5,922,920 No. (wherein the catalyst comprises a tetranuclear metal complex having a keto group (hydroxyl) bridged with a mixed metal core, wherein one of the core metals is a divalent metal selected from the group consisting of Zn, Cu, Fe, Co, Ni' Μ, and mixtures thereof The metal, the other metal is a trivalent metal selected from the group consisting of In, Fe, Mn, Ga, A1, and mixtures thereof. The disclosures of all of these U.S. patents are hereby incorporated by reference. In one embodiment, the catalyst for the second butyl benzene oxidation step is a cyclic quinone imine substituted with an N-hydroxy group as described in U.S. Patent No. 6,720,462 (hereby incorporated by reference). Suitable cyclic quinone imines include, for example, N-hydroxy quinone imine, 4-amino-N-hydroxy quinone imine, 3-amino-N-hydroxy quinone imine, tetrabromo-N-hydroxy hydrazine醯iamine, tetrachloro-hydrazine-hydroxy quinone imine, N-hydroxyhetimide 'N-hydroxyhimimide, N-hydroxytrimellitimide, N-phenylbenzene-1,2,4-triimide (tricar bo ximide), N, N'-di-perylene (dimethyleneimine), N,N'-dihydroxy (benzophenone-3,3^4,4^tetracarboxydiimide), N-hydroxyl醯imine, pyridine-2,3-dicarbodiimide, N-hydroxysuccinimide, N-hydroxy (tartarium imine), N-hydroxy-5-formylene-2,3·2 Carboimine, hang-oxime-hydroxy-7-oxabicyclo[2·2·1]hept-5-ene-2,3-dicarbodiimide, oxime-hydroxy-cis-cyclohexane-1, 2-dicarbodiimide, hydrazine-hydroxy-cis-4-cyclohexane-1,2-dicarbodiimide, sodium hydroxy-naphthoquinone imide or hydrazine-hydroxy-o- benzenedisulfonimide . Preferably, the catalyst is hydrazine-hydroxy quinone imine. Another suitable catalyst is Ν,Ν',Ν--trihydroxyisocyanuric acid ° These materials can be used alone or in the presence of a free radical initiator, and can be used in the presence of a free radical initiator, -18-200846312 The phase, homogeneous catalyst is used, or supported on a solid support to provide a heterogeneous catalyst. Suitable conditions for the oxidation of the second butylbenzene include a temperature of between about 90 ° C and about 1 40 ° C, for example Between about 90 ° C and about 135 ° C, for example between about 1 〇〇 ° C and about 135 ° C, such as between about 110 乞 and about 130 :, suitably about 11 5 ° C Between about 12 5 ° C. The partial pressure of oxygen at the gas outlet of the reaction tank is preferably between about 21, 25, 28 or 30 kPa to about 345 kPa, for example between about 35 kPa and about 241 kPa. For example, between about 62 and about 214 kPa. In particular, it is found that by operating within such narrower temperature and pressure ranges and by controlling the temperature and pressure to follow one or more of the formulas listed above The yield of dibutylbenzene hydroperoxide in the oxidation process can be maximized under the conditions of (I) to (III). Alkaline buffer can be added to An acidic by-product reaction may occur during the chemical conversion. In addition, an aqueous phase may be introduced which can assist in the dissolution of a basic compound such as sodium carbonate. The per-pass conversion of the second butylbenzene in the oxidation process is preferred. Maintaining less than 50% to minimize the formation of by-products. The oxidation reaction can suitably be carried out in a catalytic distillation unit and the resulting hydroperoxide dibutylbenzene can be removed by distillation. The reaction of the second butylbenzene (which is carried out before the cleavage step (c) in the MEKP specific example) is concentrated. The cleavage of the dibutylbenzene hydroperoxide produced in the oxidation method of the present invention can be suitably The hydroperoxide and catalyst are in the liquid phase at a temperature of from about 20 ° C to about 150 ° C, such as from about 40 ° C to about 120 ° C, and/or a pressure of from about 50 to about 2500 kPa, such as from about 100 to about 1 000 kPa, and/or the hourly liquid space velocity (LHSV) of the -19-200846312 hydroperoxide is from about 0.1 to about 100 h〆1, preferably from about 1 to about 50 hr·1. Diluting the hydroperoxide in an organic solvent inert to the cleavage reaction, such as methyl ethyl ketone Phenol or second butyl benzene to aid in heat removal. The cleavage reaction is suitably carried out in a catalytic distillation unit. The catalyst used in the cleavage step may be a homogeneous catalyst or a heterogeneous catalyst. The catalyzing catalyst includes sulfuric acid, perchloric acid, phosphoric acid, hydrochloro citric acid and p-toluene sulfonic acid. Ferric chloride, boron trifluoride and sulfur trioxide are also effective homogeneous cleavage catalysts. The medium is sulfuric acid. The appropriate heterogeneous catalyst for the cleavage of dibutylbenzene hydroperoxide includes bentonite clay, such as acidic smectite alumina-aluminum clay, such as U.S. Patent No. 4,870,2 No. 7 (Texaco), the entire disclosure of which is hereby incorporated by reference. [Embodiment] # The present invention will now be explained in more detail with reference to the following non-limiting examples and the following figures. EXAMPLES Weighed second butylbenzene (150 g) and N-hydroxy quinone imine (from 0.075 g to 0.64 g) and charged with a stirrer, thermocouple, gas inlet, sampling port and containing Dean & 300 ml Parr reaction tank for condensers for water removal of Stark type joints. The contents of the reaction vessel were stirred at 700 rpm and nitrogen gas at a flow rate of 25 cc/min was sprayed for 5 minutes. The reaction vessel is pressurized with nitrogen to the desired pressure of -20-200846312, and the reaction vessel is heated to the desired operating temperature as nitrogen is continuously injected. After the operating temperature was reached, the supplied gas was switched from nitrogen to air and air was sprayed into the reaction vessel at the desired flow rate for 6 hours. Sampling once every hour and after six hours, the supplied gas is switched back to nitrogen and heating is stopped. After the reaction tank was cooled, it was depressurized and the contents were removed. In the experiments designed in accordance with the present invention (this design is shown in Figure 1), a total of 20 data points were taken at different temperatures, pressures, and NHPI concentrations. The conversion of the second butylbenzene obtained under the conditions of φ and the selectivity and yield of the dibutylbenzene hydroperoxide (SBBHP) were subjected to regression analysis. The data set used in this analysis has a data range of 1 15 °c to 1 25 °c; a catalytic (NHPI) concentration range of 0.05 to 0.43 wt%; and a total pressure range of 2 07 to 1 3 79 kPag (30 to 20 0 psig). The resulting partial pressure of oxygen (absolute enthalpy) is in the range of 276 kPa (0 to 40 psi). The result of this regression analysis is a regression equation representing the SBB yield, which is a function of a number of independent process variables, as expressed by Equation 1: 10 Equation 1: SBB yield = -130.29 + 1.160xT(〇C) + 88.375 xNHPI(wt%)-1 04.253 xNHPI(wt%)2 + 4.215x oxygen partial pressure (psi)-0.0102x oxygen partial pressure (?3〇2-0.0 3 206 parent oxygen partial pressure (?3〇父丁(. 〇) Equation 1 defines the SBB yield as a function of the temperature (°C), NHPI concentration (wt%), and oxygen partial pressure (psi) of the experimental data set. The SBB yield reaction described in Equation 1 is shown as a curve. Figures 2 to 4. From this curve can be issued - 21,463,312. The yield (%) of hydroperoxide increases with increasing temperature and NHPI concentration (Fig. 2) and with oxygen partial pressure. The highest enthalpy is reached (Figures 3 to 5). The positions of these highest enthalpies vary only slightly depending on the NHPI concentration, but there are significant differences due to temperature differences. For example, the highest enthalpy at Η 5 °C is about 172 kPa (25 The psi) oxygen partial pressure, the highest enthalpy at 120 ° C is at about 138 kPa (20 psi) oxygen partial pressure and the highest enthalpy at 125 ° C is at about 90 kPa (13 psi) oxygen partial pressure. Can borrow Calculus is used to determine the mathematical equation that defines the relationship between the position of the highest SBB yield and the oxygen partial pressure and temperature. The first partial derivative of the SBB yield relative to the oxygen partial pressure is determined by calculus and is shown in the equation. 2: Equation 2: 3 (SBB yield) / 3 oxygen partial pressure = 4.215-0.0102x2x Oxygen partial pressure a (psi) - 0.03206xT (〇C ) From calculus, it is known that this partial derivative is equal to 〇 in the optimum case, so The oxygen partial pressure is obtained by letting Equation 2 equal to 〇, and the result is Equation 3a, where the optimum oxygen partial pressure (psi) is a function of temperature (°C): Equation 3a (psi): Optimum oxygen partial pressure (psi) ) = 206.52-1.5708xT (°C) Since 1 psi is equal to 6.894 kPa, by multiplying 6.894, the equation -22-200846312 can be converted into SI units (kPa) to obtain the equation oxygen partial pressure kPa 値 definition SBB yield The best condition. 3b, which is based on equation 3b (kPa): optimum oxygen partial pressure (1^&) = 1423.91-10.83\1: (°(:)

以上3a及3b能提供進行本發明氧化方名 壓。以所得到的更多數據爲基礎,並施以較fi 即可算出多個基本上能提供最佳效能之氧分遷 但能提供方法操作者氧分壓的自由度,還能ί 明方法之有效及較佳操作條件。此等範圍,j 發明方法之步驟實行期間產生之數據,即 (I)、(II)及(III)所反應的範圍。更詳細地,: (III)之範圍係分別將方程式3a之常數增: psi、10 psi及5 psi之增量;或者(在psi轉! 位轉換的合理範圍內)分別將方程式3 b之常| 1 03.42 kPa、6 8.95 kPa 及 34.47 kPa 之增量 ί 選用的增量係藉著讓所得數據能符合本發明I 較佳及更佳的效能參數而衍生出來的。在某g 1 2 5 °c或高於1 2 5 °c之溫度下,扣除此等增J 分壓爲負數。於此等情況下,應認爲方程式 去 Eΰι a 等溫度或高於此等溫度。 於特佳具體例中,本發明方法係在理想ί 中完全不含或實質上不含枯烯,溫度爲90到 :之最適氧分 單的計算, :範圍,其不 :義進行本發 :符合定義本 爲以上公式 “I)、(II)及 □及減少1 5 [成kPa之單 〔增加或減少 f生而來。所 [法之所需、 ί溫度如在約 會導致最適 不該用在此 ί第二丁基苯 140〇C 且 〇ΡΡ -23- 200846312 落在式(I),更佳地式(II)或式(III)的範圍內進行。opp的 最適範圍係依溫度而定,且溫度較高時該範圍的下限會變 成負値。於此等情況下,該Opp的下限永遠大於0。更詳 細地,視溫度而定,該Opp値較佳地在21 kPa到345 kPa 之範圍,伊j如25 kPa到3 45 kPa間,28 kPa到345 kPa間 或30 kPa到345 kPa間而且總在說明書列示之式(I)、(II) 或(III)之範圍內。 φ 雖然本發明已藉著參考特定具體例來說明及顯示,不 過熟悉此技術之人士應瞭解本發明本身還有許多變化,無 需在此顯示。基於此等理由,應僅參考後附申請專利範圍 來決定本發明真正的範疇。 【圖式簡單說明】 第1圖顯示實施例之第二丁基苯氧化實驗設計中溫 度、壓力及N-羥基酞醯亞胺(NHPI)濃度之三維圖; # 第2圖係以實施例得到之數據之迴歸分析結果爲基 礎,顯示出於1 7 2 kP a(2 5 p s i)氧分壓,該氫過氧化第二丁 基苯產率相對於溫度及NHPI濃度之預期反應的曲線圖; 第3圖係以實施例得到之數據之迴歸分析結果爲基 礎,顯示出NHPI濃度爲〇.〇5 wt%時該氫過氧化第二丁基 苯產率相對於溫度及氧分壓之預期反應的曲線圖; 第4圖係以實施例得到之數據之迴歸分析結果爲基 礎,顯示出NHPI濃度爲〇· 10 wt%時該氫過氧化第二丁基 苯產率相對於溫度及氧分壓之預期反應的曲線圖; -24- 200846312 第5圖係以實施例得到之數據之迴歸分析結果爲基 礎,溫度115°C且NHPI濃度爲0.10 wt%時所預期之氫過 氧化第二丁基苯產率相對於氧分壓之曲線圖。The above 3a and 3b can provide the oxidation name of the present invention. Based on the more data obtained, and more than fi can be calculated to calculate the oxygen separation that basically provides the best performance, but can provide the operator's oxygen partial pressure, and can also be used to Effective and better operating conditions. These ranges, the data generated during the execution of the steps of the inventive method, ie the ranges of reactions (I), (II) and (III). In more detail, the range of (III) is increased by the constant of Equation 3a: increments of psi, 10 psi, and 5 psi, respectively; or (within the reasonable range of psi turn! bit conversion), respectively, Equation 3 b | 1 03.42 kPa, 6 8.95 kPa and 34.47 kPa increments ί The incremental selection is derived by making the resulting data consistent with the better and better performance parameters of the present invention. At a temperature of g 1 2 5 °c or higher than 1 2 5 °c, the partial pressure of these increased J is deducted to a negative number. In such cases, the equation should be considered to be at or above the temperature of Eΰι a. In a specific embodiment, the method of the present invention is completely free or substantially free of cumene, and the temperature is 90 to: the calculation of the optimum oxygen fraction, : range, which is not: The definitions are the above formulas "I), (II) and □ and the reduction of 15 [single into kPa [increased or reduced f born. [The required method, ί temperature, such as in the appointment, the most appropriate should not be used Here, ί second butyl benzene 140 〇 C and 〇ΡΡ -23- 200846312 fall within the range of formula (I), more preferably formula (II) or formula (III). The optimum range of opp is based on temperature. The lower limit of the range will become negative 温度 when the temperature is higher. In this case, the lower limit of the Opp is always greater than 0. In more detail, depending on the temperature, the Opp 値 is preferably between 21 kPa and 345. The range of kPa is between 25 kPa and 3 45 kPa, between 28 kPa and 345 kPa or between 30 kPa and 345 kPa and is always within the range of formula (I), (II) or (III) listed in the manual. Although the invention has been illustrated and shown with reference to specific specific examples, those skilled in the art will appreciate that the invention itself has many variations. For the reasons of this, the true scope of the present invention should be determined only by referring to the scope of the appended patent application. [Simplified Description of the Drawing] FIG. 1 shows the experimental design of the second butyl benzene oxidation in the example. 3D plot of temperature, pressure and concentration of N-hydroxy quinone imine (NHPI); # Figure 2 is based on the results of regression analysis of the data obtained in the examples, showing 1 7 2PP a (2 5 psi) Oxygen partial pressure, a graph of the expected reaction of the second butylbenzene hydroperoxide with respect to temperature and NHPI concentration; Figure 3 is based on the regression analysis of the data obtained in the examples, showing that the NHPI concentration is 〇.〇5〇% of the expected ratio of the yield of the second butylbenzene hydroperoxide relative to temperature and oxygen partial pressure; Figure 4 is based on the results of the regression analysis of the data obtained in the examples, showing A graph showing the expected reaction of the yield of dibutylbenzene hydroperoxide with respect to temperature and partial pressure of oxygen when the NHPI concentration is 〇·10 wt%; -24- 200846312 Figure 5 is the data obtained by the examples. Based on the results of the regression analysis, the temperature is 115 ° C and N A graph of the expected yield of dibutylbenzene hydroperoxide relative to oxygen partial pressure at a HPI concentration of 0.10 wt%.

-25--25-

Claims (1)

200846312 十、申請專利範園 1 · 一種使第二丁基苯氧化成對應之氫過氧化物之方 法,該方法包含使含有第二丁基苯之進料於含有一含氧氣 體之進氣口及出氣口之反應槽中與該含氧氣體接觸,進行 該氧化性接觸時溫度T爲攝氏90 °c至140 °C之間,且該反 應槽出氣口處之氧分壓OPP之kPa値係以公式(1)決定: (1 527.33-10.83Τ)>Ορρ>(1 320.48-1 0.83T) (I) φ 惟〇ΡΡ永遠大於〇。 2·—種製造酚及甲基乙基酮之方法,該方法包含: (a) 使苯及線性丁烯於烷化條件下與含有沸石β或 MCM-22族之分子篩的觸媒接觸以生成含有第二丁基苯之 烷化排放流; (b) 藉由如申請專利範圍第1項之方法把來自(a)之第 二丁基苯氧化;及 (c) 把來自(b)之氫過氧化物轉化成酚及甲基乙基酮。 φ 3 ·如申請專利範圍第1或2項之方法’其中反應槽出 氣口處之氧分壓Opp之kPa値係以公式(Π)決定·· (1 492.85- 1 0.83Τ)>ΟρΡ>(1354.96-1 0.83T) (II) 惟〇ΡΡ永遠大於0。 4 ·如申請專利範圍第1或2項之方法’其中反應槽出 氣口處之氧分壓0PP之kPa値係以公式(I11)決定: (1458.38- 1 0.83Τ)>ΟΡρ> (1389.43-1 0.83T) (ΙΠ) 惟Ο ρ ρ永遠大於0。 5·如申請專利範圍第1或2項之方法’其中該氧化接 -26- 200846312 觸溫度係在90°C到135°C之間。 6. 如申請專利範圍第5項之方法,其中該溫度係在 1 1 0 °C 到 1 3 0 °C 之間。 7. 如申請專利範圍第6項之方法,其中該溫度係在 1 1 5 °C 到 1 2 5 °C 之間。 8 .如申請專利範圍第1或2項之方法,其中反應槽出 氣口處之氧分壓係在2 1 kPa到3C kPa之間。 φ 9 .如申請專利範圍第8項之方法,其中該氧分壓係在 35 kPa 到 241 kPa 之間 ° 1 〇.如申請專利範圍第1或2項之方法’其中該氧化 接觸係在觸媒存在下進行。 1 1 ·如申請專利範圍第1 0項之方法,其中該觸媒包含 均質觸媒。 12 ·如申請專利範圍第11項之方法,其中該均質觸媒 包含N-羥基取代之環狀醯亞胺。 # 1 3 ·如申請專利範圍第i 2項之方法,其中該均質觸媒 包含N-羥基酞醯亞胺。 I4·如申請專利範圍第13項之方法,其中該N-羥基酞 醯亞胺之存在量爲該進料之〇 . 〇 〇 5到2 0 wt %之間。 15·如申請專利範圍第2項之方法,其中(a)之該觸媒 包含具有X·光繞射圖之d-間距最大値爲12.4:t〇.25、 6·9土0.15、3.57士〇.〇7 及 3·42土0·07 埃之分子篩。 1 6 ·如申請專利範圍第2項之方法,其中(a)之線性丁 烯含有1 - 丁烯及/或2-丁烯。 -27- 200846312 1 7.如申請專利範圍第2項之方法,其中該轉化作用 (c)係在觸媒存在下進行。 18.如申請專利範圍第17項之方法,其中該觸媒含有 至少一種選自硫酸、過氯酸、磷酸、氫氯酸、對-甲苯磺 酸、氯化鐵、三氟化硼、二氧化硫、三氧化硫及膨潤石黏 土之成份。 1 9.如申請專利範圍第2項之方法,其中該轉化作用 (c)係在溫度爲40°C到120°C,及/或壓力爲100到1000 kPa,及/或者該氫過氧化物之每小時液體空間速度(LHSV) 爲1到約50 hi-1時進行。200846312 X. Patent application 1 · A method for oxidizing a second butyl benzene to a corresponding hydroperoxide, the method comprising feeding a feed containing a second butyl benzene to an inlet containing an oxygen-containing gas And the oxygen-containing gas is contacted in the reaction tank of the gas outlet, and the temperature T is between 90 ° C and 140 ° C when the oxidizing contact is performed, and the kPa enthalpy of the oxygen partial pressure OPP at the gas outlet of the reaction tank Determined by the formula (1): (1 527.33-10.83Τ)>Ορρ>(1 320.48-1 0.83T) (I) φ is always greater than 〇. 2. A method for producing phenol and methyl ethyl ketone, the method comprising: (a) contacting benzene and linear butene with a catalyst comprising zeolite zeolite or a molecular sieve of MCM-22 under alkylation conditions to form An alkylation discharge stream containing a second butylbenzene; (b) oxidizing the second butylbenzene from (a) by the method of claim 1; and (c) hydrogen from (b) The peroxide is converted to phenol and methyl ethyl ketone. Φ 3 · The method of the first or second aspect of the patent application 'the kPa of the oxygen partial pressure Opp at the gas outlet of the reaction tank is determined by the formula (Π) · (1 492.85 - 1 0.83 Τ) >ΟρΡ> (1354.96-1 0.83T) (II) Only 大于 is always greater than 0. 4. The method of claim 1 or 2, wherein the kPa of the oxygen partial pressure of the reaction vessel at the outlet of the reaction vessel is determined by the formula (I11): (1458.38 - 1 0.83 Τ) > ΟΡ ρ > (1389.43) 1 0.83T) (ΙΠ) Only ρ ρ is always greater than 0. 5. The method of claim 1 or 2 wherein the oxidation temperature is between 90 ° C and 135 ° C. 6. The method of claim 5, wherein the temperature is between 1 10 ° C and 130 ° C. 7. The method of claim 6, wherein the temperature is between 1 15 ° C and 1 2 5 ° C. 8. The method of claim 1 or 2, wherein the partial pressure of oxygen at the outlet of the reaction tank is between 2 1 kPa and 3 C kPa. φ 9. The method of claim 8, wherein the oxygen partial pressure is between 35 kPa and 241 kPa ° 1 〇. The method of claim 1 or 2 wherein the oxidizing contact is in contact In the presence of the media. 1 1 The method of claim 10, wherein the catalyst comprises a homogeneous catalyst. 12. The method of claim 11, wherein the homogeneous catalyst comprises an N-hydroxy substituted cyclic quinone imine. #1 3 The method of claim i, wherein the homogeneous catalyst comprises N-hydroxy quinone. I4. The method of claim 13, wherein the N-hydroxyindoleimine is present in an amount between 5 and 20% by weight of the feed. 15. The method of claim 2, wherein the catalyst of (a) comprises a d-spacing having an X-ray diffraction pattern with a maximum 値 of 12.4: t〇.25, 6.9 soil 0.15, 3.57 士〇.〇7 and 3·42 soil 0. 07 angstrom molecular sieve. The method of claim 2, wherein the linear butene of (a) contains 1-butene and/or 2-butene. -27-200846312 1 7. The method of claim 2, wherein the conversion (c) is carried out in the presence of a catalyst. 18. The method of claim 17, wherein the catalyst contains at least one selected from the group consisting of sulfuric acid, perchloric acid, phosphoric acid, hydrochloric acid, p-toluenesulfonic acid, ferric chloride, boron trifluoride, sulfur dioxide, The composition of sulfur trioxide and bentonite clay. 1 9. The method of claim 2, wherein the conversion (c) is at a temperature of from 40 ° C to 120 ° C, and/or a pressure of from 100 to 1000 kPa, and/or the hydroperoxide The hourly liquid space velocity (LHSV) is from 1 to about 50 hi-1. -28--28-
TW97104351A 2007-02-22 2008-02-04 Oxidation of sec-butylbenzene and production of phenol and methyl ethyl ketone TW200846312A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US90277907P 2007-02-22 2007-02-22

Publications (1)

Publication Number Publication Date
TW200846312A true TW200846312A (en) 2008-12-01

Family

ID=38520631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97104351A TW200846312A (en) 2007-02-22 2008-02-04 Oxidation of sec-butylbenzene and production of phenol and methyl ethyl ketone

Country Status (2)

Country Link
TW (1) TW200846312A (en)
WO (1) WO2008101617A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2300903A1 (en) * 1972-01-10 1973-08-02 Union Carbide Corp PROCESS FOR THE PRODUCTION OF BUTYLBENZENE HYDROPEROXIDE AND THE USE OF IT FOR THE PRODUCTION OF PHENOL, ACETOPHENONE AND METHYLAETHYL KETONE
TW226011B (en) * 1991-12-26 1994-07-01 Sumitomo Chemical Co
TW237445B (en) * 1992-07-07 1995-01-01 Sumitomo Chemical Co
US7282613B2 (en) * 2003-02-14 2007-10-16 Shell Oil Company Process for producing phenol and methyl ethyl ketone
US7141703B2 (en) * 2003-02-14 2006-11-28 Shell Oil Company Process for producing phenol and ketone using neutralizing base
TWI376361B (en) * 2004-08-13 2012-11-11 Exxonmobil Chem Patents Inc Process for producing phenol and methyl ethyl ketone

Also Published As

Publication number Publication date
WO2008101617A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
TWI419866B (en) Oxidation of hydrocarbons
TWI457316B (en) Oxidation of hydrocarbons
TWI376361B (en) Process for producing phenol and methyl ethyl ketone
US7326815B2 (en) Selective oxidation of alkylbenzenes
JP5342652B2 (en) Oxidation of alkyl aromatic compounds
US7812196B2 (en) Process for producing phenol and methyl ethyl ketone
US7985883B2 (en) Process for oxidizing alkylaromatic compounds
TWI491588B (en) Oxidation of hydrocarbons
EP2470501A2 (en) Oxidation of hydrocarbons
EP1984312B1 (en) Process for producing sec-butylbenzene
US20130203984A1 (en) "oxidation of hydrocarbons"
TW200904778A (en) Process for producing sec-butylbenzene
TW200846312A (en) Oxidation of sec-butylbenzene and production of phenol and methyl ethyl ketone
EP2098505A1 (en) Oxidation of hydrocarbons