TW200823447A - Arrays of nano structures for surface-enhanced raman scattering - Google Patents

Arrays of nano structures for surface-enhanced raman scattering Download PDF

Info

Publication number
TW200823447A
TW200823447A TW96140860A TW96140860A TW200823447A TW 200823447 A TW200823447 A TW 200823447A TW 96140860 A TW96140860 A TW 96140860A TW 96140860 A TW96140860 A TW 96140860A TW 200823447 A TW200823447 A TW 200823447A
Authority
TW
Taiwan
Prior art keywords
array device
forming
layer
sers
nanostructure
Prior art date
Application number
TW96140860A
Other languages
Chinese (zh)
Other versions
TWI432717B (en
Inventor
Hong Wang
xin-di Wu
Xun Guo
Original Assignee
Optotrace Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/562,409 external-priority patent/US7460224B2/en
Application filed by Optotrace Technologies Inc filed Critical Optotrace Technologies Inc
Publication of TW200823447A publication Critical patent/TW200823447A/en
Application granted granted Critical
Publication of TWI432717B publication Critical patent/TWI432717B/en

Links

Abstract

Disclosed herein is a SERS sensing surface device comprising a substrate supporting a plurality of nano structures, an exposed sensing surface upon the nano structures, wherein said surface includes at least one active SERS nano surface and at least one inactive SERS nano surface established in proximity to the active SERS nano. Also disclosed are methods for forming the array device, systems based on the array device, as well as methods for performing SERS with the array device.

Description

200823447 九、發明說明: 【發明所屬之技術領域】 本發明係相關於拉曼和表面增強拉曼光譜 (Surface-enhanced Raman spectroscopy, SERS )。更具體 地’本發明係關於藉由SERS而改進的微量化學檢測方 法、裝置和系統。200823447 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to Raman and Surface-enhanced Raman spectroscopy (SERS). More specifically, the present invention relates to microchemical detection methods, devices and systems that are improved by SERS.

【先前技術】 拉曼(C. V· Raman)在1 928年發現拉曼散射。由於 拉曼在光線散射和以他命名之拉曼效應發現上所做的研 究,拉曼在1930年獲得了諾貝爾物理學獎。 拉曼散射是產生或澄沒光學聲子的光子非彈性散射。 簡單地說’拉曼散射是入射光(光子)與化學分子振動(聲 子)相互作用的結果。獨特的化學分子結構可導致獨特的 拉曼散射光譜(這就是爲何它亦稱作拉曼指紋光譜)。因 此,拉曼散射提供關於化學物質的光譜指紋細節,並且還 可用於將分子異構體甚至對掌分子(chiral molecular)彼此 進行區分。 1 9 60年代晚期發明雷射之後,市場上即推出商用型拉 曼光譜儀(Raman spectroscope)。在標準設置中,以雷射(從 紫外光到近紅外光)來照亮以固體、液體或氣體形態存在 的化學測試物質。使用雷射的原因是,只有單波長光子可 與化學物質相互作用,而消除來自具有各種波長的光子(光 線)的散射峰的重疊。這就是爲何拉曼光譜在該現象發現 5 200823447 3〇年之後才進入實質應用階段的原因。散射之後,一旦藉 由光子檢測器(如,電荷耦合元件(Charge-Coupled Devices CCD)或互補式金氧半導體(CM〇s)檢測器)收集散射光, 就收集到拉曼光譜。拉曼頻移(Raman shift)定義爲散射光 波長和入射光波長(雷射波長)之間的波長間距。波峰的 位置對應於各種分子鍵的振動強度,因而提供分子的光譜 指紋。[Prior Art] Raman scattering was discovered in 1928 by C. V. Raman. Raman won the Nobel Prize in Physics in 1930 for his research on light scattering and the discovery of the Raman effect he named. Raman scattering is photon inelastic scattering that produces or annihilates optical phonons. Simply put, 'Raman scattering is the result of the interaction of incident light (photons) with chemical molecular vibrations (phonons). The unique chemical molecular structure leads to a unique Raman scattering spectrum (which is why it is also known as Raman fingerprinting). Thus, Raman scattering provides spectral fingerprint details about chemicals and can also be used to distinguish between molecular isomers and even chiral molecules. After the invention of the laser in the late 1960s, a commercial Raman spectroscope was introduced on the market. In a standard setting, a chemical test substance in the form of a solid, liquid or gas is illuminated by a laser (from ultraviolet light to near-infrared light). The reason for using lasers is that only single-wavelength photons can interact with chemicals, eliminating the overlap of scattering peaks from photons (light rays) with various wavelengths. This is why Raman spectroscopy only entered the substantive application stage after the discovery of the phenomenon in 200823447. After scattering, the Raman spectrum is collected once the scattered light is collected by a photon detector (e.g., a Charge-Coupled Devices CCD or a Complementary Metal Oxide Semiconductor (CM) detector). The Raman shift is defined as the wavelength spacing between the wavelength of the scattered light and the wavelength of the incident light (the wavelength of the laser). The position of the peak corresponds to the vibrational intensity of various molecular bonds, thus providing a spectral fingerprint of the molecule.

拉曼散射在許多應用領域中具有廣泛的用途:製藥、 化學、生物、醫學、生命科學、材料科學、半導體、藝術 品復原、食品安全、環境、鑑識、國土安全等。 儘管拉曼散射是極有用的分析工具,但它的一個主要 缺點是:由於分子的散射截面非常小,散射信號非常微弱。 一般來說,在化學物質上只有大約入射光子的丨〇·8會進行 拉曼散射。當然,可應用高能量雷射和高靈敏度C C D檢測 器來改善散射信號,但隨之而來的是額外花費、附加硬體 以及非預期的樣品傷害。由於散射信號微弱,常規拉曼散 射應用相對較寬但是仍然非常有限。 發現使用粗糙表面的表面增強效應可以增強拉曼散射 信號。發展出所謂的表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy, SERS ) ( M. Fleischmann, P. J.Raman scattering is used in a wide range of applications: pharmaceuticals, chemistry, biology, medicine, life sciences, materials science, semiconductors, art restoration, food safety, the environment, forensics, homeland security, and more. Although Raman scattering is a very useful analytical tool, one of its main disadvantages is that the scattering signal is very weak due to the very small scattering cross section of the molecule. In general, only about 入射·8 of the incident photons will undergo Raman scattering on the chemical. Of course, high-energy lasers and high-sensitivity C C D detectors can be used to improve the scatter signal, but with the extra cost, additional hardware, and unexpected sample damage. Due to the weak scatter signal, conventional Raman scattering applications are relatively wide but still very limited. It was found that the surface enhancement effect using a rough surface can enhance the Raman scattering signal. Developed the so-called Surface-Enhanced Raman Spectroscopy (SERS) (M. Fleischmann, P. J.

Hendra, and A. J. McQulillan, uRaman Spectra of PyridineHendra, and A. J. McQulillan, uRaman Spectra of Pyridine

Adsorbed at a Silver Electrode” Chem· Phys· Lett.,26, 123(1974))。可沈積金屬顆粒或粒子鎮(e〗uster)來形成 表面。在許多情形中,在溶液中形成銀或金的奈米粒子, 6 200823447 並且使用平坦基材(例如,玻璃)收集奈米粒子。然後,將 表面浸入待測量的溶液或將溶液噴灑到表面上。以雷射光 束直接照射具有奈米粒子的表面,並由檢測器收集散射 光。由於奈米粒子和被測量的化學物質之間的相互作用, 可獲得增強的拉曼光譜。與常規拉曼散射相比,這種拉曼 信號可增強至1〇9— l〇1G倍(甚至更高)。Adsorbed at a Silver Electrode" Chem. Phys. Lett., 26, 123 (1974). A metal particle or particle can be deposited to form a surface. In many cases, silver or gold is formed in solution. Nanoparticles, 6 200823447 and collecting nanoparticles using a flat substrate (eg glass). Then, immersing the surface in the solution to be measured or spraying the solution onto the surface. Directly illuminating the surface with nanoparticles with a laser beam The scattered light is collected by the detector. Due to the interaction between the nanoparticle and the chemical being measured, an enhanced Raman spectrum can be obtained. This Raman signal can be enhanced to 1 compared to conventional Raman scattering. 〇9—l〇1G times (or even higher).

Zhongfan Liu 和他的同事(Nan〇technology,15, 357 (2 004))證明當平均粒子距離(間距)降低到丨〇〇 nm以下 時,拉曼信號增強變得更強。更重要的是,當粒子距離接 近或幾乎等於粒子直徑時,獲得顯著的增強。再者,當粒 子直徑小於1 00 nm時,增強甚至更強。總之,拉曼散射 在與奈米粒子表面相互作用之後將大大地增強,特別是與 尺寸小於5 0 — 1 0 0 nm的粒子相互作用之後。 可通過具有局部化電磁場增強和化學增強的光子(雷 射)之間的相互作用來解釋表面增強的拉曼散射現象(見 Α· M· Michaels 等人在 1 999 年的 j. Am· Chem. Soc. 121, 9932-39中的討論)。 世界各地的許多研究團體都證明出SERS。此增強現 象可被不同A驗至加以再現。在近些年中,從事研 九的一個團隊來自1ntel ( J· P· Roberts,Biophotonics i〇nal’ December 22,2003)。Intel 團隊使用具有貴 金屬(例如,銀)塗展认生 )望層於表面上的多孔矽結構。Intel證明隨 著多孔石夕孔洞尺升沾、、少, 的減小可提高增強拉曼散射。包括Intel 研究成果的所有Ί式 男式驗可由其他團隊再現,但是很難重復地 200823447 顯示相同的增強水平。 因此,需要在低成本下開發良好控制的奈米表面結 構,以便實現SERS商業化以用於各種應用。美國光納科Zhongfan Liu and his colleagues (Nan〇technology, 15, 357 (2 004)) demonstrated that the Raman signal enhancement becomes stronger as the average particle distance (pitch) decreases below 丨〇〇 nm. More importantly, significant enhancement is obtained when the particle distance is close to or nearly equal to the particle diameter. Furthermore, when the particle diameter is less than 100 nm, the enhancement is even stronger. In summary, Raman scattering is greatly enhanced after interaction with the surface of the nanoparticle, especially after interaction with particles having a size less than 50-100 nm. Surface-enhanced Raman scattering can be explained by interactions between localized electromagnetic field enhancement and chemically enhanced photons (lasers) (see J. Am. Chem, 1·M. Michaels et al., 1999). Soc. 121, discussion in 9932-39). Many research groups around the world have proven SERS. This enhancement can be reproduced by different A tests. In recent years, a team working on Nine is from 1ntel (J. P. Roberts, Biophotonics i〇nal' December 22, 2003). The Intel team used a porous tantalum structure with a precious metal (for example, silver) to spread the surface of the surface. Intel has shown that the increase in Raman scattering is enhanced by the decrease in the thickness of the porous stone hole. All squats, including Intel research, can be reproduced by other teams, but it is difficult to repeat the same level of enhancement for 200823447. Therefore, there is a need to develop a well-controlled nano surface structure at low cost in order to commercialize SERS for various applications. American Light Naco

技(OptoTrace Technologies,Inc.,USA )[美國專利申於 案1 0/8 5 2,7 8 7]公開了奈米表面結構的製法,具有如5 那樣小尺度之柱或孔的典型規則陣列,且無需使用昂責的 微影(1“11(^^?11丨〇方法來界定這些特徵。該工作示範了治 於解決SERS裝置的再現性問題的解決方案。 然而,對於下列應用的進一步改進SERS檢測靈敏度 的需求正在增長,該應用的範圍從貨物檢查、食品檢查、 環境監測、疾病診斷到鑑識和國土安全。因而,亟須改進 SERS裝置的性能和製造該裝置的處理技術。 【發明内容】 本發明提供一種新穎的表面裝置,其包括支撐多個奈 米結構的基材和該奈米結構上暴露的檢測表面,其中所述 表面包括至少一個SERS活性奈米表面以及至少一個SERS 非活性奈米表面(其建立在鄰近該SERS活性奈米表面處)。 本發明之一目的是在奈米結構陣列中提供功能,以增 強陣列表面的化學吸附,因而進一步改進SERS靈敏度。 在一實施例中,係使用被測量化學物質的電荷狀態。可向 奈米結構或奈米結構表面下建造的功能層施加偏壓 (electrical bias),以將化學物質吸引到陣列表面。可基於 由SERS測量之化學物質的化學特性而將該偏壓從負值變 200823447 化到正值。在另·_實施例令 …功能薄層來吸引測量的化學物;特二:=化 中將整個陣列結構與基材冷卻至特定溫度,這旨在選擇 性地將所測量的化學物質凝縮到陣列表面。在另〜例 中二向檢測表面或在包括有磁性材料(諸如,^心二 或它們的化合物)的檢測表 处幻刀粑層施加磁場。以此方 式在k測表面上的化學極性分子將*絲*人Technique (OptoTrace Technologies, Inc., USA) [U.S. Patent Application Serial No. 10/8 5 2,7 8 7] discloses a method for the preparation of a nano surface structure, a typical regular array of columns or pores having a small scale such as 5 There is no need to use contiguous lithography (1"11 (^^?11丨〇 method to define these features. This work demonstrates a solution to the reproducibility problem of SERS devices. However, for the following applications further The need to improve the sensitivity of SERS detection is growing, ranging from cargo inspection, food inspection, environmental monitoring, disease diagnosis to forensics and homeland security. Thus, there is no need to improve the performance of SERS devices and the processing techniques used to fabricate the devices. The present invention provides a novel surface device comprising a substrate supporting a plurality of nanostructures and a detection surface exposed on the nanostructure, wherein the surface comprises at least one SERS active nano surface and at least one SERS non- An active nano surface (which is established adjacent to the SERS active nano surface). One of the objects of the present invention is to provide functionality in a nanostructure array to increase Chemical adsorption of the surface of the array, thus further improving the SERS sensitivity. In one embodiment, the state of charge of the chemical being measured is used. An electrical bias can be applied to the functional layer built under the surface of the nanostructure or nanostructure. To attract chemicals to the surface of the array. The bias can be changed from a negative value to 200823447 to a positive value based on the chemical properties of the chemical measured by SERS. In another example, the functional thin layer is used to attract the measurement. Chemicals; specialization: The entire array structure and substrate are cooled to a specific temperature, which is intended to selectively condense the measured chemical to the surface of the array. In another example, the two-way detection surface or A magnetic field is applied to the detection plate at the detection table including magnetic materials (such as ^xin 2 or their compounds). In this way, the chemical polar molecules on the k-measuring surface will be *wire*

列。採用磁場或活性層内建方向排 姐建局部磁性材料的效果是:增強 化予特定鍵結、增強分子彡 門闲肋“ η 力子表面鍵結效率,即,利用單位時 間周Μ的*大分子數目1強檢測表面上的化學分子吸 附’以獲得增強的拉曼信號。 本發明亦提供一種形成表面檢測裝置的方法,包括: 提供基材,在某;s , 在基材上沈積至少一材料層,在材料層上建立 圖案’該圖案界定多個奈米結構’除去材料層的一部分來 界定奈米結構的側壁,以及在奈米結構上形成暴露的檢測 表面’其中所述表面包括至少一個_8活性奈米表面和 至/冑SERS非活性奈米表面(建立在鄰近該sers活性 奈米表面處)。 一實施例提供-種新穎的方&,以纟特定基材或各種 基材上製作各種陣列形狀(諸如,正方形、矩形、圓形等), 產生柱或孔形式的奈米結構陣列。這些奈米結構可為隔離 的島狀分布(island)或者彼此連接。 根據本發明的一態樣,在基材上建造奈米結構。基材 的非限制11只例包括石夕(silie〇n )、GaAs、、藍 9 200823447 寶石、A!2〇3、玻璃、Ti、Ni、Cr、A1 和 Cu。 本發明之其他目的是通過用於奈米表面結構的陣列、Column. The effect of using a magnetic field or an active layer built-in direction to build a local magnetic material is to enhance the specific bonding and enhance the molecular 闲 闲 “ η η η η η η η η η η η η η η η η η The number of molecules is 1 strong to detect the adsorption of chemical molecules on the surface to obtain an enhanced Raman signal. The invention also provides a method of forming a surface detecting device, comprising: providing a substrate, at a certain; s, depositing at least one on the substrate a layer of material defining a pattern on the layer of material 'the pattern defining a plurality of nanostructures' to remove a portion of the layer of material to define sidewalls of the nanostructure, and to form an exposed detection surface on the nanostructures, wherein the surface includes at least a _8 active nano surface and a / 胄 SERS inactive nano surface (established adjacent to the surface of the sers active nanoparticle). One embodiment provides a novel square & Various array shapes (such as squares, rectangles, circles, etc.) are fabricated on the material to create an array of nanostructures in the form of columns or holes. These nanostructures can be isolated islands (i Sland) or connected to each other. According to one aspect of the invention, a nanostructure is formed on a substrate. Non-limiting examples of the substrate include silie〇n, GaAs, blue 9 200823447 gemstone, A! 2, 3, glass, Ti, Ni, Cr, A1 and Cu. Other objects of the invention are through an array for nano surface structures,

表面功能層或熱偏置層(thermal bias layer)之特定材料的 選擇來獲得。用於奈米結構基材之該材料係選自貴金屬和 過渡金屬群組,包括但不限於Ag、Au、Cu、Al、Fe、Co、 Ni、Rix、Rh、Pd、以及Pt。表面功能層的選擇包括但不限 於氧化銀、氧化金、Si〇2、AI2O3、Si3N4、Ta2〇5、Ti〇2、 ZnO、Zr02、Hf〇2、Y2O3、氧化錫、氧化錄和其他氧化物; 摻雜氯或氯化物的銀、摻雜氣或氯化物的金、乙烯-三氣氯 乙婦共聚物(Ethylene and Chlorotrifluoroethylene, ECTFE )、聚(乙烯·共-丙烯酸丁酯-共·一氧化碳) (Poly(ethylene-co-butyl acrylate-co-carbon monoxide), PEBA)、聚(烤丙胺鹽酸鹽)(P〇ly(allylamine hydrochloride),PAH )、聚苯乙稀磺酸鹽(Polystyrene sulfonate,PSS)、聚四氟乙婦(p〇lytetrafluoroethylene, PTFE)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚氯乙烯 (Poly vinyl chloride,P VC )、聚偏氟乙烯(Poly vinyldene fluoride,PVDF )、聚乙烯吼 〇各院酮(polyvinylprorolidone PVP )和其他聚合物;堆疊多層中至少兩層包括以上列出 的金屬層和非金屬層,等等。熱偏置層可與陣列電隔離或 連接。典型材料為下列金屬,諸如Ti、Ni、Cr、Pt、Ru、 Ni-Cr 合金、NiCrN、Pt-Rh 合金、Cu-Au-Co 合金、Ir-Rh 合金或/和W-Re合金。 本發明進一步之目的是界定奈米表面結構的陣列、表 10A surface functional layer or a selection of a specific material of a thermal bias layer is obtained. The material for the nanostructure substrate is selected from the group of noble metals and transition metals including, but not limited to, Ag, Au, Cu, Al, Fe, Co, Ni, Rix, Rh, Pd, and Pt. The selection of surface functional layers includes, but is not limited to, silver oxide, gold oxide, Si〇2, AI2O3, Si3N4, Ta2〇5, Ti〇2, ZnO, Zr02, Hf〇2, Y2O3, tin oxide, oxide oxide, and other oxides. ; gold or chloride-doped gold, doped or chloride-based gold, ethylene-triochlorofluoroethylene (ECTFE), poly(ethylene·co-butyl acrylate-co-carbon monoxide) (Poly(ethylene-co-butyl acrylate-co-carbon monoxide), PEBA), poly(allaline hydrochloride), Plyly (allylamine hydrochloride, PAH), polystyrene sulfonate (Polystyrene sulfonate, PSS), p〇lytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), poly vinyl chloride (P VC ), poly vinyldene fluoride (PVDF), Polyvinylprorolidone PVP and other polymers; at least two of the stacked layers include the metal and non-metal layers listed above, and the like. The thermal bias layer can be electrically isolated or connected to the array. Typical materials are the following metals, such as Ti, Ni, Cr, Pt, Ru, Ni-Cr alloys, NiCrN, Pt-Rh alloys, Cu-Au-Co alloys, Ir-Rh alloys or/and W-Re alloys. A further object of the invention is to define an array of nano surface structures, Table 10

200823447 力月匕層和偏置層的分佈和尺寸。在一實施外中, 母個奈米結構尺寸士 』在1 nm至300 nm之間,較佳為 至 50 nm 之 μ , ; "而結構之間具有1 nm至1 000 nm白 較佳為5 nm至5 〇 n υ 之間。根據本發明的一態樣, 結構陣列的深度古 乂阿度在Inm至lOOOnm之間,幸 11瓜至l〇nm之間。 表面功能層厚度在0.5 nm — 500 間,或較隹A 9 « ”、、 m〜2〇 nm之間。偏置層厚度是在 至1 〇 V m之間,劣土 ^ A者較佳為50 nm至500 nm之間 本發明$ 6ft Η 目的在於,界定奈米表面結構 的幾何形狀。夺米纟 ,丁、木結構之孔或柱的形狀為選自以下 狀的至少一去·圓jjy 有· tej形、三角形、類三角形、正方形 角升y、即形、橢圓形、具有半圓角的矩形或沿長 任者在兩端處為圓角的三角形以及具有四個圓角 形。 在本發明的一態樣中,提供一種微量化學物質 、’先該系統包括操作性關聯於表面裝置的光譜系統 面裝置包括:支撐多個奈米結構的基材、該奈米結 路的檢測表面’其中所述表面包括至少一個SERS 米表面和至少一個SERS非活性奈米表面(建立在H ERS /舌性奈米表面處)。在一實施例中,光譜系 產生雷射光束的雷射光束源、將雷射光束聚焦的光 件 '在陣列裝置處引導雷射光束的偏轉系統、接收 陣列裂置散射之雷射光束部分的收集器、以及光譜 器’該光譜分析器接收所述部分並產生陣列裝置上 _列的 5 nm ί間距, 奈米 t佳為5 nm之 50 nm 〇 之陣列 幾何形 >矩形、 或短軸 的矩 檢測系 ,該表 構上暴 活性奈 ί近該活 統包栝 學·组 由所述 分析 的化學 11 200823447 物質的成分和/或濃度的輸出指示。200823447 Distribution and size of the meniscus layer and the bias layer. In one implementation, the size of the mother nanostructure is between 1 nm and 300 nm, preferably to 50 nm, and the structure is preferably 1 nm to 1 000 nm white. Between 5 nm and 5 〇n υ. According to one aspect of the invention, the depth of the structure array is between Inm and 100 Onm, fortunately between 11 and 1 nm. The thickness of the surface functional layer is between 0.5 nm and 500, or between 9A 9 « ” and m 〜2 〇 nm. The thickness of the offset layer is between 1 〇V m, and the poor soil is preferably The invention is intended to define the geometry of the surface structure of the nanoparticle between 50 nm and 500 nm. The shape of the pores or columns of the rice, the diced, the wooden structure is at least one de-circle jjy selected from the following a tej shape, a triangle, a triangle-like shape, a square angle y, a shape, an ellipse, a rectangle having a half-rounded corner, or a triangle having a rounded corner at both ends along the length and having four rounded shapes. In one aspect, a trace chemistry is provided, 'the system includes a spectral system surface device operatively associated with the surface device, including: a substrate supporting a plurality of nanostructures, a detection surface of the nano-junction' The surface includes at least one SERS meter surface and at least one SERS inactive nano surface (established at the H ERS / lingual nano surface). In one embodiment, the spectroscopy produces a laser beam source of the laser beam, Light beam focusing the laser beam 'in the array a deflection yoke that directs the laser beam at the device, a collector that receives the laser beam portion of the array split scatter, and a spectrometer that receives the portion and produces a 5 nm ί spacing on the array device, Mt is preferably 5 nm of 50 nm 〇 array geometry> rectangular, or short axis moment detection system, the surface of the turbulence activity is close to the circumstance of the chemistry group 200823447 Output indication of the composition and/or concentration of the substance.

本發明之一目的是,將奈米表面結構的陣列用於SERS 應用,以用於微量化學檢測的液體和氣體狀態測量。亦可 將該陣列應用至其他光譜測量,包括表面增強共振拉曼光 譜(surface-enhanced Raman resonance spectroscopy, SERRS)、表面增強反斯托克斯拉曼散射(surfaee-enhanced eoherent-anti stokes Raman scattering,SECARS)、表面增 強紅外光吸收(surface-enhanced infrared absorption, SEIRA )光譜、表面增強熒光光譜、表面增強光致發光光 譜、具有以上技術的時間分辨的測量、以及上述技術的组 合以用於化學指紋鑒定和微量化學檢測。 本發明之另一目的是,提供該陣列的原位清潔方法。 對偏置金屬層施加熱-電式加熱,以將奈米表面結構的陣列 加熱至500 °C。在這樣高的溫度下,許多被吸附的化學物 質分子和不欲之表面污染物將物理蒸發乃至燒盡,造成被 /月潔乾淨的陣列以預防先前測量的交叉污染,並可重新使 用SERS陣列。 根據本發明的又一實施例,提供一種檢測分子的方 法’包括:a )將微量的化學物質引入陣列裝置上,使化學 物質的分子被吸附到陣列裝置的檢測表面上,b )利用雷射 光束照射陣列裝置,c )收集自吸附分子散射的光子,以及 d )從散射的光子檢測拉曼光譜;其中所述陣列裝置包括支 撐多個奈米結構的基材與奈米結構上暴露的檢測表面,其 中所述表面包括至少一個SERS活性奈米表面以及至少一 12 200823447 個SERS非活性奈米表面(建立在鄰近該活性SERS活性奈 米表面處)。 從上述觀點,能夠有效地增強化學特定鍵結,增強分 子表面鍵結效率,即,利用單位時間周期内的最大分子數 目,增強檢測表面上的化學分子吸附,以便增強拉曼信號。 【實施方式】It is an object of the present invention to use arrays of nano surface structures for SERS applications for liquid and gas state measurements for trace chemical detection. The array can also be applied to other spectral measurements, including surface-enhanced Raman resonance spectroscopy (SERRS), surface enhanced anti-stokes Raman scattering (surfaee-enhanced eoherent-anti stokes Raman scattering, SECARS), surface-enhanced infrared absorption (SEIRA) spectroscopy, surface-enhanced fluorescence spectroscopy, surface-enhanced photoluminescence spectroscopy, time-resolved measurements with the above techniques, and combinations of the above techniques for chemical fingerprinting Identification and microchemical testing. Another object of the invention is to provide an in-situ cleaning method for the array. Thermo-electric heating was applied to the bias metal layer to heat the array of nano surface structures to 500 °C. At such high temperatures, many of the adsorbed chemical molecules and unwanted surface contaminants will physically evaporate or burn out, resulting in a clean array to prevent cross-contamination from previous measurements and reuse of SERS arrays. . According to still another embodiment of the present invention, there is provided a method of detecting a molecule comprising: a) introducing a trace amount of a chemical substance onto an array device such that molecules of the chemical substance are adsorbed onto a detection surface of the array device, and b) utilizing a laser Beam illuminating the array device, c) collecting photons scattered from the adsorbed molecules, and d) detecting Raman spectra from scattered photons; wherein the array device comprises a substrate supporting a plurality of nanostructures and detecting the exposed structure of the nanostructures The surface, wherein the surface comprises at least one SERS active nano surface and at least one 12 200823447 SERS inactive nano surface (established adjacent to the active SERS active nano surface). From the above viewpoints, it is possible to effectively enhance the chemical specific bonding and enhance the molecular surface bonding efficiency, i.e., to utilize the maximum number of molecules per unit time period to enhance the adsorption of chemical molecules on the detection surface to enhance the Raman signal. [Embodiment]

本發明提供用於改進表面增強拉曼光譜性能的新頡 裝置和設備/系統以及方法。 表面信號的SERS選擇性由僅在表面處顯示的表面增 強機制的存在而産生。有兩種主要的表面增強機制:電罐 增強和化學增強。電磁增強取決於金屬表面所呈現的粗糙 特徵,而化學增強涉及電子電荷轉移,以及由於分析物的 化學吸附作用對吸附物電子狀態的改變。 利用波長接近或位於可見光區域中的激發光,可從吸 附於貴金屬(An、Ag、Cu)或鹼金屬(Li、Na、κ)表面 上的分析物發現SERS。理論上,任何金屬都能夠展現表 面增強的效應,而貴金屬和鹼金屬可與理論計算相吻合, 並提供最強的增強效果。 SERS整體強化效果的大部分是由於電磁增強機制所 致,該機制是金屬表面上存在之金屬粗糙特徵的直接結果 化學増強機制亦提供用於拉曼信號強度增益的増強。 刀子吸附在表面上並且與表面交互作用。自於這種交互作 用而存在化學増強。由於金屬吸附物就在附近,使得新穎 13 200823447 的電荷轉移中間産物可出現在電子耦合路徑上,導致具有 較高拉曼散射截面的SERS環境。另外,吸附物分子的電 子轨道可以與金屬的傳導電子接觸並交互作用,改變化學 物質的化學狀怨。還提出了,化學增強可以是散射截面中 的邊因,這疋由於它與金屬的交互作用而改變之化學物質 的化學特性。 本發明提供一種陣列裝置,其包括支撐多個奈米結構The present invention provides novel apparatus and apparatus/systems and methods for improving surface enhanced Raman spectroscopy performance. The SERS selectivity of the surface signal is produced by the presence of a surface enhancement mechanism that is only shown at the surface. There are two main surface enhancement mechanisms: electric can reinforcement and chemical enhancement. Electromagnetic enhancement depends on the rough features exhibited by the metal surface, while chemical enhancement involves electron charge transfer and changes in the electronic state of the adsorbate due to chemisorption of the analyte. SERS can be found from analytes adsorbed on the surface of precious metals (An, Ag, Cu) or alkali metals (Li, Na, κ) using excitation light with a wavelength close to or in the visible region. In theory, any metal can exhibit surface enhancement effects, while precious metals and alkali metals can be matched to theoretical calculations and provide the strongest enhancement. Much of the overall SERS enhancement effect is due to the electromagnetic enhancement mechanism, which is a direct result of the metal roughness characteristics present on the metal surface. The chemical stress mechanism also provides a reluctance for Raman signal strength gain. The knife is attracted to the surface and interacts with the surface. There is a chemical reluctance from this interaction. Since the metal adsorbate is nearby, the charge transfer intermediate of the novel 13 200823447 can appear on the electron coupling path, resulting in a SERS environment with a higher Raman scattering cross section. In addition, the electron orbitals of the adsorbate molecules can interact with and interact with the conductive electrons of the metal, changing the chemical repulsion of the chemical. It has also been suggested that chemical enhancement can be an edge in the scattering cross section, which changes the chemical nature of the chemical due to its interaction with the metal. The invention provides an array device comprising supporting a plurality of nano structures

的基材和該奈米結構上暴露的檢測表面,其中所述表面包 括至少一個SERS活性奈米表面和建立在鄰近該把“活 性奈米表面的至少一個SERS非活性奈米表面。因此,此 SERS裝置的性能受益於對拉曼信號強度的化學增強和電 磁效應兩者。 ,不 疋,丨王笊示录甶」包括具有至 少一個奈米量級之表面尺寸的明確界定金屬表面。該表面 可以是平坦或不平坦的。SERS活性奈米表面在光子照射 下展現對拉曼信號的電磁增強。用於SERS活性表面之材 :的實例包括,諸如一……類的之以 及諸如A卜Fe、C〇、Ni、Ru、以和pd之 用於SERS活性表面的金屬稱作「活性材料」。广渡金屬。 詞彙「SERS非活性奈米表面」代 φ ^ ^ 衣具有至少一個夺 未I級之表面尺寸的明確界定表面。 個不 次衣面可以是 不平坦的。與SERS活性奈米表面相 千一或 人 非活性太半 表面其本身不展現對拉曼信號的顯著電磁増強二、 將SERS非活性表面故置於鄰近SERS活 、 田 *土不米表面處 14 200823447 時’可發現與僅來自SERS活性牟半主 不、木表面的信號相比,相 對較強的拉曼信號增強。因此, M又替方式排列SERS活 性表面與SERS非活性奈米表面可推 ^ Λ & 了進一步增強拉曼信號。 用於SERS非活性奈米表面之材料 . 的實例包括諸如Si02、a substrate and the exposed detection surface of the nanostructure, wherein the surface comprises at least one SERS active nano surface and is established adjacent to the at least one SERS inactive nano surface of the active nano surface. Therefore, this The performance of a SERS device benefits from both chemical enhancement and electromagnetic effects on Raman signal strength. "It is not awkward," and includes a well-defined metal surface having a surface size of at least one nanometer. The surface can be flat or uneven. The SERS active nano surface exhibits electromagnetic enhancement of the Raman signal under photon illumination. Examples of the material for the SERS active surface include, for example, a metal such as A, Fe, C, Ni, Ru, and pd for the SERS active surface is referred to as "active material". Guangdu Metal. The vocabulary "SERS inactive nano surface" φ ^ ^ garment has at least one well-defined surface that does not have a surface dimension of Class I. A few coats can be uneven. One or one inactive surface of the SERS active nano surface does not exhibit significant electromagnetic reluctance to the Raman signal. Second, the SERS inactive surface is placed adjacent to the surface of the SERS, the surface of the soil. At 200823447, it was found that the relatively strong Raman signal enhancement was compared with the signal from the SERS-active, semi-primary, and wood surface. Therefore, M alternately arranges the SERS active surface and the SERS inactive nano surface to push and further enhance the Raman signal. Examples of materials for SERS inactive nano-surfaces include, for example, SiO 2 ,

Al2〇3、Si3N4、Ta2〇5 和 Ti〇2、之 _ 沾 之類的絕緣體以及空氣(開 放空間)。用於SERS非活性夺半矣二 丁、水表面的材料稱作「非活性 材料」。Insulators such as Al2〇3, Si3N4, Ta2〇5, and Ti〇2, and air (open space). The material used for SERS inactive halved, water surface is called "inactive material".

=所用之詞囊「奈米結構」預期意指3度空間物體, 該3度二間物體由基材突出或向 Π &材内凹,並具有至少一 度空间奈米量級的尺度。奈米結構形狀的非限制性實例包 括奈米柱、奈米金字塔、奈米孔和奈米凹陷(n_pit)。 根據本發明的一實施例,藉 稽由將SERS非活性奈米表 面與奈米SERS活性表面鄰接配置來雜 直求獲仔改進的SErs性 能。第卜η圖提供用於改進的SERS應用的示範性陣列 裝置。 、,第1圖顯示具有複數個建立於基材上的SERS活性奈 米表面1 10和SERS非活性奈米表面12〇之正方形陣列1㈧ =頂視圖。如第i圖中所示,每個SERS活性奈米表面與 母個SERS非活性奈米表面交替配置。SERS活性表面由選 自貝金屬私的材料構成,而貴金屬族包括但不限於Ag、= The term "nanostructure" as used is intended to mean a 3 degree space object that protrudes from the substrate or is recessed into the Π & material and has a dimension of at least one degree of spatial nanometer. Non-limiting examples of nanostructure shapes include nanopillars, nanopyramids, nanopores, and nanopits (n_pit). According to an embodiment of the invention, the improved SErs performance is obtained by arranging the SERS inactive nano surface adjacent to the surface of the nano SERS active surface. The Figure η diagram provides an exemplary array device for an improved SERS application. Figure 1 shows a square array 1 (eight) = top view of a plurality of SERS active nano surface 1 10 and SERS inactive nano surface 12 Å formed on a substrate. As shown in Fig. i, each SERS active nano surface is alternately arranged with the parent SERS inactive nano surface. The SERS active surface consists of materials selected from the shell metal, while the noble metal family includes, but is not limited to, Ag,

Au Cu和Pt。SERS活性表面亦可以由選自過渡金屬族的 材料構成’而過渡金屬族包括但不限於A卜Fe、Co、Ni、 Ru、Rh和pd。SERS非活性奈米表面由絕緣材料構成,而 緣材料包括但不限於Si〇2、ai2〇3、Si3N4、Ta2〇5、Ti02 15 200823447 以及開放空間(空氣)。 第2A圖顯示根據本發明一態樣之陣列裝置2〇〇的透 視圖。該裝置包括基材2 1 0、由活性材料構成之矩形柱2 2 〇 的陣列和由非活性材料構成之矩形柱230的陣列。交替配 置每個活性柱2 2 0與每個非活性柱2 3 0。活性柱2 2 0提供 SERS活性奈米表面225,而非活性柱23 0提供SERS非活 性奈米表面23 5。兩個表面225和23 5基本上都是正方形,Au Cu and Pt. The SERS active surface may also be composed of a material selected from the group of transition metals, and the transition metal group includes, but is not limited to, A, Fe, Co, Ni, Ru, Rh, and pd. The SERS inactive nano surface is composed of an insulating material including but not limited to Si〇2, ai2〇3, Si3N4, Ta2〇5, Ti02 15 200823447, and open space (air). Fig. 2A shows a perspective view of an array device 2A according to an aspect of the present invention. The apparatus comprises an array of substrates 210, a rectangular column of 2 2 活性 of active material, and an array of rectangular columns 230 of inactive material. Each active column 2 2 0 is alternately arranged with each inactive column 2 300. The active column 220 provides a SERS active nano surface 225, while the non-active column 230 provides a SERS non-active nano surface 23 5 . Both surfaces 225 and 23 5 are substantially square,

具有約在5nm至300 nm之間的尺寸226、227、236和237。 在一實施例中,該正方形的尺+太从, ., Λ 々u〜尺寸在約1 nm和約1 0 μ m之 間。 第2B圖疋第2A圖結構的剖面圖在第2A圖中所示 結構的線段x-x’處剖開。活性表面225的高纟228基本 上相同於非活性表面2 3 5的古― ★吗“〕的向度23 8。高度228和238介 於5 nm至1〇〇 nm之間。為 ^ _ J 在一貫施例中,高度228和238 介於1 nm至5 μ m之間。 第3A圖顯示另一正方ρ 止万形陣列3 00的透視圖。基材3 1 0 由非活性材料構成。複數個正方形柱32〇配置在基材上。 枉320提供剛活性奈米表面330,其包括上表面335 和側壁”6。SERS活性奈米表面33…ERS非活性奈米 表面的四個正方形區域34〇環繞。sers活性表面的正方 形區域335基本上相同於非活性區域34〇。第3B圖中顯示 在線段X— X’處切開的剖面圖。柱32〇的高度35〇界於5 nm 至100 nm之間》在一實施例中,柱的高度35〇界於j nm至5 /z m之間。 16 200823447 可以理解,本質上去太半矣 上田不未表面(活性或非活性)或奈 米結構的至少一部分呈右太半4主外σ ,、有不、未特徵尺寸時,拉曼散射檢測 器的檢測靈敏度可增強,該太 曰強该不未特徵尺寸功能性地匹配於 電子或聲子的特性參數,例如矣 裂 W如表面上電子的電子平均自由 程(—'re"-’·”、表面上電子的電子波長、表面 上聲子的聲子平均自由程和表面上聲子的聲子波長。 此處所用之詞彙「太芈蛀 不、水特徵尺寸」意指陣列裝置中的 活性奈米表面的直徑、SERS非活性奈米表面的直 ^ $米柱或奈米孔的高度或深度、或奈米結構之間的間 距。 如上所述的詞囊「^ & 奈米特徵尺寸近…、:二=配」可包括以下狀況: 數倍或為電子或聲子的特=子或聲子的特性參數之整 的特性參數的特定數學函數。 第4圖顯示奈米表 例,其t SERS活性表面構之正方形陣列彻的另-實 ^ 7. 1()由SERS非活性奈米表面420 而彼此隔離。此外,活 ^ 420 ,^ £域之間的空間可為第2和3圄 中所不的空氣或絕緣材料。 圖 現在參照第5A圖和 圭工^ 第5B圖,顯示將SERS活性太 表面彼此物理隔離配置 不水 立於基材51〇上之活性/施例。第則是顯示具有建 ^ ^ ^卜 材料正方形柱520的陣列裝置5 之透視圖。每個柱52〇 罝5〇〇 镇非活性材料構成區域530所璟结 第5B圖中顯示從線段 繞。 f λ ® ,〜X’切開的剖視圖。每個SERS & t表面525由非活性奈米表面5 3 5所隔離。 第6A圖和第 圖推繪根據本發明的另一實施例。第 17 200823447 6A圖是顯示具 列裝置6〇0之、.# 性材料層630所覆蓋之基材61〇的陣 ^ 22 if m 立在層63〇上〃 $ 。有另一活性材料的正方形柱620建 視圖。每個SERsf、6Β圖中顯示從線段Χ一 X,處切開的剖 面635所隔離居性奈米表面625係由另一活性奈米表 形柱620和;〇在特定情形中’相同的活性材料用於正方 1 6 3 〇 兩 土 接。逵垃从 呵考’且活性結構在活性區域的底部連 我遷®材料可為There are dimensions 226, 227, 236 and 237 between about 5 nm and 300 nm. In one embodiment, the square of the square + is too, and the size of the Λ 〜 u~ is between about 1 nm and about 10 μm. The sectional view of the structure of Fig. 2B and Fig. 2A is cut at the line segment x-x' of the structure shown in Fig. 2A. The height 228 of the active surface 225 is substantially the same as the orientation of the intrinsic surface of the inactive surface 235. The heights 228 and 238 are between 5 nm and 1 〇〇 nm. In a consistent embodiment, heights 228 and 238 are between 1 nm and 5 μm. Figure 3A shows a perspective view of another square ρ Wan Wan array 300. Substrate 3 10 is composed of an inactive material. A plurality of square columns 32 are disposed on the substrate. The crucible 320 provides a rigid active nano surface 330 that includes an upper surface 335 and a sidewall "6. SERS Active Nanosurface 33...ERS Inactive Nanoparticles The four square regions of the surface are surrounded by 34 turns. The square region 335 of the sers active surface is substantially identical to the inactive region 34A. Fig. 3B shows a cross-sectional view taken at the line segment X - X'. The height of the column 32 〇 35 is between 5 nm and 100 nm. In one embodiment, the height of the column is 35 〇 between j nm and 5 /z m. 16 200823447 It can be understood that in essence, too half of the field does not have a surface (active or inactive) or at least a part of the nanostructure is right too half 4 major external σ, with or without feature size, Raman scattering detector The detection sensitivity can be enhanced, which is too reluctant to match the characteristic parameters of the electron or phonon functionally, such as the splitting W, such as the electron mean free path of the electrons on the surface (-'re"-'·" The electron wavelength of the electrons on the surface, the phonon mean free path of the phonon on the surface, and the phonon wavelength of the phonon on the surface. The term "too, water feature size" as used herein means the activity in the array device. The diameter of the surface of the nanometer, the height or depth of the straight surface of the SERS inactive nano-meter or the nanopore, or the spacing between the nanostructures. The word capsule "^ & nanometer feature size" as described above Near...,:2=配” may include the following conditions: a multiple of a specific mathematical function of a characteristic parameter of a characteristic parameter of an electron or a phonon, or a phonon. Figure 4 shows a nanometer example. Its t SERS active surface structure The array of squares is further separated from each other by the SERS inactive nano surface 420. In addition, the space between the fields 420 and 2 can be the air in the second and third ridges. Or insulating material. Referring now to Figure 5A and Figure 5B, it shows the activity/example of physically dissociating the SERS active surfaces from each other on the substrate 51. The first is to show that there is a build. ^^ The perspective view of the array device 5 of the material square column 520. Each column 52〇罝5〇〇 town inactive material constituting the region 530 is entangled in Figure 5B and is shown to be wound from the line segment. f λ ® , ~X' Cutaway cross-sectional view. Each SERS & t surface 525 is isolated by an inactive nano surface 553. Figure 6A and Figure 1 depict another embodiment in accordance with the present invention. 17th 200823447 6A is a display The array 61 of the substrate 61 covered by the device 6 〇0, .# material layer 630 stands on the layer 63〇 〃 $. The square column 620 with another active material is constructed. Each SERsf, In the figure 6 shows the section 635 from the line segment ΧX, the 465-separated hull surface 625 is separated from the other active nai The meter-shaped column 620 and 〇 in the specific case 'the same active material is used for the square 1 6 3 〇 two soils. The 从 从 从 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且

”、、”活性區域相同的或是不同的導體。 可以理解可針 形妝 错n 對特別應用如所期望地改變奈米結構的 ❿狀。第7圖至第 實例。 C圖提供各種形狀奈米柱或奈米孔的 第7圖顯示太半主 同 ^ ” ”不木表面結構7〇〇陣列之圓柱形式的透視 圖。在它們圓柱形式71Λ上 Α 1 0中獨立的活性區域規律地分佈在 壞繞的非活性區域79n l ^ υ上’形成奈米表面結構700陣列。 :個活性圓柱的底部位於非活性區域72〇中的凹陷725 ^ &區域中的每個凹陷深度730小於圓枉形活性柱 710的高度750。凹陷7以沾士〆 夕 ’25的直徑740比活性枉的直徑760 夕出奈米量級的距雜^ 田 可彳日派各種幾何特徵以將分子吸附 取大化。此圖上顯示的凹陷是增強提供結構的實例之一。 第8Α圖顯示在基材上規則分佈的奈米表面結構之圓 形陣列800的頂視圖。在",," The same or different conductors in the active area. It is understood that the needle-shaped makeup n can change the shape of the nanostructure as desired for a particular application. Figure 7 to the first example. Figure C provides a cylindrical view of a 7-inch array of various shapes of nano-pillars or nanopores showing a semi-primary and ^"" non-wood surface structure. The independent active regions in their cylindrical shape 71 规律 10 are regularly distributed over the bad wound inactive regions 79n l ^ ’ to form an array of nano surface structures 700. The depth of the recess 730 in the recess 725 ^ & region of the bottom of the active cylinder is less than the height 750 of the circular active column 710. The depression 7 has a diameter 740 of 沾 〆 ’ ’ 25 25 25 ’ ’ 760 760 760 760 760 760 760 760 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种 各种The depression shown on this figure is one example of an enhanced providing structure. Figure 8 shows a top view of a circular array 800 of regularly distributed nano surface structures on a substrate. in

社W形810中的區域可以是SERS 活性奈米表面或SERS非、、舌峰太丄* 域 立 非/舌性奈米表面(或甚至是空氣, 愚味著空無一物)。第8B圖顯干右冀从 —移—4鞋同 口 .,、、貝不在基材上具有緊密包裝圓 形之奈米表面結構的另一圓肜陆 ^ 乃0形陣列850的頂視圖。 第9A圖顯示矩形牟半矣 不木表面結構905之陣列900的頂 18 200823447 視圖。第9B圖至第9D圖顯示三角形915、圓角矩形925、 曼形935和橢圓形945形狀的奈米柱或奈米孔的陣列 910、920、930、和 940 的頂視圖。 第1 0圖和第1 1圖顯示可以組合許多子陣列之陣列裝 置的實施例。使用子陣列組合的優點是,對於藉由SERS 的特定化學測量不需要優化奈米表面結構。不同陣列的結 合可作爲一般拉曼增強工具。The area in the W-shaped 810 may be a SERS active nano surface or a SERS non-, a tongue-to-shoulder* domain, a non-/negative nano-surface (or even an air, stupid and empty). Fig. 8B shows the top view of another round ^ ^ 0 850 850 850 冀 冀 , , , , , , , , , , , , , , , , , , , , , , 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Figure 9A shows a top view of an array 18 of the rectangular 牟 half 矣 non-wood surface structure 905 200823447. Figures 9B through 9D show top views of arrays 910, 920, 930, and 940 of triangles 915, rounded rectangles 925, mans 935, and elliptical 945 shaped nanopillars or nanoholes. Figures 10 and 11 show an embodiment of an array device that can combine a plurality of sub-arrays. An advantage of using sub-array combinations is that there is no need to optimize the nano surface structure for specific chemical measurements by SERS. The combination of different arrays can be used as a general Raman enhancement tool.

弟10®顯示具有子陣列1〇1〇、1〇2〇、1〇30和1040 之陣列裝置1 0 0 0的頂視圖。每個子陣列具有不同的奈米結 構形狀。第11圖顯示具有子陣列lH〇和112〇的陣列裝置 11 00。子陣列可具有相同的形狀但具有不同的尺寸。 現在參照第1 2圖,在結構1 2 2 0上具有吸附層1 2 1 0 的陣列裝置1 200,其與分別在第2圖和第5圖所示的陣列 200或500類似。基於SERS中測量之化學物質的特定化 學鍵結構型’可選擇具有適當化學鍵(正價或負價)的表面 吸附層1 2 1 0 ’使得測量的化學物質可吸附至表面,並移動 罪近接著吸附到活性區域上。吸附層不需要很厚。在某些The Brother 10® displays a top view of the array device 1000 with sub-arrays 1〇1〇, 1〇2〇, 1〇30, and 1040. Each subarray has a different nanostructure shape. Figure 11 shows an array device 11 00 having sub-arrays 1H〇 and 112〇. Subarrays can have the same shape but have different sizes. Referring now to Figure 12, an array device 1 200 having an adsorbent layer 1 2 1 0 on structure 1 2 2 0 is similar to array 200 or 500 shown in Figures 2 and 5, respectively. Based on the specific chemical bond structure of the chemical substance measured in SERS', the surface adsorption layer with the appropriate chemical bond (positive or negative) can be selected 1 2 1 0 ' so that the measured chemical can be adsorbed to the surface, and the sin is followed by adsorption Go to the active area. The adsorption layer does not need to be very thick. In some

Ifit/中’單層乃至島狀分佈(island distributed)層便足 夠。層的厚度介於0·5 nm — 500 nm之間,最好係介於2 nm 20 nm之間。檢測表面上之吸附層的材料可以為(但不限 於)·氧化銀、摻雜氧化物的金、Ti02、Si02、Al2〇3、Si3N4、The Ifit/medium single layer or even the island distributed layer is sufficient. The thickness of the layer is between 0. 5 nm and 500 nm, preferably between 2 nm and 20 nm. The material of the adsorption layer on the detection surface may be (but is not limited to) silver oxide, gold doped oxide, TiO 2 , SiO 2 , Al 2 〇 3 , Si 3 N 4 ,

Ta2〇5、ZnO、氡化錘、氧化铪、氧化釔、氧化金、氧化錫、 氧化録或其他金屬氧化物層,摻雜氯或氯化物的金屬層、 聚合物等。 19 200823447 第1 3圖至第1 5圖顯示陣列装置上之吸附層的各種配 置。在一實施例中,黏附層僅覆蓋SERS活性奈米表面。 第1 3圖顯示具有選擇性地配置在sERS非活性奈米表面 1 325上之吸附層1310的陣列裝置UOO。結構1 320類似於 分別在第2圖和第5圖中顯示的陣列裝置2 〇 0或5 0 0。或 者,第14圖中顯示陣列1400具有選擇性地配置在SERS 活性奈米表面1420上之吸附層1410。Ta2〇5, ZnO, bismuth telluride, cerium oxide, cerium oxide, gold oxide, tin oxide, oxide or other metal oxide layer, metal layer doped with chlorine or chloride, polymer, and the like. 19 200823447 Figures 1 3 to 15 show various configurations of the adsorption layer on the array device. In one embodiment, the adhesion layer covers only the SERS active nano surface. Figure 13 shows an array device UOO having an adsorption layer 1310 selectively disposed on the sERS inactive nano surface 1 325. Structure 1 320 is similar to array device 2 〇 0 or 5000 displayed in Figures 2 and 5, respectively. Alternatively, the array 1400 is shown in Fig. 14 to have an adsorbent layer 1410 selectively disposed on the SERS active nano surface 1420.

在另一實施例中,如第1 5圖中所示,吸附層1 5 1 0可 選擇性地配置在隔離之SERS非活性奈米表面1 52〇的頂部 上。結構1 5 3 0類似於第3圖所示的陣列結構3 〇 〇。 還有其他吸附層配置的變化。可以理解這些配置的目 的在於使分析的分子足夠靠近活性奈米SERS表面。 w田恂澄對裝置表面的分 在一貫施例 增強。第1 6圖顯示奈米表面結構! 64〇的陣列的裝置 1 600,該裝置1 600在基材161〇上的金屬層162〇之上具有 SERS活性和非活性奈米表面165〇和1 655。可視情況存在 絕緣體層1 630將陣列164〇與金屬層162〇分離。基於測量 之化學物質分子的電荷狀態,可對金屬層162〇施加正或負 的偏置以將分子吸引至檢測表面165〇和Η”。 、 金屬層1 620亦稱爲功能層。此處所用之詞囊「功能層 意指提供:、磁或熱偏置給奈米表面結構之陣列裝置的二」 在M施例中,藉由降低整個陣列的溫度對裝置表面 提供分子吸附的增^。假設陣列遠薄於基材,可連接熱電 冷卻器基材底部(第17圖),或連接至檢測晶片的金屬聲 20 200823447 區域。第17圖顯示基材1780是熱傳導的陣列裝置1760。 藉由向冷卻器施加電能,包括奈米陣列1 770的基材i 78〇 將冷卻。使用現今的熱電冷卻器’可以很容易到達一 2 〇 至20X:的溫度範圍。藉由使用更貴的熱電或其他冷卻器甚 至可達到更低的溫度。表面溫度越低,分子越是聚集到表 面上。藉由將檢測晶片冷卻,取決於沸點温度所選擇的化 學物質分子將吸附到表面上。In another embodiment, as shown in Figure 15, the adsorbent layer 1 5 10 can be selectively disposed on top of the isolated SERS inactive nano surface 1 52 . The structure 1 5 3 0 is similar to the array structure 3 〇 第 shown in FIG. There are also variations in other adsorption layer configurations. It will be appreciated that the purpose of these configurations is to bring the analyzed molecules close enough to the active nano SERS surface. w Tian Yucheng's points on the surface of the device have been enhanced in consistent applications. Figure 16 shows the surface structure of the nano! A 64 inch array of devices 1 600 having SERS active and inactive nano surfaces 165 and 1 655 over metal layer 162 on substrate 161. Optionally, insulator layer 1 630 separates array 164 from metal layer 162. Based on the measured charge state of the chemical molecules, a positive or negative bias can be applied to the metal layer 162 to attract the molecules to the detection surfaces 165 and Η". The metal layer 1 620 is also referred to as a functional layer. The term "functional layer means to provide: magnetic or thermal bias to the array device of the nano surface structure." In the M embodiment, the molecular adsorption of the device surface is provided by lowering the temperature of the entire array. Assuming the array is much thinner than the substrate, it can be connected to the bottom of the thermoelectric cooler substrate (Fig. 17) or to the metal acoustic 20 200823447 area of the inspection wafer. Figure 17 shows substrate 1780 as a thermally conductive array device 1760. The substrate i 78 including the nano array 1 770 will be cooled by applying electrical energy to the cooler. The temperature range of 2 〇 to 20X: can be easily reached using today's thermoelectric coolers. Lower temperatures can be achieved by using more expensive thermoelectric or other coolers. The lower the surface temperature, the more the molecules accumulate on the surface. By cooling the test wafer, the selected chemical molecules will adsorb to the surface depending on the boiling temperature.

在另一實施例中 電電荷’功能層可用於將適當的直流(DC )或交流(AC 偏置電壓施加至裝置來吸引化學物質分子。此外,功能層 提供一種將檢測表面加熱之方法,以汽化非預期/不想要以 表面污染物和/或燒盡表面污染物。傳導層的材料可以為 (但不限於” Ti、Ni、Cr、Pt、RU、Ni-Cr 合金、mCrN、 Pt-Rh合金、Cu_Au-C〇合金、Ir-Rh合金或/和w_Re合金 此金屬必須具有良好的電和熱傳導性兩者、對矽基材和金 屬檢測表面層兩者良好的黏附性。 而在另一實施例中,藉由功能層、或藉由外部來源向 檢測晶片提供磁場。以此方< ’檢測表面上的化學極性分 :大部分傾向於具有較佳的方位;另一方^,測試下的化 ::性分子也同樣傾向於具有較佳方位。施加的磁場或在 此層内建的磁性材料之影響將增強化學物質特定的鍵 、、口 ’即增強化學物暂八 拉曼信號。 、刀在檢測表面上的吸附,以便增強 施加磁場的方向 可平行於檢測表面的法線(n〇rmal), 21 200823447 » 且北極在檢測表面的前面而南極在晶片的後面,或者北極 和南極顛倒;或者磁場的方向與檢測表面的法向垂直。磁 場的強度範圍介於〇·5高斯至3〇〇〇高斯,或者從2至1〇〇 高斯。 夕現在參照第18圖至第21圖,描述形成陣列裝置的許 夕實施例可以理解所描述的處理不必以在此描述的順序 加以執行,而這些描述僅是製造陣列裝置的較佳方法的示 例另外,可以理解和注意,圖中放大所示元件和特徵的 比例以便於討論。 第18圖是形成陣列裝置之方法的高層流程圖。如文字 塊1810中所示,處理通常由提供基材開始。在至少一實施 例中,基材是矽晶圓。非活性材料也可作為基材。文字塊 將至y種材料層沈積在基材上。文字塊1830接著 將圖案建立在材料層上。該圖案提供界定多個奈米結構的 區域。如文字塊1 840中,移除材料層的一部分以便形成奈 米-構的側壁。該方法進一步包括在奈米結構上形成暴露 的檢測表面’纟中所述表面包括至少-個SERS活性奈米 表和郇近該SERS活性奈米表面建立的至少一個SERS 非活性奈米表面。 >第19A至19D圖,其根據本發明提供一製程的更 詳、、田把述。基材1 9 Q 〇由非活性材料構成。或者,基材可以 為具有非活性材料塗層的非-非活性材料,以提供完整裝置 SERS非活性奈米表面。 如第19A圖中所示,在基材上沈積單一黏附層191〇 22 200823447 以將奈米結構黏附於基材上。黏附層材料的非限制性實例 為Ti和Ni。黏附層的厚度介於1 〇nm至1 00 nm之間。該 層是可選的。可以製造不具該層的裝置。In another embodiment, an electrical charge 'functional layer can be used to apply an appropriate direct current (DC) or alternating current (AC bias voltage to the device to attract chemical molecules. Further, the functional layer provides a means of heating the detection surface to Vaporization is not expected/unwanted to surface contaminants and/or burn out surface contaminants. The material of the conductive layer can be (but not limited to) Ti, Ni, Cr, Pt, RU, Ni-Cr alloy, mCrN, Pt-Rh Alloy, Cu_Au-C〇 alloy, Ir-Rh alloy or/and w_Re alloy This metal must have good electrical and thermal conductivity, good adhesion to both the ruthenium substrate and the metal detection surface layer. In an embodiment, the magnetic field is supplied to the detecting wafer by a functional layer or by an external source. This side < 'detects the chemical polarity on the surface: most tend to have a better orientation; the other ^, under test The:: Sex molecules also tend to have a better orientation. The applied magnetic field or the influence of the magnetic material built in this layer will enhance the specific bond of the chemical, ie, the enhanced chemical temporary eight Raman signal. Knife is inspecting The adsorption on the surface so as to enhance the direction of the applied magnetic field can be parallel to the normal of the detection surface (n〇rmal), 21 200823447 » and the north pole is in front of the detection surface and the south pole is behind the wafer, or the north and south poles are reversed; or the magnetic field The direction is perpendicular to the normal of the detection surface. The strength of the magnetic field ranges from 〇·5 Gauss to 3 〇〇〇 Gauss, or from 2 to 1 〇〇 Gauss. Now, referring to Figures 18 to 21, the formation of the array is described. It will be appreciated that the described embodiments of the device are not necessarily required to be performed in the order described herein, and that the description is merely an example of a preferred method of fabricating an array device. Additionally, it is understood and noted that the elements shown in the figures are exaggerated and The scale of the features is discussed for ease.Figure 18 is a high level flow diagram of a method of forming an array device. As shown in block 1810, the process typically begins by providing a substrate. In at least one embodiment, the substrate is a germanium wafer. The inactive material can also serve as a substrate. The text block deposits a layer of material onto the substrate. Text block 1830 then builds the pattern on the layer of material. A region defining a plurality of nanostructures. As in block 1 840, a portion of the material layer is removed to form a sidewall of the nano-structure. The method further includes forming an exposed detection surface on the nanostructure. The surface comprises at least one SERS active nanometer and at least one SERS inactive nano surface established near the surface of the SERS active nanoparticle. > Figures 19A to 19D, which provide a more detailed process, in accordance with the present invention, The substrate 1 9 Q 〇 is composed of an inactive material. Alternatively, the substrate may be a non-inactive material with a coating of an inactive material to provide a complete device SERS inactive nano surface. As shown, a single adhesion layer 191 22 22723447 is deposited on the substrate to adhere the nanostructure to the substrate. Non-limiting examples of adhesive layer materials are Ti and Ni. The thickness of the adhesion layer is between 1 〇 nm and 100 nm. This layer is optional. It is possible to manufacture a device that does not have this layer.

在黏附層上,沈積活性材料層1 920。活性層1 920的 厚度介於1 n m至5 # m之間。在一實施例中,活性層1 9 2 0 的厚度介於5 nm至1〇〇 nm之間。接著沈積遮蔽層(masking layer) 1 930於活性材料層1920上。遮蔽層的一實例是光抗 蝕劑或電子束抗蝕劑(e-beam resist)層。可視情況在抗蝕劑 層1 930和活性層1 920之間建立金屬層以用作後續製程的 硬質遮罩。 接著,藉微影製程或電子束製程在抗蝕劑層1930上建 立圖案(第19B圖)。本領域技術人員習知微影和電子束 構圖技術且可以商業上取得,且在此不必更詳細地描述。 接著,藉由蝕刻製程(諸如,濕式化學蝕刻或電漿蝕刻) 來移除黏附層和活性材料的暴露部分(第1 9 C圖)。在奈 米柱1955周圍形成SERS非活性奈米表面1940。最後移 除,殘留的遮蔽層1930。如第19D圖中所示,完成的裝置具 有複數個奈米枉,其中在柱的頂面和側壁表面上形成SERS 活性奈米表面195〇。這些活性表面由暴露的SERS非活性 奈米表面1940所環繞。 在一個替代實施例中,層1 9 〇 〇可以是活性材料而層 1 920可以是非活性材料。遵循以上詳細的製程,將産生具 有非活性材料奈米柱之陣列的裝置。SERS非活性奈米表 面將由活性奈米Sers表面所環繞。 23 200823447On the adhesion layer, an active material layer 1 920 is deposited. The active layer 1 920 has a thickness between 1 n m and 5 # m. In one embodiment, the active layer 1 9 2 0 has a thickness between 5 nm and 1 〇〇 nm. A masking layer 1 930 is then deposited over the active material layer 1920. An example of a masking layer is a photoresist or an electron beam resist (e-beam resist) layer. A metal layer may be established between the resist layer 1 930 and the active layer 1 920 as a hard mask for subsequent processes, as appropriate. Next, a pattern is formed on the resist layer 1930 by a lithography process or an electron beam process (Fig. 19B). The lithography and electron beam patterning techniques are well known to those skilled in the art and are commercially available and need not be described in greater detail herein. Next, the exposed portions of the adhesion layer and the active material are removed by an etching process such as wet chemical etching or plasma etching (Fig. 19C). A SERS inactive nano surface 1940 is formed around the nanocolumn 1955. Finally, the remaining masking layer 1930 is removed. As shown in Fig. 19D, the completed apparatus has a plurality of nano-twisted sheets in which a SERS active nano surface 195 is formed on the top and side wall surfaces of the column. These active surfaces are surrounded by an exposed SERS inactive nano surface 1940. In an alternate embodiment, layer 1 9 〇 can be an active material and layer 1 920 can be an inactive material. Following the detailed process above, a device having an array of inactive material nanopillars will be produced. The SERS inactive nano surface will be surrounded by the surface of the active nanoSers. 23 200823447

第20A圖至第20E圖中顯示形成陣列裝置的又一實施 例的連續步驟。在此實施例中,藉由壓印(imprint )微影 製程界定奈米結構的圖案。基本上,在模上設計圖案,其 中藉由電子束微影和反應離子钕刻在基材(典型上為石夕晶 片)土産生該模。奈米量級中的圖案是最終奈米陣列的反轉 圖像。在第一步驟中,非活性材料層2〇1〇沈積在基材2〇〇〇 上以建立非活性奈米SERS表面。活性材料(諸如,Ag或 Au)層2020接著沈積在非活性層上。接著在層2〇2〇上塗 覆可壓印材料層203 0(諸如,PMMA或其他聚合物接著 將模2040擠入層2030(第20A圖)。在移除模之後的步驟 期間完成壓印(第20B圖)。在第20C圖中,利用#刻以 移除壓緊區域中殘留抗蝕劑2035完成圖案轉移。可進一步 使用化學蝕刻來蝕刻壓緊區域中的金屬膜(第2〇D圖)。 在除去遮蔽層後產生奈米表面結構的陣列。如第2〇E圖中 所示,完成的裝置具有多個奈米柱,其中該奈米柱具有形 成於柱的頂面和侧壁表面上之SERS活性奈米表面2〇5〇。 這些活性表面由暴露的SERS非活性奈米表面2〇4〇所環 第21A圖至第21D圖提供形成陣列裝置的另一實施 例。在此實施例中,藉由電鍍(anodization)製程界定奈米 結構的陣列。第2 1 A圖顯示沈積在基材2 1 00上的堆疊層。 基材2 1 0 0可以是矽晶圓。第一層2 11 0是非活性材料。可 藉由氧化矽晶圓製造此3 0 — 50 nm的8丨〇2層。在非活性層 上,沈積黏附層2120。黏附層的厚度通常控制在ι〇〇 A 一 24 200823447 1000 A的範圍中,並0 γ π 卫且經最佳化以對貴金屬層(例如,Α 或AII層)提供最去t ) 佳黏附。亦最佳化黏附層2 120的厚度以 向檢測表面施加偏壓,用於微量化學物質檢測,並進一步 用於向檢測表面施加較低溫度以增強微量化學物質檢測的 靈敏度。在黏附層上沈積鋁層213〇,該鋁層213〇的厚度 介於0·5 — 10.0微米間。然後,對鋁層145執行退火操作 使Α1膜再結晶。 接著,執行電鍍製程以多孔氧化鋁2135的形式來産生 多孔結構2140 (第21Β圖)。電鍍製程中,可藉由調整操 作電壓、電流、化學溶液ρΗ值和溫度以及處理時間等來 控制並修改奈米孔或柱的直徑d、奈米孔或柱的間距/鄰接 距離D、以及奈米孔陣列的深度或奈米柱陣列的高度。多 孔結構由自然地自組合的六角形奈米小孔陣列形成,其中 該奈米小孔陣列包括由六角形小孔壁所環繞的多個小孔 2 1 40。然後,執行濕式蝕刻製程以加寬小孔2〗,並除去 小孔底部的阻擋層。 接著,藉由物理、化學或電化學的方法沈積例如貴金 屬(諸如,Ag、Au或Cu)215〇的活性材料以填充多個小孔 (第21C圖)。接著執行化學處理以移除貴金屬215〇和氧 化鋁2135的頂部。在黏附層212〇的上形成多個貴金屬柱 2155。移除黏附層的暴露部分以暴露SERs非活性奈米表 面2115 (第21D圖)。完成的裝置具有複數個奈来柱,其 中SERS活性奈米表面2156形成於柱的頂面和側壁表面 上。由暴露的SERS非活性奈米表面2丨丨5環繞這些活性表 25 200823447 面0The successive steps of forming another embodiment of the array device are shown in Figs. 20A to 20E. In this embodiment, the pattern of the nanostructure is defined by an imprint lithography process. Basically, a pattern is designed on the mold in which the mold is produced by electron beam lithography and reactive ion engraving on a substrate (typically a stone wafer). The pattern in the nanometer scale is the inverted image of the final nano array. In the first step, a layer of inactive material 2〇1〇 is deposited on the substrate 2〇〇〇 to establish an inactive nano SERS surface. A layer 2020 of active material (such as Ag or Au) is then deposited on the inactive layer. An embossable material layer 203 0 is then applied over the layer 2 ( 2 ( (such as PMMA or other polymer followed by squeezing the mold 2040 into the layer 2030 (Fig. 20A). The embossing is completed during the step after the mold is removed ( Fig. 20B). In Fig. 20C, pattern transfer is performed by using #etching to remove residual resist 2035 in the pinched region. Chemical etching can be further used to etch the metal film in the pinched region (Fig. 2D) An array of nano surface structures is produced after removal of the masking layer. As shown in Figure 2E, the completed device has a plurality of nanopillars, wherein the nanopillars have top and side walls formed on the pillars The surface of the SERS active nano surface is 2〇5〇. These active surfaces are provided by the exposed SERS inactive nano surface 2〇4〇 ring 21A to 21D to provide another embodiment of forming an array device. In an embodiment, the array of nanostructures is defined by an anodization process. Figure 21A shows a stacked layer deposited on a substrate 2100. The substrate 2100 can be a germanium wafer. Layer 2 11 0 is an inactive material. This 3 0 50 nm 8 can be fabricated from a yttrium oxide wafer.丨〇 2 layers. On the inactive layer, the adhesion layer 2120 is deposited. The thickness of the adhesion layer is usually controlled in the range of ι〇〇A - 24 200823447 1000 A, and 0 γ π wei and optimized to the precious metal layer (for example, Α or AII layer) provides the best t) good adhesion. The thickness of the adhesive layer 2 120 is also optimized to apply a bias to the sensing surface for trace chemical detection and further for applying a lower temperature to the detection surface to enhance the sensitivity of the trace chemical detection. An aluminum layer 213 is deposited on the adhesion layer, and the thickness of the aluminum layer 213 is between 0.5 and 10.0 micrometers. Then, an annealing operation is performed on the aluminum layer 145 to recrystallize the Α1 film. Next, an electroplating process is performed to form a porous structure 2140 in the form of porous alumina 2135 (Fig. 21). In the electroplating process, the diameter d of the nanopore or column, the spacing of the nanopore or the column/adjacent distance D, and the na[iota] can be controlled and modified by adjusting the operating voltage, current, chemical solution pH and temperature, and processing time. The depth of the array of meters or the height of the array of nanopillars. The porous structure is formed from a naturally self-assembled array of hexagonal nanopore arrays, wherein the array of nanopore includes a plurality of apertures 2 1 40 surrounded by hexagonal aperture walls. Then, a wet etching process is performed to widen the small holes 2 and remove the barrier layer at the bottom of the small holes. Next, an active material such as noble metal (such as Ag, Au or Cu) 215 Å is deposited by physical, chemical or electrochemical means to fill a plurality of small holes (Fig. 21C). A chemical treatment is then performed to remove the tops of the noble metal 215 〇 and the aluminum oxide 2135. A plurality of noble metal pillars 2155 are formed on the adhesion layer 212A. The exposed portion of the adhesive layer was removed to expose the SERs inactive nano surface 2115 (Fig. 21D). The completed apparatus has a plurality of Nail columns in which a SERS active nano surface 2156 is formed on the top and side wall surfaces of the column. Surrounding these active forms by exposed SERS inactive nano surface 2丨丨5 25 200823447

現在參照第2 2圖,基於本發明一實施例的陣列裝置提 供微量化學物質檢測系統的圖解。該系統包括表面增強拉 曼光譜(SERS )、表面增強共振拉曼光譜(SERRS )、表面 增強相千反斯托克斯拉曼散射(SEC ARS )、表面增強紅外 光吸收(SEIRA)光譜、表面增強熒光光譜(SEFLS )、表 面增強光致發光光譜(SEPLS )、時間分辨的上述光譜、其 他光學光譜方法、以及上述方法的組合,例如,SERS搭 配SEFLS或者SERS搭配SEPLS,用於化學物質指紋鑒定 和微量化學物質檢測。 如第22圖中所示,系統2200包括光學來源2210(例 如’雷射光束光源)以及用以將雷射光束聚焦的光學組件 2 2 1 5。接著該光束由偏轉器2 2 2 0所偏轉以照射陣列裝置 22 50。陣列裝置225〇吸附將分析的化學物質。吸附在陣列 裝置檢測表面上的化學物質分子224〇對進入的光束223 5 進行散射。散射光子2236的一部分由收集器光學器件所收 集。光譜分析器(例如,光譜儀)接收所述的散射光子部分, 並且產生化學物質之成分的輸出指示。 第22圖所示之系統可在醫學/衛生保健、生命科學、 環境、食品安全、鑑識、國土安全等領域中的化學物質指 紋馨定和微量化學物質檢測中使用。對於國土安全應用, 包括但不限於以下領域:機場、海關、集裝貨物、港口、 火車和火車站、地鐵、建築物、購物商場、劇院、度假休 閒中心、表層水和包括井的其他水供給系統、危險和有害 26 200823447 的化學化合物。危險的化學物質包括***物、神經性製劑、 血液性製劑、糜爛性製劑、重金屬和其他有毒化學物質(諸 如,Pb、Cd、Hg、T1和包含砷的化合物)、揮發性毒素(諸 如,苯、氯仿)、肺製劑(pulmonary agents)(諸如’光氣 (phosgene)、乙烯基氯化物)、生物製劑、毒素以及核武器。Referring now to Figure 2, an array device in accordance with an embodiment of the present invention provides an illustration of a trace chemical detection system. The system includes surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS), surface enhanced phase anti-Stokes Raman scattering (SEC ARS), surface enhanced infrared light absorption (SEIRA) spectroscopy, surface Enhanced fluorescence spectroscopy (SEFLS), surface enhanced photoluminescence spectroscopy (SEPLS), time-resolved spectra, other optical spectroscopy methods, and combinations of the above methods, for example, SERS with SEFLS or SERS with SEPLS for chemical fingerprinting And trace chemical detection. As shown in Fig. 22, system 2200 includes an optical source 2210 (e.g., a 'laser beam source') and an optical component 2 2 15 for focusing the laser beam. The beam is then deflected by a deflector 2 2 2 0 to illuminate the array device 22 50. The array device 225 〇 adsorbs the chemical to be analyzed. The chemical molecules 224, adsorbed on the detection surface of the array device, scatter the incoming light beam 223 5 . A portion of the scattered photons 2236 are collected by the collector optics. A spectral analyzer (eg, a spectrometer) receives the scattered photon portion and produces an output indication of the composition of the chemical. The system shown in Figure 22 can be used in the detection of chemical fingerprints and trace chemicals in the fields of medicine/health care, life sciences, environment, food safety, forensics, homeland security, etc. For homeland security applications, including but not limited to the following areas: airports, customs, containerized goods, ports, trains and train stations, subways, buildings, shopping malls, theaters, resort and leisure centers, surface water and other water supplies including wells Systematic, hazardous and hazardous chemical compounds of 200823447. Hazardous chemicals include explosives, neurological agents, blood preparations, erosive preparations, heavy metals and other toxic chemicals (such as Pb, Cd, Hg, T1 and compounds containing arsenic), volatile toxins (such as benzene) , chloroform), pulmonary agents (such as 'phosgene, vinyl chloride), biological agents, toxins, and nuclear weapons.

***物質包括 TNT、DNT、MNT、DNB、DMNB、EGDN、 NG、RDX、PETN、TATP、TATB、HMX、硝酸銨(ammonia nitrate)、三硝基苯曱硝胺(tetryl)、苦味酸(picric acid)、 HNS等,以及上述兩項或多項的混合物,例如C-4等。危 險化學物質亦包括神經性製劑,其包括(但不限於)塔崩 (tabun; GA)、沙林(sarin; GB)、索曼(soman; GD)、 GF以及VX等。 血液性製劑包括氰化物(氯化氰(CK )、氰化氫(AC )、 氰化鉀(KCN )、氰化鈉(NaCN )等)、胂(SA )。 糜爛性製劑包括(但不限於)路易士毒氣(lewisite)、光 氣肟(phosgene oxime; CX)芥子氣(mustards)等。 生物製劑包括分類A製劑,例如炭疽(anthrax)、天花 (smallpox)、瘟疫(plague);分類B製劑,例如Q熱(Q fever) ; C範疇製劑,例如黃熱(yellow fever)。 基於本發明之陣列裝置的系統,可用於環境應用中的 化學物質指紋雲定和微量化學物質檢測,例如有毒材料監 測和師檢’包括(但不限於)海、湖、河、水庫和井以及其 他表面和地下水和土壤與空氣中之無機和有機含亞硝酸鹽 與氯化學物質(諸如,N02-和C104·基團和戴奥辛 27 200823447 (—))、笨及其衍生物、氰化物、重金屬(包括但不限於Explosive substances include TNT, DNT, MNT, DNB, DMNB, EGDN, NG, RDX, PETN, TATP, TATB, HMX, ammonium nitrate, trinitrobenzidine (tetryl), picric acid (picric acid) ), HNS, etc., and a mixture of two or more of the above, such as C-4. Hazardous chemicals also include neurological agents including, but not limited to, tabun (GA), sarin (GB), soman (GD), GF, and VX. Blood preparations include cyanide (cyanide chloride (CK), hydrogen cyanide (AC), potassium cyanide (KCN), sodium cyanide (NaCN), etc.), strontium (SA). Erosive formulations include, but are not limited to, Lewis (lewisite), phosgene oxime (CX) mustards, and the like. Biologics include Class A formulations, such as anthrax, smalllpox, plague; class B formulations, such as Q fever; C-category formulations, such as yellow fever. A system based on the array device of the present invention can be used for chemical fingerprinting and trace chemical detection in environmental applications, such as toxic material monitoring and inspections including, but not limited to, sea, lake, river, reservoir, and well Other surface and groundwater and inorganic and organic nitrite and chlorine chemicals in soil and air (such as N02- and C104· groups and dioxin 27 200823447 (-)), stupid and its derivatives, cyanide, heavy metals (including but not limited to

Pb、Cd、Hg) '和含石申化合物、與殘留殺蟲劑、以及其他 有毒化學物質。 輪船、潛水艇以及所有天花板下的其他區 不限於)監測和篩檢與下列有關的空氣品質 對於環境保護’化學物質檢測系統可用於室外和室内 污染監測和排放源篩檢。室外污染包括車輛廢t、工廠廢 氣和廢水等1庭住宅和工作場所兩者中的室内污染監測 和綠檢’包括(但不限於)建築物 '飛機、太空梭、船艇和 域。應用包括(但 以及其他健康Pb, Cd, Hg) 'and containing compounds, residual pesticides, and other toxic chemicals. Ships, submarines and all other areas under the ceiling are not limited to) Monitoring and screening for air quality related to the following. Environmental protection 'Chemical substance detection systems are available for outdoor and indoor pollution monitoring and source screening. Outdoor pollution includes indoor pollution monitoring and green inspections in both residential and workplace areas such as vehicle waste, factory waste, and wastewater, including but not limited to buildings 'aircraft, space shuttles, boats, and domains. Applications include (but other health

問題··塑膠地板、牆壁油漆和裝潢H黍的家具、塑膠 家庭用具、工玩具以及所有室内其他塑膠材料,這些 可能包含有毒材料,例如笨與其衍生物和其他揮發性有機 化合物(volatile organic eomp〇und,v〇c )、聚氣乙烯 (pvc)及其添加劑(包括鄰苯二曱酸鹽、DEHA和重金屬 等)0 對於醫學應用,藉由基於依照本發明之陣列裴置的拉 曼方法,發展出非侵入性和微侵入性的早期疾病診斷法。 例如,通過人類皮膚測試、眼睛測試和體液測試(包括唾 液、汗液、血液和尿液測試)以及人類呼吸測試來 、 τ朋檢 測疾病’這些疾病包括(但不限於)肺癌;乳癌;π 股和頭 部癌;潰瘍;支氣管(bronchial)、食道和胃癌;結 ^ ^5 > 皮膚癌;肝、腎、胰臟、膀胱、***、子宮疾病· 广 食道 疾病;氧化壓力(oxidant stress);眼睛疾病;糖屁 ’馬’精 神***症(schizophrenia);脂質過氧化(lipid 28 200823447 peroxidation);哮喘(asthma);肺結核(tuberculosis);幽門 螺旋桿菌(helicobacter pylori)等。非侵入性和微侵入性測 武亦可以用於珍斷阿技海默氏症(Alzheimer’s disease)。 藉由配有SERS檢測器之「智能廁所(Smart Toilet)」 的尿液測試以早期檢測疾病(包括,但不限於***癌、膀 胱、子宮疾病等),並且藉由基於本發明之陣列裝置的拉曼 方法來執行毒品的監測和篩檢。Problem··Plastic flooring, wall paint and decoration H黍 furniture, plastic household appliances, industrial toys and all other indoor plastic materials, these may contain toxic materials, such as stupid with its derivatives and other volatile organic compounds (volatile organic eomp〇 Und, v〇c ), polystyrene (pvc) and its additives (including phthalate, DEHA and heavy metals, etc.) 0 For medical applications, by Raman method based on array placement according to the invention, Develop a non-invasive and minimally invasive early disease diagnosis. For example, through human skin tests, eye tests and body fluid tests (including saliva, sweat, blood and urine tests) and human breath tests, τ pe detection of diseases including, but not limited to, lung cancer; breast cancer; π-shares and Head cancer; ulcer; bronchial, esophagus and gastric cancer; knot ^ ^5 > skin cancer; liver, kidney, pancreas, bladder, prostate, uterine disease · wide esophageal disease; oxidative stress; Disease; sugar fart 'horse' schizophrenia; lipid peroxidation (lipid 28 200823447 peroxidation); asthma (asthma); tuberculosis (tuberculosis); Helicobacter pylori (Helicobacter pylori). Non-invasive and micro-invasive measurements can also be used to identify Alzheimer's disease. Early detection of disease (including, but not limited to, prostate cancer, bladder, uterine disease, etc.) by a urine test of a "Smart Toilet" equipped with a SERS detector, and by an array device based on the present invention The Raman method is used to perform drug monitoring and screening.

藉由基於本發明之陣列裝置的拉曼方法,發展人類和 動物體液測試。例如,用於口腔癌的唾液測試、用於早期 疾病診斷的血液測試’這些疾病包括(但不限於)阿茲海默 氏症(Alzheimer s disease)、愛滋病(hiv )、狂牛症(mad cow disease)、心血管疾病、癌症以及快速病毒和細菌鑒定和篩 檢’包括(但不限於)S ARS、禽流感、天花、愛滋病(HIV ) 拉曼診斷方法可用於即時醫生巡房程序(d〇ct〇r visiting procedure),諸如疾病篩檢和特定疾病診斷。以此 方式’醫生能夠基於詢問患者時的即時拉曼測試來做出判 斷,並對必要的醫學治療及時做出決定。 藉由基於本發明之陣列裝置的拉曼方法,在外科手術 時發展出下述應用:即時線上(rea“time in」ine)識別癌症 腫瘤部分,而不是通常應用的組織切片(需要時間)方法, 可區分癌症腫瘤和健康部分之間的邊界,以即時地支援醫 生對切除位置做出決定。 藉由基於本發明之陣列裝置的拉曼方法,開發在藥物 29 200823447 研發、製造和品質監測的製藥應用。拉曼方法亦可用於藥 物服用的反饋過程。例如,在患者服用藥物之前和患者服 用藥物之後,在不同的時間期間,可以執行拉曼測試以研 究藥物的效力。Human and animal body fluid tests were developed by the Raman method based on the array device of the present invention. For example, saliva testing for oral cancer, blood testing for early disease diagnosis 'These diseases include (but are not limited to) Alzheimer's disease, AIDS (hiv), mad cow (mad cow) Disease, cardiovascular disease, cancer and rapid virus and bacterial identification and screening 'including (but not limited to) S ARS, avian influenza, smallpox, AIDS (HIV) Raman diagnostic method can be used for immediate doctors patrol procedures (d〇 Ct〇r visiting procedure), such as disease screening and diagnosis of specific diseases. In this way, the doctor can make a judgment based on the immediate Raman test when the patient is asked, and make a timely decision on the necessary medical treatment. By the Raman method based on the array device of the present invention, the following application is developed during surgery: the rea "time in" in the identification of the cancer tumor portion, instead of the commonly applied tissue section (time required) method , to distinguish the boundaries between cancer tumors and healthy parts, to instantly support the doctor to make decisions on the location of the resection. A pharmaceutical application for development, manufacturing and quality monitoring of Drug 29 200823447 was developed by the Raman method based on the array device of the present invention. The Raman method can also be used in the feedback process of taking medicine. For example, a Raman test can be performed to study the efficacy of a drug at different times before the patient takes the drug and after the patient takes the drug.

藉由基於本發明之陣列裝置的拉曼方法,開發人體内 部使用的迷你拉曼檢測器(具有無線技術)。例如,晶片系 統(system-on-chip)的拉曼系統可製造成藥片大小,其中包 括晶片上迷你雷射源、微機電(MEMS)式迷你光譜儀、無線 模組、迷你探測器等。初步的應用為消化系統的疾病診斷。 例如,經篩檢的患者或人士在他/她的消化系統清潔(類似 於結腸内視鏡檢查法試驗的準備過程)後呑服藥片大小的 拉曼系統,可即時執行拉曼掃描,例如,從每一分鐘一次 到每小時一次,然後藉由無線模組傳送資料,而人體外部 的電腦將接收拉曼資料,並分析、搜索、匹配,然後做出 結論;應用的下一階段是具有針形探頭的微侵入,以將逑 你拉曼檢測器帶入人體内的診斷區域,可經由光纖或無線 模組傳送拉曼資料。應用包括(但不限於)診斷乳癌、阿茲 海默氏症(Alzheimer’s disease)等。 藉由基於本發明之陣列裝置的拉曼方法,開發生物技 術和生物醫藥的應用,諸如DNA、rnA和蛋白質的指紋鑒 定、DNA定序、DNA分類等。 藉由基於本發明之陣列裝置的拉曼方法,開發鑑識應 用’包括(但不限於)經由唾液測試、尿液測試、或常規粉 末測試(normal powder test)的毒品測試和篩檢;僞簽字識 30 200823447 別;經由DNA描繪(DNA pro filing)技術的人類個體識別和 篩檢;鑒定顯微塗抹碎片(microscopic paint fragment)、纖 維鑒定等。 藉由基於本發明之陣列裝置的拉曼方法,開發經由人 類體液測試或/和呼吸測試的毒品篩檢應用。 €A mini-Raman detector (with wireless technology) used in the human body is developed by the Raman method based on the array device of the present invention. For example, a system-on-chip Raman system can be fabricated in tablet sizes, including on-wafer mini-laser sources, microelectromechanical (MEMS) mini spectrometers, wireless modules, mini-detectors, and the like. The initial application is the diagnosis of diseases in the digestive system. For example, a screened patient or person can take a tablet-sized Raman system after his/her digestive system cleansing (similar to the preparation process for a colon endoscopy test), and can perform a Raman scan immediately, for example, From once every minute to once every hour, and then through the wireless module to transmit data, the computer outside the human body will receive Raman data, analyze, search, match, and then make a conclusion; the next stage of the application is to have a needle The micro-invasion of the probe is used to bring your Raman detector into the diagnostic area of the human body, and the Raman data can be transmitted via fiber optic or wireless modules. Applications include, but are not limited to, diagnosis of breast cancer, Alzheimer's disease, and the like. Biotechnology and biomedical applications such as DNA, rnA and protein fingerprinting, DNA sequencing, DNA sorting, etc., are developed by the Raman method based on the array device of the present invention. Developing an forensic application by means of a Raman method based on the array device of the present invention including, but not limited to, drug testing and screening via a saliva test, a urine test, or a normal powder test; 30 200823447 No; human individual identification and screening via DNA pro filing techniques; identification of microscopic paint fragments, fiber identification, and the like. A drug screening application via a human body fluid test or/and a breath test is developed by the Raman method of the array device according to the present invention. €

藉由基於本發明之陣列裝置的拉曼方法,開發食品、 水果和飲料監測和篩檢應用,以監測用於儲存水果和蔬菜 使其具有更長保存期之應用的氣體、液體、粉末、凝膠、 氣霧劑或固體形式中的化學物質(包括,但不限於乙烯); 食品安全,監測和篩檢有害化學物質,包括(但不限於)殘 留权蟲劑(諸如,達馬松(methamidophos)、赛滅寧 (cypermethrin)、第滅寧(deltamethrin)、孔雀石綠(malachite green)等)、戴奥辛(di〇xin)、非法人工添加物(諸如,蘇 丹紅(sudan)I號、蘇丹紅η號、蘇丹紅m號、蘇丹紅ιν 旒等)、食品加工副産品(例如,在薯條加工中由於溫度在 12〇°C以上而形成的丙烯醯胺)。這些化學物質包括(但不限 /)丙烯醯胺、孔雀石綠等。受調查的食品包括(但不限於) 法式箸條(French fries)、筹條(fHed p〇tat〇)、炸薯片(p〇tat〇 SP)曲奇(C〇〇kie)、薄脆餅乾(cracker)、榖類産品、脆 麵匕Unsp bread)、麵包、+啡、預製吐司(prepared 1〇如)、 ,果餅乾、巧克力、爆米花、以及水生製品(包括魚) 的拉曼方法,開發食品包 ,包括(但不限於)作為微 轎由基於本發明之陣列裂置 裝過程和準備材料的鑒定和監測 31 200823447 波加熱食品包裝、廚房薄膜、 6ft ^ 7 .. ( 裝、處理和準備封科 的1亂乙烯(PVC)和鄰笑一 叶 m 一甲酉欠现材料之識別和篩檢。 精由基於本發明之陳列梦 σ . ^ ]裝置的拉曼方法,開發僞造商 品和材料的篩檢,芮σ 、同 奶於、人爾i 〇 ; ’匕括㈠旦不限於)藥物、藥品、 奶叔艮用油、酒、寶石、流诵®姑 ^ ^ χ ^ ,丨L通示據、墨水的假簽名、藝 術品、汽油等。 β 黍 藉由基於本發明之陣列裝 理品質和産品安全的監測。應 和濕式化學處理管線處之産品 序控制,例如,煉油廠、化學 中的濕式化學處理管線、飛機 潛水艇等。 置的拉曼方法,開發工業處 用領域包括(但不限於)氣體 口口貝、處理和産品安全的程 工程製造廠、半導體清潔室 和太空梭、遊艇、輪船以及 错由基於本發明之陣列裝置的拉曼方法,開發化學物 質檢測糸統的位置。紗’檢測器或檢測器網路可置於不 同位置’包括(但不限於)醫生診所辦公室' 外科手術室、Food, fruit and beverage monitoring and screening applications are developed by the Raman method of the array device according to the invention to monitor gases, liquids, powders, condensate for applications in which fruits and vegetables are stored for longer shelf life Chemicals in gel, aerosol or solid form (including, but not limited to, ethylene); food safety, monitoring and screening of hazardous chemicals including, but not limited to, residual insecticides (such as methamidophos ), cypermethrin, deltamethrin, malachite green, etc., dioxin, illegal artificial additives (such as Sudan red (sudan I), Sudan red η, Sudan red m, Sudan red νν, etc.), food processing by-products (for example, acrylamide formed by processing at a temperature above 12 °C in fries processing). These chemicals include, but are not limited to, acrylamide, malachite green, and the like. The foods under investigation include (but are not limited to) French fries, fHed p〇tat〇, potato chips (p〇tat〇SP) cookies, crackers ( Raman method for cracker), oyster products, unsp bread, bread, + brown, pre-made toast (prepared 1), fruit biscuits, chocolate, popcorn, and aquatic products (including fish), Development of food packages, including (but not limited to) identification and monitoring of micro-cars by array rupture process and preparation materials based on the present invention 31 200823447 Wave-heated food packaging, kitchen film, 6ft ^ 7 .. (loading, handling and Prepare the identification and screening of the unspoken ethylene (PVC) and the adjacent one-mesh 一 酉 酉 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 识别 。 识别 。 识别 识别 。 。 。 。 。 。 。 。 Screening of materials, 芮σ, Tongjiu, Rener 〇; '匕 (1) is not limited to) drugs, medicines, milk for uncles, wine, gems, rogues, 姑 ^ ^ χ ^, 丨L Explain the evidence, false signatures of ink, art, gasoline, etc. β 黍 is monitored by the quality and product safety of the array based on the present invention. Product control at the wet chemical processing line, for example, refineries, wet chemical processing lines in chemistry, aircraft submarines, etc. Raman method for the development of industrial applications including, but not limited to, gas mouth-mouthing, process and product safety process engineering manufacturers, semiconductor clean rooms and space shuttles, yachts, ships, and arrays based on the present invention The Raman method of the device develops the location of the chemical detection system. The yarn 'detector or detector network can be placed in different locations' including (but not limited to) the doctor's office's surgical room,

購物中心、公共度假休閒區、建築物、海關、公路檢查站, 港口、機場、車輛、遊艇和輪船、飛機、太空梭、工業處 理站、研發研究實驗室、品質控制辦公室'大學實驗室和 辦公室、表面水、井、地下水、操縱人員手持等等。 化學物質檢測應用X程’不僅在現場放置—個單獨的 化學物質檢測器,(¾是設計化學物質檢測器網路並且配置 以覆蓋應用區域,其中所有檢測器由與光纖或/和無線系統 連接的子-巾央控制器和主—巾央控制器所控制。當發現 異常結果時’警告信號自動觸發,其形式包括(但不限於) 32 200823447 在電腦或PDA的螢幕上的紅色閃爍、重要區域中的警報 聲、向重要人員發送警報電子郵件、向重要人員手機播打 電話等。異常結果可以分級成不同風險級別,例如,綠(安 全)、藍、黃、橙、紅(最高風險)。 實施例 將以下不例進一步描述本發明,這些示例不限制申請 專利範圍中所描述之本發明的範圍。Shopping centers, public resorts, buildings, customs, highway checkpoints, ports, airports, vehicles, yachts and ships, aircraft, space shuttles, industrial processing stations, research and development research laboratories, quality control offices, university laboratories and offices Surface water, wells, groundwater, manipulators, etc. The chemical detection application X-process 'is not only placed in the field - a separate chemical detector, (3⁄4 is a design chemical detector network and configured to cover the application area, where all detectors are connected to the fiber or / and wireless system The sub-snap controller and the main-snap controller control. When an abnormal result is found, the warning signal is automatically triggered. The form includes (but is not limited to) 32 200823447 Red flashing on the screen of the computer or PDA, important Alarms in the area, sending alert emails to key personnel, making calls to important people's mobile phones, etc. Abnormal results can be graded into different risk levels, for example, green (safe), blue, yellow, orange, red (highest risk) EXAMPLES The present invention is further described by the following examples, which do not limit the scope of the invention described in the claims.

實施例1 藉由電鍍法製造奈米表面陣列 藉由Si(l〇〇)晶片的電子束蒸發沈積Ti(約loonm) 的薄膜,接著沈積Ag (約1 〇〇 nm )。然後使用物理汽相沈 積方法在Ag膜上沈積500 nm的A1層。 然後,將塗覆的Si晶片置於電鍍電鍍槽中,具有〇.3 Μ 的草酸溶液作爲電解液。該電鍍槽維持在1 0 °C,且電鍍電 壓設置在35 V。電鍍之後,在Al2〇3層中形成奈米尺寸的 狹窄小孔。可經由將晶片置於1 0 wt%的磷酸溶液來擴大 小孔(孔洞)的直徑。ai2o3層中的奈米小孔結構作為遮蔽 膜’用於餘刻活性金屬層或沈積活性金屬層。因而,移除 氧化銘層後形成奈米表面陣列。 實施例2 製造奈米表面陣列的奈米壓印微影技術 奈米壓印中的第一步驟是將模擠入基材上澆鑄(cast) 的抗蝕劑薄層。此步驟將模上的奈米結構複製到抗蝕劑膜 中。第二步驟是蝕刻該抗蝕劑膜以在基材上形成奈米結構。 33 200823447Example 1 Fabrication of Nano Surface Array by Electroplating A film of Ti (about loonm) was deposited by electron beam evaporation of a Si (1 Å) wafer, followed by deposition of Ag (about 1 〇〇 nm). A 500 nm A1 layer was then deposited on the Ag film using a physical vapor deposition method. Then, the coated Si wafer was placed in an electroplating bath with an oxalic acid solution of 〇3 Μ as an electrolyte. The plating bath is maintained at 10 °C and the plating voltage is set at 35 V. After electroplating, a narrow pore of a nanometer size is formed in the Al2〇3 layer. The diameter of the small holes (holes) can be enlarged by placing the wafer in a 10 wt% phosphoric acid solution. The nanopore structure in the ai2o3 layer acts as a masking film' for the residual active metal layer or for depositing the active metal layer. Thus, the oxidized inscription layer is removed to form a nano surface array. Example 2 Nanoimprint lithography technique for fabricating nano surface arrays The first step in nanoimprinting is to deposit a thin layer of resist onto a substrate. This step copies the nanostructure on the mold into the resist film. The second step is etching the resist film to form a nanostructure on the substrate. 33 200823447

在Si晶圓上使用電子束微影和反應離子蝕刻(RIE ), 利用3 0 nm特徵尺寸的奈米點的陣列對模進行構圖。在塗 覆Au的Si (100)晶片上’ Ρ Μ Μ A作為抗餘劑。在a u和 Si之間***Ti薄層以改進黏附性。在大約100〇 psi的壓 力且在PMMA的玻璃化溫度上之160 °C左右的溫度下,在 真空中執行壓印製程。在模的圖案轉移至塗覆Au的Si (100 )之後,使用氧氣反應離子蝕刻移除PMMA中壓緊 區域内殘留的抗#劑。然後,將圖案餘刻到Au膜中。移 除PMMA後,在Au中形成奈米-孔陣列。 實施例3 1 )奈米陣列的示範 第24圖是上述之奈米表面陣列的掃描電子顯微圖像 的實例。左圖顯示具有17 nm直徑和約3〇nm間距的奈米 -孔之陣列。右側的圖顯示具有38nm直徑和約l〇nm間距 的奈米-孔之陣列。 2 )使用奈米·表面陣列的表面增強之技曼的示範 拉曼散射設置(第23B圖)包括妙上的奈米_表面 p車列 '半導體雷射,並收集表面上的反射光。#樣方法包 括:將陣列放置在溶液的容器或氣體撿測單元中;或者僅 是水平地平玫,然後將液體化學物質注入表面上;或者陣 列由玻璃或聚合…覆蓋m沒有%理接冑,液體或氣體 樣品經由微流控通道注入。 第23圖顯示二甲苯的拉曼光譜。在此實例中,分別顯 示間-二曱笨、鄰-二甲笨、對-二曱笨以及混合二曱笨的拉 34 200823447 曼光譜。如第23C圖所示,每種化學物質具有其自身的化 學光譜指紋,即使這些不同二曱苯的質量完全相同。另一 方面,混合二甲苯的拉曼光譜顯示在這3個不同二曱苯之 間的輕微干涉效應。然後,可區別地鑒定每種化學物質, 因而拉曼方法是具有光譜指紋能力之最好的化學物質鑒定 方式之一。Electron beam lithography and reactive ion etching (RIE) were used on the Si wafer, and the mode was patterned using an array of 30 nm feature size nano-dots. On the Au-coated Si (100) wafer, Ρ Μ Μ A was used as an anti-surplus agent. A thin layer of Ti is interposed between a u and Si to improve adhesion. The imprint process is performed in a vacuum at a pressure of about 100 psi and at a temperature of about 160 °C at the glass transition temperature of the PMMA. After the pattern of the mold was transferred to the Si-coated Si (100), the residual anti-agent in the pinched region of the PMMA was removed using oxygen reactive ion etching. Then, the pattern was left in the Au film. After the PMMA is removed, a nano-pore array is formed in Au. Example 3 1) Example of a nano array Fig. 24 is an example of a scanning electron microscopic image of the above-described nano surface array. The left panel shows an array of nano-pores with a 17 nm diameter and a spacing of about 3 〇 nm. The graph on the right shows an array of nano-holes having a diameter of 38 nm and a pitch of about 10 nm. 2) Demonstration of surface enhancement using nano surface arrays The Raman scattering setup (Fig. 23B) includes a subtle nano-surface p-column 'semiconductor laser and collects reflected light from the surface. The sample method includes: placing the array in a solution container or a gas detection unit; or only horizontally flattening, and then injecting liquid chemicals into the surface; or the array is covered by glass or polymerization, m is not properly connected, Liquid or gas samples are injected through the microfluidic channel. Figure 23 shows the Raman spectrum of xylene. In this example, the m-small, o-dimethyl, p-dioxin, and mixed diazide 34,23,23,447 Mann spectra are shown, respectively. As shown in Figure 23C, each chemical has its own chemical spectral fingerprint, even though the quality of these different diphenyls is identical. On the other hand, the Raman spectrum of mixed xylene shows a slight interference effect between these three different diterpenes. Then, each chemical substance can be identified differently, and thus the Raman method is one of the best chemical substance identification methods with spectral fingerprinting ability.

利用達馬松(一種主要殺蟲劑,類神經製劑)操作另一 實驗。分別在液體和氣體狀態中引入微量的化學物質。將 這些樣本的SERS光譜與純達馬松固體樣本的正常拉曼光 譜進行對比。如第25圖中所示,液體樣本和蒸汽樣本兩者 都顯示達馬松光譜特徵。證明達馬松蒸汽檢測靈敏度優於 十億分之40 ( 40ppb)。 在以上的描述和實例中,描述性語言的限制型和縮小 興解釋旨在於較好地闡明本發明,並不解釋爲任何形式的 限制、或者限制發明人所預期之本發明範圍。應理解,本 發明的實踐可以不同於上述和實施例中的特定描述。在上 述教導的啓示下,本發明可能有衆多修改和變形,並且因 而落入所附申請專利範圍的範圍中。 【圖式簡單說明】 第1圖疋根據本發明之一實施例的陣列裝置之正方形 陣列的頂視圖。 第2A與2B圖分別顯示根據本發明之一實施例的正方 形陣列之透視圖與側視圖。 第3A與3B圖分別顯示根據本發明之另一實施例的正 35 200823447 方形陣列之透視圖與側視圖。 第4圖是根據本發明之〆實施例的另一正方形陣列的 項視圖。 第5 A與圖分別顯示具有隔離的活性區域和環繞的 非活性區域之正方形陣列的透祝圖與側視圖。 第6圖顯示具有連接每個活性奈米表面結構之活性材 科層的正方形陣列。 第7圖是環繞的非活性區域上之獨立活性奈米表面結 構的陣列之圓杈形式的三度空間視圖,其中每個活性奈米 表面結構的底部具有非活性區域凹陷。 第8A與8B圖是兩種圓形陣列的頂視圖。 第9A-9E圖是各種形狀之陣列的頂視圖。 第1 0圖顯示包括具有各種形狀之子陣列的陣列。 第1 1圖顯示包括具有各種尺寸之子陣列的陣列。 第1 2圖是整個陣列上具有表面吸附層之陣列的剖視 職| 0 〇 第13圖是具有選擇性覆蓋SERS活性奈米表面之表面 及附層的陣列剖面圖。 第14圖是根據本發明另一實施例具有選擇性覆蓋 E^S活性奈米表面之表面吸附層的陣列剖面圖。 第15圖是具有選擇性覆蓋SERS非活性奈米表面之表 面D及附層的陣列的剖面圖。 第16圖是在基材和奈米結構的陣列之間具有功能層 之陣列裝置的剖面圖。 第1 7圖顯示具有功能層之陣列裝置的替代實施例。 第1 8圖是根據本發明之—實施例的方法之高層流程 36 200823447 圖。 第1 9A-1 9D圖是根據本發明之一實施例形成一陣列裝 置的不同步驟之剖視圖。 第20A-20D圖是根據本發明之一實施例形成一陣列裝 置的不同步驟之剖視圖。 第2 1 A-2 1 D圖是根據本發明之一實施例形成一陣列裝 置的不同步驟之剖祝圖。Another experiment was performed using Damasol (a major insecticide, a neurological agent). A small amount of chemical is introduced in the liquid and gas states, respectively. The SERS spectra of these samples were compared to the normal Raman spectra of pure Damasol solid samples. As shown in Fig. 25, both the liquid sample and the vapor sample showed the Dammasson spectral characteristics. Prove that the Damasol steam detection sensitivity is better than 40 parts per billion (40 ppb). In the above description and examples, the invention is intended to be illustrative of the invention, and is not intended to limit the scope of the invention. It is to be understood that the practice of the invention may be varied from the specific descriptions described above and in the embodiments. Many modifications and variations of the present invention are possible in the light of the teachings herein. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view of a square array of an array device according to an embodiment of the present invention. 2A and 2B are respectively a perspective view and a side view showing a square array according to an embodiment of the present invention. Figures 3A and 3B show perspective and side views, respectively, of a square array of positive 35 200823447 in accordance with another embodiment of the present invention. Figure 4 is an item view of another square array in accordance with an embodiment of the present invention. Section 5A and Figure respectively show a perspective view and a side view of a square array having isolated active regions and surrounding inactive regions. Figure 6 shows a square array of active wood layers joining each active nano surface structure. Figure 7 is a three dimensional view of the circular enthalpy of the array of independent active nano surface structures on the surrounding inactive areas, with the bottom of each active nano surface structure having inactive area depressions. Figures 8A and 8B are top views of two circular arrays. Figures 9A-9E are top views of an array of various shapes. Figure 10 shows an array comprising subarrays of various shapes. Figure 11 shows an array comprising subarrays of various sizes. Figure 12 is a cross-sectional view of an array having a surface adsorption layer on the entire array. 0 〇 Figure 13 is an array cross-sectional view of a surface and an attached layer selectively covering the surface of the SERS active nanoparticle. Figure 14 is a cross-sectional view of an array having a surface adsorption layer selectively covering the surface of an active nanoparticle according to another embodiment of the present invention. Figure 15 is a cross-sectional view of an array having a surface D and an attached layer selectively covering the surface of the SERS inactive nanoparticle. Figure 16 is a cross-sectional view of an array device having a functional layer between a substrate and an array of nanostructures. Figure 17 shows an alternative embodiment of an array device having a functional layer. Figure 18 is a high level flow diagram of a method in accordance with the present invention - 36 200823447. The 19th-9D 9D is a cross-sectional view of the different steps of forming an array device in accordance with an embodiment of the present invention. 20A-20D are cross-sectional views of different steps of forming an array device in accordance with an embodiment of the present invention. The 2 1 A-2 1 D diagram is a cross-sectional view of the different steps of forming an array device in accordance with an embodiment of the present invention.

第22圖是使用根據本發明之一實施例的陣列裝置之 SERS系統的圖式。 第23 A與23B圖是拉曼試驗設置的示意圖。第23 C圖 顯示各種化學物質的示範拉曼光譜。 第24圖顯示表面結構之頂視的掃描電子顯微圖 (SEM),其中d是奈米微粒的平均直徑,且D是鄰近奈 米微粒之中心到中心的平均距離。 第25圖顯示分別在固態、液態、和氣態狀態的達馬松 (一種重要的殺蟲劑和類神經製劑)的正常拉曼和 SERS 光譜。 【主要元件符號說明】 100、300、400正方形陣列 110、225、330、410、525' 62 5 ' 1420、1650、1950、2050、 2156 SERS活性奈米表面Figure 22 is a diagram of a SERS system using an array device in accordance with an embodiment of the present invention. Figures 23A and 23B are schematic views of the Raman test setup. Figure 23 C shows a demonstration Raman spectrum of various chemicals. Figure 24 shows a topographic scanning electron micrograph (SEM) of the surface structure, where d is the average diameter of the nanoparticles and D is the average distance from the center to the center of the nanoparticles. Figure 25 shows the normal Raman and SERS spectra of Damasson, an important insecticide and neurological agent, in solid, liquid, and gaseous states, respectively. [Main component symbol description] 100, 300, 400 square array 110, 225, 330, 410, 525' 62 5 ' 1420, 1650, 1950, 2050, 2156 SERS active nano surface

120、235、420、1325、1520、1655、1 940、2040、2115 SERS 非活性奈米表面 200、500、600、1〇〇〇、1100、1200、1 300、1 600、1 760 > 37 200823447 2250 陣列裝置 210 ' 310 ' 510 ^ 610、 1610、 1780、 1900 - 2000 基材 220、230 矩形柱 226、227、236、237 尺寸 228 、 238 、 750 高度 320 、 520 ' 620 正方形柱120, 235, 420, 1325, 1520, 1655, 1 940, 2040, 2115 SERS inactive nano surface 200, 500, 600, 1 〇〇〇, 1100, 1200, 1 300, 1 600, 1 760 > 37 200823447 2250 Array device 210 '310 ' 510 ^ 610, 1610, 1780, 1900 - 2000 substrate 220, 230 rectangular column 226, 227, 236, 237 dimensions 228, 238, 750 height 320, 520 ' 620 square column

335 上表面 336 側壁 530 區域 535 非活性奈米表面 630 ^ 1920 ^ 2020 活性材料層 635 活性奈米表面 700 奈米表面結構 710 圓柱形式 720 非活性區域 725 凹陷 730 深度 740、 760 直徑 800 、850 圓形陣列 810 圓形 900 > 910 ' 920 、 930 〜940 、 1400 、1640 陣列 905 矩形奈米表面結構 915 三角形 925 圓角矩形 93 5 菱形 945 橢圓形 1010 ^ 1020 、 1030 、1040 、 1110、 1120 子陣列 1210 、1310、 1410 、1510、 1910 吸附層 1220 、1320 、 1430 ^ 1530 結構 1620 金屬層 1630 絕緣體層 1770 奈米陣列 1810 、1820 、 1830 > 1840 、 1850 文字塊 38 遮蔽層 1955 奈米柱 非活性材料層 2030 可壓印材料層 殘留抗蝕劑 2040 模 第一層 2120 黏附層 鋁層 2135 多孔氧化鋁 多孔結構 2150 貴金屬 貴金屬柱 2200 系統 光源 2215 光學組件 反射器 2225 收集光學器件 光譜儀 2235 光束 光子 2240 化學物質分子 39335 Upper surface 336 Side wall 530 Area 535 Inactive nano surface 630 ^ 1920 ^ 2020 Active material layer 635 Active nano surface 700 Nano surface structure 710 Cylindrical 720 Inactive area 725 Depression 730 Depth 740, 760 Diameter 800, 850 circle Shape array 810 round 900 > 910 ' 920 , 930 940 940 , 1400 , 1640 array 905 rectangular nano surface structure 915 triangle 925 rounded rectangle 93 5 diamond 945 oval 1010 ^ 1020 , 1030 , 1040 , 1110 , 1120 Array 1210, 1310, 1410, 1510, 1910 Adsorption layer 1220, 1320, 1430^1530 Structure 1620 Metal layer 1630 Insulator layer 1770 Nano array 1810, 1820, 1830 > 1840, 1850 Text block 38 Masking layer 1955 Nano column non Active material layer 2030 Imprintable material layer Residual resist 2040 Mold first layer 2120 Adhesive layer Aluminum layer 2135 Porous alumina porous structure 2150 Precious metal precious metal column 2200 System light source 2215 Optical component reflector 2225 Collection optics Spectrometer 2235 Beam photon 2240 Chemical molecule 3 9

Claims (1)

200823447 十、申請專利範圍: 1. 一種陣列裝置,其至少包含: 一基材,支撐複數個奈米結構, 該些奈米結構上的一暴露檢測表面,其中該表面包括: 至少一表面增強拉曼光譜(SERS)活性奈米表 面,以及200823447 X. Patent Application Range: 1. An array device comprising: at least one substrate supporting a plurality of nanostructures, an exposed detection surface on the nanostructures, wherein the surface comprises: at least one surface enhanced pull Mann spectrum (SERS) active nano surface, and 至少一 SERS 非活性奈米表面,建立在鄰近該 SERS活性奈米表面處。 2.如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面係由一選自下列所構成之群組的貴金屬所組 成:Ag、Au 與 Pt。 3.如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面係由一選自下列所構成之群組的過渡金屬所 組成:Al、Fe、Co、Ni、Ru、Rh 與 Pd。 4.如申請專利範圍第1項所述之陣列裝置,其中該SERS 非活性奈米表面係由一絕緣體所組成。 5.如申請專利範圍第4項所述之陣列裝置,其中該絕緣體 係選自下列所構成之群組:二氧化矽、氧化鋁、氮化矽、 氧化|2、氧化鈦。 40 200823447 6. 如申請專利範圍第1項所述之陣列裝置,其中該至少一 SERS活性奈米表面係由該至少一 SERS非活性奈米表面 所隔離。 7. 如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面各者係與該SERS非活性奈米表面各者交 替配置。At least one SERS inactive nano surface is established adjacent to the surface of the SERS active nanoparticle. 2. The array device of claim 1, wherein the SERS active nano surface is comprised of a precious metal selected from the group consisting of Ag, Au and Pt. 3. The array device of claim 1, wherein the SERS active nano surface is composed of a transition metal selected from the group consisting of Al, Fe, Co, Ni, Ru, Rh. With Pd. 4. The array device of claim 1, wherein the SERS inactive nano surface is comprised of an insulator. 5. The array device of claim 4, wherein the insulator is selected from the group consisting of cerium oxide, aluminum oxide, cerium nitride, oxidized|2, titanium oxide. The array device of claim 1, wherein the at least one SERS active nano surface is isolated by the at least one SERS inactive nano surface. 7. The array device of claim 1, wherein each of the SERS active nano surface is alternately disposed with the SERS inactive surface. 8.如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面的高度大致相同於該SERS非活性奈米表 面的高度。 9.如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面包括該奈米結構的上表面與側壁。 1 0.如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構大致突出在該基材外。 11. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構大致内凹朝向該基材。 12. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構具有一幾何圖案的奈米柱或奈米孔,該幾何圖案選 自下列所構成之群組的至少一者:正方形、矩形、圓角 矩形、菱形、圓形、三角形以及橢圓形。 41 200823447 13. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的高度介於1 n m和1 0 0 0 n m之間。 14. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的高度介於5 n m和1 0 n m之間。 1 5.如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構規律地分佈於該基材上。8. The array device of claim 1, wherein the surface of the SERS active nanoparticle is substantially the same height as the surface of the SERS inactive nano surface. 9. The array device of claim 1, wherein the SERS active nano surface comprises an upper surface and a sidewall of the nanostructure. The array device of claim 1, wherein the nanostructure is substantially protruded outside the substrate. 11. The array device of claim 1, wherein the nanostructure is substantially concave toward the substrate. 12. The array device of claim 1, wherein the nanostructure has a geometric pattern of nano-pillars or nanopores, the geometric pattern being selected from at least one of the group consisting of: square , rectangles, rounded rectangles, diamonds, circles, triangles, and ellipses. 41. The array device of claim 1, wherein the height of the nanostructure is between 1 n m and 1 0 0 n m. 14. The array device of claim 1, wherein the nanostructure has a height between 5 n m and 10 n m. The array device of claim 1, wherein the nanostructure is regularly distributed on the substrate. 1 6.如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構周期性地分佈於該基材上。 17.如申請專利範圍第1項所述之陣列裝置,其中該陣列 裝置具有至少兩個子陣列,而各個子陣列中之奈米結構的 幾何形狀彼此相異。 1 8.如申請專利範圍第1項所述之陣列裝置,其中該陣列 裝置具有至少兩個子陣列,而各個子陣列中之奈米結構的 尺寸彼此相異。 19. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的直徑介於1 n m和3 0 0 n m之間。 20. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的直徑介於5 n m和5 0 n m之間。 42 200823447 2 1.如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的間距介於1 n m和1 0 0 0 n m之間。 22. 如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的間距介於5 n m和5 0 n m之間。 23. 如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面的直徑介於Inm和300 nm之間。The array device of claim 1, wherein the nanostructure is periodically distributed on the substrate. 17. The array device of claim 1, wherein the array device has at least two sub-arrays, and the geometry of the nanostructures in each sub-array is different from each other. The array device of claim 1, wherein the array device has at least two sub-arrays, and the sizes of the nanostructures in the respective sub-arrays are different from each other. 19. The array device of claim 1, wherein the nanostructure has a diameter between 1 n m and 300 n m. 20. The array device of claim 1, wherein the nanostructure has a diameter between 5 n m and 50 n m. The array device of claim 1, wherein the nanostructure has a pitch between 1 n m and 1 0 0 n m. 22. The array device of claim 1, wherein the nanostructures have a pitch between 5 n m and 50 n m. 23. The array device of claim 1, wherein the SERS active nano surface has a diameter between Inm and 300 nm. 24. 如申請專利範圍第1項所述之陣列裝置,其中該SERS 活性奈米表面的直徑介於5nm和50nm之間。 25. 如申請專利範圍第1項所述之陣列裝置,其中該SERS 非活性奈米表面的直徑介於1 n m和3 0 0 n m之間。 26.如申請專利範圍第1項所述之陣列裝置,其中該SERS 非活性奈米表面的直徑介於5 n m和5 0 n m之間。 27.如申請專利範圍第1項所述之陣列裝置,其中該奈米 結構的至少一部分之奈米特徵尺寸與下列至少一者功能性 匹配:該表面上電子的一電子平均自由路徑(mean-free path,MFP )、該表面上電子的電子波長、該表面上聲子 (phonon)的一聲子平均自由路徑以及該表面上聲子的聲子 波長。 28.如申請專利範圍第1項所述之陣列裝置,其更包括一 43 200823447 黏附層,介於該奈米結構與該基材之間。 29 ·如申請專利範圍第2 8項所述之陣列裝置,其中該黏附 層係由Ni或Ti所組成。 3 0 ·如申請專利範圍第2 8項所述之陣列裝置,其中該黏附 層的厚度介於10 nm和10 0 nm之間。24. The array device of claim 1, wherein the SERS active nano surface has a diameter between 5 nm and 50 nm. 25. The array device of claim 1, wherein the SERS inactive nano surface has a diameter between 1 n m and 300 nm. 26. The array device of claim 1, wherein the SERS inactive nano surface has a diameter between 5 n m and 50 n m. 27. The array device of claim 1, wherein at least a portion of the nanofeatures of the nanostructures are functionally matched to at least one of: an electron mean free path of electrons on the surface (mean- Free path, MFP), the electron wavelength of the electrons on the surface, a phonon mean free path of the phonon on the surface, and the phonon wavelength of the phonon on the surface. 28. The array device of claim 1, further comprising a 43 200823447 adhesive layer interposed between the nanostructure and the substrate. The array device of claim 28, wherein the adhesion layer is composed of Ni or Ti. The array device of claim 28, wherein the thickness of the adhesion layer is between 10 nm and 100 nm. 3 1 _如申請專利範圍第i項所述之陣列裝置,其更包括一 吸附層,位於該檢測表面上。 32·如申請專利範圍第3 1項所述之陣列裝置,其中該吸附 層係由選自下列所構成之群組的一材料所組成·· Ti〇2、 Si02、A1203、Si3N4 ' Ta2〇5、ZnO、氧化錫、氧化銻、 氧化銀、氧化金、摻雜氯或氯化物的銀以及摻雜氯或氯 化物的金。 3 3 ·如申請專利範圍第31項所述之陣列裝置,其中該吸附 層係由選自下列所構成之群組的一聚合物所組成:乙烯-三氟氯乙烯共聚物(Ethylene and Chiorotrifluoroethylene, ECTFE)、聚(乙烯·共·丙烯酸丁酯·共-一氧化碳) (Poly (ethylene-co-butyl acrylate-co-carbon monoxide), PEBA)、聚(烯丙胺鹽酸鹽)(Poly(allylamine hydrochloride),PAH)、聚苯乙烯續酸鹽(Polystyrene sulfonate,PSS)、聚四氟乙嫦(Polytetrafluoroethylene, PTFE)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚氯乙婦 44 200823447 (Polyvinyl chloride,PVC )、聚偏氟乙烯(Polyvinyldene fluoride,PVDF )、聚乙烯吡咯烷酮(p〇lyvinylprorolidone, PVP) 〇 3 4 ·如申請專利範圍第3 1項所述之陣列裝置,其中該吸附 層的厚度介於〇.5nm和500 nm之間。The array device of claim i, further comprising an adsorption layer on the detection surface. The array device of claim 3, wherein the adsorption layer is composed of a material selected from the group consisting of Ti〇2, SiO2, A1203, Si3N4 'Ta2〇5 , ZnO, tin oxide, antimony oxide, silver oxide, gold oxide, silver doped with chlorine or chloride, and gold doped with chlorine or chloride. The array device according to claim 31, wherein the adsorption layer is composed of a polymer selected from the group consisting of Ethylene and Chiorotrifluoroethylene (Ethylene and Chiorotrifluoroethylene, ECTFE), Poly (ethylene-co-butyl acrylate-co-carbon monoxide, PEBA), Poly (allylamine hydrochloride) (Poly (allylamine hydrochloride) , PAH), Polystyrene sulfonate (PSS), Polytetrafluoroethylene (PTFE), Polyvinyl alcohol (PVA), Polyvinyl chloride 44 200823447 (Polyvinyl chloride, PVC) Polyvinyldene fluoride (PVDF), polyvinylpyrrolidone (PVP) P3 4 · The array device according to claim 31, wherein the thickness of the adsorption layer is between 〇. Between 5nm and 500nm. 3 5 ·如申請專利範圍第3 1項所述之陣列裝置,其中該吸附 層的厚度介於2 nm和20 nm之間。 3 6 ·如申請專利範圍第3 1項所述之陣列裝置,其中該吸附 層選擇性覆蓋該SERS活性奈米表面的一部分。 3 7 ·如申請專利範圍第3 1項所述之陣列裝置,其中該吸附 層選擇性覆蓋該SERS非活性奈米表面的一部分。 3 8·如申請專利範圍第3 1項所述之陣列裝置,其中該吸附 層更包括至少一組由活性與非活性材料構成之層。 3 9 ·如申請專利範圍第1項所述之陣列裝置,其更包括一 功能層,位於該基材上,用以施加一偏置 (bias)以增強 該檢測表面上的分子吸附。 40 ·如申請專利範圍第3 9項所述之陣列裝置,其中該功能 層提供電偏壓(electrical biasing)。 45 200823447 4 1.如申請專利範圍第3 9項所述之陣列裝置,其中該功能 層提供熱偏置(thermal biasing)。 42.如申請專利範圍第4 1項所述之陣列裝置,其中該熱偏 置層係由選自下列所構成之群組的一材料所組成:Ti、 Ni、Cr、Pt、Ru、Ni-Cr 合金、NiCrN、Pt-Rh 合金、Cu-Au-Co 合金、Ir-Rh合金和W-Re合金。 φ 43.如申請專利範圍第3 9項所述之陣列裝置,其中該功能 層經由一外部來源供以一磁場好提供該檢測表面一磁偏 置(magnetic bias);或/且該功能層包含磁性材料,如Fe、 Co、Ni或上述之化合物。 44.如申請專利範圍第43項所述之陣列裝置,其中用於該 該磁偏置之磁場強度介於〇·5高斯(gauss)和3000高斯之 間。 4 5.如申請專利範圍第43項所述之陣列裝置,其中用於該 疇 該磁偏置之磁場強度介於2高斯和200高斯之間。 46. —種微量化學物質檢測系統,其至少包含: 操作性關聯於一陣列設備的一光譜系統,該陣列設備包 括: 一基材,支撐複數個奈米結構, 該些奈米結構上的一暴露檢測表面,其中該表面包 括: 46 200823447 至少一 SERS活性奈米表面,以及 至少一 SERS非活性奈米表面,建立於該SERS 活性奈米表面鄰近處。 47·如申請專利範圍第46項所述之微量化學物質檢測系 統’其中該光譜系統包括一雷射光束源,用以產生一雷 . 射;一光學組件,用以聚焦該雷射光束;一偏轉系統,用 以在該陣列裝置處導向該雷射光束;一收集器,用以接收 • 由該陣列裝置散射之雷射光束的一部分;以及一光譜分析 器’用以接收該部分並產生該陣列裝置上之微量化學物質 成分的一輸出指示。The array device of claim 31, wherein the thickness of the adsorption layer is between 2 nm and 20 nm. The array device of claim 3, wherein the adsorption layer selectively covers a portion of the surface of the SERS active nanoparticle. The array device of claim 3, wherein the adsorption layer selectively covers a portion of the surface of the SERS inactive nanoparticle. The array device of claim 31, wherein the adsorption layer further comprises at least one layer of active and inactive materials. The array device of claim 1, further comprising a functional layer on the substrate for applying a bias to enhance molecular adsorption on the detection surface. 40. The array device of claim 39, wherein the functional layer provides electrical biasing. The array device of claim 39, wherein the functional layer provides thermal biasing. 42. The array device of claim 41, wherein the thermal bias layer is comprised of a material selected from the group consisting of Ti, Ni, Cr, Pt, Ru, Ni- Cr alloy, NiCrN, Pt-Rh alloy, Cu-Au-Co alloy, Ir-Rh alloy and W-Re alloy. The array device of claim 39, wherein the functional layer supplies a magnetic field to provide a magnetic bias via an external source; or/and the functional layer comprises A magnetic material such as Fe, Co, Ni or a compound of the above. 44. The array device of claim 43, wherein the magnetic field strength for the magnetic bias is between 〇·5 gauss and 3000 gauss. 4. The array device of claim 43, wherein the magnetic field strength for the magnetic bias is between 2 Gauss and 200 Gauss. 46. A trace chemical detection system comprising: at least: a spectroscopy system operatively associated with an array device, the array device comprising: a substrate supporting a plurality of nanostructures, one of the nanostructures Exposing the detection surface, wherein the surface comprises: 46 200823447 At least one SERS active nano surface, and at least one SERS inactive nano surface, is established adjacent to the SERS active nano surface. 47. The micro-chemical detection system of claim 46, wherein the spectroscopic system comprises a laser beam source for generating a laser beam; an optical component for focusing the laser beam; a deflection system for directing the laser beam at the array device; a collector for receiving a portion of the laser beam scattered by the array device; and a spectrum analyzer for receiving the portion and generating the portion An indication of the output of trace chemical components on the array device. 48·如申請專利範圍第46項所述之微量化學物質檢測系 統’其中該光譜系統係選自下列所構成之群組:表面增強 拉曼光譜,表面增強共振拉曼光譜(surface-enhanced Raman resonance spectroscopy,SERRS )、表面增強相干反 斯托克斯拉曼散射(surface-enhanced coherent-anti stokes Raman scattering,SECARS )光譜' 表面增強紅外光吸收 (surface-enhanced infrared absorption,SEIRA )光譜、表 面增強熒光光譜、表面增強光致發光光譜。 49. 一種偵測分子的方法,其至少包含:a)導入一化學物 質至一陣列裝置上,使該化學物質的分子被吸附於該陣列 裝置的一檢測表面上,b)以一雷射光束照射該陣列裝置, e)收集該被吸收分子的散射光子,以及d)自該散射光子偵 測拉曼光譜;其中該陣列裝置包括·· 4748. The micro-chemical detection system described in claim 46, wherein the spectroscopic system is selected from the group consisting of surface-enhanced Raman resonance, surface-enhanced Raman resonance Spectroscopy, SERRS ), surface-enhanced coherent-anti-stokes Raman scattering (SECARS) spectrum surface-enhanced infrared absorption (SEIRA) spectroscopy, surface-enhanced fluorescence Spectral, surface enhanced photoluminescence spectra. 49. A method of detecting a molecule comprising: a) introducing a chemical to an array device such that molecules of the chemical are adsorbed onto a detection surface of the array device, b) using a laser beam Irradiating the array device, e) collecting scattered photons of the absorbed molecules, and d) detecting Raman spectra from the scattered photons; wherein the array device comprises 47 200823447 一基材,支撐複數個奈米結構, 該些奈米結構上的一暴露檢測表面,其中該表 至少一 SERS活性奈米表面,以及 至少一 SERS非活性奈米表面,建立於該 性奈米表面鄰近處。 50.如申請專利範圍第49項所述之分子偵測方法 化學物質係處於選自下列所構成之群組的一形態 液體、粉末、凝膠、氣霧劑(aerosol)與固體。 5 1 · —種形成一陣列裝置的方法,其至少包含: 提供一基材; 在該基材上沉積至少一材料層; 在該材料層上建立一圖案,該圖案界定複數 構, 移除一部分該材料層以界定該奈米結構的側 在該些奈米結構上形成一暴露檢測表面,其 至少一 SERS活性奈米表面,以及 至少一 S E R S非活性奈米表面,建立於 性奈米表面鄰近處。 5 2.如申請專利範圍第5 1項所述之陣列裝置形 中該基材係選自下列所構成之群組:GaAs、ZnS AI2O3、玻璃、Ti、Ni、Cr、A1 與 Cu。 面包括: SERS 活 ,其中該 :氣體、 個奈米結 , 中該表面 :SERS 活 L方法,其 >藍寶石、 48 200823447 5 3.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該基材係一非活性材料。 5 4.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該至少一材料層基材係選自下列所構成之群組:一活性 材料層、一非活性材料層、一黏附層、一吸附層、一功能 層與一遮蔽層。 5 5.如申請專利範圍第5 4項所述之陣列裝置形成方法,其 中該非活性材料係一絕緣體。 5 6.如申請專利範圍第55項所述之陣列裝置形成方法,其 中該絕緣體係選自下列所構成之群組:二氧化矽、氡化鋁、 氮化碎、氧化组、氧化鈦。 5 7.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該非活性層的厚度介於1 nm和5 μ m之間。200823447 A substrate supporting a plurality of nanostructures, an exposed detection surface of the nanostructures, wherein the surface is at least one SERS active nano surface, and at least one SERS inactive nano surface is established in the The surface of the rice is adjacent. 50. The molecular detection method according to claim 49, wherein the chemical substance is in a form of a liquid, a powder, a gel, an aerosol, and a solid selected from the group consisting of the following. 5 1 - A method of forming an array device, comprising: providing a substrate; depositing at least one material layer on the substrate; creating a pattern on the material layer, the pattern defining a plurality of structures, removing a portion The material layer forms an exposed detection surface on the nanostructures, the at least one SERS active nano surface, and at least one SERS inactive nano surface, on the side defining the nanostructure, established on the surface of the nano surface At the office. 5. The array device according to claim 5, wherein the substrate is selected from the group consisting of GaAs, ZnS AI2O3, glass, Ti, Ni, Cr, Al and Cu. The surface includes: SERS activity, wherein: gas, nano-knot, medium surface: SERS live L method, > sapphire, 48 200823447 5 3. Array device forming method according to claim 5 Wherein the substrate is an inactive material. 5. The method of forming an array device according to claim 5, wherein the at least one material layer substrate is selected from the group consisting of: an active material layer, an inactive material layer, and an adhesion layer. a layer, an adsorption layer, a functional layer and a shielding layer. 5. The method of forming an array device according to claim 5, wherein the inactive material is an insulator. The method of forming an array device according to claim 55, wherein the insulating system is selected from the group consisting of cerium oxide, aluminum hydride, cerium nitride, oxidized group, and titanium oxide. The method of forming an array device according to claim 54, wherein the thickness of the inactive layer is between 1 nm and 5 μm. 5 8.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該非活性層的厚度介於5 nm和1 00 nm之間。 59.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該活性材料係一選自下列所構成之群組的一貴金屬: Ag、Au 與 Pt 〇 60.如申請專利範圍第54項所述之陣列裝置形成方法,其 49 200823447 中該活性材料係一選自下列所構成之群組的一過渡金屬: A1、Fe、Co、Ni、Ru、Rh 與 Pd 〇 61 ·如申請專利範圍第54項所述之陣列裝置形成方法,其 中該活性層的厚度介於1 nm和5 μ m之間。 62.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該活性層的厚度介於5 n m和1 0 0 n m之間。The method of forming an array device according to claim 54, wherein the thickness of the inactive layer is between 5 nm and 100 nm. The method of forming an array device according to claim 54, wherein the active material is a noble metal selected from the group consisting of Ag, Au and Pt 〇 60. The array device forming method, wherein the active material in 49 200823447 is a transition metal selected from the group consisting of: A1, Fe, Co, Ni, Ru, Rh, and Pd 〇 61 · as claimed The method of forming an array device according to Item 54, wherein the active layer has a thickness of between 1 nm and 5 μm. The method of forming an array device according to claim 54, wherein the active layer has a thickness of between 5 n m and 1 0 0 n m. 63.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該黏附層係由Ni或Ti所組成。 64.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該黏附層的厚度介於10 nm和1 0 0 nm之間。 6 5.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該吸附層係由選自下列所構成之群組的一材料所組 成:Ti〇2、Si〇2、Al2〇3、Si3N4、Ta205、氧化鋅、氧化 錫、氧化銻、氧化銀、氧化金、Ag、Au、Cu、Pt、Sn 以及摻雜氯或氯化物的銀或金。 66.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該吸附層係由選自下列所構成之群組的一聚合物所組 成:乙烯-三氟氯乙烯共聚物(ECTFE )、聚(乙烯-共-丙 烯酸丁酯·共-一氧化碳)(PEBA)、聚四氟乙烯(PTFE)、 50 200823447 聚(烯丙胺鹽酸鹽)(PAH)、聚苯乙烯磺酸鹽(PSS)、聚 乙烯醇(PVA)、聚氯乙烯(PVC)、聚偏氟乙烯(PVDF)、 聚乙烯吡咯烷酮(PVP )。 6 7.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該吸附層的厚度介於〇 · 5 n m和5 0 0 n m之間。The method of forming an array device according to claim 54, wherein the adhesion layer is composed of Ni or Ti. 64. The method of forming an array device according to claim 54, wherein the thickness of the adhesion layer is between 10 nm and 100 nm. 6. The method of forming an array device according to claim 54, wherein the adsorption layer is composed of a material selected from the group consisting of Ti〇2, Si〇2, Al2〇3, Si3N4, Ta205, zinc oxide, tin oxide, antimony oxide, silver oxide, gold oxide, Ag, Au, Cu, Pt, Sn, and silver or gold doped with chlorine or chloride. 66. The method of forming an array device according to claim 54, wherein the adsorption layer is composed of a polymer selected from the group consisting of ethylene-chlorotrifluoroethylene copolymer (ECTFE), Poly(ethylene-co-butyl acrylate·co-carbon monoxide) (PEBA), polytetrafluoroethylene (PTFE), 50 200823447 poly(allylamine hydrochloride) (PAH), polystyrene sulfonate (PSS), Polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP). The method of forming an array device according to claim 54, wherein the thickness of the adsorption layer is between 〇 5 n m and 500 nm. 68.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該吸附層的厚度介於2nm和20nm之間。 69. 如申請專利範圍第54項所述之陣列裝置形成方法,其 中該功能層提供熱偏置。 70. 如申請專利範圍第54項所述之陣列裝置形成方法,其 中該吸附層係由選自下列所構成之群組的一材料所組 成:Ti、Ni、Cr、Pt、Ru、Ni-Cr 合金、NiCrN、Pt-Rh 合金、Cu-Au-Co合金、Ir-Rh合金和W-Re合金。 7 L·如申請專利範圍第54項所述之陣列裝置形成方法,其 中該功能層提供偏壓。 72.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該功能層提供局部性磁偏置。 7 3.如申請專利範圍第54項所述之陣列裝置形成方法,其 51 200823447 中該遮蔽層係由光阻劑(photoresist)組成。 74.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該遮蔽層係由壓印聚合物組成。 7 5.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該遮蔽層係由一可電鍍金屬組成。The method of forming an array device according to claim 54, wherein the thickness of the adsorption layer is between 2 nm and 20 nm. 69. The array device forming method of claim 54, wherein the functional layer provides a thermal bias. 70. The method of forming an array device according to claim 54, wherein the adsorption layer is composed of a material selected from the group consisting of Ti, Ni, Cr, Pt, Ru, Ni-Cr. Alloy, NiCrN, Pt-Rh alloy, Cu-Au-Co alloy, Ir-Rh alloy and W-Re alloy. The method of forming an array device according to claim 54, wherein the functional layer provides a bias voltage. The method of forming an array device according to claim 54, wherein the functional layer provides a local magnetic bias. 7. The method of forming an array device according to claim 54, wherein the masking layer is composed of a photoresist. The method of forming an array device according to claim 54, wherein the masking layer is composed of an imprinted polymer. The method of forming an array device according to claim 54, wherein the shielding layer is composed of an electroplatable metal. 76.如申請專利範圍第75項所述之陣列裝置形成方法,其 中該可電鍍金屬係鋁。 77.如申請專利範圍第54項所述之陣列裝置形成方法,其 中該遮蔽層係由一抗蝕刻材料組成。 7 8.如申請專利範圍第77項所述之陣列裝置形成方法,其 中該抗餘刻材料係一金屬。 79.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該建立一圖案以界定複數個奈米結構的步驟包括在該 遮蔽層上施加一光學微影製程。 8 0.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該建立一圖案以界定複數個奈米結構的步驟包括在該 遮蔽層上施加一壓印製程。 8 1.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 52 200823447 中該建立一圖案以界定複數個奈米結構的步驟包括在該 遮蔽層上施加一電鍵製程。 82.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該形成一暴露檢測表面於該奈米結構上的步驟包括蝕 刻至少一材料層、暴露該活性材料層以及移除該遮蔽層 以暴露該非活性材料層。The method of forming an array device according to claim 75, wherein the electroplatable metal is aluminum. The method of forming an array device according to claim 54, wherein the shielding layer is composed of an etching resistant material. The method of forming an array device according to claim 77, wherein the anti-removal material is a metal. 79. The array device forming method of claim 5, wherein the step of creating a pattern to define the plurality of nanostructures comprises applying an optical lithography process to the masking layer. The method of forming an array device according to claim 51, wherein the step of creating a pattern to define a plurality of nanostructures comprises applying an imprint process on the masking layer. 8. The method of forming an array device according to claim 51, wherein the step of establishing a pattern to define a plurality of nanostructures in 52 200823447 comprises applying a key bonding process to the masking layer. The method of forming an array device according to claim 5, wherein the step of forming an exposure detecting surface on the nanostructure comprises etching at least one material layer, exposing the active material layer, and removing the shadow. A layer to expose the layer of inactive material. 83 ·如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該形成一暴露檢測表面於該奈米結構上的步驟包括蝕 刻至少一材料層、暴露該非活性材料層以及移除該遮蔽 層以暴露該活性材料層。 84.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該形成一暴露檢測表面於該奈米結構上的步驟包括沉 積一活性材料、研磨該裝置的表面以及移除該遮蔽材料 以暴露該非活性層。 85.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 更包括沉積一吸附層。 86.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構具有一幾何圖案的奈米柱或奈米孔,該幾 何圖案選自下列所構成之群組的至少一者··正方形、矩 形、圓角矩形、菱形、圓形、三角形以及橢圓形。 53 200823447 87.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該圖案至少包括兩個子陣列,而各個子陣列中之奈米結 構的幾何形狀彼此相異。 88.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該圖案至少包括兩個子陣列,而各個子陣列中之奈米結 構的尺寸彼此相異。The method of forming an array device according to claim 5, wherein the step of forming an exposure detecting surface on the nanostructure comprises etching at least one material layer, exposing the inactive material layer, and removing the shadow. A layer to expose the active material layer. 84. The method of forming an array device according to claim 51, wherein the step of forming an exposure detecting surface on the nanostructure comprises depositing an active material, grinding a surface of the device, and removing the masking material. To expose the inactive layer. 85. The method of forming an array device according to claim 51, further comprising depositing an adsorption layer. 86. The method of forming an array device according to claim 5, wherein the nanostructure has a geometric pattern of nano-pillars or nanopores, the geometric pattern being selected from at least one of the group consisting of • Squares, rectangles, rounded rectangles, diamonds, circles, triangles, and ovals. The method of forming an array device according to claim 51, wherein the pattern comprises at least two sub-arrays, and the geometry of the nanostructures in each sub-array is different from each other. 88. The array device forming method of claim 5, wherein the pattern comprises at least two sub-arrays, and the sizes of the nanostructures in each sub-array are different from each other. 8 9.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構的高度介於lnm和1000 nm之間。 90.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構的高度介於5 nm和10 nm之間。 9 1.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構規律地分佈於該基材上。 92.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構周期性地分佈於該基材上。 93.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構的直徑介於1 n m和3 0 0 n m之間。 94.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構的直徑介於5 n m和5 0 n m之間。 54 200823447 9 5.如申請專利範圍第51項所述之陣列裝置形成方法,其 中該奈米結構的間距介於1 n m和1 0 0 0 n m之間。 96.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該奈米結構的間距介於5 n m和5 0 n m之間。 9 7.如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該SERS活性奈米表面的直徑介於1 nm和300 nm之8. The method of forming an array device according to claim 5, wherein the height of the nanostructure is between 1 nm and 1000 nm. 90. The method of forming an array device according to claim 51, wherein the height of the nanostructure is between 5 nm and 10 nm. 9. The method of forming an array device according to claim 5, wherein the nanostructure is regularly distributed on the substrate. The method of forming an array device according to claim 5, wherein the nanostructure is periodically distributed on the substrate. The method of forming an array device according to claim 51, wherein the nanostructure has a diameter of between 1 n m and 300 nm. The method of forming an array device according to claim 51, wherein the nanostructure has a diameter of between 5 n m and 50 n m. 5. The method of forming an array device according to claim 51, wherein the nanostructure has a pitch of between 1 n m and 1 0 0 n m. The method of forming an array device according to claim 51, wherein the nanostructure has a pitch of between 5 n m and 50 n m. 9. The method of forming an array device according to claim 51, wherein the SERS active nanometer surface has a diameter of between 1 nm and 300 nm. 98. 如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該SERS活性奈米表面的直徑介於5 nm和50 nm之間。 99. 如申請專利範圍第5 1項所述之陣列裝置形成方法,其 中該SERS非活性奈米表面的直徑介於1 nm和300 nm 之間。98. The array device forming method of claim 5, wherein the SERS active nano surface has a diameter between 5 nm and 50 nm. 99. The array device forming method of claim 5, wherein the SERS inactive nano surface has a diameter between 1 nm and 300 nm. 10 0.如申請專利範圍第51項所述之陣列裝置形成方法, 其中該SERS非活性奈米表面的直徑介於5 nm和50 nm 之間。 1 0 1.如申請專利範圍第5 1項所述之陣列裝置形成方法, 其中該奈米結構的至少一部分之奈米特徵尺寸與下列至少 一者功能性匹配:該表面上電子的一電子平均自由路徑、 該表面上電子的電子波長、該表面上聲子(phonon)的一聲 子平均自由路徑以及該表面上聲子的聲子波長。 55The method of forming an array device according to claim 51, wherein the SERS inactive nano surface has a diameter between 5 nm and 50 nm. The method of forming an array device according to claim 5, wherein at least a portion of the nanometer feature size of the nanostructure is functionally matched to at least one of: an electron average of electrons on the surface Free path, electron wavelength of electrons on the surface, a phonon mean free path of phonons on the surface, and phonon wavelength of phonons on the surface. 55
TW96140860A 2006-11-21 2007-10-30 Array device, method of forming the same, trace chemical detection system comprising the same and method of detecting molecules by using the same TWI432717B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/562,409 US7460224B2 (en) 2005-12-19 2006-11-21 Arrays of nano structures for surface-enhanced Raman scattering

Publications (2)

Publication Number Publication Date
TW200823447A true TW200823447A (en) 2008-06-01
TWI432717B TWI432717B (en) 2014-04-01

Family

ID=44771145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140860A TWI432717B (en) 2006-11-21 2007-10-30 Array device, method of forming the same, trace chemical detection system comprising the same and method of detecting molecules by using the same

Country Status (1)

Country Link
TW (1) TWI432717B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401826B (en) * 2009-12-10 2013-07-11 Walsin Lihwa Corp Light emitting device and method for enhancing light extraction thereof
TWI452282B (en) * 2011-01-07 2014-09-11 Hon Hai Prec Ind Co Ltd A molecule carrier used for single molecule detection
TWI481858B (en) * 2013-06-05 2015-04-21 Ind Tech Res Inst Surface-enhanced raman scattering substrate
TWI802187B (en) * 2021-12-28 2023-05-11 國立臺灣大學 Detection platform and method for detecting abused drugs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401826B (en) * 2009-12-10 2013-07-11 Walsin Lihwa Corp Light emitting device and method for enhancing light extraction thereof
TWI452282B (en) * 2011-01-07 2014-09-11 Hon Hai Prec Ind Co Ltd A molecule carrier used for single molecule detection
TWI481858B (en) * 2013-06-05 2015-04-21 Ind Tech Res Inst Surface-enhanced raman scattering substrate
US9500592B2 (en) 2013-06-05 2016-11-22 Industrial Technology Research Institute Surface-enhanced Raman scattering substrate
TWI802187B (en) * 2021-12-28 2023-05-11 國立臺灣大學 Detection platform and method for detecting abused drugs

Also Published As

Publication number Publication date
TWI432717B (en) 2014-04-01

Similar Documents

Publication Publication Date Title
US7576854B2 (en) Arrays of nano structures for surface-enhanced raman scattering
US8582099B2 (en) Monitoring network based on nano-structured sensing devices
Langer et al. Present and future of surface-enhanced Raman scattering
Zhang et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection
Larmour et al. Surface enhanced optical spectroscopies for bioanalysis
Procházka Surface-enhanced Raman spectroscopy
Tang et al. Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants
Lyon et al. Raman spectroscopy
US9182352B2 (en) System and method for detecting oil or gas underground using light scattering spectral analyses
US8149397B2 (en) Metallic nanostructures adapted for electromagnetic field enhancement
US8213007B2 (en) Spectrally sensing chemical and biological substances
Chen et al. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints
Zhang et al. Raman detection of proteomic analytes
TWI304129B (en) A method and device for detecting a small number of molecules using surface-enhanced coherent anti-stokes raman spectroscopy
US8102525B2 (en) Systems and methods for detecting chemical and biological substances
Liu et al. SERS substrate fabrication for biochemical sensing: Towards point-of-care diagnostics
Mandal et al. Progress in surface enhanced Raman scattering molecular sensing: A review
CN105814438B (en) System and method for detecting underground crude oil or natural gas by light scattering spectral analysis
Yaraki et al. Emerging SERS biosensors for the analysis of cells and extracellular vesicles
US7318903B2 (en) Photonic sensor particles and fabrication methods
Jia et al. Giant vesicles with anchored tiny gold nanowires: fabrication and surface-enhanced Raman scattering
TWI432717B (en) Array device, method of forming the same, trace chemical detection system comprising the same and method of detecting molecules by using the same
Farrell et al. Surface regeneration and signal increase in surface-enhanced Raman scattering substrates
Wagner et al. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics
Tran et al. Advanced nano engineering of surface-enhanced Raman scattering technologies for sensing applications

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees