TW200827775A - Optical lens and its structure with solid state light laterally emitting device and backlight module - Google Patents

Optical lens and its structure with solid state light laterally emitting device and backlight module Download PDF

Info

Publication number
TW200827775A
TW200827775A TW95149191A TW95149191A TW200827775A TW 200827775 A TW200827775 A TW 200827775A TW 95149191 A TW95149191 A TW 95149191A TW 95149191 A TW95149191 A TW 95149191A TW 200827775 A TW200827775 A TW 200827775A
Authority
TW
Taiwan
Prior art keywords
light
curved surface
optical lens
optical axis
light source
Prior art date
Application number
TW95149191A
Other languages
Chinese (zh)
Other versions
TWI315413B (en
Inventor
Perig Vennetier
Jean-Yves Nauli
Original Assignee
Global Fiberoptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Fiberoptics Inc filed Critical Global Fiberoptics Inc
Priority to TW95149191A priority Critical patent/TW200827775A/en
Publication of TW200827775A publication Critical patent/TW200827775A/en
Application granted granted Critical
Publication of TWI315413B publication Critical patent/TWI315413B/zh

Links

Landscapes

  • Planar Illumination Modules (AREA)

Abstract

The invention provides a kind of optical lens which reflects and refracts a light source, including a bottom section, a neck section and a top section surrounding the optical axis. The bottom section has a bottom surface and a curved surface correspondingly located and used to laterally refract portion of the light and an opening in the bottom surface. The top section has a first curved surface, which protrudes in the direction of leaving the optical axis, and is used for laterally refracting the rest light of the light source. The top section also has a second curved surface, which protrudes in the direction of the optical axis, and is used for laterally reflecting the rest light of the light source. The neck is linked with the curved surface of the bottom and the first curved surface of the top, possesses a junction area linked with the bottom and top areas. The rest light of the light source is directly incident on the junction area locally.

Description

200827775 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種侧向發光光學系統(iaterai emitting optical system),特別是指一種光學透鏡、由其所構成的固 態(solid-state)側向發光元件及其背光(backlight)模組。 【先前技術】 内部量子效率(internal quantum efficiency)及光取出率 (extraction efficiency)策略的改善,已誘使發光二極體 (light-emitting diode,簡稱LED)晶片實現高通量。透過使 • 用高性能的封裝,以LED為主之較高驅動電流的元件已逐 漸被開發。因此,以LED為主之元件的性能及可信賴性已 達新標準,並展開高亮度應用及感光應用的通路。若以目 . 前性能作為標準,LED已適合用來取代應用於液晶顯示器 (LCD)之背光的冷陰極燈管(cold cathode fluorescent lamp, 簡稱CCFL)。 與CCFL相比較,LED為LCD設計者貢獻出一新的靈 ® 活度。新一代的LED給予人們可以重新改造LCD並降低消 耗功率的希望。新一代的LED亦提供單獨控制多變化組合 以產生所需之發光效率的可能性。 例如,LED的響應時間(response time)遠快於CCFL的 響應時間,且亦明顯地遠快於人眼的響應時間。因此,針 對光度(light level)及演色性(color rendering)而言,LED 此 種響應時間的特性可允許連續地調致不同LED晶片以取得 所需之光學特性。此等因素促成LED於LCD之背光上的採 5 200827775 用並取代CCFL。 在習知技術中所提之單晶片元件(single chip)的透鏡 (lenses)是適用於操作單一焦軸(on-axis)的發光晶片(如:US 6,598,998、US 6,607,286、US 6,679,621 等公告案)。典型地 ,此等透鏡的尺寸於直徑為7 mm,高度為4 mm。任何晶 片位置的變化程度將導致全反射(total internal reflection, 簡稱TIR)的缺失及不被期望的光源轉向(redirection)。 此外,單晶片元件對於背光的應用呈現出數個限制。 •⑩ 例如,每一元件發射單一顏色,當使用多重單晶片(multiple • single chip)之LED元件時,LCD之背光系統的混色構件必 須承擔控制由多重晶片之LED元件所產生的各種光色之% 合以傳送所需之顏色的重擔。再者,一具備有多重單晶# 元件的LCD需要數層的光導(lightguide)、數個光擴散板 (light diffuser)、數個光束成形板(light shaper)等混色構件, 而此等構件中的每一構件亦將降低系統中的總光源穿透_ (transmission) 〇 ^ 多重晶片及多彩LED元件是經由控制LED元件之放射 光源以執行其元件之區域性的混色。前述特點可減少於 LCD系統中之光擴散板及光束成形板的數量。其LCD系統 中的光源穿透量是被提昇至與投影螢幕上的總亮度一樣。 就多晶片設計而言,晶片並不是被集中於透鏡的光幸由 上,性能低如10〜20 %之侧向轉向的光源,是可被單晶片系 統之透鏡所取得。多晶片元件之性能下降的主要原因,在 於其光源是自一較廣大的面積被放射,因此,被放射的光 6 200827775 源將至少大於單晶片系統的四倍。 增加光學透鏡的尺寸則是可解決上述問題的方法。例 如:在一個四晶片(4-chip)設計中的透鏡尺寸,是可被乘以 四倍以維持相同標準的性能。此意指其透鏡的尺寸典型地 是28 mm的直徑及16 mm的高度。這對於多晶片之lED元 件在LCD的應用上是一大阻礙。透鏡的尺寸、重量及成本 可能是遠超出LCD電視及投影機的需求。200827775 IX. Description of the Invention: [Technical Field] The present invention relates to an iaterai emitting optical system, and more particularly to an optical lens, a solid-state side composed of the same To the light-emitting element and its backlight module. [Prior Art] Improvements in internal quantum efficiency and extraction efficiency strategies have led to high throughput of light-emitting diode (LED) wafers. By using a high-performance package, components with higher LED drive currents have been gradually developed. As a result, the performance and reliability of LED-based components have reached new standards, and the development of high-brightness applications and photographic applications. LEDs are suitable for replacing cold cathode fluorescent lamps (CCFLs) used in backlights for liquid crystal displays (LCDs). Compared to CCFL, LEDs contribute a new Spirit ® activity to LCD designers. A new generation of LEDs gives people the hope of reshaping LCDs and reducing power consumption. A new generation of LEDs also offers the possibility to individually control multiple combinations of variations to produce the desired luminous efficiency. For example, the response time of an LED is much faster than the response time of the CCFL, and is also significantly faster than the response time of the human eye. Thus, for light level and color rendering, the response time characteristics of LEDs allow for continuous modulation of different LED wafers to achieve the desired optical characteristics. These factors contribute to the use of LEDs in the backlight of the LCD. The lenses of the single chip mentioned in the prior art are illuminating wafers suitable for operating a single on-axis (eg, US 6,598,998, US 6,607,286, US 6,679,621, etc.) . Typically, these lenses are 7 mm in diameter and 4 mm in height. The degree of change in the position of any wafer will result in the absence of total internal reflection (TIR) and undirection of the desired source. In addition, single chip components present several limitations for backlight applications. • 10 For example, each component emits a single color. When multiple LEDs of multiple single chips are used, the color mixing components of the backlight system of the LCD must bear the control of various light colors generated by the LED components of the multi-chip. % combines the burden of delivering the desired color. Furthermore, an LCD having multiple single crystal elements requires several layers of light guides, a plurality of light diffusers, and a plurality of light shapers, and the like. Each component will also reduce the total light source penetration in the system. The multi-wafer and colorful LED components are controlled by the radiation source of the LED elements to perform the regional color mixing of their components. The foregoing features can be reduced by the number of light diffusing plates and beam forming plates in an LCD system. The amount of light penetration in the LCD system is raised to the same as the total brightness on the projection screen. In the case of a multi-wafer design, the wafer is not concentrated on the lens, and the light source with a low performance of 10 to 20% is obtained by the lens of the single-chip system. The main reason for the performance degradation of multi-wafer components is that the source of the light is emitted from a relatively large area, so that the source of the emitted light 6 200827775 will be at least four times larger than the single-wafer system. Increasing the size of the optical lens is a solution to the above problem. For example, the lens size in a four-chip design is a factor that can be multiplied by four to maintain the same standard. This means that the size of the lens is typically 28 mm in diameter and 16 mm in height. This is a major obstacle to the application of LCDs for multi-chip lED components. The size, weight and cost of the lens may be far beyond the needs of LCD TVs and projectors.

因此,提供一個改向並耦合(couple)自多重發光二極體 晶片所放射的理想光量進入一侧向光導之新光學系統,並 在LCD螢幕提供均勻的照度(illuminati〇n),是目前固態側 向發光光學系統相關領域者所待克服的難題。 【發明内容】 因此,本發明之目的,即在提供一種用以折射並反射 一光源之光學透鏡。 本發明之另一目的,即在提供一種固態侧向發光元件 本發明之又-目的,即在提供一種背光模組。 於是’本發明之用以折射並反射一光源的光學透鏡, 包含:—沿—光軸圍繞的底部、-沿該光軸圍繞的頂部及 一頸部。 該底部具有-底面及一與該底面相對設置並用以側向 —之部分光線的曲面’且該底部的底面界定出 :二該頂部具有一用以側向地折射該光源之其餘光線 亚朝向运離該光軸的方向凸出的第一曲面,及一用以侧向 7 200827775 地反射該光源之其餘光線並朝向該光軸的方向凸出的第一 曲面。該頸部連接該底部之曲面及該頂部之第一曲 、, ^ 5亚 具有一連接該底部及頂部的交接區。該光源的其餘光線日 局部地直接入射該交接區。 本發明之固態側向發光元件,包含··一具有_承載座 及複數連接該承載座的引腳的導線架、一設置於該承載座 之如前所述的光學透鏡,及一發光晶片單元。該發光晶片 單几是設置於該承載座上並位於該光學透鏡之底部的開口 處。 本餐明之为光模組’包含··一具有一第一表面及一相 反於該第一表面之第二表面的光導板、一設置於該光導板 的第一表面之如前所述的固態側向發光元件、一設置於該 光導板的第二表面之擴散板,及一疊置於該擴散板的光束 成形板。 本發明之目的在於,輔助自發光晶片單元所放射的理 心光里產生轉向以耗合光源進入背光模組之光導板内,並 在LCD螢幕上提供均勻的照度。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之五個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中’類似的元件是以相同的編號來表示。 ί閱圖1與圖2,本發明之一第一較佳實施例,是/用 8 200827775 以折射並反射一多重LED晶片5之光源的光學透鏡2,包 含:一沿一光軸Y圍繞的底部21、一圍繞該光軸Y的頂部 22及一頸部23。 該底部21具有一底面211及一與該底面211相對設置 並用以侧向地折射該光源之部分光線的曲面212,且該底部 21的底面211界定出一開口 213。該底部21的曲面212界 定出一圍繞該光轴Y的基底,該基底是呈一圓形對稱狀。 該頂部22具有一用以侧向地折射該光源之其餘光線的 並朝向遠離該光軸Y的方向凸出的第一曲面221,及一用以 - 側向地反射該光源之其餘光線並朝向該光轴Y的方向凸出 的第二曲面222。該頂部22更具有一形成於該第二曲面 222的反射層(圖未示)。適用於本發明之反射層可以是鋁 (A1)、銀(Ag)、金(Au),或高低折射率(refractive index)介電 層對(dielectric pair) 〇 該頸部23連接該底部21之曲面212及該頂部22之第 一曲面221,並具有一連接該底部21及頂部22的交接區 • 231。該光源的其餘光線是局部地直接入射該交接區231。 該光學透鏡2之材質可依其折射率、光學穿透率 (optical transmission)、特定波長之光壽命(life span)、機械 強度(mechanical strength)及耐熱性(heat resistance)而選擇。 在本發明該第一較佳實施例的光學透鏡2中,該底部21、 頂部22及頸部23的折射率是介於1.4〜1.7之間;適用於本 發明之光學透鏡2的底部21、頂部22及頸部23之材料, 是由一高分子材料(polymer)所構成。該高分子材料是選自 9 200827775Therefore, it is a new optical system that redirects and couples the ideal amount of light emitted from the multiple light-emitting diode chip into the side light guide, and provides uniform illumination on the LCD screen, which is currently solid state The problem to be overcome by those involved in the field of lateral illumination optical systems. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an optical lens for refracting and reflecting a light source. Another object of the present invention is to provide a solid-state lateral light-emitting element. Still another object of the present invention is to provide a backlight module. Thus, the optical lens of the present invention for refracting and reflecting a light source comprises: a bottom portion around the optical axis, a top portion surrounding the optical axis, and a neck portion. The bottom portion has a bottom surface and a curved surface disposed opposite to the bottom surface and used to laterally—and the bottom surface of the bottom portion defines: the top portion has a remaining light ray for laterally refracting the light source. a first curved surface that protrudes from the direction of the optical axis, and a first curved surface that is used to laterally reflect the remaining light of the light source and protrude toward the optical axis in a lateral direction. The neck is connected to the curved surface of the bottom and the first curved portion of the top, and the ^ 5 sub-section has a junction area connecting the bottom and the top. The remaining light of the source is locally incident directly into the interface. The solid-state lateral light-emitting device of the present invention comprises: a lead frame having a carrier and a plurality of pins connecting the carrier, an optical lens disposed on the carrier as described above, and an illuminating wafer unit . The illuminating wafer is singly disposed on the carrier and located at an opening of the bottom of the optical lens. The present invention is an optical module comprising: a light guide plate having a first surface and a second surface opposite to the first surface, and a solid state disposed on the first surface of the light guide plate as described above a lateral light emitting element, a diffusing plate disposed on the second surface of the light guiding plate, and a beam forming plate stacked on the diffusing plate. SUMMARY OF THE INVENTION It is an object of the present invention to assist in the steering of the self-illuminating wafer unit to divert light from the light source into the light guide of the backlight module and to provide uniform illumination on the LCD screen. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. Before the present invention is described in detail, it is to be noted that in the following description, similar elements are denoted by the same reference numerals. 1 and 2, a first preferred embodiment of the present invention is an optical lens 2 for refracting and reflecting a light source of a plurality of LED chips 5 with 8 200827775, comprising: an optical axis Y surrounding The bottom portion 21, a top portion 22 surrounding the optical axis Y, and a neck portion 23. The bottom portion 21 has a bottom surface 211 and a curved surface 212 disposed opposite the bottom surface 211 for laterally refracting a portion of the light of the light source, and the bottom surface 211 of the bottom portion 21 defines an opening 213. The curved surface 212 of the bottom portion 21 defines a base surrounding the optical axis Y which is in a circular symmetry. The top portion 22 has a first curved surface 221 for laterally refracting the remaining light of the light source and protruding away from the optical axis Y, and a light source for laterally reflecting the light source and facing the light source A second curved surface 222 in which the direction of the optical axis Y is convex. The top portion 22 further has a reflective layer (not shown) formed on the second curved surface 222. The reflective layer suitable for use in the present invention may be aluminum (A1), silver (Ag), gold (Au), or a high refractive index dielectric pair. The neck 23 is connected to the bottom 21 The curved surface 212 and the first curved surface 221 of the top portion 22 have a junction area 231 connecting the bottom portion 21 and the top portion 22. The remaining light of the source is locally incident directly into the interface 231. The material of the optical lens 2 can be selected depending on its refractive index, optical transmission, life span of a specific wavelength, mechanical strength, and heat resistance. In the optical lens 2 of the first preferred embodiment of the present invention, the refractive indices of the bottom portion 21, the top portion 22 and the neck portion 23 are between 1.4 and 1.7; suitable for the bottom portion 21 of the optical lens 2 of the present invention, The material of the top portion 22 and the neck portion 23 is composed of a polymer material. The polymer material is selected from the group consisting of 9 200827775

PolyMethylMethAcrylate、Zeon Chemicals Zeonex®、Topas TOPAS® COC 或 Dow Corning SR-7010 o 在本發明之光學透鏡中,該底部21的曲面212、該頂 部22的第一、二曲面221、222的其中一最佳輪廓,是可 經由卡迪兒座標制(Cartesian coordination system)被定義為 一為(x6+z6)+尽(x4+z4)+q(x2+z2)+a(x+z)+尽 r2=i之多項 式。(x,z)為水平面,γ為垂直軸(即,光軸Y)。選擇a、尽 、(^、/)^及尽等係數,以便於該底部21的曲面212無法產 生金反射,亦以便於該光源的部分光線可伴隨著側向光導 接收受角度(lateral lightguide acceptance angle)直接地被折 射,且其餘光線將可隨著該曲面212、第一表面221、第二 表面222的組合而被適度地轉向。該曲面212、第一表面 221、第二表面222的單一組合及複合組合,提供光學透鏡 改造設置於該開口 213内之多重LED晶片5光源之發射圖 _的可能性,並給予光源側向地轉向之可能性。 為、尽、Q、A及尽等係數,容許光學設計者根據所述 之爹項式的次方數,自該光軸Y的一特定距離調整恰當的 表面曲率(curvature)。具有較低次方數多項式的係數之作用 ,在緊鄰著該光學透鏡2的光軸Y處是更顯著,且較高次 方數的係數,對於該光學透鏡2之底部21的曲面212、該 頂部22的第一、二表面221、222於邊緣上的曲率產生更 大的影響。典型地,尽、q、A及尽等係數被調整以符合該 多爹LED晶片5之光源的輪廓時,4是不超過1〇_3的正數 10 200827775 參閱圖3,主要是在說明本發明該第一較佳實施例之光 學透鏡2的底部21之曲面212所扮演的角色。當該光源自 該多重LED晶片5的一上表面發射出來時,該光源碰撞到 該底面211,且於該光學透鏡2内被折射。該光源的部分光 線將碰撞到曲面212,並根據笛卡爾-斯涅耳定律(Descartes-Snell’s laws)及菲淫爾方程式(Fresnel equations)被折射。該 曲面212主要是避免設置於該開口 213内之任何位置的多 重LED晶片5之光源產生全反射,那麼,光線將以一特定 角度側向地離開該光學透鏡2。以電視用之背光模組舉例來 說,此特定角度是相對該光軸Y應調整於50°〜90°之間。 參閱圖4,主要是在說明本發明該第一較佳實施例之光 學透鏡2的頂部22之第一曲面221的作用為折射。由於位 在該光學透鏡2内的光線將預先被該底部21之曲面212所 折射。當缺少該頂部22之第一曲面221時,部分光線將以 相對該光軸Y的一小角度被該曲面212所折射,並碰撞到 設置於該光學透鏡2之上方或周圍的光導板(圖未示)或圍繞 該光學透鏡2。如此,將沿著該光軸Y造成所不欲見的非均 質光點(non-homogeneous spot)。圖4中所顯示的光束人01及 λ02將被該頂部22的第一曲面221所折射並於該頂部22的 第二曲面222反射(如圖5所示)。 因此,該頂部22之第一曲面221的曲率使光束λ01及 λ02有效地折射以進一步地於該頂部22之第二曲面222側向 地反射。此外,該頂部22之第一曲面221亦於整體機構上 帶來極大的優勢。以具有一平坦面的透鏡為例說明之,當 11 200827775 該頂部22之第一曲面221以— 尺寸更大的光學透鏡,才可取彳面取切,❹須使用 此,具有如該第一曲面221=同之轉向的光線量。因 ...1的曲率,將可降低光學透鏡的 尺寸及重1,並可減少材料的使用量且降低製造成本。 參閱圖5’主要是說明該頂部22之第二曲面222對於 光線扮演著兩種不同態樣的反m態樣,是„_PolyMethylMethAcrylate, Zeon Chemicals Zeonex®, Topas TOPAS® COC or Dow Corning SR-7010 o In the optical lens of the present invention, one of the curved surface 212 of the bottom portion 21 and the first and second curved surfaces 221, 222 of the top portion 22 is optimal. The contour can be defined as a (x6+z6)+(x4+z4)+q(x2+z2)+a(x+z)+ exhaust r2= via the Cartesian coordination system. The polynomial of i. (x, z) is the horizontal plane, and γ is the vertical axis (ie, the optical axis Y). Select a, 、, (^, /) ^ and the same coefficient, so that the curved surface 212 of the bottom 21 can not produce gold reflection, so that part of the light of the light source can be accompanied by the lateral light guide receiving angle (lateral lightguide acceptance The angles are directly refracted, and the remaining rays will be moderately steered with the combination of the curved surface 212, the first surface 221, and the second surface 222. The single combination of the curved surface 212, the first surface 221, and the second surface 222, and the composite combination, provide the possibility that the optical lens modifies the emission pattern of the multiple LED chips 5 disposed in the opening 213, and gives the light source laterally The possibility of turning. For the total, Q, A, and equal coefficients, the optical designer is allowed to adjust the appropriate surface curvature from a specific distance of the optical axis Y according to the power of the above formula. The effect of the coefficient having the lower power polynomial is more pronounced at the optical axis Y immediately adjacent to the optical lens 2, and the coefficient of the higher power square, for the curved surface 212 of the bottom 21 of the optical lens 2, The curvature of the first and second surfaces 221, 222 of the top portion 22 on the edges has a greater impact. Typically, when the Q, A, and Equivalent coefficients are adjusted to conform to the contour of the source of the multi-turn LED chip 5, 4 is a positive number of no more than 1 〇 3 3 200827775 Referring to Figure 3, primarily to illustrate the invention The curved surface 212 of the bottom portion 21 of the optical lens 2 of the first preferred embodiment plays the role. When the light source is emitted from an upper surface of the multiple LED chip 5, the light source collides with the bottom surface 211 and is refracted within the optical lens 2. Part of the light from the source will collide with the curved surface 212 and be refracted according to Descartes-Snell's laws and Fresnel equations. The curved surface 212 is mainly to avoid total reflection of the light source of the plurality of LED chips 5 disposed at any position within the opening 213, and then the light will laterally exit the optical lens 2 at a specific angle. For example, in the case of a backlight module for television, the specific angle should be adjusted between 50° and 90° with respect to the optical axis Y. Referring to Fig. 4, the first curved surface 221 of the top portion 22 of the optical lens 2 of the first preferred embodiment of the present invention is mainly used for refraction. Since the light positioned in the optical lens 2 will be previously refracted by the curved surface 212 of the bottom portion 21. When the first curved surface 221 of the top portion 22 is absent, part of the light will be refracted by the curved surface 212 at a small angle with respect to the optical axis Y, and collide with a light guiding plate disposed above or around the optical lens 2 (Fig. It is not shown or surrounds the optical lens 2. As such, unwanted non-homogeneous spots are created along the optical axis Y. Beams 01 and λ02 shown in Figure 4 will be refracted by the first curved surface 221 of the top 22 and reflected at the second curved surface 222 of the top 22 (as shown in Figure 5). Thus, the curvature of the first curved surface 221 of the top portion 22 effectively refracts the beams λ01 and λ02 to be further laterally reflected by the second curved surface 222 of the top portion 22. In addition, the first curved surface 221 of the top portion 22 also provides significant advantages over the overall mechanism. Taking a lens having a flat surface as an example, when the first curved surface 221 of the top portion 22 of 11 200827775 is a larger-sized optical lens, the surface can be taken, without using this, having the first curved surface. 221 = the amount of light that is turned with it. Due to the curvature of ...1, the size and weight of the optical lens can be reduced, and the amount of material used can be reduced and the manufacturing cost can be reduced. Referring to Fig. 5', the second curved surface 222 of the top portion 22 is shown to be an inverse m-mode of two different aspects of the light, which is „_

底! 21之曲面212所折射而構成的-购而第二„ 樣疋J:接來自該夕重LED晶片5並碰撞到該頂部22之第 二曲面222所構成的—光線入”該頂部22的第二曲面222 是經由全反射,或是經由在該頂部22之第二曲面222與空 氣的界面間形成鏡面反射層(圖未示)以使反射値達最大值。 第一種恶樣的光線人〗是先被該頂部222之第一曲面 所折射以於該光學透鏡2之頂部22内傳遞,並以大於臨界 角的一入射角碰撞到該頂部22之第二曲面222而產生全反 射。然後,該光線人!則朝向該頂部22之第一曲面222並以 一第一側向方向反射。該第一侧向方向與該光軸γ是夹該 特定角度(即,50°〜90。之間)。由於材料已決定其本身的折 射率,因此,臨界角是可經由該光學透鏡2之材質的選用 而被調整。 弟一種恶樣的光線入2是直接來自該多重LED晶片5並 直接地碰撞到該頂部22的第二曲面222。該頂部22之第二 曲面222的曲率,是依據該光線人2於該第二曲面222上之 入射角度至少需大於構成全反射的臨界角而設計。因此, 該光線λ2可朝向該頂部22之第一曲面221並以該第一側向 12 200827775 方向反射。 無論如何,一旦光線a!、Ay經由該頂部22之第二曲 面222所反射,光線(λι、心)則會於該光學透鏡2的頂部u =傳遞並碰撞到該第一曲面221,且以該光軸γ為主並以一 第二側向方向離開光學透鏡2。該頂部22之第一曲面bottom! The curved surface 212 of the 21 is refracted and the second is formed by the second curved surface 222 from the LED wafer 5 and colliding with the top surface 22, and the light is incident on the top 22 The two curved surfaces 222 are formed by total reflection or by forming a specular reflection layer (not shown) between the second curved surface 222 of the top portion 22 and the interface of the air to maximize the reflection enthalpy. The first type of light ray is first refracted by the first curved surface of the top 222 for transmission in the top 22 of the optical lens 2, and collides with the second angle of the top 22 at an incident angle greater than the critical angle. The surface 222 produces total reflection. Then, the light man! The first curved surface 222 of the top portion 22 is then reflected and reflected in a first lateral direction. The first lateral direction is at a specific angle to the optical axis γ (i.e., between 50° and 90°). Since the material has determined its own refractive index, the critical angle can be adjusted by the choice of the material of the optical lens 2. A vicious light into the 2 is a second curved surface 222 that directly comes from the multiple LED wafer 5 and directly collides with the top portion 22. The curvature of the second curved surface 222 of the top portion 22 is designed according to the incident angle of the ray man 2 on the second curved surface 222 being at least larger than the critical angle constituting total reflection. Thus, the ray λ2 can be directed toward the first curved surface 221 of the top portion 22 and reflected in the first lateral direction 12 200827775. In any case, once the light rays a!, Ay are reflected by the second curved surface 222 of the top portion 22, the light rays (λι, heart) are transmitted at the top u of the optical lens 2 and collide with the first curved surface 221, and The optical axis γ is dominant and exits the optical lens 2 in a second lateral direction. The first surface of the top 22

使得所有的光線碰撞到該第一曲面221之後,是以該光軸Y 為主亚夾一介於5〇。〜9〇。的角度側向地以該第二侧向方向 折射離開該光學透鏡2,然後,被_合至外部的光 未示)。 再參閱圖5,為顯示該頂部22之第一曲面221的重要 性,在圖5中,該光學透鏡2之頂部22的第一曲面22ι是 被用來與,221,相比較,即,該第一曲面221 #皮該平 面221,所取代(如圖7的右側所示)。—光線μ是指向圖了左 側圖式之光線λ!的鏡面影像的方向;而一光線、是指向圖7 左側圖式之光線λ2的鏡面影像的方向。 該光線Μ碰撞到該底部21的曲面212而折射,而該平 面221 {呈平坦狀,以至於該光線^無法碰撞到該平面 221且無法於該光學透鏡2内耦合。這對於光線耦合進入其 外部之光導板(圖未示)的有效力而t,該光線&離開該光學 透鏡2的角度已落在50°〜90°的範圍外。另,該光線入4碰 撞到-第二曲® 222’並朝向該平自221,反射。對於該平面 221的全反射而5,該光線人4於該平面221,的入射角是大 於臨界角,因此,該光線入4自該平面221,朝上方反射。 參閱圖6,該接合區231決定該頸部23的尺寸大小。 13 200827775 由於該頸部23的尺寸大小將限制來自該多重LED晶片5的 光線量,並直接碰撞到該頂部22的第二曲面222。因此, 該頸部23的尺寸大小非f重要。如圖6所示之光線心、〜 況明了對於該頂部22之第—曲面221的臨界光線。由於光 線λ5、λ6將直接地朝該^學透鏡2的上方反射並造成非均質 的亮點。因此,應盡量限制如光線λ5、λ6此種類型的光線: 任何其他光線’應盡量如同w 5所示地,是穿過該接合區After all the light rays collide with the first curved surface 221, the optical axis Y is mainly a sub-clip of 5 〇. ~9〇. The angle is laterally refracted away from the optical lens 2 in the second lateral direction, and then, the light that is taken to the outside is not shown). Referring again to FIG. 5, to show the importance of the first curved surface 221 of the top portion 22, in FIG. 5, the first curved surface 22 of the top portion 22 of the optical lens 2 is used to compare with 221, ie, The first curved surface 221 is replaced by the plane 221 (shown on the right side of FIG. 7). - The light μ is the direction of the specular image pointing to the light λ! of the left side of the figure; and the light is the direction of the specular image of the light λ2 pointing to the left side of Fig. 7. The light ray collides with the curved surface 212 of the bottom portion 21 to be refracted, and the flat surface 221 is flat so that the light ray cannot collide with the plane 221 and cannot be coupled within the optical lens 2. This is an effective force for the light to couple into the outer light guide plate (not shown), and the angle of the light & leaving the optical lens 2 has fallen outside the range of 50° to 90°. In addition, the light illuminates into the -second curve® 222' and is reflected toward the flat 221. For the total reflection of the plane 221, the angle of incidence of the ray 4 on the plane 221 is greater than the critical angle, so that the ray 4 is reflected upward from the plane 221. Referring to Figure 6, the land 231 determines the size of the neck 23. 13 200827775 The size of the neck 23 will limit the amount of light from the multiple LED wafer 5 and directly impact the second curved surface 222 of the top portion 22. Therefore, the size of the neck portion 23 is not important. The ray of light, as shown in Fig. 6, clarifies the critical ray for the first surface 221 of the top portion 22. Since the light lines λ5, λ6 will directly reflect above the lens 2 and cause a non-homogeneous bright spot. Therefore, light of the type such as rays λ5, λ6 should be limited as much as possible: any other light should be as far as possible as shown by w 5, through the junction

231,並碰撞義頂部22的第m22而朝向該光學透 鏡2的侧邊方向反射。 再參閱圖6,該頂部22之第二曲面222的彎曲狹窄處 及其頂點p的位置是另—重要參數。由於優化該頂部之 第二曲面222的形狀’將可擴大入射光線的反射面積,因 此’側向轉向的光線可有效地予以提昇。頂點p的位置將 決定該頂部22之第二曲面222的曲率。當該頂點p的位置 較低時,光學效率較高,但較高的頂點p位置,則提供較 強的機械特強度。典切土士,士 a破本 .τ 地,相對一水平面(即,χζ所構成的 平面),頂點Ρ的位置是經由該底部21之曲面212及該了頁部 22之第-曲面221的接合區231被限定在介於_G5咖〜 +0.5 mm 之間。 因此,該頂部22之篦-曲而π。b z之弟一曲面222是一以一傾斜角面向 光學透鏡2之底部21並朝向該光軸γ的方向凸出。該傾斜 μ是以虛線表示,其是接觸到該第二曲面边的邊緣並以 該傾斜角e交接到到該底部21的底自211。另,該頂部η 之第曲面221亦是面向該第二曲面222並朝向遠離該光 14 200827775 軸γ的方向凸出。 參閱圖7,本發明之一第二較佳實施例,大致上是與該 第一較佳實施例相同,其不同處在於,該底部21的曲面 212界定出一圍繞該光軸Υ的基底214,且該基底214是呈 一 90度對稱狀或呈一多面對稱狀。適合於本發明之基底 214是圍繞該光轴γ呈一 90度對稱狀的正方形或矩形。在 本發明該第二較佳實施例中,該基底214是圍繞該光軸γ 王一 90度對稱狀的正方形,且該底部2i的曲面212是呈 錐狀面,而該底部21的曲面212是由四三角形曲面部 215所構成。 该底部21之曲面212的幾何形狀容許由該底部21内 所设置之多重LED晶片(圖未示)所放射之光源對應有複數 光源放射區,此等光源放射區一般以正方形(或矩形)的輪廓 设置,且光源是以圍繞著該光軸γ指向較佳的水平方向。 筝閱圖8,本發明之一第三較佳實施例是固態侧向發光 兀件3,包含:一具有一承載座311及複數連接該承載座 311之引腳312的導線架(lead frame)31、一設置於該承載座 311之如岫所述的光學透鏡2、一為一多重發光二極體晶片 32之發光晶片單元,及一用以填充並封閉該光學透鏡2之 底部21的開口 213之填充材料33。 该發光晶片單元(即,多重發光二極體晶片32)是設置於 該承載座311上並位於該光學透鏡2之底部21的開口 213 處。且’該多重發光二極體晶片32是以複數焊線(—g wire)34分別與該等引腳312電性連接。 15 200827775 該填充材料33可以是如樹脂(epoxy)、聚矽氧烷化合物 (silicone compound)或聚石夕氧烧凝膠(silicone gel)等,其主 要目的是整理於下列: 1. 遮蔽住濕氣保護該多重發光二極體晶片32。 2. 為了混色及光源的均勻性增加其光源的散射 (scattering),經由於此等填充材33内引入微米粒子 (micro-particles)或奈米粒子(nano-particles)以形成一 光源擴散用之混合物(diffusing compound)。 3. 匹配該光學透鏡2之折射率,因此,該填充材料33 之折射率一般是介於1_4〜1.7之間。 4. 經由選擇該填充材料33之折射率以增進位於該多重 發光二極體晶片32與填充材料33界面間的光取出 率(light extraction)。 在本發明該第三較佳實施例中,該多重發光二極體晶 片32之光源的輪廓是以四個晶片舉例說明。該底部21之 曲面212之一組可靠的參數是{A212,B2i2,C212,D212, E212} = {0,1·6χ1(Τ3, 1·9χ10_2, 0, 5xl0·2}。組合此特定的曲面 212,該頂部22之第一曲面221的曲率可以被定義為下列 所述之參數:{A221 ,B221,C221,D221, E221} = {10·4, 0, 2·7χ10_5, 4.0x1 (Γ2,4χ10·2},且該頂部22之第二曲面222的曲率可以 被定義為下列所述之參數:{Α222 ,Β222,C222,D222, E222} = {10·7, 0, 3·2χ1(Γ2, 1.22x1ο-1,6·5χ10-2}。 參閱圖9,本發明之一第四較佳實施例是一背光模組4 ,包含:一具有一第一表面411及一相反於該第一表面411 16 200827775 之第二表面412的光導板(Hghtguide)41、一設置於該光導板 41的第一表面411之如前所述的固態側向發光元件3、一設 置於該光導板41的第二表面412之擴散板42,及一疊置於 該擴散板42的光束成形板43。 該光源侧向地自該光學透鏡2顯露出來並耦合進入該 光導板41。由該光學透鏡2所折射的光源側向地指向並碰 撞到該光導板41的第一表面411。然後,此光源於該光導 板41材料内被折射並耦合進入該光導板41中。此外,此 光源將透過於該光導板41之第一表面411及第二表面412 上的多重全反射而於該光導板41内傳遞。該光導板41可 由折射率是介於1.4〜1 ·7的塑膠(plastic)或高分子所製成, 且該第一及第二表面411、412可以分別是一擴散表面。因 此,一部份比例的光源可於每一反射過程中經由散射 (scattering)而被穿透,並穿過該擴散板42及該光束成形板 43以使光源分布更為均質。 參閱圖10,本發明之一第五較佳實施例之背光模組4 大致上是與該第四較佳實施例相同,其不同處在於,該光 導板41更具有一形成於該第一表面411且供該固態側向發 光元件3設置的嵌槽413。在本發明該第五較佳實施例中, 該光導板41是具有一嵌槽413,亦可以是具有複數嵌槽。 該固態側向發光元件3的光源是侧向地自該光學透鏡2 被折射出來並自該光導板41的嵌槽413被耦合到該光導板 41内,且經由該第一及第二表面411、412於該光導板41 内多重地全反射以於該光導板41内傳遞。光源可於每一反 17 200827775 射過程中經由該第一、二表面411、412產生散射而被穿透 ,並穿過該擴散板42及該光束成形板43以使光源分布更 為均質。 綜上所述,本發明之光學透鏡、由其所構成的固態側 向發光元件及其背光模組,可辅助自發光晶片單元所放射 的理想光量產生轉向以耦合光源進入背光模組之光導板内 ,並在LCD螢幕應用上提供均勻的照度,確實達到本發明 之目的。231, and the m22 of the collision top portion 22 is reflected toward the side of the optical lens 2. Referring again to Figure 6, the location of the curved stenosis of the second curved surface 222 of the top portion 22 and its apex p is another important parameter. Since the shape of the second curved surface 222 of the top portion is optimized to enlarge the reflection area of the incident light, the laterally directed light can be effectively lifted. The position of the vertex p will determine the curvature of the second curved surface 222 of the top portion 22. When the position of the vertex p is lower, the optical efficiency is higher, but the higher vertex p position provides a stronger mechanical strength. The sect of the sect of the sect, the singularity of the ground, relative to a horizontal plane (ie, the plane formed by χζ), the position of the apex 是 is through the curved surface 212 of the bottom 21 and the first surface 221 of the page portion 22 The land 231 is defined between _G5 coffee and +0.5 mm. Therefore, the top 22 is curved - π. The curved surface 222 of the bz is convex toward the bottom 21 of the optical lens 2 at an oblique angle and toward the optical axis γ. The tilt μ is indicated by a broken line which is the edge that comes into contact with the second curved side and is delivered to the bottom 21 of the bottom 21 at the inclined angle e. In addition, the first curved surface 221 of the top portion η is also convex toward the second curved surface 222 and away from the axis γ of the light 14 200827775. Referring to FIG. 7, a second preferred embodiment of the present invention is substantially the same as the first preferred embodiment, except that the curved surface 212 of the bottom portion 21 defines a substrate 214 surrounding the optical axis. And the substrate 214 is in a 90 degree symmetry or a multi-faceted symmetry. The substrate 214 suitable for the present invention is a square or rectangle having a 90 degree symmetry around the optical axis γ. In the second preferred embodiment of the present invention, the substrate 214 is a square symmetrical about 90 degrees around the optical axis γ, and the curved surface 212 of the bottom 2i is a tapered surface, and the curved surface 212 of the bottom 21 It is composed of a four-triangular curved surface portion 215. The geometry of the curved surface 212 of the bottom portion 21 allows the light source emitted by the multiple LED chips (not shown) disposed in the bottom portion 21 to correspond to a plurality of light source radiation regions, which are generally square (or rectangular). The contour is set and the light source is directed in a preferred horizontal direction around the optical axis γ. Referring to FIG. 8, a third preferred embodiment of the present invention is a solid-state lateral light-emitting element 3, comprising: a lead frame having a carrier 311 and a plurality of pins 312 connected to the carrier 311. 31. An optical lens 2 disposed on the carrier 311, an illuminating wafer unit as a multiplexed diode chip 32, and a bottom portion 21 for filling and closing the optical lens 2. Filler material 33 of opening 213. The illuminating wafer unit (i.e., the multiplexed diode chip 32) is disposed on the carrier 311 and located at the opening 213 of the bottom portion 21 of the optical lens 2. And the multiplexed diode chip 32 is electrically connected to the pins 312 by a plurality of bonding wires (-g wires) 34, respectively. 15 200827775 The filling material 33 may be, for example, an epoxy, a silicone compound or a silicone gel, the main purpose of which is to be arranged in the following: 1. Covering the wet The multiplexed diode chip 32 is gas protected. 2. In order to increase the uniformity of the color mixing and the light source, the scattering of the light source is increased, and micro-particles or nano-particles are introduced into the filling material 33 to form a light source for diffusion. Diffusing compound. 3. Matching the refractive index of the optical lens 2, therefore, the refractive index of the filling material 33 is generally between 1-4 and 1.7. 4. Selecting the refractive index of the fill material 33 to enhance light extraction between the interface of the multiple light emitting diode wafer 32 and the fill material 33. In the third preferred embodiment of the present invention, the outline of the light source of the multiple light-emitting diode wafer 32 is exemplified by four wafers. One of the reliable parameters of the curved surface 212 of the bottom portion 21 is {A212, B2i2, C212, D212, E212} = {0,1·6χ1 (Τ3, 1·9χ10_2, 0, 5xl0·2}. Combining this specific surface 212, the curvature of the first curved surface 221 of the top portion 22 can be defined as the following parameters: {A221, B221, C221, D221, E221} = {10·4, 0, 2·7χ10_5, 4.0x1 (Γ2, 4χ10·2}, and the curvature of the second curved surface 222 of the top portion 22 can be defined as the following parameters: {Α222, Β222, C222, D222, E222} = {10·7, 0, 3·2χ1 (Γ2 Referring to FIG. 9, a fourth preferred embodiment of the present invention is a backlight module 4, comprising: a first surface 411 and a first surface opposite to the first a light guide plate 41 of the second surface 412 of the surface 411 16 200827775, a solid lateral light-emitting element 3 disposed on the first surface 411 of the light guide plate 41, and a solid lateral light-emitting element 3 disposed on the light guide plate 41 A diffuser plate 42 of the second surface 412, and a beam shaping plate 43 stacked on the diffuser plate 42. The light source is laterally exposed from the optical lens 2 and coupled into the light guide plate 41. The light source refracted by the optical lens 2 is directed laterally and impinges on the first surface 411 of the light guiding plate 41. The light source is then refracted into the material of the light guiding plate 41 and coupled into the light guiding plate 41. The light source is transmitted through the light guide plate 41 through multiple total reflections on the first surface 411 and the second surface 412 of the light guiding plate 41. The light guiding plate 41 can be made of plastic having a refractive index of 1.4 to 1 · 7 ( Made of a plastic or a polymer, and the first and second surfaces 411, 412 may each be a diffusion surface. Therefore, a portion of the light source may be worn through scattering during each reflection process. And passing through the diffusing plate 42 and the beam shaping plate 43 to make the light source distribution more homogeneous. Referring to FIG. 10, a backlight module 4 according to a fifth preferred embodiment of the present invention is substantially compared with the fourth The preferred embodiment is the same except that the light guiding plate 41 further has a recess 413 formed in the first surface 411 and provided for the solid lateral light-emitting element 3. In the fifth preferred embodiment of the present invention The light guide plate 41 has a recess 413, and The light source of the solid-state lateral light-emitting element 3 is refracted laterally from the optical lens 2 and coupled into the light guide plate 41 from the recess 413 of the light guide plate 41, and via the light guide plate 41 The first and second surfaces 411 and 412 are totally totally reflected in the light guiding plate 41 to be transmitted inside the light guiding plate 41. The light source can be penetrated by the scattering of the first and second surfaces 411, 412 during each of the reflections, and passes through the diffuser 42 and the beam shaping plate 43 to make the light source distribution more homogeneous. In summary, the optical lens of the present invention, the solid-state lateral light-emitting component formed by the same, and the backlight module thereof can assist the light guide plate that is turned by the ideal light quantity emitted from the light-emitting chip unit to couple the light source into the backlight module. It is within the scope of the present invention to provide uniform illumination over LCD screen applications.

惟以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一立體示意圖,說明本發明一第一較佳實施例 的光學透鏡; 圖3是一正視示意圖,說明該第一較佳實施例之一底 部的一曲面與光線之間的關係; 一 圖4是一正視示意圖,說明該第一較佳實施例之一頂 部的一第一曲面與光線之間的關係; 較佳實施例之頂部 該頂部之一第二曲 圖5是一正視示意圖,說明該第一 的第一曲面被一平面所取代時,光線與 面間的關係; ^However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention, All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an optical lens according to a first preferred embodiment of the present invention; FIG. 3 is a front elevational view showing a curved surface and light at the bottom of one of the first preferred embodiments. Figure 4 is a front elevational view showing the relationship between a first curved surface and light at the top of one of the first preferred embodiments; a second curved image of the top of the top of the preferred embodiment 5 is a front view showing the relationship between light and surface when the first first curved surface is replaced by a plane; ^

6是一正視示意圖,說明該第一 較佳實施例之頂部 18 200827775 的第一曲面之臨界光線; 圖7是一立體示意圖,說明本發明一第二較佳實施例 之光學透鏡; 圖8是本發明一第三較佳實施例之正視示意圖,說明 一固態侧向發光元件之元件關係; 圖9是本發明一第四較佳實施例之正視示意圖,說明 一背光模組之元件關係;及 圖10是本發明一第五較佳實施例之正視示意圖,說明 另一背光模組之元件關係。6 is a front view showing the critical light of the first curved surface of the top 18 200827775 of the first preferred embodiment; FIG. 7 is a perspective view showing the optical lens of a second preferred embodiment of the present invention; FIG. 9 is a front elevational view showing a component relationship of a backlight module according to a fourth preferred embodiment of the present invention; and FIG. FIG. 10 is a front elevational view of a fifth preferred embodiment of the present invention, illustrating the component relationship of another backlight module.

19 200827775 【主要元件符號說明】 2 ·………光學透鏡 34………焊線 21………底部 4…·……背光模組 211…·…底面 41………光導板 212 ....."曲面 411……·第一表面 213 ·……開口 412 ·……第二表面 214 —…基底 413……·後槽 215…·…三角形曲面部 42………擴散板 ⑩ 22………頂部 43………光束成形板 221……·第一曲面 5……·…多重LED晶片 221’……平面 Y*……***光轴 2 2 2…♦…第二曲面 P…·……頂點 222’……第二曲面 λ01••……光線 23………頸部 λ02............光線 2 3 1*接合區 λ!.............光線 3…·……固態侧向發光元件 λ2..........…光線 鲁31………導線架 .............光線 311……*承載座 λ4..............光線 312 ·……引腳 人5.·....... 光線 32………多重發光二極體晶片 λ6..............光線 3 3………填充材料 2019 200827775 [Description of main component symbols] 2 ·.........optical lens 34.........solder wire 21.........bottom 4...·...backlight module 211...·...bottom surface 41.........light guide plate 212 .... ."Surface 411...·First surface 213 .... Opening 412 .... Second surface 214 - . . . base 413 .... rear groove 215 ....... triangular curved surface portion 42 ... diffusing plate 10 22 ... ...top 43.........beam forming plate 221...·first curved surface 5...·...multiple LED wafer 221'...plane Y*...***optical axis 2 2 2...♦...second curved surface P...· ... vertex 222'...second surface λ01••......light 23......neck λ02............light 2 3 1*joining area λ!...... .......Light 3...·...Solid side light-emitting elements λ2.............Ray Lu 31......... lead frame............ . Ray 311......*Bearing λ4..............Light 312 ·...... Pin Man 5.·....... Light 32.........Multiple Light Dipole Body wafer λ6..............light 3 3.........fill material 20

Claims (1)

200827775 十、申請專利範圍: 1 · 一種用以折射並反射一光源的光學透鏡,包含: /σ 光轴圍繞的底部,具有一底面及一與該底面 相對設置並用以側向地折射該光源之部分光線的曲面, 该底部的底面界定出一開口; 一沿該光軸圍繞的頂部,具有一用以側向地折射該 光源之其餘光線並朝向遠離該光軸的方向凸出的第一曲 面’及一用以侧向地反射該光源之其餘光線並朝向該光 軸的方向凸出的第二曲面;及 一連接該底部之曲面及該頂部之第一曲面的頸部, 具有一連接該底部及頂部的交接區,該光源的其餘光線 疋局部地直接入射該交接區。 2.依據申請專利範圍第1項所述之光學透鏡,其中,該底 部、頂部及頸部的折射率是介於1 ·4 ~ 1.7之間。 3·依據申請專利範圍第2項所述之光學透鏡,其中,該底 部、頂部及頸部是由一高分子材料所構成。 4·依據申請專利範圍第3項所述之光學透鏡,其中,該高 刀子材料是選自 PolyMethylMethAcrylate、Zeon Chemicals Zeonex®、Topas TOPAS® C0C 或 Dow Corning SR-7010。 5·依據申請專利範圍第1項所述之光學透鏡,其中,該底 部的曲面界定出一圍繞該光轴的基底,該基底是呈一圓 形對稱狀。 6·依據申請專利範圍第1項所述之光學透鏡,其中,該底 21 200827775 部的曲面界定出一圍繞該光軸的基底,該基底是呈一 9〇 度對稱狀或呈一多面對稱狀。 7·依據申請專利範圍第6項所述之光學透鏡,其中,該基 底是圍繞該光軸呈一 9〇度對稱狀的正方形或矩形。 8.依據申請專利範圍第7項所述之光學透鏡,其中,該底 口 P的曲面疋王一錐狀面,且該底部的曲面是由四三角形 曲面部所構成。200827775 X. Patent Application Range: 1 · An optical lens for refracting and reflecting a light source, comprising: / σ a bottom surrounded by an optical axis, having a bottom surface and a surface opposite to the bottom surface for laterally refracting the light source a curved surface of a portion of the light, the bottom surface defining an opening; a top portion surrounding the optical axis having a first curved surface for laterally refracting the remaining light of the light source and protruding away from the optical axis And a second curved surface for laterally reflecting the remaining light of the light source and protruding toward the optical axis; and a neck connecting the curved surface of the bottom and the first curved surface of the top, having a connection In the intersection area of the bottom and the top, the remaining light rays of the light source are locally incident directly on the intersection area. 2. The optical lens of claim 1, wherein the bottom, top and neck have a refractive index between 1 and 4 and 1.7. 3. The optical lens of claim 2, wherein the bottom portion, the top portion and the neck portion are formed of a polymer material. 4. The optical lens of claim 3, wherein the high knife material is selected from the group consisting of PolyMethylMethAcrylate, Zeon Chemicals Zeonex®, Topas TOPAS® C0C or Dow Corning SR-7010. The optical lens of claim 1, wherein the curved surface of the bottom defines a base surrounding the optical axis, the substrate being in a circular symmetry. 6. The optical lens of claim 1, wherein the curved surface of the bottom portion 21, 2008, 775, defines a base surrounding the optical axis, the substrate being symmetrical or a multi-faceted symmetry shape. The optical lens of claim 6, wherein the substrate is a square or rectangle symmetrical about the optical axis. 8. The optical lens according to claim 7, wherein the curved surface of the bottom P is a tapered surface, and the curved surface of the bottom is formed by a four triangular curved surface portion. 9·依據申請專利範圍第丨項所述之光學透鏡,其中,該頂 部更具有一形成於該第二曲面的反射層。 10_ —種固態側向發光元件,包含: 一導線架,具有一承載座及複數連接該承載座的引 腳; 一設置於該承載座且是如申請專利範圍第丨〜9項中 任一項所述之光學透鏡;及 一發光晶片單元’設置於該承載座上並位於該光學 透鏡之底部的開口處; 11. 依據申請專利範圍第10項所述之固態側向發光元件, 更包含-填充材料’用以填充並封閉該光學透鏡之底部 的開口。 12. 依據申請專利範圍第u項所述之固態側向發光元件, 其中,該填充材料的折射率是介於14~17之間。 13·依據申請專利範圍第10項所述之固態側向發光元件, 其中,該發光晶片單元是_多重發光二極體晶片,該多 重發先-極體晶U以複數焊線分別與該㈣腳電性連 22 200827775 接。 14 · 一種背光模組,包含: 一具有一第一表面及一相反於該第一表面之第二表 面的光導板; 一如申請專利範圍第10項所述之固態侧向發光元 件,設置於該光導板的第一表面; 一設置於該光導板的第二表面之擴散板;及 /¾:置於該擴散板的光束成形板。 ·_ 15.依據申請專利範圍第14項所述之背光模組,其中,該 光導板更具有一形成於該第一表面且供該固態侧向發光 元件設置的叙槽。The optical lens of claim 2, wherein the top portion further has a reflective layer formed on the second curved surface. 10_ a solid-state lateral illuminating element, comprising: a lead frame having a carrier and a plurality of pins connecting the carrier; one disposed on the carrier and being any one of the ninth to nineth patent applications The optical lens; and a light-emitting chip unit are disposed on the carrier and located at an opening of the bottom of the optical lens; 11. The solid-state lateral light-emitting component according to claim 10, further comprising - A filler material 'fills the opening of the bottom of the optical lens. 12. The solid lateral light-emitting element according to claim 5, wherein the filler has a refractive index of between 14 and 17. The solid-state lateral light-emitting device according to claim 10, wherein the light-emitting chip unit is a multiplex light-emitting diode wafer, and the multiple-first-pole body crystal U is formed by a plurality of bonding wires and the (four) Foot electric connection 22 200827775. A backlight module comprising: a light guide plate having a first surface and a second surface opposite to the first surface; a solid lateral light-emitting element according to claim 10, disposed on a first surface of the light guiding plate; a diffusing plate disposed on the second surface of the light guiding plate; and /3⁄4: a beam forming plate disposed on the diffusing plate. The backlight module of claim 14, wherein the light guide plate further has a groove formed on the first surface and provided for the solid lateral light-emitting element. 23twenty three
TW95149191A 2006-12-27 2006-12-27 Optical lens and its structure with solid state light laterally emitting device and backlight module TW200827775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149191A TW200827775A (en) 2006-12-27 2006-12-27 Optical lens and its structure with solid state light laterally emitting device and backlight module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149191A TW200827775A (en) 2006-12-27 2006-12-27 Optical lens and its structure with solid state light laterally emitting device and backlight module

Publications (2)

Publication Number Publication Date
TW200827775A true TW200827775A (en) 2008-07-01
TWI315413B TWI315413B (en) 2009-10-01

Family

ID=44817408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149191A TW200827775A (en) 2006-12-27 2006-12-27 Optical lens and its structure with solid state light laterally emitting device and backlight module

Country Status (1)

Country Link
TW (1) TW200827775A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418894B (en) * 2009-12-31 2013-12-11 Univ Nat Chunghsing Embedded light emitting module and its light guide plate
US8957446B2 (en) 2012-12-06 2015-02-17 Lextar Electronics Corporation Light emitting device
TWI613476B (en) * 2016-10-23 2018-02-01 Nanya Technology Corporation Package structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418894B (en) * 2009-12-31 2013-12-11 Univ Nat Chunghsing Embedded light emitting module and its light guide plate
US8957446B2 (en) 2012-12-06 2015-02-17 Lextar Electronics Corporation Light emitting device
TWI613476B (en) * 2016-10-23 2018-02-01 Nanya Technology Corporation Package structure

Also Published As

Publication number Publication date
TWI315413B (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US7524098B2 (en) Solid-state lateral emitting optical system
JP5899508B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5261380B2 (en) Light emitting device
JP4799341B2 (en) Lighting device
TWI440208B (en) Low profile side emitting led
CN101410994B (en) Light emitting device
JP4869275B2 (en) Light source module and light emitting device
TWI521738B (en) Light emitting device package and lighting system
TWI749308B (en) Light emitting module
JP5903672B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
US20090032827A1 (en) Concave Wide Emitting Lens for LED Useful for Backlighting
TW201024623A (en) Low profile side emission tir lens for LED
TW200817781A (en) Backlight using high-powered corner LED
TW200929614A (en) Optical element coupled to low profile side emitting LED
TW201033538A (en) LED with molded bi-directional optics
JP2004281605A (en) Led package
JP2011129932A (en) Light emitting device and light unit employing the same
TW201006011A (en) Semiconductor light emitting module and method for manufacturing the same
JP5721668B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE, AND DISPLAY DEVICE BACKLIGHT
TW200834980A (en) Optical semiconductor device and manufacturing method thereof
JP2013502695A (en) System and method for phosphor-coated lenses
CN107450228B (en) Light emitting device
TWI725028B (en) Light emitting module
JP6940776B2 (en) Light emitting device and its manufacturing method
US9605814B2 (en) Lighting module