TW200842399A - LED illumination for line scan camera - Google Patents

LED illumination for line scan camera Download PDF

Info

Publication number
TW200842399A
TW200842399A TW097104829A TW97104829A TW200842399A TW 200842399 A TW200842399 A TW 200842399A TW 097104829 A TW097104829 A TW 097104829A TW 97104829 A TW97104829 A TW 97104829A TW 200842399 A TW200842399 A TW 200842399A
Authority
TW
Taiwan
Prior art keywords
light
lens
rectangular
emitting diode
diode array
Prior art date
Application number
TW097104829A
Other languages
Chinese (zh)
Other versions
TWI400441B (en
Inventor
Diana Shapirov
Original Assignee
Camtek Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camtek Ltd filed Critical Camtek Ltd
Publication of TW200842399A publication Critical patent/TW200842399A/en
Application granted granted Critical
Publication of TWI400441B publication Critical patent/TWI400441B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

An illumination system that includes: (i) a first rectangular light emitting diode array that emits quasi-collimated light; and (ii) first concentrating optics that comprises at least one total internal reflection lens portion and at least one refractive lens portion. The quasi-collimated light from the first rectangular light emitting diode array is directed by the first concentrating optics towards an object to form a line of light on the object.

Description

200842399 九、發明說明: 發明領域 本申请案主張於2007年2月2〇日所提出之美國專利 5臨時申請案第60/890627號之優先權權益。 本發明係有關用於自動光學檢測及驗證之系統與方 法,特別是用於產生一列光線之方法與系統。 【先前技術J 發明背景 1〇 諸如但不限於印刷電路板(PCB)、晶圓及HDI等物體 可用以一光點、一列光線或所謂區域照明的方式照射該物 件部份區域之檢驗系統以作檢驗。 從物體反射、散射及任意穿透物體的光將被偵測。 在檢驗(評估)過程中,可以區域照明、點照明或線照明 15方式來照射物體。光點或一列光線可掃描該物體並允許系 統來擷取該物體之影像。 為了不在檢驗或評估過程中導致誤差,該列光線應是 均勻的,特別是當根據檢測之比較被使用時。特別是,該 照明裝置應符合以下(重要的)需求⑴在整列光線上光強度 20之空間均勻性;(li)在整列光線上光強度之角度均勻性;(iii) 寬角度範圍之照明(亦稱作高數值孔徑照明);(iv)能有控 制角度覆盍範圍的能力(可根據應用類型)、頻譜控制(可根 據應用類型),(v)高效率,(vi)耐用,且(vii)低成本。 可以使用可包含反射光學元件(會聚面鏡)或折射光 5 200842399 學元件(會聚透鏡)之成像光學元件來提供〜列光線。 參考第la圖,成像照明光學元件(以“成像光學元件” 來表示)14將線性光源12轉換成在物體(未顯示)上之一 列光線16(以“聚焦線”來表示)。該成像光學元件可以是 5折射式(透鏡)或反射式(會聚面鏡)的。受限於數值孔 徑以及在沒有多孔(lacunose)設計下,以折射式光學元件 來成像效率較差。這可由第lb圖中包含三個彼此隔開之覆 蓋範圍26、24及22之二維光強度圖20來說明。反射式光 學元件(橢圓或形狀更複雜之面鏡)並沒有上述之問題。 1〇這可用第lc圖中包含一單一連續覆蓋範圍32之二維光強 度圖30來說明。 照明設計成像方法的一般問題有:(1)與光源之局部非 均勻性強烈相關;(2)微小的光機容忍度。這些缺點可藉由 ***額外之混合或擴散元件而被部分克服,然而這會顯著 15 地降低整體之設計效率。 非成像之方法包含將有混合或未混合之線性光源投射 在大型區域。第2a-2c圖說明了不同的系統組配。第以圖。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The present invention relates to systems and methods for automated optical inspection and verification, and more particularly to methods and systems for generating a train of light. [Prior Art J BACKGROUND] An object such as, but not limited to, a printed circuit board (PCB), a wafer, and an HDI can be used to illuminate a portion of the object by a spot, a column of light, or a so-called area illumination. test. Light reflected, scattered, and arbitrarily penetrating from objects will be detected. During the inspection (evaluation), the object can be illuminated by area illumination, point illumination or line illumination. A spot or a line of light scans the object and allows the system to capture an image of the object. In order not to cause errors during the inspection or evaluation process, the column of light should be uniform, especially when used in comparison to the test. In particular, the illuminating device should meet the following (important) requirements (1) spatial uniformity of light intensity 20 over the entire array of rays; (li) angular uniformity of light intensity over the entire array of rays; (iii) illumination over a wide range of angles ( Also known as high numerical aperture illumination); (iv) the ability to control the range of angle coverage (depending on the type of application), spectrum control (depending on the type of application), (v) high efficiency, (vi) durable, and ( Vii) low cost. Array light can be provided using imaging optics that can include reflective optical elements (convergence mirrors) or refracted light elements (convergence lenses). Referring to Figure la, an imaging illumination optical element (represented by "imaging optics") 14 converts linear light source 12 into a series of rays 16 (represented by "focus lines") on an object (not shown). The imaging optical element can be a 5 refractive (lens) or a reflective (converging mirror). Limited by numerical apertures and in the absence of a porous (lacunose) design, the refractive efficiency is poor with refractive optics. This can be illustrated by a two-dimensional light intensity map 20 comprising three spaced apart coverage ranges 26, 24 and 22 in Figure lb. Reflective optical components (oval or more complex mirrors) do not have the above problems. This can be illustrated by a two-dimensional light intensity map 30 comprising a single continuous coverage range 32 in the lcth diagram. General problems with illumination design imaging methods are: (1) strongly correlated with local non-uniformity of the light source; and (2) small optomechanical tolerance. These shortcomings can be partially overcome by inserting additional mixing or diffusing elements, however this can significantly reduce overall design efficiency. Non-imaging methods involve projecting a linear source with or without mixing in a large area. Figures 2a-2c illustrate different system combinations. First map

於極佳的混合度、 7 部份76之集成腔體。光從這些 在照明區域78上。這種组配之特徵係在 低政率及缺乏角度控制。第2c圖說明兩 6 200842399 5 V 相互平行之線性光源82及84,其下方伴隨著擴散板86, 該擴散板之下伴隨著有一矩形照明型樣形成其上之物體: 這種組配之特徵係在於有良好的混合性、低效率以及缺乏 角度控制。 將需要提供有效率之方法與系統以用於提供一列光 線,並且特別是用於控制此類一列光線之特性。 【發明内容】 發明概要 • 一種照明系統其包含:(i) 一放射半準直光線之第一矩 10 形發光二極體陣列;及(ii)第一集光光學元件其至少包含一 全内反射透鏡部份以及至少一折射透鏡部份。來自於該第 一矩形發光二極體陣列的光被該第一集光光學元件導往一 物件而在該物件上形成一列光線。 一種用於提供一列光線之方法,該方法包含下列步驟: . 15 • 藉由一第一矩形發光二極體陣列而放射半準直光線;並且 藉由至少包含一全内反射透鏡部份以及至少一折射透鏡部 份之第一集光光學裝置而將該半準直光線集中以在一物件 上形成一列光線。 圖式簡單說明 20 第la-lc圖說明一種先前技術之成像照明光學裝置以 及二維角度強度圖; 第2a-2c圖說明先前技術之非成像照明光學裝置; 第3a圖說明根據本發明之一實施例之照明光學裝置; 第3b圖說明第3a圖之照明光學裝置之二角度維度強 7 200842399 度圖; 第4a及4b圖說明根據本發明不同實施例之照明光學 裝置; 第5a圖說明一種LED以矩形方式排列之矩形LED陣 5 列與一強度圖; 『第5b圖說明根據本發明之一實施例其之LED以蜂巢 i 式來配置之一種矩形LED陣列以及一維之強度圖; 第5c圖說明根據本發明之一實施例在一間隙、工作 ® 距離以及一 LED間距之間的關係; 10 第6圖說明根據本發明之不同實施例之照明光學裝 置、控制器以及強度調變曲線; 第7a圖說明根據本發明之不同實施例之照明光學裝 置; 第7b-7d圖說明根據本發明之不同實施例之集光透 . 15 鏡; 第8圖說明根據本發明之不同實施例第7圖之照明光 ® 學裝置之二維強度圖; 第9圖說明根據本發明之不同實施例之照明光學裝置; 第10圖說明根據本發明之一實施例之照明光學裝置; 20 第11圖說明根據本發明之一實施例之照明光學裝置與 集光光學裝置;以及 第12圖為根據本發明之一實施例之一種方法之流程 圖。 t實施方式3 8 200842399 較佳實施例之詳細說明 第3a圖說明根據本發明根據本發明之一實施例之照明 光學裝置102 (亦稱為照明系統)。照明光學裝置1〇2包含 非成像光學元件。其包含矩形(如薄紙般)光源陣列1〇(),兮 5矩形光源陣列伴隨著集光光學元件(反射式或折射式)其將 矩形(如薄紙般)光源陣列1〇〇所放射的光集中在狹窄的— 列光線120内。第3b圖說明由照明光學裝置102所得到的 連續覆蓋範圍-二維之光強度圖130包括一個單一連續覆 蓋範圍132。 10 第4a圖說明根據本發明實施例之照明光學裝置166。 多束準直光源150-156被沿著一彎曲平面配置(可連接至 一凸狀薄板或與其整合)使得從這些準直光源所放出的所 有光束(140 - 146)指向相同區域以提供一列光線16〇。這種 組配並不包括集光光學元件,儘管看來簡單,但這種方法 15 需要非常精密的技術以達到可接受的光均勻性程度。 第4b圖說明根據本發明實施例之照明光學裝置199。 多束半準直光源170-178用經規劃的方式配置以形成 一平面延伸之半準直光源。這種平面延伸之半準直光源伴 隨著一作為集光光學元件之圓柱平面TIR (全内反射)透 20 鏡2〇2。由圓柱平面T1R透鏡202所產生之角度覆蓋範圍 係覓廣的且無傳統折射光學元件所特有之像差。適合地, TIR透鏡202之中心部份係折射式的。如光束190-198所說 明地,由半準直光源170-178所產生之光束18〇_188通過 TIR透鏡202後將被導向列光線200。 9 200842399 適合地,該延伸之半準直光源可包括一具有數個單獨 光源之陣列。這些光源應可放射出狹窄的光束並在發光型 樣與強度上實質地彼此相等。 根據本發明之一實施例,一發光二極體(LED)陣列被用 5來作為一半準直光源並且應該至少符合若干之下列條件: 可視角(每一顆LED的)應不超過1〇度,該LED陣列應以 六方最密堆積(“蜂巢”)的方式來配置(如第5b圖所述), 由該等LED所放射出來的光應具有高的發光能量-約1〇〇〇 流明/100公釐,該等LED應為多色之LED(例如,可放射 10出紅光、黃光、藍/青色光以及諸如此類的光),該LED陣 列所放射之光的色彩可以電子式控制,該發光角度之覆蓋 應可藉由該等LED位置而電子式地控制,該LED陣列應 具有一有效之冷卻機制。應注意該LED陣列應不須符合所 有的這些要求並且各種數值(例如_強度值、可視角)都不 15 是強制性的。 適合地,該LED陣列包含了具有窄發光角度之LED 而使得能提供一半準直之光源。當更窄的光源可集中在更 窄的光條帶内並具有更高的效率時,LED發光角度對該照 明光學元件之集光效率有相當直接的影響。下列表格說明 20若干之模擬結果: LED發光角 (201/2)° 條帶寬度 (2W1/2),公釐 條帶峰值強度(相對單位) 高N.A TIR透鏡 低N.A菲涅 爾透鏡 高N.ATIR透 鏡 低N.A非〉圼爾 透鏡 3 1 3.2 0.8 0.55 10 200842399 5 1.5 6 0.6 0.4 10 4 7 0.3 0.35 適合地,該LED陣列之該等LED被以六方最密堆積 的方式來配置。 第5a圖說明一矩形之LED陣列於其中LED 210-218 係以矩形的方式來配置以及由該陣列所形成之強度圖 5 219。第5b圖說明根據本發明之一實施例一矩形之LED陣 列於其中LED 220-237係以六邊形的方式(亦稱為LED之 六方堆積)來配置以及由該陣列所形成之強度圖239。第 5c圖說明根據本發明之一實施例在一”不可見”之間隙 265、工作距離252以及一 LED間距250之間的關係。該 10間隙為不可見之意義為其在列光線270之覆蓋範圍内並未 造成間隙 第5b圖之LED陣列(關於第5b圖之LED陣列)在列光 線中提供了更好的空間與角度均勻度。 如第5c圖所述,最小可被接受之LED陣列間距為集 15 光幾何結構(工作距離、個別之LED尺寸)與集光光學元 件之數值孔徑的函數。較長的工作距離(第5c圖之252)、 較低之NA以及較大的LED尺寸可容忍較大的間距(250)。 例如’ 17公釐之工作距離、5公釐之LED直徑以及1公釐 之間距可形成一個在相鄰光束263與264(從相鄰之LED243 2〇與244射出)之間約1度的間隙但此間隙在列光線270中將 不會被察覺。 根據本發明之一實施例,該陣列中的每一個LED包括 多個發光部件並且每一部件可放射出不同顏色的光。每一 11 200842399 個LED所放射出的光可藉由決定啟動哪一個發光部件而' 電子式地控制。當使用這樣的LED時,每一群[ED(卞 群可包括-或多個LED)之顏色將可被電子式地控制。應注 意到,一群LED可包括其之組合之一列 '一行、一 陣列之可操縱性間作權衡。因此,控制每一個單獨之led 之二維子陣列、-狀—部份、—行之—部份。在_陣列 中LED群組的控制方式可在控制機制的複雜度與該咖Excellent mixing, 7-part 76 integrated cavity. Light from these is on the illuminated area 78. This combination is characterized by low political rates and lack of angular control. Figure 2c illustrates two 6 200842399 5 V linear light sources 82 and 84 that are parallel to each other, with a diffuser plate 86 beneath it, along with a rectangular illumination pattern forming an object thereon: It is based on good mixing, low efficiency and lack of angle control. There will be a need to provide efficient methods and systems for providing a list of light lines, and in particular for controlling the characteristics of such a column of light. SUMMARY OF THE INVENTION An illumination system includes: (i) a first moment 10-shaped array of light emitting diodes that emit semi-collimated rays; and (ii) a first collection optical element that includes at least one interior a reflective lens portion and at least one refractive lens portion. Light from the first rectangular light-emitting diode array is guided by the first light-collecting optical element to an object to form a line of light on the object. A method for providing a line of light, the method comprising the steps of: 15 • radiating semi-collimated light by a first rectangular array of light-emitting diodes; and by including at least one total internal reflection lens portion and at least A first collection optics of a refractive lens portion concentrates the semi-collimated rays to form a train of light on an object. BRIEF DESCRIPTION OF THE DRAWINGS Figure 10 is a diagram showing a prior art imaging illumination optics and a two-dimensional angular intensity map; Figures 2a-2c illustrate prior art non-imaging illumination optics; Figure 3a illustrates one of the present invention Illumination optics of an embodiment; FIG. 3b illustrates a two-angle dimension of the illumination optics of FIG. 3a; 200842399 degrees; FIGS. 4a and 4b illustrate illumination optics according to various embodiments of the present invention; FIG. 5a illustrates a a rectangular LED array of LEDs arranged in a rectangular manner and an intensity map; "Fig. 5b illustrates a rectangular LED array and a one-dimensional intensity map of the LEDs arranged in a honeycomb type according to an embodiment of the present invention; Figure 5c illustrates the relationship between a gap, a working distance, and an LED spacing in accordance with an embodiment of the present invention; 10 Figure 6 illustrates illumination optics, controllers, and intensity modulation curves in accordance with various embodiments of the present invention. Figure 7a illustrates an illumination optics device in accordance with various embodiments of the present invention; and Figures 7b-7d illustrate a collection of light transmissive lenses in accordance with various embodiments of the present invention; 8 is a two-dimensional intensity diagram of an illumination light metering device according to a different embodiment of the present invention; FIG. 9 illustrates an illumination optical device according to various embodiments of the present invention; FIG. 10 illustrates one of the present invention. Illumination optics of an embodiment; 20 Figure 11 illustrates an illumination optics and collection optics in accordance with an embodiment of the present invention; and Figure 12 is a flow diagram of a method in accordance with an embodiment of the present invention. tEmbodiment 3 8 200842399 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Fig. 3a illustrates an illumination optics device 102 (also referred to as an illumination system) in accordance with an embodiment of the present invention. Illumination optics 1 2 includes non-imaging optics. It consists of a rectangular (as thin paper) array of light sources (〇), which is accompanied by a collection optics (reflective or refractive) that emits light from a rectangular (eg thin tissue) array of light sources. Focus on the narrow-column light 120. Figure 3b illustrates the continuous coverage obtained by illumination optics 102 - the two-dimensional light intensity map 130 includes a single continuous coverage range 132. 10 Figure 4a illustrates an illumination optics 166 in accordance with an embodiment of the present invention. The plurality of collimated light sources 150-156 are arranged along a curved plane (which can be coupled to or integrated with a convex sheet) such that all of the beams (140 - 146) emitted from the collimated sources point to the same area to provide a column of light. 16〇. This combination does not include concentrating optics, although it appears simple, this method 15 requires very sophisticated techniques to achieve acceptable levels of light uniformity. Figure 4b illustrates an illumination optics 199 in accordance with an embodiment of the present invention. The multi-beam semi-collimated light sources 170-178 are configured in a planned manner to form a planarly extending semi-collimated light source. This plane-extending semi-collimated light source is accompanied by a cylindrical planar TIR (total internal reflection) 20 mirror 2 as a collecting optical element. The angular coverage produced by the cylindrical planar T1R lens 202 is broad and has no aberrations characteristic of conventional refractive optical elements. Suitably, the central portion of the TIR lens 202 is refractive. As indicated by beams 190-198, the beam 18 〇 188 produced by the semi-collimated sources 170-178 will pass through the TIR lens 202 and will be directed to the column ray 200. 9 200842399 Suitably, the extended semi-collimated light source can comprise an array of a plurality of individual light sources. These light sources should emit a narrow beam of light and be substantially equal to each other in terms of illuminating pattern and intensity. In accordance with an embodiment of the present invention, an array of light emitting diodes (LEDs) is used as a half-collimated light source and should meet at least some of the following conditions: The viewing angle (per LED) should not exceed 1 degree. The LED array should be arranged in the hexagonal closest packing ("honeycomb") (as described in Figure 5b), and the light emitted by the LEDs should have a high luminous energy - about 1 〇〇〇 lumen /100 mm, these LEDs should be multi-colored LEDs (for example, 10 red, yellow, blue/cyan, and the like), the color of the light emitted by the LED array can be electronically controlled The coverage of the illumination angle should be electronically controlled by the LED locations, and the LED array should have an effective cooling mechanism. It should be noted that the LED array should not be required to meet all of these requirements and that various values (e.g., _ intensity values, viewing angles) are not mandatory. Suitably, the LED array comprises an LED having a narrow illumination angle to provide a half collimated source. When a narrower light source can be concentrated in a narrower strip of light and has higher efficiency, the LED illumination angle has a fairly direct impact on the light collection efficiency of the illuminated optical component. The following table shows some of the 20 simulation results: LED illumination angle (201/2) ° strip width (2W1/2), metric strip peak intensity (relative unit) high NA TIR lens low NA Fresnel lens height N. ATIR Lens Low NA Non-Muller Lens 3 1 3.2 0.8 0.55 10 200842399 5 1.5 6 0.6 0.4 10 4 7 0.3 0.35 Suitably, the LEDs of the LED array are arranged in a hexagonal closest packing. Figure 5a illustrates a rectangular LED array in which the LEDs 210-218 are arranged in a rectangular manner and an intensity map 5 219 formed by the array. Figure 5b illustrates a rectangular LED array in which the LEDs 220-237 are arranged in a hexagonal manner (also referred to as hexagonal stacking of LEDs) and an intensity map formed by the array, in accordance with an embodiment of the present invention. . Figure 5c illustrates the relationship between a "invisible" gap 265, a working distance 252, and an LED spacing 250 in accordance with an embodiment of the present invention. The 10 gaps are invisible to the extent that they do not cause gaps within the coverage of the column ray 270. The LED array of Figure 5b (for the LED array of Figure 5b) provides better spatial and angular uniformity in the column ray. degree. As shown in Figure 5c, the minimum acceptable LED array spacing is a function of the set of 15 light geometries (working distance, individual LED dimensions) and the numerical aperture of the collection optics. Longer working distances (252 of Figure 5c), lower NA, and larger LED sizes can tolerate larger spacing (250). For example, a working distance of 17 mm, an LED diameter of 5 mm, and a distance of 1 mm can form a gap of about 1 degree between adjacent beams 263 and 264 (ejected from adjacent LEDs 243 2 〇 and 244). However, this gap will not be noticed in the column ray 270. In accordance with an embodiment of the invention, each of the LEDs in the array includes a plurality of light emitting components and each component emits light of a different color. The light emitted by each of the 11 200842399 LEDs can be 'electronically controlled' by determining which light-emitting component to activate. When such an LED is used, the color of each group [ED (the group can include - or more LEDs) will be electronically controllable. It should be noted that a group of LEDs may include one of its combinations, a row, an array of maneuverability trade-offs. Therefore, the two-dimensional sub-array of each individual led, the ------------- The control of the LED group in the _ array can be in the complexity of the control mechanism with the coffee

的特徵在於最大的可操縱性但需要非常複雜的控制機制與 複雜的接線。 根據本發明尚有之另一實施例,每一個LED(或甚至每 一群LED)可以是單色的(並放出紫外至紅外光)。 根據本發明仍尚有之另一實施例,該彩色的光可藉由 使用彩色濾光片與特別組配之彩色濾光片來控制。 應注意到一多色LED陣列可放射出紅藍綠光、白光或 15其他顏色之組合。適合地,該LED陣列應能夠放射出紅光 及/或黃光及/或藍光。 適合地,在色彩強度上之獨立電子式控制可允許將照 明頻譜之調整以符合特定之應用需求。 第6圖說明根據本發明之一實施例之lED陣列3⑽、 2〇控制器31〇及一強度調變曲線33〇。It is characterized by maximum maneuverability but requires very complex control mechanisms and complex wiring. According to yet another embodiment of the invention, each LED (or even a group of LEDs) can be monochromatic (and emit ultraviolet to infrared light). According to still another embodiment of the present invention, the colored light can be controlled by using a color filter and a specially assembled color filter. It should be noted that a multi-color LED array can emit a combination of red, blue, green, white, or 15 other colors. Suitably, the LED array should be capable of emitting red and/or yellow and/or blue light. Suitably, independent electronic control over color intensity allows adjustment of the illumination spectrum to suit a particular application need. Figure 6 illustrates an lED array 3 (10), a 2-turn controller 31A, and a intensity modulation curve 33A in accordance with an embodiment of the present invention.

LED陣列300包括(M+1)列與N行。其包括LED 300(0,1)_3QG(m,N)。 控制為310可控制led陣列300之每一群LED的不 同特性。如上所指出的控制器310可控制每一群LED。該 12 200842399 控制可包至少決定下列之一或其等之一組合:(i) LED角度 覆蓋範圍(該覆蓋範圍意指一可視角其往外延伸並垂直於 第8圖之紙面),該LED可被設置以在多個可視角之一放射 出光(例如-大、中及狹窄的);(ii)強度(從多種強度中選出 5強度(二或多種)強度位準,強度調變曲線330提供了 [ED 陣列300之不同像素之不同強度led陣列300位準之一非 限制性實例-其在LED陣列300之中心列具有一個峰值並 且在LED陣列300之邊緣有最小值,這條強度調變曲線能 夠補傷由知、明及成像光學元件所造成之強度非均勻性;(出) 10 色彩·。 在一非限制性實例中,控制器310能夠控制每一行之 強度以及每一列之角度覆蓋範圍。該角度覆蓋範圍可以沿 著掃描方線而改變。控制器310亦能控制整個陣列之色彩 與明暗。 15 苐7a圖說明根據本發明一實施例之照明光學裝置 500 〇 照明光學裝置500包括混合式光學元件55〇以及矩形 LED陣列570。第7a圖亦說明光束541、542、543、551 及 552。 20 矩形LED陣列570係平行於混合式透鏡50〇並且兩者 皆垂直於列光線560。列光線560係垂直於第7a圖之紙面。 矩形LED陣列570陣列往混合式透鏡500放射出半準 直的光。為了簡化說明,僅展示出幾條往混合式透鏡5〇〇 放射之光束。來自於矩形LED陣列570之半準直光係被混 13 200842399 5 合式透鏡550所導引以在物體上形成一列光線56〇。 混合式透鏡550之作用如一集光透鏡。混合式透鏡550 之中心部份(中心部份刻面)52〇係一折射式透鏡(諸如但不 限於由菲涅爾透鏡)。混合式透鏡550之一或多個周圍部份 (提供TIR及折射機制兩者之外部刻面)係如由TIR透鏡51〇 及530所述之全内反射透鏡。應注意混合式透鏡550係從 第7a圖之紙面往外延伸。 • 實質地與列光線560垂直的光束以及在相對於列光線 之法線580定義了一小角度之光束傳播通過折射式透鏡 10 520,如被折射以提供光束552之光束551所說明地。光束 552與法線580形成一小角度559。相對於法線580定義一 大角度之光束傳播通過一全内反射透鏡部份其被反射而形 成光束542並接著被折射而提供光束543。光束543相對於 法線580形成一小角度549。 - 15 多刻面之TIR部份510及530允許緊密且有效率之光 集中在極高之N.A内(寬廣的角度覆蓋範圍)。 第8圖係說明根據本發明之不同實施例第7a(9)之照明 光學裝置500之二維角度強度圖,可獲得相對連續之覆蓋 範圍。 20 混合式透鏡550能促進在寬廣的角度覆蓋範圍内達到 角度之均勻性。 應注意混合式透鏡550可由彼此隔開之多個透鏡來取 代,如第7b、7c、7d、9、10及11圖所述。 第7b-7d圖係說明根據本發明之不同實施例之集光透 14 200842399The LED array 300 includes (M+1) columns and N rows. It includes LEDs 300(0, 1)_3QG(m, N). Control 310 can control different characteristics of each group of LEDs of LED array 300. The controller 310 as indicated above can control each group of LEDs. The 12 200842399 control package may determine at least one of the following or a combination thereof: (i) LED angular coverage (the coverage means a viewing angle extending outward and perpendicular to the paper of Figure 8), the LED may Equipped to emit light at one of a plurality of viewable angles (eg, -large, medium, and narrow); (ii) intensity (selecting 5 intensity (two or more) intensity levels from a plurality of intensities, intensity modulation curve 330 provides [Non-limiting example of a different intensity LED array 300 level of different pixels of the ED array 300 - having a peak in the center column of the LED array 300 and having a minimum at the edge of the LED array 300, this intensity modulation The curve can compensate for the intensity non-uniformity caused by the optical, imaging, and imaging optics; (out) 10 colors. In one non-limiting example, the controller 310 can control the intensity of each row and the angular coverage of each column. The angular coverage may vary along the scanning square. The controller 310 can also control the color and shading of the entire array. 15 苐 7a illustrates an illumination optics 500 in accordance with an embodiment of the present invention. The optical device 500 includes a hybrid optical element 55A and a rectangular LED array 570. Figure 7a also illustrates beams 541, 542, 543, 551 and 552. 20 Rectangular LED array 570 is parallel to the hybrid lens 50 and both Vertical to column ray 560. Column ray 560 is perpendicular to the plane of Figure 7a. Rectangular LED array 570 array emits semi-collimated light toward hybrid lens 500. For simplicity of illustration, only a few of the hybrid lenses are shown. The beam of radiation is emitted. The semi-collimated light from the rectangular LED array 570 is mixed 13 200842399 5 The combined lens 550 is guided to form a line of light 56 物体 on the object. The hybrid lens 550 functions as a collecting lens. The central portion (central portion facet) 52 of the hybrid lens 550 is a refractive lens (such as, but not limited to, a Fresnel lens). One or more surrounding portions of the hybrid lens 550 (providing TIR and The external facets of both refraction mechanisms are as shown by TIR lenses 51 and 530. It should be noted that hybrid lens 550 extends outward from the plane of Figure 7a. • Substantially perpendicular to column ray 560 Light The beam and a beam defining a small angle relative to the normal 580 of the column ray propagate through the refractive lens 10 520 as illustrated by the beam 551 that is refracted to provide the beam 552. The beam 552 forms a small angle with the normal 580. 559. A beam of light defining a large angle relative to normal 580 is transmitted through a total internal reflection lens portion to be reflected to form beam 542 and then refracted to provide beam 543. Beam 543 forms a small angle 549 with respect to normal 580. - More than 15 faceted TIR sections 510 and 530 allow compact and efficient light to be concentrated in the very high NA (wide angle coverage). Fig. 8 is a view showing a two-dimensional angular intensity map of the illumination optical device 500 of Fig. 7a (9) according to different embodiments of the present invention, to obtain a relatively continuous coverage. The 20 hybrid lens 550 promotes uniformity of angle over a wide range of angular coverage. It should be noted that the hybrid lens 550 can be replaced by a plurality of lenses spaced apart from each other as described in Figures 7b, 7c, 7d, 9, 10 and 11. Figures 7b-7d are diagrams illustrating the collection of light in accordance with various embodiments of the present invention 14 200842399

第7bSU兒明折射式透鏡52〇’以及兩個fir透鏡51〇,與 530、 第7c圖係說明-中心透鏡從其包含一個被nR部份 ⑴及522(3)所圍繞之折射部份功⑺與腿透鏡犯 及532’其每-者係對應於第7a圖之FIR透鏡51〇及53〇。 第7d圖係說明—中心透鏡524其包含一個對應於第% 圖之折射式透鏡520之-部分之折射部份以及兩個其他之 透鏡514及534,其每一個包含折射部份514(1)與534(1) 10 以及 FIR 部份 514(2)與 534(2)。 應注意這些不同的透鏡可以是彼此平行的,並且另外 地或可替代地與彼此近似,但並不一定要如此。藉由使用 分光器或其他型式之導光光學元件這些透鏡可以如第9、1〇 及11圖所述之非平行的方式來放置。 15 第9圖說明根據本發明之一實施例之照明光學裝置 600 〇 照明光學裝置600包含:第一矩形發光二極體陣列 690、第一集光透鏡680、分光器670、第二矩形發光二極 體陣列650、第二集光透鏡630、第三矩形發光二極體陣列 20 660與第三集光透鏡640。 從第一 LED二極體陣列690所放射出的光通過第一集 光透鏡680將受分光器670(如光束602所述)導往物體610 以形成列光線620同時傳播通過被定義在第二及第三集光 透鏡630與640之間的空間635。如光束601所述的’從第 15 200842399 二矩形LED陣列650所放射出的光通過第二集光透鏡630 將被導往列光線620。如光束603所述的,從第三矩形LED 陣列660所放射出的光通過第三集光透鏡640將被導往物 體610。第一集光透鏡680係一折射式透鏡(或至少部份包 5 含這種折射式透鏡)。第二集光透鏡650與第三集光透鏡640 為TIR透鏡(或至少部份包含這種TIR透鏡)。 該等矩形LED陣列之每一個(650、660與690)可以是 如第8圖所述之LED陣列,其可放射出半準直的光並可以 不同的方式(色彩、強度、光的型樣或其等之組合)來控制。 1〇 該種照明之規劃係被設計來提供離軸(從矩形LED陣 列690所放射出的光)與軸上(從矩形LED陣列650或660 所放射出的光)集光光束之交疊。. 第10圖說明根據本發明之一實施例之照明光學裝置 888 〇 15 第1〇圖之照明光學裝置888因包含靠近於集光透鏡 800、780及740之線性散射片790、770及760而與第9 圖之照明光學裝置600不同。 應注意分光器(第9圖之670或第10圖之750)可具有 梯度式之鍍層(在外侧表面區域有100%之穿透率並且在内 20 側表面區域有分光鍍層)。 第11圖說明根據本發明之一實施例之照明光學裝置 900 〇 照明光學裝置900包含分光器930、集光光學元件920 以及矩形LED陣列910。來自於矩形LED陣列91〇之半準 16 200842399 直光通過集光光學元件920與分光器930已在物體960上 形成一列光線950。從物體960所反射的光傳向分光器930 並被分光器導往成像感測器940。 第12圖說明根據本發明之一實施例之方法900。 5 方法900包括藉由一第一矩形發光二極體陣列來放射 r 出半準直光之階段910。 ^ 階段920係在階段910之後其藉由至少包含一全内反 射透鏡部份及至少一折射透鏡部份之第一集光光學元件而 • 將該半準直光集中以在一物體上形成一列光線。 10 階段920 —般包含允許實質垂直於該列光線之光束以 及相對於該列光線之法線定義一小角度之光束傳播通過一 折射透鏡部份並且允許相對於該列光線之法線定義一大角 度之光束傳播通過一全内反射透鏡部份。 階段920 —般包含藉由包含一混合式透鏡之集光光學 15元件來將該光線集中,該混合式透鏡之一中心部份包含一 折射透鏡並且其中該混合式透鏡之一周邊部份包含一全内 φ 反射透鏡。 階段920可在階段915之前其係讓該半準直光通過位 在該第一矩形發光二極體陣列與該第一集光光學裝置之間 2〇 之散射元件。 根據本發明之一實施例方法90Q包括以下階段··階段 930係藉由一第二矩形發光二極體陣列來放射出半準直 光,階& 940係藉由一第二集光光學元件而將該半準直光 集中以在一物體上形成一列光線;階段95〇係藉由一第三 17 200842399 矩形發光二極體陣列來放射出半準直光;階段960係藉由 一第三集光光學元件而將來自於該第三矩形發光二極體陣 列之該半準直光集中在一物體上形成一列光線;以及階段 970其係藉由一分光器而將來自於該第一集光透鏡之半準 5直光導向該物體同時傳播通過被定義在該第二及該第三集 光透鏡之間的空間;該第一集光透鏡包含一折射透鏡部 份。該第二集光透鏡與該第三集光透鏡包含一全内反射透 鏡部份。 方法900可包含一般可包含將來自於每一個矩形發光 10 二極體陣列的半準直光散射。 方法900通常可包含施加一控制方案之階段9〇5。階段 905可至少包含下列各項之一或其等之組合:(i)控制該第 一矩形發光二極體陣列之每一群發光二極體之一強度;⑴) 控制該第一矩形發光二極體陣列之每一群發光二極體之一 15色彩;(iii)控制該第一矩形發光二極體陣列之每一群發光 二極體之一輻射型樣; 般而e ’階段91Q包括藉由_第_矩形發光二極體 陣列來放射出半準直光,而該第一矩形發光二極體陣列包 含以蜂巢之形式來配置之數個二極體。 2〇本發明可利用一般工具、方法及部件來實施。故而, 在此將不為該等工具、部件及方法作詳細之描述。為了提 供本發明徹底之瞭解,許多特定之細節已詳述於先前之說 明書中。然而應瞭解的是,即便沒有該等詳述之細節本發The 7bSU refracting lens 52〇' and the two fir lenses 51〇, and 530, the 7c diagram illustrate that the central lens includes a refractive component surrounded by the nR portions (1) and 522(3). (7) The leg lens and the 532' each of which corresponds to the FIR lenses 51A and 53A of Fig. 7a. Figure 7d illustrates that the central lens 524 includes a refractive portion corresponding to a portion of the refractive lens 520 of the %th image and two other lenses 514 and 534, each of which includes a refractive portion 514(1) And 534(1) 10 and FIR parts 514(2) and 534(2). It should be noted that these different lenses may be parallel to one another and additionally or alternatively approximate one another, but this need not be the case. These lenses can be placed in a non-parallel manner as described in Figures 9, 1 and 11 by using a beam splitter or other type of light guiding optical element. 15 FIG. 9 illustrates an illumination optical device 600 according to an embodiment of the present invention. The illumination optical device 600 includes a first rectangular light emitting diode array 690, a first light collecting lens 680, a beam splitter 670, and a second rectangular light emitting diode. The polar body array 650, the second collecting lens 630, the third rectangular LED array 20 660 and the third collecting lens 640. Light emitted from the first LED array 690 passes through the first collection lens 680 to direct the beam splitter 670 (as described by beam 602) to the object 610 to form column rays 620 while propagating through the second defined And a space 635 between the third collection lens 630 and 640. Light emitted from the 15th 200842399 two rectangular LED array 650 as described by the beam 601 is directed to the column ray 620 through the second concentrating lens 630. Light emitted from the third rectangular LED array 660, as described by beam 603, will be directed to object 610 through third collection lens 640. The first collection lens 680 is a refractive lens (or at least a portion of the package 5 includes such a refractive lens). The second collection lens 650 and the third collection lens 640 are TIR lenses (or at least partially include such TIR lenses). Each of the rectangular LED arrays (650, 660, and 690) may be an LED array as described in FIG. 8 that emits semi-collimated light and may be in a different manner (color, intensity, light pattern) Or a combination thereof to control. The illumination planning is designed to provide an overlap of the off-axis (light emitted from the rectangular LED array 690) and the on-axis (light emitted from the rectangular LED array 650 or 660). Figure 10 illustrates illumination optics 888 〇 15 in accordance with an embodiment of the present invention. Illumination optics 888 of Figure 1 includes linear diffusers 790, 770, and 760 that are adjacent to collection lenses 800, 780, and 740. It is different from the illumination optical device 600 of Fig. 9. It should be noted that the beam splitter (670 of Figure 9 or 750 of Figure 10) may have a graded coating (100% penetration in the outer surface area and spectroscopic coating in the inner 20 side surface area). 11 illustrates an illumination optics 900 〇 illumination optics 900 including an optical splitter 930, a collection optics 920, and a rectangular LED array 910, in accordance with an embodiment of the present invention. A semi-standard from a rectangular LED array 91. 200842399 Straight light passes through the collecting optics 920 and the beam splitter 930 to form a line of light 950 on the object 960. Light reflected from the object 960 is transmitted to the beam splitter 930 and directed by the beam splitter to the imaging sensor 940. Figure 12 illustrates a method 900 in accordance with an embodiment of the present invention. The method 900 includes radiating a phase 910 of semi-collimated light by a first array of rectangular light-emitting diodes. ^ Stage 920 is followed by stage 910 by concentrating the semi-collimated light to form a column on an object by a first light collecting optical element comprising at least one total internal reflection lens portion and at least one refractive lens portion Light. Stage 10 920 generally includes a beam that allows a beam substantially perpendicular to the column of rays and a small angle defined relative to the normal of the column of rays to propagate through a portion of the refractive lens and allows for a definition relative to the normal to the column of rays. The angular beam propagates through a total internal reflection lens portion. Stage 920 generally includes concentrating the light by a collection optics 15 element comprising a hybrid lens, a central portion of the hybrid lens comprising a refractive lens and wherein a peripheral portion of the hybrid lens comprises a All internal φ reflective lens. Stage 920 can precede the stage 915 by passing the semi-collimated light through a scattering element positioned between the first rectangular array of light emitting diodes and the first collection optics. The method 90Q according to an embodiment of the present invention includes the following stages: the stage 930 emits semi-collimated light by a second rectangular light-emitting diode array, and the step & 940 is by a second light collecting optical element And concentrating the semi-collimated light to form a column of light on an object; the phase 95 is radiating semi-collimated light by a third 17 200842399 rectangular light emitting diode array; the phase 960 is by a third Collecting the optical elements to concentrate the semi-collimated light from the third rectangular light-emitting diode array on an object to form a column of light; and stage 970 is to be from the first set by a beam splitter The semi-quasi-5 direct light of the optical lens is directed to the object while propagating through a space defined between the second and third collection lenses; the first collection lens comprises a refractive lens portion. The second collecting lens and the third collecting lens comprise a total internal reflection lens portion. Method 900 can include generally semi-collimated light scattering from each rectangular light emitting diode array. Method 900 can generally include the stage 9〇5 of applying a control scheme. Stage 905 can comprise at least one of the following: or a combination thereof: (i) controlling the intensity of one of each group of light-emitting diodes of the first rectangular light-emitting diode array; (1) controlling the first rectangular light-emitting diode One of each group of light-emitting diodes of the body array 15 colors; (iii) controlling one of the radiation patterns of each group of light-emitting diodes of the first rectangular light-emitting diode array; and generally the 'stage 91Q includes by _ The first rectangular light emitting diode array emits semi-collimated light, and the first rectangular light emitting diode array includes a plurality of diodes arranged in the form of a honeycomb. 2. The present invention can be implemented using general tools, methods, and components. Therefore, the tools, components and methods are not described in detail herein. In order to provide a thorough understanding of the present invention, numerous specific details are set forth in the Detailed Description. However, it should be understood that even without the details of the details

明亦可被實施。 X 18 200842399 在本發明所揭示之内容中僅展示並描述若干例示性實 施例及其變化之範例。應暸解本發明可使用在其它各種不 同之組合與環境以及在此已明確描述之發明概念所涵蓋之 變化與修改中。 5 【圖式簡單說明】 -第la-lc圖說明一種先前技術之成像照明光學元件以 •及二維角度強度圖; 第2a-2c圖說明先前技術之非成像照明光學元件; # 第3a圖說明根據本發明之一實施例之照明光學元件; 10 第3b圖說明第3a圖之照明光學元件之二角度維度強 度圖; 第4a及4b圖說明根據本發明不同實施例之照明光學 元件; 第5a圖說明一種LED以矩形方式排列之矩形LED陣 . 15 列與一強度圖; 第5b圖說明根據本發明之一實施例其之LED以蜂巢 ® 方式來配置之一種矩形LED陣列以及一維之強度圖; 第5c圖說明根據本發明之一實施例在一間隙、工作距 離以及一 LED間距之間的關係; 20 第6圖說明根據本發明之不同實施例之照明光學裝 置、控制器以及強度調變曲線; 第7a圖說明根據本發明之不同實施例之照明光學裝 置; 第7b-7d圖說明根據本發明之不同實施例之集光透鏡; 19 200842399 第8圖說明根據本發明之不同實施例第7圖之照明光 學裝置之一二維強度圖; 第9圖說明根據本發明之不同實施例之照明光學裝置; 第10圖說明根據本發明之一實施例之照明光學裝置; 5 第11圖說明根據本發明之一實施例之照明光學裝置與 -集光光學裝置;以及 •第12圖為稂據本發明之一實施例之一種方法之流程 圖。 _ 【主要元件符號說明】 12線性光源 900照明光學裝置 14成像照明光學元件 120、160、200、270、560、950 20、30二維光強度圖 列光線 32、132覆蓋範圍 140、146 光束 42、44、72、82、84 線性光源 150、156準直光源 52、54角度範圍 170、178半準直光源 60交疊 180、188 光束 74凹面部份 202圓柱平面全内反射透鏡 76凸面部份 210、218、220、237 LED 78照明區域 219、239強度圖 86、760、770、790 散射片 250 LED間距 100矩形光源陣列 252工作距離 102、166、199、500、600、888、 300、570、910 LED 陣列 20 200842399Ming can also be implemented. X 18 200842399 Only a few exemplary embodiments and variations thereof are shown and described in the context of the present disclosure. It is to be understood that the present invention may be embodied in various other various combinations and environments and variations and modifications which are encompassed by the inventive concept. 5 [Simple diagram of the drawing] - The first la-lc diagram illustrates a prior art imaging illumination optical element and a two-dimensional angular intensity map; and the second non-inventional illumination optical element is illustrated in Figures 2a-2c; #第图3a Illuminating optical element according to an embodiment of the invention; 10 Figure 3b illustrates a two-angle dimensional intensity diagram of the illumination optical element of Figure 3a; Figures 4a and 4b illustrate illumination optical elements in accordance with various embodiments of the present invention; Figure 5a illustrates a rectangular LED array in which the LEDs are arranged in a rectangular manner. 15 columns and an intensity map; Figure 5b illustrates a rectangular LED array and one-dimensional array of LEDs configured in a honeycomb® manner according to an embodiment of the present invention. Intensity map; Figure 5c illustrates the relationship between a gap, a working distance, and an LED pitch in accordance with an embodiment of the present invention; 20 Figure 6 illustrates an illumination optics, controller, and intensity in accordance with various embodiments of the present invention. Modulation curve; Figure 7a illustrates an illumination optical device in accordance with various embodiments of the present invention; and Figures 7b-7d illustrate a collection lens in accordance with various embodiments of the present invention; Figure 8 illustrates a two-dimensional intensity diagram of illumination optics according to Figure 7 of a different embodiment of the present invention; Figure 9 illustrates illumination optics in accordance with various embodiments of the present invention; Figure 10 illustrates a Illuminating optical device of an embodiment; 5 FIG. 11 illustrates an illumination optical device and a collecting optical device according to an embodiment of the present invention; and FIG. 12 is a flow chart of a method according to an embodiment of the present invention Figure. _ [Main component symbol description] 12 linear light source 900 illumination optical device 14 imaging illumination optical element 120, 160, 200, 270, 560, 950 20, 30 two-dimensional light intensity map light rays 32, 132 coverage range 140, 146 light beam 42 , 44, 72, 82, 84 linear light source 150, 156 collimated light source 52, 54 angular range 170, 178 semi-collimated light source 60 overlap 180, 188 beam 74 concave portion 202 cylindrical plane total internal reflection lens 76 convex portion 210, 218, 220, 237 LED 78 illumination area 219, 239 intensity map 86, 760, 770, 790 diffuser 250 LED pitch 100 rectangular light source array 252 working distance 102, 166, 199, 500, 600, 888, 300, 570 , 910 LED array 20 200842399

310控制器 330強度調變曲線 510、530 TIR 透鏡 550混合式光學元件 541、542、543、551、552、601、 602、603 光束 549、559 角度 580法線 520’、522(2)折射式透鏡 510,、530’、512、532 F1R 透 鏡 522(1)、522(3)、514(2)、534(2) FIR部份 522、524中心透鏡 514(1)、534(1)折射部份 610、960 物體 740、780、800集光透鏡 650、660、690、910 矩形發光 二極體陣列 630、640、680集光透鏡 670、750、930 分光器 940感測器 905、910、915、920、930、940、 945、960、970 P皆段 21310 controller 330 intensity modulation curve 510, 530 TIR lens 550 hybrid optical element 541, 542, 543, 551, 552, 601, 602, 603 beam 549, 559 angle 580 normal 520', 522 (2) refractive Lens 510, 530', 512, 532 F1R lens 522 (1), 522 (3), 514 (2), 534 (2) FIR portion 522, 524 central lens 514 (1), 534 (1) refractive portion Parts 610, 960 objects 740, 780, 800 collecting lenses 650, 660, 690, 910 Rectangular light emitting diode arrays 630, 640, 680 collecting lenses 670, 750, 930 beamsplitter 940 sensors 905, 910, 915 , 920, 930, 940, 945, 960, 970 P are all segments 21

Claims (1)

200842399 十、申請專利範圍: 1· 一種照明系統,其包含: 能放射出半準直光之一第一矩形發光二極體陣列; 以及 5 包含至少一全内反射透鏡部份及至少一折射透鏡部 份之第一集光光學元件; 其中來自於該第一矩形發光二極體陣列之該半準直 光被該第一集光光學元件導向一物體以在該物體上形戍 一列光線。 10 2·如申請專利範圍第1項之系統,其中實質垂直於該列光 線之光束以及相對於該列光線之法線定義一小角度之光 束傳播通過一折射透鏡部份,並且其中相對於該列光線 之法線定義一大角度之光束傳播通過一全内反射透鏡部 份。 15 3·如申請專利範圍第1項之系統,其中該第一集光光學元 件包’混合式透鏡;其中該混合式透鏡之中心部份包 含一折射透鏡,並且其中該混合式透鏡之周邊部份包含 一全内反射透鏡。 4·如申请專利範圍第1項之系統,其包含位在該第一矩形 2〇 發光二極體陣列與該第一集光光學元件之間之一線性散 射元件。 5·如申請專利範圍第1項之系統,更包含:一分光器;一 第二矩形發光二極體陣列;一第二集光透鏡;一第三矩 形發光二極體陣列以及一第三集光透鏡; 22 200842399 其中從該第一矩形發光二極體陣列所放射出的光通 過該第一集光透鏡將被分光器導向物體,同時傳播通過 被定義在該第二及該第三集光透鏡之間的空間; 其中從該第二矩形發光二極體陣列所放射出的光通 5 過該第二集光透鏡將被導向該物體; 其中從該第三矩形發光二極體陣列所放射出的光通 過該第二集光透鏡將被導向該物體;並且 其中該第一集光透鏡包含一折射透鏡部份;其中該 第二集光透鏡與該第三集光透鏡各包含一全内反射部 10 份。 6. 如申請專利範圍第5項之系統,其包含數個散射元件, 其中每一個散射元件係被定位在一矩形發光二極體陣列 與一集光透鏡之間。 7. 如申請專利範圍第1項之系統,更包含一控制器,其係 15 用於控制該第一矩形發光二極體陣列之每一群發光二極 體之強度。 8. 如申請專利範圍第1項之系統,更包含一控制器,其係 用於控制該第一矩形發光二極體陣列之每一群發光二極 體之色彩。 20 9.如申請專利範圍第1項之系統,更包含一控制器,其係 用於控制該第一矩形發光二極體陣列之每一群發光二極 體之輻射型樣。 10·如申請專利範圍第1項之系統,其中該第一矩形發光 二極體陣列包含數個以蜂巢方式來配置之二極體。 23 200842399 11· 一種用於提供一列光線之方法’該方法包含下列步驟: 藉由一第一矩形發光二極體陣列來放射出半準直 光;以及 藉由包含至少一全内反射透鏡部份及至少一折射逯 鏡部份之第一集光光學元件,而將該半準直光集中以在 一物體上形成一列光線。 12·如申請專利範圍第^項之方法,其包含允許實質垂直 於該列光線之光束以及相對於該列光線之法線定義一小 角度之光束傳播通過一折射透鏡部份,並且允許相對於 17亥列光線之法線定義一大角度之光束傳播通過^ —全内反 射透鏡部份。 13·如申請專利範圍第^項之方法,其中該第一集光光學 元件包含一混合式透鏡;其中該混合式透鏡之中心部份 包含一折射透鏡,並且其中該混合式透鏡之周邊部份包 含一全内反射透鏡。 14·如申請專利範圍第η項之方法,其包含使該半準直光 通過被定位在該第一矩形發光二極體陣列與該第一集光 光學元件之間之散射元件。 15·如申請專利範圍第η項之方法,其更包含藉由一第二 矩形發光二極體陣列來放射出半準直光;藉由一第二集 光光學元件而將來自該第二矩形發光二極體陣列之該半 準直光集中以在一物體上形成一列光線·,藉由一第三矩 形發光二極體陣列來放射出半準直光;藉由一第三集光 光學元件而將來自於該第三矩形發光二極體陣列之該半 24 200842399 準直光集中以在一物體上形成一列光線;藉由一分光器 而將來自於該弟一集光透鏡之半準直光導向該物體同時 傳播通過被定義在該第二及該第三集光透鏡之間的空 間;其中該第一集光透鏡包含一折射透鏡部份;並且其 5 中該第二及該第三集光透鏡包含一全内反射部份。 16.如申請專利範圍第15項之方法,其包含使來自每一矩 形發光二極體陣列之半準直光多重散射。 17·如申請專利範圍第11項之方法,更包含控制該第一矩 形發光二極體陣列之每一群發光二極體的強度之步驟。 10 18·如申請專利範圍第11項之方法,其更包含控制該第一 矩形發光二極體陣列之每一群發光二極體之色彩的步 驟。 19·如申請專利範圍第11項之方法,其更包含控制該第一 矩形發光二極體陣列之每一群發光二極體之輻射型樣的 15 步驟。 20.如申請專利範圍第11項之方法,其中該第一矩形發光 二極體陣列包含以蜂巢方式來配置之數個二極體。 25200842399 X. Patent Application Range: 1. An illumination system comprising: a first rectangular light emitting diode array capable of emitting semi-collimated light; and 5 comprising at least one total internal reflection lens portion and at least one refractive lens a portion of the first optical optical component; wherein the semi-collimated light from the first rectangular light emitting diode array is guided by the first light collecting optical element to an object to form a column of light on the object. The system of claim 1, wherein the light beam substantially perpendicular to the light of the column and the light beam defined by a small angle with respect to a normal to the light of the column propagate through a refractive lens portion, and wherein The normal of the column ray defines a large angle beam that propagates through a total internal reflection lens portion. The system of claim 1, wherein the first optical optical component comprises a hybrid lens; wherein a central portion of the hybrid lens comprises a refractive lens, and wherein a peripheral portion of the hybrid lens The part contains a total internal reflection lens. 4. The system of claim 1, comprising a linear scattering element between the first rectangular array of LEDs and the first collection optics. 5. The system of claim 1, further comprising: a beam splitter; a second rectangular light emitting diode array; a second light collecting lens; a third rectangular light emitting diode array and a third set a light lens; 22 200842399 wherein light emitted from the first rectangular light emitting diode array is guided by the first light collecting lens to the object by the optical splitter while being propagated through the second and the third light collected a space between the lenses; wherein the light flux 5 emitted from the second rectangular light emitting diode array is guided to the object through the second light collecting lens; wherein the light is emitted from the third rectangular light emitting diode array The light passing through the second collecting lens will be guided to the object; and wherein the first collecting lens comprises a refractive lens portion; wherein the second collecting lens and the third collecting lens each comprise a whole 10 parts of the reflection part. 6. The system of claim 5, comprising a plurality of scattering elements, wherein each of the scattering elements is positioned between a rectangular light emitting diode array and a collecting lens. 7. The system of claim 1, further comprising a controller for controlling the intensity of each of the plurality of light emitting diodes of the first rectangular light emitting diode array. 8. The system of claim 1, further comprising a controller for controlling the color of each of the plurality of light emitting diodes of the first rectangular light emitting diode array. 20. The system of claim 1, further comprising a controller for controlling the radiation pattern of each of the plurality of light emitting diodes of the first rectangular light emitting diode array. 10. The system of claim 1, wherein the first rectangular light emitting diode array comprises a plurality of honeycombs arranged in a honeycomb manner. 23 200842399 11· A method for providing a line of light'. The method comprises the steps of: emitting semi-collimated light by a first rectangular array of light-emitting diodes; and by including at least one total internal reflection lens portion And at least one of the first collection optics of the refractive mirror portion, the semi-collimated light is concentrated to form a column of light on an object. 12. The method of claim 2, comprising: allowing a beam substantially perpendicular to the column of rays and defining a small angle of light relative to a normal to the column of rays to propagate through a portion of the refractive lens, and permitting relative to The normal of the 17 ray light defines a large angle of the beam propagating through the ^-total internal reflection lens portion. 13. The method of claim 2, wherein the first light collecting optical element comprises a hybrid lens; wherein a central portion of the hybrid lens comprises a refractive lens, and wherein a peripheral portion of the hybrid lens Includes a total internal reflection lens. 14. The method of claim n, wherein the semi-collimated light is passed through a scattering element positioned between the first rectangular light emitting diode array and the first light collecting optical element. 15. The method of claim n, further comprising radiating semi-collimated light by a second rectangular light emitting diode array; from the second rectangular optical element by a second light collecting optical element The semi-collimated light of the array of light-emitting diodes is concentrated to form a column of light on an object, and semi-collimated light is emitted by a third rectangular array of light-emitting diodes; and a third light-collecting optical element And aligning the half-lights of the second rectangular light-emitting diode array from the second rectangular light-emitting diode array to form a column of light on an object; and semi-collimating from the optical lens of the younger brother by a beam splitter Light directing the object while propagating through a space defined between the second and third collection lenses; wherein the first collection lens comprises a refractive lens portion; and wherein the second and the third The collecting lens comprises a total internal reflection portion. 16. The method of claim 15 which comprises multi-scattering semi-collimated light from each rectangular array of light-emitting diodes. 17. The method of claim 11, further comprising the step of controlling the intensity of each of the plurality of light-emitting diodes of the first rectangular light-emitting diode array. The method of claim 11, further comprising the step of controlling the color of each of the plurality of light-emitting diodes of the first rectangular light-emitting diode array. 19. The method of claim 11, further comprising the step of controlling the radiation pattern of each of the plurality of light-emitting diodes of the first rectangular light-emitting diode array. 20. The method of claim 11, wherein the first rectangular light emitting diode array comprises a plurality of diodes configured in a honeycomb manner. 25
TW097104829A 2007-02-20 2008-02-12 Illumination system and method for providing a line of light TWI400441B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89062707P 2007-02-20 2007-02-20

Publications (2)

Publication Number Publication Date
TW200842399A true TW200842399A (en) 2008-11-01
TWI400441B TWI400441B (en) 2013-07-01

Family

ID=39471760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097104829A TWI400441B (en) 2007-02-20 2008-02-12 Illumination system and method for providing a line of light

Country Status (4)

Country Link
CN (1) CN101675330B (en)
IL (1) IL189491A (en)
TW (1) TWI400441B (en)
WO (1) WO2008102339A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242501B2 (en) 2014-03-04 2017-12-06 フィリップス ライティング ホールディング ビー ヴィ Beam forming system and illumination system using the beam forming system
US10619823B2 (en) * 2017-04-10 2020-04-14 Ideal Industries Lighting Llc Optic assemblies and applications thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295274A (en) * 1994-11-17 1996-05-22 Teledyne Ind Optical lens system for light emitting diodes
US5898267A (en) * 1996-04-10 1999-04-27 Mcdermott; Kevin Parabolic axial lighting device
TW330233B (en) * 1997-01-23 1998-04-21 Philips Eloctronics N V Luminary
US5895267A (en) * 1997-07-09 1999-04-20 Lsi Logic Corporation Method to obtain a low resistivity and conformity chemical vapor deposition titanium film
EP1048085B1 (en) * 1998-10-21 2007-11-14 Koninklijke Philips Electronics N.V. Led module and luminaire
US6741351B2 (en) * 2001-06-07 2004-05-25 Koninklijke Philips Electronics N.V. LED luminaire with light sensor configurations for optical feedback
KR100616598B1 (en) * 2004-08-11 2006-08-28 삼성전기주식회사 Light emitting diode lens and backlight module having the same
DE502006007871D1 (en) * 2005-02-28 2010-10-28 Osram Opto Semiconductors Gmbh LED display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning

Also Published As

Publication number Publication date
TWI400441B (en) 2013-07-01
WO2008102339A1 (en) 2008-08-28
IL189491A0 (en) 2008-11-03
CN101675330B (en) 2013-01-02
IL189491A (en) 2016-09-29
CN101675330A (en) 2010-03-17

Similar Documents

Publication Publication Date Title
CN109804238B (en) Optical inspection device
US6783257B2 (en) Lighting apparatus for inspection of an object
US8077307B2 (en) Illumination system for optical inspection
EP2495682B1 (en) Illumination optical system of image capturing device
JPH11312898A (en) Electronic component mounting device
US8801221B2 (en) Lens structure, light source device and light source module
KR20150001106U (en) Illumination device with maximized condensing effect
US11817431B2 (en) LED array module
JP2003107390A (en) Systems and methods for increasing illumination density within a field of view of an imaging system
US20110235326A1 (en) Apparatus and methods for controlling a three-dimensional optical field
TW200842399A (en) LED illumination for line scan camera
US7602483B2 (en) Device for dark field illumination and method for optically scanning of object
KR102272438B1 (en) Illumination system, inspection tool with illumination system, and method of operating an illumination system
JP2006042016A (en) Original illumination device and image reader having the same
TWI407093B (en) Method and system of controlling the illumination angle onto a target, and illumination device for illuminating a target
JP4281495B2 (en) Lighting device
JP2006214888A (en) Light irradiator
JP4112064B2 (en) Optical path adjusting member and lighting device including the same
US11359914B2 (en) Lighting system with pattern element
KR20190053431A (en) Illumination system
TWI290223B (en) Adjustable light sources for image forming apparatus
JP2003337286A (en) Illuminator and illumination method
JP4688717B2 (en) Lighting device
JP2003042971A (en) Pattern inspection device and inspection method
JP2003057192A (en) Image acquiring apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees