TW200838099A - Direct drive motor - Google Patents

Direct drive motor Download PDF

Info

Publication number
TW200838099A
TW200838099A TW96148273A TW96148273A TW200838099A TW 200838099 A TW200838099 A TW 200838099A TW 96148273 A TW96148273 A TW 96148273A TW 96148273 A TW96148273 A TW 96148273A TW 200838099 A TW200838099 A TW 200838099A
Authority
TW
Taiwan
Prior art keywords
rotor
direct drive
drive motor
partition
magnetic
Prior art date
Application number
TW96148273A
Other languages
Chinese (zh)
Inventor
Li-Cheng Dong
Shigeru Endo
Original Assignee
Nsk Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd filed Critical Nsk Ltd
Publication of TW200838099A publication Critical patent/TW200838099A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To provide a compact direct drive motor while preventing atmospheric contamination. A stator 29, an atmospheric bearing 33, an internal rotor 30, and resolvers (34a, 34b, 35, 36), which are detectors, are disposed at positions overlapping at least partly with each other in an axial direction of a direct drive motor DD.

Description

200838099 九、發明說明 【發明所屬之技術領域】 本發明係有關於多個直接驅動馬達其被使用在除了空 氣以外的氛圍中,如真空中。 【先前技術】 例如,在半導體製造設備中,爲了要儘可能地去除掉 雜質,對於工件的處理工作是在真空室內的超高真空氛圍 中實施的。對於使用在此例子中的致動器而言,例如在用 於工件放置設備中的驅動馬達中,一包含揮發性組成物, 如一般的潤滑脂,的潤滑劑不能被用作爲驅動軸的軸承。 因此,潤滑性可藉由將該軸承的內環與外環鍍上軟金屬, 譬如金,銀等等,來提高。而且,在目前的情況下,一 種具有很好的抗熱性及很少的排放氣體之穩定的物質被選 來作爲線圈絕緣物質,電線塗裝物質,及層疊磁極的黏劑 等等。 在另一方面,各種致動器被用作爲將來自外面的轉動 輸出引進到一超高真空室中,譬如風箱驅動方法,磁耦合 驅動方法,磁性流體密封驅動方法等等,在此技藝中是習 知的。這些致動器都具有一結構’其中一由真空軸承加以 可拆卸地固持之轉動軸的輸出端突伸到真空氛圍中,且轉 動力量被一放在空氣中之驅動設備施加至一輸入端。換言 之,在風箱驅動方法中,該轉動軸的輸出端是被一真空軸 承可拆卸地加以固持住,且突伸到該真空側中,其另一端 -4- 200838099 則被一具有設置在空氣中之旋轉斜盤振盪機構之轉動裝置 轉動地驅動,因此該轉動軸被該風箱所驅動,重覆擴張與 收縮運動。 相反地,在磁耦合驅動裝方法中,一用磁性物質製成 的轉子被固定到一轉軸的輸入端,及此轉子的外圓周被周 圍的外殻所密封。包圍該轉子的磁鐵被設置在空氣側,該 轉軸被一外殼隔開,且被這些磁鐵轉動地驅動,來轉動該 轉軸。 而且,在該磁性流體密封驅動方法中,一用非磁性物 質製成的外殼藉由穿透一介於該空氣側與真空側之間的隔 板而被安裝,一將一永久磁鐵夾在中間之環狀磁極片被設 置在該外殼內的軸承周圍,介於一穿過該外殻之轉軸的外 圓周表面與一和其相對立的磁極片的內圓周比面之間的間 隙被磁性流體所密封。 詳言之,在最近幾年,半導體的集積度被提高,因此 更高的密度可藉由將IC圖案寬度的最小化加上此改良而 被同時達成。爲了要製造能夠應付此小化的半導體晶圓’ 需要高度一致性的晶圓品質。爲了要符合此要求,將用於 晶圓之低壓氣體處理室中之雜質氣體的濃度進一步降低是 很重要的。而且,爲了要實施所要求的最小化處理,必需 要使用高精確度放置設備。由此觀點來看’對於上述已知 致動器的硏究發現到下面的問題。 在一將被使用於被提供有超高真空氛圍的真空室內的 驅動馬達的例子中,即使是用作線圏絕緣物質及電線塗裝 -5- 200838099 等等的一具有絕佳的抗熱性及很少的排放氣體之穩定的物 質’只要該物質是有機絕緣物質,該物質即是微孔物質且 在表面上具有無數的孔。該物質一但曝露在空氣中即會吸 收並儲存氣體,水分子等等於其表面上的孔內。去氣( degassing) ’即藉由真空排空來去除這些雜質,要花很長 的時間。因此,很難避免製造效率上的下降。再者,在真 空中是絕不會發生藉由氣流的對流來散熱,因此在線圈溫 度決部地升高的情形中,該部分的電阻會變大而加速熱的 產生。因此,很可能會發生線圈絕緣塗裝被燒毀的結果。 相反地,使用無機物質作爲線圏絕緣物質被考慮到,且一 不銹鋼管護套電線被用來接線,用以降低吸附性雜質分子 。然而,在此例子中,不只是成本會大幅增加,且導體的 比率,譬如在一線圈繞組空間中的銅,的空間會減少使得 電阻升高,因此造成馬達的能力會降低。 與上述將致動器設置在超高真空設備中所遭遇到的問 題相反地,在該致動器的驅動部分被設置在該真空設備的 外面的例子中,譬如該磁耦合驅動方法,該磁性流體密封 驅動方法等,它們則具有下面的問題。該風箱驅動方法具 有大的後座力,藉由一磁性吸引力來傳送轉動力量的該磁 耦合驅動方法則具有低的剛性,因此這兩種方法都具有無 法達到高精確度放置的問題。而且,在該磁性流體密封驅 動方法中,其存在的問題爲磁性流體之熱忍受溫度很低’ 因此該磁性流體無法承受該超高真空室在烘烤處理(排出 在真空室壁中之吸附的氣體分子與水分子的處理)中的加 -6 - 200838099 熱溫度,且因爲該磁性流體包括一些揮發性組成物的關係 而會發生排放氣體的情況。 爲了要解決這些習知致動器的上述問題,本案申請人 提出一種能夠在不排出雜質氣體至一超真空氛圍中實施高 精確度放置之密封式致動器(參照專利文獻1及2 )。根 據此一技術,一密封式致動器包括一馬達定子其上有一被 一轉動驅動線圈激勵的轉動驅動磁極,一馬達轉子其具有 被設置成與該馬達定子之磁極面相對之磁極且在它們之間 有一很小的間隙,且被一抗摩擦軸承可轉動地支撐,及一 分解器其爲一位移偵測機構用來測量該馬達轉子的位移, 其中一非磁性的金屬隔板被設置在該馬達定子與該馬達轉 子之間的間隙中,用以氣密地覆蓋其內設至該馬達定子的 內部空間,藉以將它與馬達轉子空間隔開來。 在此方式中,本案申請人所提出之上述的密封式致動 器對於特定用途非常有用,因爲藉由用非磁性金屬隔板將 該馬達定子與該馬達轉子隔開來’即使是該致動器被使用 在半導體製造設備的一超高真空氛圍中或在一反應性氣體 氛圍中,都可藉由該分解器來達到高精確度的放置,且該 氛圍不會被該致動器線圈或有機絕緣物質排出的雜質氣體 所污染,該線圈與該有機絕緣物質不會被腐蝕’及形成在 該馬達定子與該馬達轉子之間的磁性電路不會被阻擋到。 專利文獻1:日本未審查專利申請案公開第3- 1 5004 1 號。 專利文獻2:日本未審查專利申請案公開第3- 1 50042 200838099 號。 專利文獻3 :日本未審查專利申請案公開第2006-109654 號 〇 【發明內容】 專利文獻1及2中的馬達在軸向上具有一很大的長度 。因此,當馬達被容納在一具有真空氛圍的室內的內部時 ,會發生需要將該室的尺寸加大的,必需提供一大能力的 諄空幫浦等等的問題,因而造成成本的增加。在此同時, 一細管(slimline)直接驅動馬達被揭露在專利文獻3中 ,但對於一更爲精巧的直接驅動馬達仍存在需求。 有鑑於上述習知技術的問題,本發明的目的即是要提 供一種可防止環境氛圍的污染之精巧的直接驅動馬達。 依據本發明,一種使用在一除了空氣以外的氛圍中之 直接驅動馬達被提供,其包含: 一外殻; 一隔板其由該外殼延伸出並將該空氣側與一和該空氣 相反的側隔開; 一密封件其將該外殼與該隔板密封; 一外轉子其被設置在相關於該隔板而言與該空氣相反 的側內; 一特殊環境軸承裝置其相關於該外殻可自由轉動地支 撐該外轉子; ~定子其相關於該隔板被設置在該空氣側內; -8- 200838099 一內轉子其相關於該隔板被設置在該空氣側內並與該 外轉子一起轉動; 一大氣(atmospheric )軸承裝置其相關於該外殼可自 由轉動地支撐該內轉子;及 一偵測器用來偵測該內轉子的轉動位置; 其中該定子,該大氣軸承裝置,該內轉子,及該偵測 器係被設置在該直接驅動馬達的一軸方向上彼此至少部分 地重疊的位置處。 依據本發明的直接驅動馬達,該大氣軸承裝置,該內 轉子,及該偵測器係被設置在該直接驅動馬達的一軸方向 上彼此至少部分地重疊的位置處,因此可讓該直接驅動馬 達在軸方向上的長度被保持在很小。而且,該外轉子與該 特殊的環境軸承裝置可在無需破壞或拆解該隔板與該密封 件下在軸方向上被分開,藉以實施維修,譬如更換軸承。 包含該直接驅動馬達的設備的維修性與可利用性可因而獲 得改善。 該隔板,該定子,該大氣軸承裝置,該內轉子,及該 偵測器較佳地係依序地從該外圓周被設置在該直接驅動馬 達的徑向上。 該外轉子較佳地透過一相關於該外殻可分離的軸承固 持器被該特殊的環境軸承裝置支撐。 該特殊的環境軸承裝置是一多點接觸滾動軸承,用以 改善該馬達的一剛性。 該內轉子較佳地被一除了該特殊的環境軸承裝置以外 -9- 200838099 的軸承裝置可自由轉動地支撐,較佳地具有磁極或凸極, 其在徑向上與附裝在該外轉子上的磁極或凸極(例如,永 久磁鐵)相對,及較佳地藉由該外轉子與該內轉子一起被 兩個磁極的磁吸力轉動的方式來跨越該隔板偵測一馬達轉 子的角度。藉由此方式,藉著將該隔板夾在中間,該外轉 子在除了空氣以外的一特殊氛圍中的位置偵測被正確地傳 遞至設置在該空氣中的內轉子,且該內轉子的位置偵測可 用同樣設置在該空氣中之轉動位置偵測器來偵測。因此, 在該特殊環境中,例如在真空環境中,的構件只是金屬物 質,譬如轉子,磁鐵,軸承等等,因此不易受到諄空中溫 度升高的影響。而且,該偵測器大體上使用一光學編碼器 ,一分析器(resolver),及類此者。防止來自這些發光 元件及絕緣物質及分析器偵測器的線圈的接線物質等等的 氣體排放擴散至該真空中是可能的。而且,在真空與空氣 之間提供一電子導線端子用以連接一電子配線至該空氣中 變成是不必要的,這在偵測器被設置在真空中的設計中是 有必要的。 該偵測器較佳地包括一絕對分析器用來偵測一絕對角 度,及一增量分析器用來偵測在高解析度的相對角度。在 電力被開啓至該直接驅動馬達的一開始的時候’如果設置 在空氣外的該外轉子的角度位置是未知的話’則放置在空 氣外面是不可能的。而且,如果歸向(homing )感測器被 設置在該空氣外面的話,則來自此感測器的排放氣體會破 壞一特殊的氛圍。作爲本發明的偵測器’如果在該空氣外 -10- 200838099 面的外轉子的轉動位置透過磁耦合被傳遞至在該空氣內的 內轉子且其絕對角度被一絕對轉動位置偵測器偵測的話, 則可在不破壞一特殊的氛圍下偵測該外轉子的絕對角度且 在開啓該電力時的歸向就變得不必要了。再者,爲了要驅 動一三相馬達,譬如該直接驅動馬達,一相位被偏移120 度之三相電流的電流波形對於驅動該馬達而言是必要的。 用來決定此驅動波形之轉動位置資訊可藉由該絕對轉動位 置偵測器的絕對角度來計算出來。 【實施方式】 在下文中,將參照附圖描述本發明的一實施例。在此 實施例中,一表面永久磁鐵式3 2磁極3 6槽的外轉子無刷 式直接驅動馬達被使用。該3 2磁極與3 6槽的槽組合爲8 磁極與9槽的槽結構(其被認爲鑲齒功率(cogging power )很小)乘上4,但一磁吸功率會發生在徑向上,並在轉 動時造成大的振動。藉由採用2n倍數(η爲整數)在徑向 上之磁吸功率就會被抵銷掉,因此可在不增加電路及該定 子與轉子的同軸度以及該機構的部件的剛性之下降低轉動 時的振動。而且,該結構具有小的鑲齒功率,因而可獲得 很平順的轉動。在此同時,因爲該馬達具有數量極大的磁 極,所以相對於機械的角度的週期而言,電的角度的週期 是很高的,因而具有很好的位置控制性。因此,本發明的 馬達適合用來在無需用到一減速器下驅動一機器人設備的 直接驅動馬達。而且,可在不減少磁通量的總量之下,減 -11 - 200838099 小疋子連接區段的厚度及凸極寬度及轉子的輒的厚度,因 此本發明的馬達適合具有一大的直徑及一窄的寬度之細管 直接驅動馬達。 圖1爲依據此實施例的一直接驅動馬達的剖面圖。該 直接驅動馬達DD的內部結構將參照圖1加以詳細說明。 一附加到一表面板G上的一圓形板1 0a與一圓柱形段1 Ob 的外殼10具有一中央開口 l〇c其形成在該圓柱形段10b 上用以讓一接線通過到一定子處。 藉由此結構,可將一偵測器(分析器)與一定子29 從該外殼10的圓柱形段l〇b依序朝外地設置在徑向上, 煙而可輕易地調整該偵測器相關於該定子29的角度。因 此,如果額外地提供一轉動地驅動一馬達轉子的話,可藉 由設定包括該設備(其包含該定子29與該偵測器)之外 殼1 〇來高精確性地調整該偵測器的相關於該定的角度。 因此,可防止導因於整流偏差所造成之角度定位上的變差 ,及可提高一馬達之驅動控制電路的相容性。稍後將描述 該偵測器。 一隔板1 3是用不銹鋼製成,其爲一非磁性物質,且 包括一厚的凸緣底部區1 3 a其將被安裝到該外殻1 0的圓 形板l〇a的上表面上及一薄的杯狀圓柱形區13b其由內圓 周邊圓延伸在軸向上。該凸緣底部區13a被螺栓(未示於 圖中)固定到該外殼10上。該凸緣底部區13a的底面接 受溝槽加工用以塡入一密封件。在密封件OR被塡入到該 溝槽中之後,該凸緣底部區13a與該外殼都被螺栓固定在 -12- 200838099 一起,因此被緊固的部分與空氣完全隔絕。因此,被該外 殼1 〇與該隔板1 3所包圍起來的空間與外面被氣密地隔開 。關於此點’除了用密封件Ο R來形成氣密之外,亦可使 用電子束焊接,雷射束焊接,等來形成氣密。而且,該隔 板1 3並不一定要是非磁性物質,其亦可用沃斯田不銹鋼 SU S 3 1 6來製成,其具有很高的抗蝕性及很小的磁性。關 於此點,如果該凸緣底部區1 3 a與該杯狀圓柱形區1 3 b被 焊接起來的話,這兩個區爲了可焊接性都應是用S U S 3 1 6 以相同的方式製成。 在該圓形板1 〇a的外圓周的上表面上,一圓柱形軸承 固持器1 7被螺栓1 8固定到該隔板13的外面上。一將被 使用在真空中之雙列球珠軸承(特殊的環境軸承裝置)1 9 的外環以固定不動的方式被安裝到該軸承固持器1 7上, 且被螺栓1 8將它們緊固在一起。在此同時,該軸承1 9的 內環與一圓柱形轉子軛2 1的外圓周相嵌合。 軸承1 9爲一雙列多點接觸球珠軸承其可用一軸承支 撐軸向,徑向及力矩負荷。使用此種軸承即可用一軸承來 直接驅動馬達D 1,因此可讓本發明之雙軸同軸馬達系統 很精巧。該軸承1 9使用一馬丁散鐵(martensitic )不銹鋼 來作爲內環與外環兩者的材質,因爲此材質具有很高的抗 蝕性且可用淬火來將其硬化。對於一滾動元件而言,可使 用陶瓷球,對於潤滑而言,可使用一真空油脂,其即使是 在真空下亦不會固化。 關於此點,軸承1 9可爲內環與外環使用金屬潤滑, -13- 200838099 其中一軟金屬’譬如金或銀,被電鍍且即使是在真空中亦 沒有釋氣(out gas )被排出。或者,可使用一交叉滾子軸 承’交叉球珠軸承,交叉推拔軸承,且可在加壓狀態下使 用’或加氟塗裝處理(DF0 )可被實施用以改善潤滑性。 一外轉子23具有一圓柱形區23a及一凸緣區23b其 由該外邊緣處延伸於徑向上,及一嵌合區23c被形成在一 寘緣底部區23b的下表面上。該嵌合區23c被嵌合並固定 到一轉子軛2 1上。 一馬達轉子MR包括一外轉子23,一用磁性物質製成 的環狀轉子軛2 1用以形成一磁性路徑,一永久磁鐵22其 安裝到該轉子軛2 1的內圓周表面上,及一用非磁性物質 製成的楔子(未示於圖中),用以將該永久磁鐵2 2與該 轉子軛21用螺栓21機械性地緊固。該永久磁鐵22包括 32個磁極,交替的N磁鐵與s磁鐵,每一磁鐵都有16個 磁性金屬,且具有一分割的片段形成每一磁極,每一磁極 都具有一扇子形狀。圓弧的內徑與外徑具有相同的中心。 端面在圓周方向上的切線交會點被設定成靠近該永久磁鐵 22,且該永久磁鐵22藉由從該轉子軛2 1的外徑側用螺絲 緊固一楔形物而被緊固至該轉子軛2 1。藉由此結構,可在 不使用一產生釋氣的固定件下,譬如黏劑,緊固該永久磁 鐵。該永久磁鐵爲一具有高能量產品且塗有鎳之銳(Nd_ Fe-B )磁鐵用以提高抗蝕性。該轉子軛2 1是用具有高磁 性的低碳鋼製成的,且接受鍍鎳處理用以提高抗銹飩性並 防止在更換軸承時受到磨損。 -14- 200838099 在該隔板13徑向的內部中,一定子289被設置成面 向該外轉子23的內圓周表面。該定子29被用螺栓固定到 該圓形板10a的上表面的一環形安裝區10d上,其係藉由 電磁鐵板的層壓材質製成,且具有凸極其上套設一線軸作 爲一絕緣處理,然後被一馬達線集中地纏繞。該定子29 的外徑大致相同或小於該隔板1 3的內徑。 一用磁性材質製成的環形耦合軛25被設置在該定子 29之上且與該定子29同心用以形成一磁路徑,且一耦合 磁鐵26被固定不動地設置在其外圓周上。用與外轉子2 i 的永久磁鐵22相同的方式,該耦合磁鐵26包括32個磁 極,交替的N磁鐵與S磁鐵,每一磁鐵都有1 6個磁性金 屬。因此,該耦合軛2 5與被該定子21驅動的外轉子21 一起同步地轉動。 該耦合軛2 5之內圓周側的下表面被安裝到一圓柱形 內轉子30的上邊緣。與該耦合軛25 —體地轉動的該內轉 子3 0被該大氣軸承3 3相關於該圓形板1 〇 a的環形安裝區 1 〇 d可自由轉動地支撐。 將該內轉子3 0可自由轉動地支撐的該大氣軸承3 3是 四點接出球珠軸承其可用一軸承支撐軸向,徑向及力矩負 荷。使用此種軸承,一個軸承即已足夠,因此可讓直接驅 動馬達DD很精巧。該隔板〗3的內部是大氣環境,因此 使用一般的軸承鋼及使用一礦物油作爲基礎油的油脂潤滑 來塗敷一軸承。 該隔板13的內部是大氣環境,因此該耦合磁鐵26藉 -15- 200838099 由黏劑而被固定到該耦合軛25。該耦合磁鐵26爲一具有 局能量產品且塗有鎳之銳(N d - F e - B )磁鐵用以防止磁性 因銹蝕而降低。該耦合軛2 5是用具有高磁性的低碳鋼製 成的,且接受鍍鉻酸鹽處理用以防銹蝕性。該耦合磁鐵2 6 與該耦合軛25構成一偵測器耦合。 分析器轉子34a,34b被組裝置該內轉子30的內圓周 上成爲一用來測量轉動角度的偵測器測。在與其相對的形 式中,分析器定子2 3 5,3 6被安裝到該外殼1 〇的圓柱形 區1 Ob的外圓周上。在此實施例中,具有高解析度之該增 量分析器定子3 5與能夠偵測該轉子的轉動所在的位置之 絕對分析器定子3 6被設置在兩層中。在開啓電源之後, 該轉子機械性角度即被認出且對馬達線圈的整流係依據來 自該決對分析器的絕對角度資訊來實施。因此,可獲得該 絕對分析器轉子34b在開啓電源時的轉動角度,因此歸向 (h 〇 m i n g )是不必要的。在此同時,高解析度角度定位操 作根據來自該增量分析器的相對角度資訊來實施,因此磁 鐵相關於線圈的電相位角就可被獲得。因此,用來控制該 直接驅動馬達D D之驅動電流控制可在沒有使用磁極偵測 感測器下被偵測出,因此本發明適用於一用來驅動一機器 人設備的直接驅動馬達。 連結該偵測器的轉動側,該軸承裝置的轉動側,及偵 測器耦合件的內轉子3 0是用磁性材質的碳鋼製成的,且 在成形處理之後接受鍍鉻處理用以防銹蝕,使得該馬達的 磁場與來自馬達線圈的磁性雜訊不會被傳送至作爲角度偵 -16- 200838099 測器的分析器定子3 5,3 6。 在使用於此實施例中的高解析度可變磁阻分析器中, 該增量式分析器轉子34a具有多個齒列槽’該增量式分析 器定子3 5的外圓周表面上設有齒其相位係相關於該增量 式分析器轉子3 4 a在每一平行於該轉動軸的磁極處被偏移 ,且線圈被纏繞在每一磁極周圍。當該內轉子3 0與該增 量式分析器定子23 5 —體地轉動’介於該增量式分析器定 子3 5與該磁極之間的磁阻會變動,且該磁阻改變被決定 成可讓該基礎波分量(fundamental wave comPonent)變 成該增量式分析器轉子3 4 a的轉動有η個週期。藉由偵測 該磁阻的改變,並藉由圖2所示之分析器控制電路將該改 變數位化,及使用該訊號該訊號作爲一位置訊號’該增量 式分析器轉子3 4a,即該第一內轉子3 0,的轉動角度(或 轉動速度)即可被偵測出。分析器轉子34a ’ 34b與分析 器定子3 5,3 6構成該偵測器。 藉由此實施例,內轉子3 0藉由該磁耦合操作而用與 外轉子21相同的速度轉動,換言之,一起轉動,因此可 跨越該隔板1 3來偵測該外轉子2 1的轉動角度。而且,在 此實施例中,該分析器獨立地具有一沒有使用到構成該馬 達與該外殼的部件之軸承3 3,因此可單獨立藉由該分析器 來在組裝於該外殻中之前來實施該分析器線圈之精確的調 整,譬如偏心度調整與位置調整。因此,就無需在該外殼 上形成一調整孔或槽口。而且,將該外轉子2 1可自由地 轉動地加以支撐的該軸承裝置1 9的轉動環被嵌合到該轉 -17- 200838099 子軛21上,這可輕易地具有處理精確度及具有與該軸承 裝置1 9的驅動環相同的線性膨脹係數,因此可改善轉動 精確度並防止導因於溫度改變之摩擦扭矩。 再者,該隔板13的內部設有該定子29,該等分析器 (3 4a,3 4b,35,36 )(其爲偵測器),該大氣軸承3其 自由轉動地支撐該偵測器的轉動側(內轉子3 0 ),一偵測 器耦合件(25,26)用來一起轉動該馬達轉子MR與該偵 測器的轉動側,及連結分析器轉子3 4a,3 4b與該角度偵 測耦合件的該內轉子3 0。 藉由此實施例,該定子29,該大氣軸承3 3,該內轉 子30,及該等分析器(34a,3 4b,35,36)(其爲偵測器 ),都被設置在該直接驅動馬達DD的軸方向上彼此至少 部分重疊的位置。因此,可讓該直接驅動馬達在軸方向上 的長度被保持在很小。 圖3爲一方塊圖其顯示該直接驅動馬達DD的驅動電 路。當一馬達轉動指令從外部電腦被輸入時,一用於該直 接驅動馬達之馬達控制電路DMC即由其CPU處輸出一驅 動訊號至三級(three-tier)放大器(AMP),且該驅動電 流從該三級放大器(AMP )被供應至該直接驅動馬達DD 。藉此,該直接驅動馬達DD的外轉子2 1被獨立地轉動 。當該外轉子2 1被轉動時,該等分析器定子3 5,3 6 (它 們已如上文所述地偵測轉動角度)輸出一分析器訊號。該 訊號接受一分析器數位轉換器(RDC )的數位轉換,然後 被輸入到該CPU。該CPU決定該外轉子21是否已到達被 -18- 200838099 指的位置。如果該外轉子2 1已到達該被指示的位置的 話,則該CPU藉由停止送至該三級放大器(AMP )的驅動 訊號來停止該外轉子2 1的轉動。因此,可伺服控制該外 轉子2 1。 此實施例採用一可變磁阻分析器其包括該絕對式分析 器定子3 6用來偵測該轉動軸的一個轉動的的絕對位置所 在之處,及該增量式分析器定子3 5用來偵測一轉動位置 ,因而可高精確度地控制該外轉子21的轉動位置。 關於此點,一分析器已在此處被設計來偵測該內轉子 3 〇的轉動。然而,該偵測器可被設置在該大氣空氣側,亦 即在該隔板1 3的裡面,因此可使用一光學編碼器(其爲 一位置偵測機構用來在一用於高精確度定位的伺服馬達中 以高精確度平順地驅動,及一磁性編碼器其使用一磁阻元 件等等。 在上述的實施例中,已用一使用一表面永久磁鐵式32 個磁極3 6個槽之外轉子無刷馬達爲例來加以描述。然而 ,本發明並不侷限於此結構,且只要是一無刷式馬達都可 被應用上。其它磁性式,例如一永久磁鐵嵌埋式,一槽結 合式,或一內轉子式都可被使用。 而且,當該直接驅動馬達DD被同軸層疊地被使用, 作爲防止各軸的干擾的手段時,在軸方向上相鄰的軸的轉 子的磁極的數目與槽數目會不相同。這可防止相互干擾, 譬如,在轉動方向上發生對該轉子與該磁性耦合裝置的推 力,如果此結構爲雙軸同軸的情形的話,即第一軸具有3 2 -19- 200838099 個磁極與36個,第二軸具有24個磁極與27個槽。如果 該結構爲四軸同軸的情形的話,則第一軸與第三軸具有3 2 個磁極與36個,第二軸與第四軸具有24個磁極與27個 槽。 而且,一使用鈸(Nd-Fe-B )磁鐵作爲轉子永久磁鐵 且其上塗了鎳作爲塗裝來增加抗腐蝕性的例子已在上文中 被描述。然而,本發明並不侷限於此材質以及此表面處理 。該材質與表面處理可根據使用的環境加以適當地改變。 例如,一杉鈷(Sm· Co )磁鐵(其在高溫下很難去磁化) ,應根據烘烤時的溫度而被使用。如果使用在超高真空中 的話,則應施用具有高除氣阻擋功率的氮化鈦。 而且,該軛用低碳鋼製造的例子已在上文中加以描述 ,且接受鍍鎳處理。然而,本發明並不侷限於此材質及此 表面處理。詳言之,在表面處理方面,如果使用在超高真 空中的話,一具有較少針孔的Kani gen電鍍及一無電式鍍 鎳(一 CLEAN S電鍍),一氮化鈦電鍍,等應被施用。 而且,對於將永久磁鐵緊固至該軛上的方法而言,已 用一無磁性楔形物從該軛的外徑側以螺絲加以緊固爲例子 於上文中加以描述。然而,這可根據使用環境加以適當的 改變,且黏劑可根據使用環境而被使用,及其它的緊固方 法亦可被使用。 而且,軸承1 9已用一具有真空油脂潤滑的多點接觸 球珠軸承爲例於上文中加以描述。然而,本發明命不侷限 於此形式,材質,及潤滑方法,且可根據使用環境,負荷 -20- 200838099 情況,轉動速度等加以適當改變。一加叉滾柱軸嶒可被使 用,且在四軸同軸馬達的例子中’用另一軸承來支撐的結 構可被使用,用以進一步提高機械剛性。在一無法使用多 點接觸球珠軸承的情況中’譬如高速轉動的情況中,一使 用深槽球珠軸承或有角度的軸承的結構可被用作爲一軸承 來支撐每一軸的轉子及另一具有加壓的軸承。在使用於超 高真空的例子中,可使用沒有氣體排放的金屬電鍍,譬如 電鍍軟金屬,即金,銀等,於一軸承環上。 而且,對於如一磁性耦合件般地作用的內轉子而言, 已用使用永久磁鐵與耦合軛的形式爲例子加以描述。然而 ,該永久磁鐵與該耦合軛的材質與形式並不侷限於此。例 如,磁極的數目與寬度根據該分析器的質量與該軸承的摩 擦力矩而與外轉子的磁極數目與寬度會不相同。突凸極可 以不使用久磁鐵。 而且,角度偵測器已使用一分析器爲例加以描述◦然 而,這可根據製造成本與解析度被適當地改變。例如,一 光學的轉動標碼器可被使用。 而且,軸承3 3已用具有油脂潤滑之四點接觸球珠軸 承爲例加以描述,其可至由轉動地支撐該角度偵測器的轉 動側。然而,本發明並不侷限於此形式與潤滑方法。根據 安裝空間,摩擦力矩,轉動速度等而可以其它適當的改變 。在不容許使用多點接觸球珠軸承的情況中,譬如在高速 轉動,摩擦力矩降低中,可使用每一軸都設置了兩個有角 度的軸承與深溝球珠軸承的結構。 -21 - 200838099 而且’設置在該隔板外面的其它結構部件,隔板的材 質,形狀,及製造方法都可根據製造成本,及使用環境, 負荷狀況,組態等等而加以適當地改變。 圖4顯示出使用此實施例的直接驅動馬達的應用例子 。一具有與上述實施例相同的構造之直接驅動馬達D D 1 被設置在一圖中未示出之室的真空氛圍中,及一桌台T被 附裝於該外轉子上。四根桿子B以規則的圓周方向間距被 設置在該桌台T上。一具有與上述實施例相同的構造之直 接驅動馬達DD2被設置在同一真空氛圍中,且一臂A被 附裝至該外轉子上。 臂A在其頂端具有一吸附區且可黏附一碟片DC,譬 如在中心具有一孔的CD片,DVD片,晶圓等。該直接驅 動馬達DD轉動該外轉子用以將四根桿b中的任何一者移 動至圖4所示的轉交位置。在此同時,該直接驅動馬達 DD2轉動該外轉子使得一黏附在該臂A上的碟片DC被移 動至圖4所示的該轉交位置。在臂A移移動至該轉交位置 時,該吸附被解除,因此桿B被***到該碟片DC的孔內 ,碟片DC藉此從臂A被轉交至捉台T。 圖5顯示出使用此實施例的直接驅動馬達的另一應用 例子。一具有與上述實施例相同的構造之直接驅動馬達 DD1被設置在一圖中未示出之室的真空氛圍中,及一桌台 T被附裝於該外轉子上。一用於半導體製造中的晶圓藉由 吸附被固持於該桌台T上。在對位於一真空中之該晶圓W 實施處理的同時可將該桌台T移動至一預定的轉動位置。 -22- 200838099 產業利用性 本發明已參照實施例加以說明。然而,本發明不應被 認定爲受限於本文中描述的實施例,而是可被適當地修改 與改良。例如,本發明的直接驅動馬達不直可以使用在真 空氛圍中,而是可用在除了空氣之外的氛圍中。例如,在 半導體程的例子中,用於蝕刻的反應性氣體在真空排空之 後可被注入到該真空室的內部中。在本發明的直接驅動馬 達中,裡面與外面是被一隔板隔開來,所以馬達線區與絕 緣物質等等不會接受到蝕刻。 【圖式簡單說明】 圖1爲依據此實施例的一直接驅動馬達的剖面圖。 圖2爲一圖表其顯示一分析器電路的例子。 圖3爲一圖表其顯示一馬達控制電路的例子。 圖4顯示出使用此實施例的直接驅動馬達的應用例子 〇 圖5顯示出使用此實施例的直接驅動馬達的另一應用 例子。 【主要元件符號說明】 1 〇 :外殼 1 〇 a :圓板 l〇b :圓柱形區段 -23- 200838099 1 0 c :中央開口 l〇d :附裝區段 13 :隔板 1 3 a :凸緣底部區段 1 3 b :杯狀圓柱形區段 1 7 :軸承固持器 1 8 :螺栓 1 9 :軸承 21 :轉子軛 21 :外轉子 22 :永久磁鐵 2 3 :外轉子 23a :圓柱形區段 23b :凸緣底部區段 2 3 c :配適區段 2 5 :耦合軛 26 :耦合磁鐵 29 :定子 3 〇 :內轉子 3 3 :大氣軸承 34a :增量分析器轉子 34b :絕對分析器轉子 3 5 :增量分析器轉子 3 6 :絕對分析器轉子 -24- 200838099 A :臂 B :桿 D C :直接驅動馬達 D D 1 :直接驅動馬達 D D 2 :直接驅動馬達 D D 3 :直接驅動馬達 DMC :馬達控制電路 G :表面板 MR :馬達轉子 OR :密封件 T :桌台 W :晶圓 -25200838099 IX. [Technical Field] The present invention relates to a plurality of direct drive motors which are used in an atmosphere other than air, Such as in a vacuum.  [Prior Art] For example, In semiconductor manufacturing equipment, In order to remove impurities as much as possible, The processing of the workpiece is carried out in an ultra-high vacuum atmosphere in a vacuum chamber. For the actuator used in this example, For example, in a drive motor used in a workpiece placement apparatus, One containing volatile constituents,  Such as general grease, The lubricant cannot be used as a bearing for the drive shaft.  therefore, Lubricity can be achieved by plating the inner and outer rings of the bearing with a soft metal.  Like gold, Silver, etc. To improve. and, In the current situation, A material having good heat resistance and a small amount of exhaust gas is selected as a coil insulating material. Wire coating material, And the adhesive of the laminated magnetic pole and the like.  on the other hand, Various actuators are used to introduce the rotational output from the outside into an ultra-high vacuum chamber. Such as the bellows drive method, Magnetic coupling driving method, Magnetic fluid seal driving method, etc. It is well known in the art. Each of the actuators has a structure in which an output end of a rotating shaft detachably held by a vacuum bearing projects into a vacuum atmosphere. And the amount of power is applied to an input by a drive device placed in the air. In other words, In the bellows drive method, The output end of the rotating shaft is detachably held by a vacuum bearing. And protruding into the vacuum side, The other end of the -4-200838099 is rotationally driven by a rotating device having a swash plate oscillating mechanism disposed in the air. Therefore, the rotating shaft is driven by the bellows. Repeat expansion and contraction movements.  Conversely, In the magnetic coupling driving method, A rotor made of a magnetic substance is fixed to the input end of a rotating shaft. And the outer circumference of the rotor is sealed by a surrounding outer casing. A magnet surrounding the rotor is disposed on the air side. The shaft is separated by a casing. And driven by these magnets, To rotate the shaft.  and, In the magnetic fluid seal driving method, An outer casing made of a non-magnetic material is installed by penetrating a partition between the air side and the vacuum side. An annular pole piece sandwiching a permanent magnet is disposed around the bearing in the outer casing. The gap between the outer circumferential surface of the rotating shaft passing through the outer casing and the inner circumferential surface of the opposite pole piece is sealed by the magnetic fluid.  In detail, In recent years, The accumulation of semiconductors is improved, Therefore, a higher density can be achieved simultaneously by minimizing the width of the IC pattern plus this improvement. In order to manufacture a semiconductor wafer capable of coping with this miniaturization, a highly consistent wafer quality is required. In order to meet this requirement, It is important to further reduce the concentration of impurity gases used in the low pressure gas processing chamber of the wafer. and, In order to implement the required minimization, It is necessary to place the device with high precision. From this point of view, the following problems have been found for the above-mentioned known actuators.  In an example of a drive motor to be used in a vacuum chamber provided with an ultra-high vacuum atmosphere, Even if it is used as a wire insulation material and wire coating -5-200838099, etc., a material with excellent heat resistance and a small amount of exhaust gas, as long as the substance is an organic insulating material, This substance is a microporous substance and has numerous pores on the surface. The substance absorbs and stores gas as soon as it is exposed to the air. Water molecules wait in the pores on their surface. Degassing ‘by removing the impurities by vacuum evacuation, It takes a long time. therefore, It is difficult to avoid a decline in manufacturing efficiency. Furthermore, In the sky, heat dissipation by airflow will never occur. Therefore, in the case where the temperature of the coil is raised step by step, The resistance of this part will become larger and accelerate the heat generation. therefore, It is very likely that the coil insulation coating will be burned.  Conversely, The use of inorganic substances as wire insulation is considered, And a stainless steel tube sheathed wire is used for wiring, Used to reduce the adsorption of impurity molecules. however, In this example, Not only will the cost increase dramatically, And the ratio of conductors, For example, copper in a coil winding space, The space will be reduced, causing the resistance to rise. As a result, the ability of the motor is reduced.  Contrary to the problems encountered above in setting the actuator in an ultra-high vacuum device, In the example where the driving portion of the actuator is disposed outside the vacuum device, Such as the magnetic coupling driving method, The magnetic fluid seal driving method, etc. They have the following problems. The bellows drive method has a large recoil force. The magnetic coupling driving method of transmitting rotational force by a magnetic attraction has low rigidity. Therefore, both methods have the problem of not being able to achieve high precision placement. and, In the magnetic fluid seal driving method, The problem is that the heat of the magnetic fluid is very low in temperature. Therefore, the magnetic fluid cannot withstand the addition of the ultra-high vacuum chamber in the baking treatment (the treatment of the adsorbed gas molecules and water molecules discharged in the vacuum chamber wall). -6 - 200838099 Hot temperature, And because the magnetic fluid includes some volatile composition, the exhaust gas may occur.  In order to solve the above problems of these conventional actuators, The applicant of the present invention has proposed a sealed actuator capable of performing high-precision placement without discharging impurity gas to an ultra-vacuum atmosphere (see Patent Documents 1 and 2). According to this technology, A sealed actuator includes a motor stator having a rotary drive pole that is energized by a rotary drive coil. A motor rotor having a magnetic pole disposed opposite the pole face of the motor stator with a small gap therebetween And rotatably supported by a friction bearing, And a resolver which is a displacement detecting mechanism for measuring the displacement of the rotor of the motor,  One of the non-magnetic metal spacers is disposed in a gap between the motor stator and the motor rotor, Used to hermetically cover the internal space that is built into the stator of the motor, It is thus separated from the motor rotor space.  In this way, The above-mentioned sealed actuator proposed by the applicant of the present application is very useful for a specific use. Because the motor stator is separated from the motor rotor by a non-magnetic metal diaphragm, even if the actuator is used in an ultra-high vacuum atmosphere of a semiconductor manufacturing facility or in a reactive gas atmosphere, High resolution can be achieved by the resolver. And the atmosphere is not contaminated by the actuator coil or the impurity gas discharged from the organic insulating material. The coil and the organic insulating material are not corroded' and the magnetic circuit formed between the motor stator and the motor rotor is not blocked.  Patent Document 1: Japanese Unexamined Patent Application Publication No. 3-15004-1.  Patent Document 2: Japanese Unexamined Patent Application Publication No. Hei No. 3- No.  Patent Document 3: Japanese Unexamined Patent Application Publication No. No. No. No. No. No. No. 2006-109654. therefore, When the motor is housed inside a room with a vacuum atmosphere, It will happen that the size of the room needs to be increased, It is necessary to provide a large-capacity problem such as a hollow pump, etc. This results in an increase in cost. in the mean time,  A slimline direct drive motor is disclosed in Patent Document 3, But there is still a need for a more compact direct drive motor.  In view of the above problems of the prior art, SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact direct drive motor that prevents contamination of the ambient atmosphere.  According to the invention, A direct drive motor that is used in an atmosphere other than air is provided, It contains:  An outer casing;  a partition extending from the outer casing and separating the air side from a side opposite the air;  a seal that seals the outer casing to the partition;  An outer rotor is disposed in a side opposite the air with respect to the partition;  a special environmental bearing device that is rotatably supported by the outer casing in relation to the outer casing;  ~ a stator associated with the partition being disposed within the air side;  -8- 200838099 an inner rotor associated with the baffle disposed within the air side and rotating with the outer rotor;  An atmospheric bearing device that rotatably supports the inner rotor with respect to the outer casing; And a detector for detecting a rotational position of the inner rotor;  Where the stator, The atmospheric bearing device, The inner rotor, And the detectors are disposed at positions that at least partially overlap each other in an axial direction of the direct drive motor.  According to the direct drive motor of the present invention, The atmospheric bearing device, The inner rotor, And the detectors are disposed at positions that at least partially overlap each other in an axial direction of the direct drive motor, Therefore, the length of the direct drive motor in the axial direction can be kept small. and, The outer rotor and the special environmental bearing device can be separated in the axial direction without breaking or disassembling the partition and the seal. To carry out maintenance, For example, replace the bearing.  The maintainability and availability of the equipment containing the direct drive motor can thus be improved.  The partition, The stator, The atmospheric bearing device, The inner rotor, And the detector is preferably disposed in the radial direction of the direct drive motor from the outer circumference.  The outer rotor is preferably supported by the special environmental bearing assembly through a bearing retainer that is separable relative to the outer casing.  The special environmental bearing device is a multi-point contact rolling bearing. Used to improve the rigidity of the motor.  The inner rotor is preferably rotatably supported by a bearing device other than the special environmental bearing device -9-200838099, Preferably having a magnetic pole or a salient pole,  It is in the radial direction with a magnetic pole or salient pole attached to the outer rotor (for example, Permanent magnet) relative, And preferably, the angle of a motor rotor is detected across the partition by the outer rotor being rotated together with the inner rotor by the magnetic attraction of the two magnetic poles. In this way, By sandwiching the partition, The position detection of the outer rotor in a special atmosphere other than air is correctly transmitted to the inner rotor disposed in the air. And the position detection of the inner rotor can be detected by a rotational position detector also disposed in the air. therefore,  In this special environment, For example, in a vacuum environment, The components are only metal materials, Like a rotor, magnet, Bearings, etc. Therefore, it is not susceptible to the increase in temperature in the air. and, The detector generally uses an optical encoder, a resolver, And this class. It is possible to prevent gas discharge of wiring materials and the like from the light-emitting elements and the insulating material and the coil of the analyzer detector from being diffused into the vacuum. and, Providing an electronic lead terminal between the vacuum and the air for connecting an electronic wiring to the air becomes unnecessary, This is necessary in the design where the detector is placed in a vacuum.  The detector preferably includes an absolute analyzer for detecting an absolute angle, And an incremental analyzer is used to detect the relative angle at high resolution. It is impossible to place outside the air when the power is turned on to the beginning of the direct drive motor 'if the angular position of the outer rotor outside the air is unknown'. and, If the homing sensor is placed outside the air, The exhaust gas from this sensor will destroy a special atmosphere. As the detector of the present invention, if the rotational position of the outer rotor at the outer surface of the air-10-200838099 is transmitted to the inner rotor in the air through magnetic coupling and its absolute angle is detected by an absolute rotational position detector Measured,  The absolute angle of the outer rotor can be detected without destroying a special atmosphere and the return to the power when it is turned on becomes unnecessary. Furthermore, In order to drive a three-phase motor, Such as the direct drive motor, A current waveform of a three-phase current that is offset by 120 degrees is necessary to drive the motor.  The rotational position information used to determine the drive waveform can be calculated from the absolute angle of the absolute rotational position detector.  [Embodiment] Hereinafter, An embodiment of the present invention will be described with reference to the drawings. In this embodiment, A surface permanent magnet type 3 2 pole 3 6-slot outer rotor brushless direct drive motor is used. The 32 poles and the 3 6 slot slots are combined with a 8 pole and 9 slot slot structure (which is considered to have a small cogging power) multiplied by 4, But a magnetic power will occur in the radial direction, And cause large vibrations when turning. By using a 2n multiple (η is an integer), the magnetic power in the radial direction is offset. Therefore, the vibration at the time of rotation can be reduced without increasing the coaxiality of the circuit and the stator and the rotor and the rigidity of the components of the mechanism. and, The structure has a small insert power, Thus, a smooth rotation can be obtained. in the mean time, Because the motor has a very large number of poles, So relative to the cycle of the mechanical angle, The period of the electrical angle is very high, Therefore, it has good position control. therefore, The motor of the present invention is suitable for use in a direct drive motor that drives a robotic device without the use of a reducer. and, Can not reduce the total amount of magnetic flux, -11 - 200838099 The thickness and the width of the salient pole of the connecting section of the small tweezers and the thickness of the crucible of the rotor, Therefore, the motor of the present invention is suitable for a small tube direct drive motor having a large diameter and a narrow width.  1 is a cross-sectional view of a direct drive motor in accordance with this embodiment. The internal structure of the direct drive motor DD will be described in detail with reference to FIG.  A circular plate 10a attached to a surface plate G and a casing 10 of a cylindrical section 1 Ob have a central opening 10c formed on the cylindrical section 10b for allowing a wire to pass through the stator At the office.  By this structure, A detector (analyzer) and a stator 29 may be disposed radially outward from the cylindrical section 10b of the outer casing 10,  The angle of the detector relative to the stator 29 can be easily adjusted by the smoke. Therefore, If it is additionally provided to rotationally drive a motor rotor, The detector can be adjusted with a high degree of accuracy with respect to the set angle by setting the outer casing 1 包括 including the device (which includes the stator 29 and the detector).  therefore, It can prevent the deterioration of the angular position caused by the rectification deviation. And can improve the compatibility of the drive control circuit of a motor. The detector will be described later.  A partition 13 is made of stainless steel. It is a non-magnetic substance, And including a thick flange bottom region 1 3 a which will be mounted to the upper surface of the circular plate 10a of the outer casing 10 and a thin cup-shaped cylindrical portion 13b which extends from the inner circumference circle In the axial direction. The flange bottom portion 13a is fixed to the outer casing 10 by bolts (not shown). The bottom surface of the flange bottom portion 13a is subjected to groove processing for breaking into a seal. After the seal OR is broken into the groove, The flange bottom portion 13a and the outer casing are bolted together at -12-200838099. Therefore the fastened portion is completely isolated from the air. therefore, The space surrounded by the outer casing 1 and the partition 13 is hermetically separated from the outside. In this regard, except that the seal Ο R is used to form airtightness, Electron beam welding can also be used, Laser beam welding, Wait to form airtight. and, The spacer 13 does not have to be a non-magnetic substance. It can also be made from Vostian stainless steel SU S 3 1 6 It has high corrosion resistance and low magnetic properties. At this point, If the flange bottom region 1 3 a is welded to the cup-shaped cylindrical region 13 b, Both zones should be made in the same way with S U S 3 1 6 for weldability.  On the upper surface of the outer circumference of the circular plate 1 〇a, A cylindrical bearing holder 17 is fixed to the outside of the partition 13 by bolts 18. An outer ring of a double row ball bearing (special environmental bearing device) 1 9 to be used in a vacuum is mounted to the bearing holder 17 in a stationary manner,  They are fastened together by bolts 18. in the mean time, The inner ring of the bearing 19 is fitted to the outer circumference of a cylindrical rotor yoke 2 1 .  The bearing 19 is a double-row multi-point contact ball bearing which can support the axial direction with a bearing. Radial and moment load. With this type of bearing, a bearing can be used to directly drive the motor D 1, Therefore, the dual-axis coaxial motor system of the present invention can be made compact. The bearing 19 uses a martensitic stainless steel as the material for both the inner and outer rings. Because this material is highly resistant to corrosion and can be hardened by quenching. For a rolling element, Ceramic balls can be used, For lubrication, A vacuum grease can be used, It does not cure even under vacuum.  In this regard, Bearing 1 9 can be metal lubricated for the inner and outer rings.  -13- 200838099 One of the soft metals 'such as gold or silver, It is plated and no out gas is discharged even in a vacuum. or, A cross roller bearing can be used to 'cross ball bearings, Push and pull the bearings, It can be used under pressure or 'fluorination coating treatment (DF0) to improve lubricity.  An outer rotor 23 has a cylindrical portion 23a and a flange portion 23b extending from the outer edge in the radial direction, And a fitting area 23c is formed on the lower surface of the margin bottom portion 23b. The fitting portion 23c is fitted and fixed to a rotor yoke 21.  A motor rotor MR includes an outer rotor 23, An annular rotor yoke 2 1 made of a magnetic material is used to form a magnetic path. A permanent magnet 22 is attached to the inner circumferential surface of the rotor yoke 2 1 And a wedge made of non-magnetic material (not shown), The permanent magnet 2 2 and the rotor yoke 21 are mechanically fastened by bolts 21. The permanent magnet 22 includes 32 magnetic poles. Alternating N magnets and s magnets, Each magnet has 16 magnetic metals. And having a segmented segment forming each pole, Each pole has a fan shape. The inner diameter of the arc has the same center as the outer diameter.  The tangent intersection point of the end face in the circumferential direction is set close to the permanent magnet 22, The permanent magnet 22 is fastened to the rotor yoke 21 by screwing a wedge from the outer diameter side of the rotor yoke 21. By this structure, Can be used without a fixture that produces outgassing, Such as adhesives, Tighten the permanent magnet. The permanent magnet is a high energy product and coated with a nickel sharp (Nd_Fe-B) magnet for improving corrosion resistance. The rotor yoke 21 is made of low carbon steel having high magnetic properties. It is also nickel-plated to improve rust resistance and prevent wear when replacing bearings.  -14- 200838099 In the radial interior of the partition 13, The stator 289 is disposed to face the inner circumferential surface of the outer rotor 23. The stator 29 is bolted to an annular mounting portion 10d of the upper surface of the circular plate 10a. It is made of a laminated material of an electromagnet plate. And having a convex outer sleeve and a wire shaft as an insulation treatment, It is then wrapped centrally by a motor line. The outer diameter of the stator 29 is substantially the same or smaller than the inner diameter of the separator 13.  An annular coupling yoke 25 made of a magnetic material is disposed on the stator 29 and concentric with the stator 29 to form a magnetic path. And a coupling magnet 26 is fixedly disposed on the outer circumference thereof. In the same manner as the permanent magnet 22 of the outer rotor 2 i , The coupling magnet 26 includes 32 magnetic poles. Alternating N magnets and S magnets, Each magnet has 16 magnetic metals. therefore, The coupling yoke 25 rotates in synchronization with the outer rotor 21 driven by the stator 21.  The lower surface of the inner circumferential side of the coupling yoke 25 is attached to the upper edge of a cylindrical inner rotor 30. The inner rotor 30, which is integrally rotated with the coupling yoke 25, is rotatably supported by the annular bearing portion 1 〇 d of the atmospheric bearing 3 3 in relation to the circular plate 1 〇 a.  The atmospheric bearing 3 3 rotatably supported by the inner rotor 30 is a four-point take-up ball bearing which can support the axial direction with a bearing. Radial and moment load. Using such a bearing, A bearing is enough, This makes the direct drive motor DD very compact. The inside of the partition 〗 3 is an atmospheric environment. Therefore, a bearing is coated with a general bearing steel and grease lubrication using a mineral oil as a base oil.  The inside of the partition 13 is an atmospheric environment. Therefore, the coupling magnet 26 is fixed to the coupling yoke 25 by an adhesive by -15-200838099. The coupling magnet 26 is a nickel-coated sharp (N d - F e - B ) magnet having a local energy product to prevent magnetic degradation due to rust. The coupling yoke 25 is made of low carbon steel having high magnetic properties, It is also treated with chromic acid for rust resistance. The coupling magnet 26 and the coupling yoke 25 form a detector coupling.  Analyzer rotor 34a, The 34b is assembled on the inner circumference of the inner rotor 30 to be a detector for measuring the angle of rotation. In the opposite form, Analyzer stator 2 3 5, 3 6 is mounted to the outer circumference of the cylindrical region 1 Ob of the outer casing 1 . In this embodiment, The incremental analyzer stator 35 having a high resolution and the absolute analyzer stator 36 capable of detecting the position of the rotation of the rotor are disposed in two layers. After turning on the power,  The rotor mechanical angle is recognized and the rectification of the motor coil is based on absolute angle information from the resolver. therefore, The angle of rotation of the absolute analyzer rotor 34b when the power is turned on can be obtained. Therefore, the return (h 〇 m i n g ) is unnecessary. in the mean time, High-resolution angular positioning operations are implemented based on relative angle information from the incremental analyzer. Therefore, the electrical phase angle of the magnet associated with the coil can be obtained. therefore, The drive current control for controlling the direct drive motor D D can be detected without using a magnetic pole detection sensor. The invention is therefore applicable to a direct drive motor for driving a robotic device.  Connect the rotating side of the detector, The rotating side of the bearing device, And the inner rotor 30 of the detector coupling member is made of magnetic carbon steel. And after the forming process, it is subjected to chrome treatment to prevent rust. The magnetic field of the motor and the magnetic noise from the motor coil are not transmitted to the analyzer stator 35 as an angle detector. 3 6.  In the high-resolution variable reluctance analyzer used in this embodiment,  The incremental analyzer rotor 34a has a plurality of tooth row grooves. The incremental analyzer stator 35 has teeth on its outer circumferential surface, the phase of which is related to the incremental analyzer rotor 3 4 a in each The magnetic pole parallel to the rotating shaft is offset, And the coil is wound around each pole. When the inner rotor 30 and the incremental analyzer stator 23 5 are rotated, the magnetic reluctance between the incremental analyzer stator 35 and the magnetic pole changes, And the magnetoresistance change is determined such that the fundamental wave component (compartal wave comPonent) becomes n-cycles of the rotation of the incremental analyzer rotor 34a. By detecting the change in the magnetoresistance, And digitizing the change by the analyzer control circuit shown in FIG. And using the signal as a position signal 'the incremental analyzer rotor 34a, That is, the first inner rotor 30, The angle of rotation (or rotational speed) can be detected. The analyzer rotor 34a' 34b and the analyzer stator 35, 3 6 constitutes the detector.  With this embodiment, The inner rotor 30 is rotated at the same speed as the outer rotor 21 by the magnetic coupling operation. In other words, Turn together, Therefore, the angle of rotation of the outer rotor 21 can be detected across the partition 13. and, In this embodiment, The analyzer independently has a bearing 3 3 that is not used to form the components of the motor and the housing, Therefore, the analyzer can be independently adjusted by the analyzer before being assembled in the housing. For example, eccentricity adjustment and position adjustment. therefore, There is no need to form an adjustment hole or notch in the outer casing. and, A rotating ring of the bearing device 19, to which the outer rotor 2 1 is rotatably supported, is fitted to the turn -17-200838099 sub-yoke 21, This can easily have processing precision and has the same linear expansion coefficient as the drive ring of the bearing device 19. Therefore, the rotation accuracy can be improved and the friction torque due to the temperature change can be prevented.  Furthermore, The stator 29 is provided inside the partition plate 13, The analyzers (3 4a, 3 4b, 35, 36) (which is the detector), The atmospheric bearing 3 rotatably supports the rotating side of the detector (inner rotor 30), a detector coupling (25, 26) used to rotate the motor rotor MR together with the rotating side of the detector, And connecting the analyzer rotor 3 4a, 3 4b and the angle detect the inner rotor 30 of the coupling.  With this embodiment, The stator 29, The atmospheric bearing 3 3, The inner rotor 30, And the analyzers (34a, 3 4b, 35, 36) (which is a detector), They are all disposed at positions partially overlapping each other in the axial direction of the direct drive motor DD. therefore, The length of the direct drive motor in the axial direction can be kept small.  Figure 3 is a block diagram showing the drive circuit of the direct drive motor DD. When a motor rotation command is input from an external computer, A motor control circuit DMC for the direct drive motor outputs a drive signal from its CPU to a three-tier amplifier (AMP). And the drive current is supplied from the tertiary amplifier (AMP) to the direct drive motor DD. With this, The outer rotor 2 1 of the direct drive motor DD is independently rotated. When the outer rotor 2 1 is rotated, The analyzer stators 3 5, 3 6 (they have detected the angle of rotation as described above) to output an analyzer signal. The signal receives a digital conversion of an analyzer digital converter (RDC). It is then entered into the CPU. The CPU determines whether the outer rotor 21 has reached the position indicated by -18-200838099. If the outer rotor 21 has reached the indicated position, Then, the CPU stops the rotation of the outer rotor 21 by stopping the driving signal sent to the three-stage amplifier (AMP). therefore, The outer rotor 2 1 can be servo-controlled.  This embodiment employs a variable reluctance analyzer that includes the absolute analyzer stator 36 for detecting the absolute position of a rotation of the rotating shaft, And the incremental analyzer stator 35 is used to detect a rotational position, Therefore, the rotational position of the outer rotor 21 can be controlled with high precision.  In this regard, An analyzer has been designed here to detect the rotation of the inner rotor 3 。. however, The detector can be disposed on the atmospheric air side. That is, inside the partition 13 Therefore, an optical encoder (which is a position detecting mechanism for smoothly driving with high accuracy in a servo motor for high-precision positioning can be used, And a magnetic encoder which uses a magnetoresistive element or the like.  In the above embodiment, A rotorless brushless motor using a surface permanent magnet type 32 poles and 36 poles has been described as an example. However, The invention is not limited to this structure, And as long as it is a brushless motor can be applied. Other magnetic type, For example, a permanent magnet is embedded, One slot combination, Or an inner rotor type can be used.  and, When the direct drive motor DD is used in a coaxial stack,  As a means of preventing interference of each axis, The number of poles of the rotor of the shaft adjacent in the axial direction may be different from the number of slots. This prevents mutual interference,  for example, The pushing force of the rotor and the magnetic coupling device occurs in the direction of rotation, If the structure is biaxially coaxial, That is, the first axis has 3 2 -19- 200838099 magnetic poles and 36 poles. The second shaft has 24 poles and 27 slots. If the structure is four-axis coaxial, Then the first axis and the third axis have 3 2 magnetic poles and 36, The second and fourth shafts have 24 poles and 27 slots.  and, An example in which a neodymium (Nd-Fe-B) magnet is used as the permanent magnet of the rotor and nickel is applied as a coating to increase corrosion resistance has been described above. however, The invention is not limited to this material and to this surface treatment. The material and surface treatment can be appropriately changed depending on the environment in which it is used.  E.g, a sago cobalt (Sm·Co) magnet (which is difficult to demagnetize at high temperatures), It should be used according to the temperature at the time of baking. If used in an ultra-high vacuum, Titanium nitride having a high degassing barrier power should be applied.  and, An example in which the yoke is made of low carbon steel has been described above. And accept nickel plating treatment. however, The invention is not limited to this material and to this surface treatment. In detail, In terms of surface treatment, If used in ultra-high air, A Kani gen plating with less pinholes and an electroless nickel plating (a CLEAN S plating), Titanium nitride plating, Etc. should be administered.  and, For the method of fastening the permanent magnet to the yoke, The use of a non-magnetic wedge to be fastened with screws from the outer diameter side of the yoke is exemplified above. however, This can be appropriately changed depending on the usage environment. And the adhesive can be used according to the use environment. And other fastening methods can also be used.  and, The bearing 19 has been described above using a multi-point contact ball bearing having a vacuum grease lubrication. however, The invention is not limited to this form, Material, And lubrication method, And depending on the usage environment, Load -20- 200838099 situation, The rotation speed, etc. are appropriately changed. A fork roller shaft can be used, And in the example of a four-axis coaxial motor, a structure supported by another bearing can be used, Used to further improve mechanical rigidity. In the case where a multi-point contact ball bearing cannot be used, such as in the case of high-speed rotation, A structure using deep groove ball bearings or angled bearings can be used as a bearing to support the rotor of each shaft and another bearing with pressure. In the example used for ultra-high vacuum, Metal plating without gas emissions can be used, For example, plating soft metal, Gold, Silver, etc. On a bearing ring.  and, For an inner rotor that acts like a magnetic coupling,  The form in which the permanent magnet and the coupling yoke are used has been described as an example. However, The material and form of the permanent magnet and the coupling yoke are not limited thereto. E.g, The number and width of the magnetic poles may differ from the number of magnetic poles of the outer rotor depending on the mass of the analyzer and the frictional moment of the bearing. The salient pole can be used without a permanent magnet.  and, The angle detector has been described using an analyzer as an example. This can be appropriately changed depending on the manufacturing cost and resolution. E.g, An optical rotary encoder can be used.  and, Bearing 3 3 has been described using a four-point contact ball bearing with grease lubrication as an example. It can be rotatably supported on the rotating side of the angle detector. however, The invention is not limited to this form and the lubrication method. According to the installation space, Friction torque, Other speeds can be changed depending on the rotation speed and the like. In the case where multi-point contact ball bearings are not allowed to be used, For example, at high speed, In the reduction of friction torque, Two angled bearings and deep groove ball bearings can be used for each axis.  -21 - 200838099 and other structural components placed outside the partition, The material of the partition, shape, And manufacturing methods can be based on manufacturing costs, And the use environment,  Load condition, Configure and so on and change them appropriately.  Fig. 4 shows an application example of the direct drive motor using this embodiment. A direct drive motor D D 1 having the same configuration as that of the above embodiment is disposed in a vacuum atmosphere of a chamber not shown in the drawing, And a table T is attached to the outer rotor. Four poles B are placed on the table T at regular circumferential intervals. A direct drive motor DD2 having the same configuration as that of the above embodiment is disposed in the same vacuum atmosphere. And an arm A is attached to the outer rotor.  Arm A has an adsorption zone at its top end and can adhere to a disc DC. 譬 For example, a CD with a hole in the center, DVD, Wafers, etc. The direct drive motor DD rotates the outer rotor for moving any of the four rods b to the care position shown in FIG. in the mean time, The direct drive motor DD2 rotates the outer rotor such that a disc DC adhered to the arm A is moved to the transfer position shown in Fig. 4. When arm A moves to the transfer position, The adsorption is released, Therefore the rod B is inserted into the hole of the disc DC, The disc DC is thereby transferred from the arm A to the catching table T.  Fig. 5 shows another application example of the direct drive motor using this embodiment. A direct drive motor DD1 having the same configuration as that of the above embodiment is disposed in a vacuum atmosphere of a chamber not shown in the drawing. And a table T is attached to the outer rotor. A wafer used in semiconductor fabrication is held on the table T by adsorption. The table T can be moved to a predetermined rotational position while the wafer W is placed in a vacuum.  -22- 200838099 Industrial Applicability The present invention has been described with reference to the embodiments. however, The present invention should not be considered limited to the embodiments described herein. It can be modified and improved as appropriate. E.g, The direct drive motor of the present invention is not straightforward and can be used in a vacuum atmosphere. It can be used in an atmosphere other than air. E.g, In the case of the semiconductor process, The reactive gas for etching can be injected into the interior of the vacuum chamber after vacuum evacuation. In the direct drive motor of the present invention, Inside and outside is separated by a partition, Therefore, the motor line area and the insulating material and the like are not subjected to etching.  BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a direct drive motor according to this embodiment.  Figure 2 is a diagram showing an example of an analyzer circuit.  Figure 3 is a diagram showing an example of a motor control circuit.  Fig. 4 shows an application example of the direct drive motor using this embodiment. Fig. 5 shows another application example of the direct drive motor using this embodiment.  [Main component symbol description] 1 〇 : Enclosure 1 〇 a : Round plate l〇b : Cylindrical section -23- 200838099 1 0 c : Central opening l〇d : Attachment section 13 : Partition 1 3 a : Flange bottom section 1 3 b : Cup-shaped cylindrical section 1 7 : Bearing retainer 1 8 : Bolt 1 9 : Bearing 21 : Rotor yoke 21 : Outer rotor 22 : Permanent magnet 2 3 : Outer rotor 23a: Cylindrical section 23b: Flange bottom section 2 3 c : Fit section 2 5 : Coupling yoke 26 : Coupling magnet 29 : Stator 3 〇 : Inner rotor 3 3 : Atmospheric bearing 34a : Incremental Analyzer Rotor 34b: Absolute Analyzer Rotor 3 5 : Incremental Analyzer Rotor 3 6 : Absolute Analyzer Rotor -24- 200838099 A : Arm B: Rod D C : Direct drive motor D D 1 : Direct drive motor D D 2 : Direct drive motor D D 3 : Direct drive motor DMC: Motor control circuit G : Surface plate MR : Motor rotor OR : Seal T : Table W : Wafer -25

Claims (1)

200838099 十、申請專利範圍 1 · 一種使用在一除了空氣以外的氛圍中之直接驅動馬 達,其包含: 一外殻; 一隔板其由該外殼延伸出並將該空氣側與一和該空氣 相反的側隔開; 一密封件其將該外殼與該隔板密封; 一外轉子其被設置在相關於該隔板而言與該空氣相反 的側內; 一特殊環境軸承裝置其相關於該外殼可自由轉動地支 撐該外轉子; 一定子其被設置在相關於該隔板的該空氣側內; 一內轉子其被設置在相關於該隔板的該空氣側內並與 該外轉子一起轉動; 一大氣(atmospheric )軸承裝置其相關於該外殼可自 由轉動地支撐該內轉子;及 一偵測器用來偵測該內轉子的轉動位置; 其中該定子,該大氣軸承裝置,該內轉子,及該偵測 器係被設置在該直接驅動馬達的一軸方向上彼此至少部分 地重疊的位置處。 2 ·如申請專利範圍第1項之直接驅動馬達,其中該隔 板,該定子,該大氣軸承裝置,該內轉子,及該偵測器較 係依序地從一外圓周被設置在該直接驅動馬達的徑向上。 3 .如申請專利範圍第1或2項之直接驅動馬達,其中 -26- 200838099 該外轉子係透過一相關於該外殼可分離的軸承固持器而被 該特殊環境軸承裝置支撐。 4 ·如申請專利範圍第丨至3項中任一項之直接驅動馬 達’其中該特殊環境軸承裝置是一多點接觸滾動軸承。 5 .如申請專利範圍第1至4項中任一項之直接驅動馬 達,其中該內轉子被一除了該特殊環境軸承裝置以外的軸 承裝置可自由轉動地支撐,具有磁極或凸極,其在徑向上 與附裝在該外轉子上的磁極或凸極相對,及藉由該外轉子 與該內轉子一起被兩個磁極的磁吸力轉動的方式來跨越該 隔板偵測一馬達轉子的角度。 6 ·如申請專利範圍第1至5項中任一項之直接驅動馬 達,其中該偵測器包括一絕對分析器用來偵測一絕對角度 ,及一增量分析器用來在高解析度下偵測一相對角度。 -27-200838099 X. Patent Application No. 1 - A direct drive motor used in an atmosphere other than air, comprising: an outer casing; a partition extending from the outer casing and opposing the air side to the air a side spacer; a seal that seals the outer casing to the partition; an outer rotor that is disposed in a side opposite the air with respect to the partition; a special environmental bearing device associated with the outer casing The outer rotor is rotatably supported; the stator is disposed in the air side associated with the partition; an inner rotor is disposed in the air side associated with the partition and rotates with the outer rotor An atmospheric bearing device rotatably supporting the inner rotor with respect to the outer casing; and a detector for detecting a rotational position of the inner rotor; wherein the stator, the atmospheric bearing device, the inner rotor, And the detectors are disposed at positions that at least partially overlap each other in an axial direction of the direct drive motor. [2] The direct drive motor of claim 1, wherein the spacer, the stator, the atmospheric bearing device, the inner rotor, and the detector are sequentially disposed from an outer circumference in the direct Drive the radial direction of the motor. 3. A direct drive motor according to claim 1 or 2, wherein -26-200838099 the outer rotor is supported by the special environmental bearing device through a bearing retainer detachable from the outer casing. 4 • Direct drive motor of any of the scopes of claims 丨 to 3 wherein the special environmental bearing device is a multi-point contact rolling bearing. 5. The direct drive motor of any one of claims 1 to 4, wherein the inner rotor is rotatably supported by a bearing device other than the special environmental bearing device, having a magnetic pole or a salient pole, Radially facing the magnetic pole or salient pole attached to the outer rotor, and detecting the angle of a motor rotor across the partition by the outer rotor being rotated together with the inner rotor by the magnetic attraction of the two magnetic poles . 6. The direct drive motor of any one of claims 1 to 5, wherein the detector comprises an absolute analyzer for detecting an absolute angle, and an incremental analyzer for detecting at a high resolution Measure a relative angle. -27-
TW96148273A 2006-12-28 2007-12-17 Direct drive motor TW200838099A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354520A JP4930050B2 (en) 2006-12-28 2006-12-28 Direct drive motor

Publications (1)

Publication Number Publication Date
TW200838099A true TW200838099A (en) 2008-09-16

Family

ID=39588369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96148273A TW200838099A (en) 2006-12-28 2007-12-17 Direct drive motor

Country Status (3)

Country Link
JP (1) JP4930050B2 (en)
TW (1) TW200838099A (en)
WO (1) WO2008081685A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476354B2 (en) 2011-09-16 2019-11-12 Persimmon Technologies Corp. Robot drive with isolated optical encoder
JP5598563B1 (en) 2013-03-27 2014-10-01 株式会社安川電機 Direct drive motor
US10807248B2 (en) 2014-01-31 2020-10-20 Systems, Machines, Automation Components Corporation Direct drive brushless motor for robotic finger
US9871435B2 (en) * 2014-01-31 2018-01-16 Systems, Machines, Automation Components Corporation Direct drive motor for robotic finger
WO2017165401A1 (en) * 2016-03-21 2017-09-28 Persimmon Technologies, Corp. Robot drive with isolated optical encoder
CN112234752A (en) 2016-04-13 2021-01-15 詹尼斯机器人移动技术加拿大公司 Axial flux electric machine comprising a radially inner thrust bearing and a radially outer thrust bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656380B2 (en) * 2004-10-07 2011-03-23 日本精工株式会社 Motor system
JP4581757B2 (en) * 2005-03-11 2010-11-17 日本精工株式会社 Motor system

Also Published As

Publication number Publication date
JP2008167589A (en) 2008-07-17
JP4930050B2 (en) 2012-05-09
WO2008081685A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
TW200838099A (en) Direct drive motor
JPH09238438A (en) Closed actuator
TW200843295A (en) Brushless motor
JP2010273539A (en) Direct drive motor
JP4581757B2 (en) Motor system
JP4692050B2 (en) Rotating support device
JP5288164B2 (en) Scalar robot
JP2006158175A (en) Direct drive motor
JP4656381B2 (en) Direct drive motor
JP2012249519A (en) Direct drive motor, transport device, and semiconductor manufacturing apparatus
JP4656380B2 (en) Motor system
JP2009038910A (en) Brushless motor
JP4196433B2 (en) Sealed actuator
JP4711218B2 (en) Motor system
JP2006296057A (en) Motor
JP4613573B2 (en) Motor system
JP4613574B2 (en) Motor system
JP4618422B2 (en) Direct drive motor
JP2009038911A (en) Brushless motor
JP2021118676A (en) motor
JP4736025B2 (en) Direct drive motor
JP2009131104A (en) Transfer robot
JP2008167588A (en) Brushless motor
JP5401837B2 (en) Direct drive motor, transfer robot, and semiconductor manufacturing equipment
JP2006296061A (en) Motor