TW200820457A - MQW nitride LED with carrier supply layer - Google Patents

MQW nitride LED with carrier supply layer Download PDF

Info

Publication number
TW200820457A
TW200820457A TW95138755A TW95138755A TW200820457A TW 200820457 A TW200820457 A TW 200820457A TW 95138755 A TW95138755 A TW 95138755A TW 95138755 A TW95138755 A TW 95138755A TW 200820457 A TW200820457 A TW 200820457A
Authority
TW
Taiwan
Prior art keywords
layer
alloy
nitride
well
gan
Prior art date
Application number
TW95138755A
Other languages
Chinese (zh)
Other versions
TWI359513B (en
Inventor
Liang-Wen Wu
Fen-Ren Chien
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to TW95138755A priority Critical patent/TW200820457A/en
Publication of TW200820457A publication Critical patent/TW200820457A/en
Application granted granted Critical
Publication of TWI359513B publication Critical patent/TWI359513B/zh

Links

Landscapes

  • Led Devices (AREA)

Abstract

A MQW LED structure is provided herein, which contains a carrier supply layer joined to a side of the MQW light emitting layer to provide additional carriers for recombination and to avoid/reduce the use of impurity in the light emitting layer. The carrier supply layer contains multiple and interleaving well layers and barrier layers, each having a thickness of 5~300 &angst, with a total thickness of 1~500 nm. The well layers and the barrier layers are both made of AlpInqGa1-p-qN(p, q ≥ 0, 0 ≥ p + q ≤ 1)compound semiconductor doped with Si or Ge, but with different compositions and with the barrier layers having a higher bandgap than that of the well layers. The carrier supply layer has an electron concentration of 1x10<SP>17<SP>-5x10<SP>21<SP>/cm3.

Description

200820457 九、發明說明: 【發明所屬之技術領域】 本發明係有關於氮化物多重量子井發光二極體,特別係 有關於一種具有載子提供層之氮化物多重量子井發光二極 體,藉以提供額外之載子,以及避免/降低發光層内雜質的 使用。 【先前技術】 為提高氮化鎵(GaN)系發光二極體(LED)之亮度,美國 專利第5,578,839號揭示了一種發光層(或稱主動層)摻雜有 η型雜質(例如Si )和/或p型雜質(例如Mg或Zn等)的 InxGa】_xN (0&lt;χ&lt;1)化合物半導體所製成的LED結構。此LED 結構之發光層,係夾在η型GaN系化合物半導體製成之第一 包覆層(clad layer )與p型GaN系化合物半導體製成之第二 包覆層中間。該LED結構在亮度上之提升,係由於上述發光 層内所摻雜之雜質提高了載子(亦即,電子和電洞)的密度, 因此有更多載子參與重新結合(recombination )所致。 相形之下,使用多重量子井(multi quantum-well,MQW ) 技術之高亮度LED,通常在其發光層内係採未加摻雜之井層 (well layer)。一般MQW LED之發光層係包含有多重井層, 井層之厚度係小於半導體材料中載子的德布洛依(deBroglie ) 波長,致使電子和電洞被局限在井層内,而可達成更佳的重 新結合效率。井層通常係未加摻雜,因為井層内之雜質會導 5 200820457 致非輕射性(non-radiative )的重新結合,進而造成發光效率 的降低和過多熱量的產生。另一方面,在2002年五月電機工 程師協會量子電子學期刊(IEEE Journal of Quantum200820457 IX. Description of the Invention: [Technical Field] The present invention relates to a nitride multiple quantum well light-emitting diode, and more particularly to a nitride multiple quantum well light-emitting diode having a carrier-providing layer, thereby Provide additional carriers and avoid/reduce the use of impurities in the luminescent layer. [Prior Art] In order to improve the brightness of a gallium nitride (GaN) light-emitting diode (LED), a light-emitting layer (or active layer) is doped with an n-type impurity (for example, Si) and a light-emitting layer (or an active layer) is disclosed in US Pat. No. 5,578,839. / or a p-type impurity (for example, Mg or Zn, etc.) of InxGa]_xN (0&lt;χ&lt;1) compound semiconductor LED structure. The light-emitting layer of the LED structure is sandwiched between a first cladding layer made of an n-type GaN-based compound semiconductor and a second cladding layer made of a p-type GaN-based compound semiconductor. The increase in brightness of the LED structure is due to the fact that the impurities doped in the above-mentioned light-emitting layer increase the density of carriers (ie, electrons and holes), so that more carriers participate in recombination. . In contrast, high-brightness LEDs using multi-quantum-well (MQW) technology typically employ an undoped well layer in their luminescent layer. Generally, the illuminating layer of the MQW LED includes multiple well layers. The thickness of the well layer is smaller than the deBroglie wavelength of the carrier in the semiconductor material, so that the electrons and holes are confined in the well layer, and the Good recombination efficiency. The well layer is usually undoped because the impurities in the well layer will lead to a non-radiative recombination, resulting in reduced luminous efficiency and excessive heat generation. On the other hand, in May 2002, the Journal of Quantum Electronics of the Institute of Electrical Engineers (IEEE Journal of Quantum)

Electronics)第 38 冊第 5 期裡,Wu 等人在 Influence of Si doping on the Characteristics of InGaN-GaN Multiple Quantum-Well Blue Light Emitting Diode ( Si 攙雜對Electronics, Vol. 38, No. 5, Wu et al., Influence of Si doping on the Characteristics of InGaN-GaN Multiple Quantum-Well Blue Light Emitting Diode (Si Noisy Pair)

InGaN-GaN多重量子井發光二極體之特性方面的影響)一文 中建議,InGaN-GaN MQW LED之發光強度和操作電壓,可 藉由在MQW發光層之GaN位障層(barrier layer )内加入Si 攙雜,而得到顯著之改善。然而,位障層内之雜質密度應維 持在適當之位準下,否則該LED之結晶(crystalline )便會受 到影響。 換言之,在LED之發光層攙雜雜質,確實有助於提高載 子重新結合效率,但此種改善是要付出代價。 【發明内容】 因此5本發明之主要目的,是提供一種氮化物MQW LED 結構,藉以免除先存技藝之缺點。 本發明之一項主要特徵,是在所提出之LED結構内,於 未摻雜的MQW發光層之一側提供一載子提供層 (carrier supply layer )。此載子提供層係包含有多重且彼此交替重疊之 井層和位障層,這些井層和位障層各具有5〜300A之厚度,而 使載子提供層總厚度為1〜500 nm。井層和位障層兩者均係由 6 200820457 摻雜有 Si 或 Ge 之 AlpInqGa^p-qN (p,q2〇, 〇Sp+qSl)化合物半導 體所製成,但係具有不同之組成,且位障層需具有高於井層 之能帶隙(bandgap )。另外,載子提供層之電子濃度係為 lxlO17〜5xl02】/cm3。 載子提供層的設置具有多項優點。首先,額外之電子會 被提供進MQW發光層内以與電洞重新結合,而使本發明之 LED結構達成較高的内部量子效率(internal quantum efficiency )與較高亮度。此外,由於電子之移動性(mobility ) 係大於電洞,載子提供層之設置可使電子減速,以致電子有 較高的機會與電洞重新結合,因而可達成較高之重新結合效 率。再者,攙雜進載子提供層内之Si或Ge可在不摻雜發光 層的情形下有效地使本發明之LED結構的操作電壓降低,而 又可以使發光層有更好之結晶。 本發明之另一特徵,是在載子提供層與發光層中間之設 置一電洞阻隔層(hole blocking layer )。此電洞阻隔層係由未 摻雜或有Si摻雜的GaN系材料製成,其具有大於發光層之能 帶隙以避免電洞逃逸進載子提供層内、並在該處與電子重新 結合。電洞阻隔層具有5 A〜0·5μηι之厚度。 電洞阻隔層之設置還具有一些額外之優點。舉例而言, 實驗證明電洞阻隔層之存在會使崩潰電壓(breakdown voltage )增加,並使本發明之LED結構的漏洩電流(leakage 7 200820457 current )降低。此外,由於載子提供層成長後之表面上會有 一些V形的瑕疵形成,電洞阻隔層可彌補這些瑕疵使後續成 長之發光層達成較佳之結晶。在本發明之某些實施例中,電 洞阻隔層係由In摻雜或In/Si共同摻雜之GaN系材料所製 成,以達成更佳之平滑化效果。其原因在於當加入銦原子時, 可大幅提昇載子提供層之表面平滑性,進而有效地避免發光 層之瑕/疵和堆疊層錯(stacking faults)。 茲配合所附圖示、實施例之詳細說明及申請專利範圍, 將上述及本發明之其他目的與優點詳述於後。然而,當可了 解所附圖示純係為解說本發明之精神而設,不當視為本發明 範疇之定義。有關本發明範疇之定義,請參照所附之申請專 利範圍。 【實施方式】 第1圖所示係依據本發明之第一實施例的氮化物MQW LED結構之示意圖。請注意到本說明書係使用「LED結構」 一詞來指稱一個LED之磊晶結構,另外以「LED裝置」一詞 來指稱一個LED結構形成之後,再經過後續的晶片程序(chip process)在LED結構上形成電極後所得之半導體裝置。The influence of the characteristics of InGaN-GaN multiple quantum well light-emitting diodes) suggests that the luminous intensity and operating voltage of InGaN-GaN MQW LEDs can be added by the GaN barrier layer of the MQW light-emitting layer. Si is noisy and is significantly improved. However, the density of the impurities in the barrier layer should be maintained at an appropriate level, otherwise the crystal of the LED will be affected. In other words, impurities in the luminescent layer of the LED do contribute to the improvement of carrier recombination efficiency, but such improvement comes at a price. SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a nitride MQW LED structure, thereby eliminating the disadvantages of the prior art. A major feature of the present invention is the provision of a carrier supply layer on one side of the undoped MQW luminescent layer within the proposed LED structure. The carrier provides a layer comprising a plurality of well layers and barrier layers that alternately overlap each other. The well layers and the barrier layers each have a thickness of 5 to 300 A, and the carrier provides a total thickness of the layer of 1 to 500 nm. Both the well layer and the barrier layer are made of 6200820457 AlpInqGa^p-qN (p, q2〇, 〇Sp+qSl) compound semiconductor doped with Si or Ge, but have different compositions, and The barrier layer needs to have a bandgap higher than the well layer. Further, the electron concentration of the carrier supply layer is lxlO17 to 5xl02]/cm3. The provision of the carrier providing layer has several advantages. First, additional electrons are provided into the MQW luminescent layer to recombine with the holes, allowing the LED structure of the present invention to achieve higher internal quantum efficiency and higher brightness. In addition, since the mobility of the electrons is larger than that of the holes, the arrangement of the carrier supply layer can decelerate the electrons, so that the electrons have a higher chance of recombining with the holes, thereby achieving a higher recombination efficiency. Further, Si or Ge in the doping-providing layer can effectively lower the operating voltage of the LED structure of the present invention without doping the light-emitting layer, and can further crystallize the light-emitting layer. Another feature of the present invention is to provide a hole blocking layer between the carrier supply layer and the light-emitting layer. The hole barrier layer is made of an undoped or Si-doped GaN-based material having a band gap larger than that of the light-emitting layer to prevent holes from escaping into the carrier-providing layer and where the electrons are re-established. Combine. The hole barrier layer has a thickness of 5 A to 0.5 μm. The arrangement of the hole barrier layer also has some additional advantages. For example, experiments have shown that the presence of a hole barrier layer increases the breakdown voltage and reduces the leakage current of the LED structure of the present invention (leakage 7 200820457 current ). In addition, since the V-shaped ruthenium is formed on the surface of the carrier-providing layer, the hole-blocking layer can compensate for these 瑕疵 to achieve better crystallization of the subsequently grown luminescent layer. In some embodiments of the invention, the hole barrier layer is made of a GaN-based material that is doped with In or Si to achieve a better smoothing effect. The reason for this is that when indium atoms are added, the surface smoothness of the carrier supply layer can be greatly improved, thereby effectively avoiding 瑕/疵 and stacking faults of the light-emitting layer. The above and other objects and advantages of the present invention will be described in detail with reference to the accompanying drawings and claims. However, it is to be understood that the appended drawings are merely illustrative of the scope of the invention. For the definition of the scope of the invention, please refer to the attached patent application. [Embodiment] Fig. 1 is a schematic view showing a structure of a nitride MQW LED according to a first embodiment of the present invention. Please note that this manual uses the term "LED structure" to refer to the epitaxial structure of an LED. In addition, the term "LED device" is used to refer to the formation of an LED structure, followed by a subsequent chip process in the LED. A semiconductor device obtained by forming an electrode on a structure.

如第1圖所示,在上述LED結構之底部,一基板10通 常係以氧化鋁單晶(藍寶石)或是具有與LED結構之磊晶層 接近的晶格常數之氧化物單晶製成。該基板10亦可由SiC 8 200820457As shown in Fig. 1, at the bottom of the LED structure, a substrate 10 is usually made of an oxide single crystal (sapphire) or an oxide single crystal having a lattice constant close to the epitaxial layer of the LED structure. The substrate 10 can also be made of SiC 8 200820457

(6H-SiC 或 4H.Sic )、Si、Zn〇、、或—从來製成。 通常,上述基板ίο最常見之材料為藍寶石或Sic。在該基板 之上表面,接著形成一由 AlaGabIni•“N 製成之緩衝層(buffer layer) 2〇。請注意到,在_些實施例 緩衝層20亦可省略。亦請注意的是,由於在形成本發明 之LED結構之蠢晶層中所應用的,多為相關領域具備一般技 藝^人員所習知的半導體製造方法,為簡化起見,本說明書 中多將這些方法之細節Μ省略,除非某些特定之重要製造 條件’才予以明白指出。 隹上述緩衝層2〇之上表面,形成以第一導 _製成之第-接觸層(_taetlaye相。在本實施例中, 弟—接觸層30係以—種n型GaN系材料製成。在某些他型 f施财,第—接觸層3G亦可以—種p型⑽系材料製成。 2置弟-接觸層3G之目的’係為了在後續的晶片程序中,提 供所形成之η型電極所需的歐姆接觸(oh*咖⑽),以及 為其他後續成長的蟲晶層提供較佳之成長條件。 接著,在上述第一接觸層30之上表面,形成-載子提供 層40。載子提供層40係由至少兩層井層4ι和至少兩層位障 層42交替堆疊形成。載子提供層之總厚度係在lnm愈 __之間’而每-井層41和位障層42之厚度係在以斑 屬之間。這些井層4]和位障層42均係由摻雜有si^e 200820457 之AIpInqGa,&quot;N(p,砂物十㈣)化合物半導體製成,而具有 在與5X的^之間的電子濃度。這些井層、和 位障層42係、具有獨立之組成,但位障層42具有較井層心為 咼之能帶隙(Eg)。井層41和位障層42均係在_。〔與^細。[ 之間的成長溫度下形成,但位障層42有較高之成長溫度。 接著’在載子提供層4〇的上表面,形成本實施例之MW 發光層IMQW發光層5〇係由多數之井層si和多數之位 障層52交替堆疊形成。井層”和位障層”均係由未加摻雜 之AlxInyGa“”N(x,於〇,把χ+泊)化合物半導體製成,但各具 有獨立之組成’該位障層52具有較井層51者為高之能帶隙 (Eg)。攻些井層51和位障層π亦係在6⑼它與η㈨。c之間 的不同成長溫度下形成’但位障層52有較高之成長溫度。載 子提供層40之井層4卜係具有適當之AynqGai_p.qN(p,松〇, 〇Sp+qSl)組成,而使其能帶隙大於發光層5〇之井層Μ的 AlxInyGai_x_yN (x,於〇,〇分十^)。請注意到,本實施例之發光 層50結構僅屬例不,本發明之精神並不限定發光層外需要 一個特定之MQW結構。 載子提供層40之作用在提供額外電子進入MQW發光層 50内,以便與電洞重新結合,而使本發明之led結構達成較 高之内部量子效率並進而達成較高亮度。此外,由於電子之 私動11已知係大於電洞,載子提供層4〇之設置亦可使電子減 10 200820457 速,使其有較高的機會與電洞重新結合,因而可達成較高之 重新結合效率。更進一步的是,攙雜進載子提供層40内之 Si或Ge可使本發明之LED結構,在不摻雜發光層50的情形 下同樣能有效地降低操作電壓,此外,載子提供層40復可促 使後續成長之發光層50具有更好之結晶。 最後,在發光層50之上表面,以和第一導電型相反的第 二導電型GaN系材料形成第二接觸層60。因此,在本實施例 中,第二接觸層60係以一種p型GaN系材料製成(以相對 於第一接觸層30的η型GaN系材料)。在某些其他實施例中, 第二接觸層60亦可以η型GaN系材料製成。設置第二接觸 層60之目的係為了在後續的晶片程序中,提供後續形成之p 型電極所需的歐姆接觸。 第2圖所示係依據本發明之第二實施例的氮化物MQW LED結構之示意圖。基本上,本實施例在結構上係與第一實 施例相類似,唯一不同處係在於載子提供層4 0與發光層5 0 之間設置有一層電洞阻隔層70。提供電洞阻隔層70之兩個 最重要的理由是:(1)避免發光層50之電洞逃逸至載子提供 層40並在該處與電子以非發光方式重新結合;以及(2)在載子 提供層40成長之後,使其表面上所形成之V形瑕疵平滑化, 而使後續成長之發光層50可以達成較佳之結晶。 電洞阻隔層70係在600°C與1200°C之間的成長溫度下, 200820457 以未加摻雜、或有Si摻雜、或有In摻雜、或有In/Si共同摻 雜之GaN系材料,形成在載子提供層40之上表面,而具有5 A〜0.5μπι之間的厚度。電洞阻隔層70之材料在係具有大於發 光層50之能帶隙,以避免電洞逃逸進入載子提供層40内。 具有In摻雜之目的是進一步提昇載子提供層40之表面平滑 性,以有效地避免發光層50之瑕疵和堆疊層錯。根據實驗證 明,電洞阻隔層70之存在尚具有其他額外之優點,諸如使本 發明之LED結構的崩潰電壓(Vb)增加,以及使其漏洩電流(Ir) 降低。 傳統上,第1和2圖中所顯示之LED結構,接著需經過 一晶片程序以形成LED對外電氣連結的電極、以及製備該 LED以利封裝。第3圖所示係第1圖之LED結構在經過該晶 片程序後的LED裝置之示意圖。請注意到是,相同之晶片程 序同樣可應用至第2圖中所顯示之LED結構,但為簡化起 見,下文係以第1圖之LED結構作為範例。 首先,LED結構被適當地加以蝕刻,藉以暴露出第一接 觸層30之一部份上表面。接著,在第一接觸層30被暴露區 域的上表面,以適當之金屬材料形成第一電極91。另一方面, 在第二接觸層60之上表面,形成一透明導電層(transparent conductive layer) 80。此透明導電層80可為一金屬導電層 (metallic conductive layer )或透明氧化物層(transparent 12 200820457 oxide layer )。該金屬導電層係由下列材料、但不僅限於這些 材料所製成·· Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Pd/Au合 金、Pt/Au 合金、Cr/Au 合金、Ni/Au/Be 合金、Ni/Cr/Au 合金、 Ni/Pt/Au合金、和Ni/Pd/Au合金。另一方面,透明氧化物層 係由下列材料、但不僅限於這些材料所製成:ITO、CTO、(6H-SiC or 4H.Sic), Si, Zn〇, or - is never made. Usually, the most common material for the above substrate ίο is sapphire or Sic. On the upper surface of the substrate, a buffer layer 2A made of AlaGabIni•“N is formed. Note that the buffer layer 20 may also be omitted in some embodiments. Also note that due to In the case of forming the stray layer of the LED structure of the present invention, most of the related art has a semiconductor manufacturing method known to those skilled in the art. For the sake of simplicity, the details of these methods are omitted in the present specification. Unless certain specific important manufacturing conditions 'is clearly indicated. 隹 The upper surface of the buffer layer 2 , above, forming a first contact layer made of the first conductive layer (_taetlaye phase. In this embodiment, the brother-contact The layer 30 is made of a kind of n-type GaN-based material. In some types, the first contact layer 3G can also be made of a p-type (10) material. 2 The purpose of the pair-contact layer 3G In order to provide the ohmic contact (oh*(10)) required for the formed n-type electrode in the subsequent wafer process, and to provide better growth conditions for other subsequently grown worm layers. Next, in the first contact described above The upper surface of layer 30, forming A layer 40 is provided. The carrier providing layer 40 is formed by alternately stacking at least two well layers 4ι and at least two barrier layers 42. The total thickness of the carrier providing layer is between 1 nm and __ between each well layer The thickness of the 41 and the barrier layer 42 is between the genus. The well layer 4] and the barrier layer 42 are both made of AiPInqGa doped with si^e 200820457, &quot;N(p, sand ten (four)) The compound semiconductor is made to have an electron concentration between 5 and 5. The well layers and the barrier layer 42 have independent compositions, but the barrier layer 42 has a band gap which is better than the well layer. (Eg). Both the well layer 41 and the barrier layer 42 are formed at a growth temperature between _ and [fine, but the barrier layer 42 has a higher growth temperature. Then the layer is provided at the carrier. The upper surface of the 4 ,, the MW light-emitting layer of the present embodiment is formed. The luminescent layer 5 is formed by alternately stacking a plurality of well layers si and a plurality of barrier layers 52. Both the well layer and the barrier layer are not added. Doped AlxInyGa ""N (x, 〇, χ + 泊) compound semiconductor, but each has an independent composition 'the barrier layer 52 has a higher energy band than the well layer 51 Gap (Eg). Attacking the well layer 51 and the barrier layer π are also formed at different growth temperatures between 6(9) and η(9).c but the barrier layer 52 has a higher growth temperature. The carrier provides the layer 40. The well layer 4 has the appropriate composition of AynqGai_p.qN (p, Matsuzaka, 〇Sp+qSl), and the AlxInyGai_x_yN (x, 〇, 〇, which has a band gap larger than the 井 layer of the luminescent layer 5〇 It is noted that the structure of the light-emitting layer 50 of the present embodiment is merely an example, and the spirit of the present invention does not limit that a specific MQW structure is required outside the light-emitting layer. The carrier providing layer 40 functions to provide additional electrons into the MQW luminescent layer 50 for recombination with the holes, thereby enabling the LED structure of the present invention to achieve higher internal quantum efficiency and thereby achieve higher brightness. In addition, since the electronic teleport 11 is known to be larger than the hole, the carrier providing layer 4 can also reduce the electron by 10 200820457, so that it has a higher chance of recombining with the hole, thus achieving a higher Reintegration efficiency. Furthermore, the doping of the Si or Ge in the carrier-providing layer 40 enables the LED structure of the present invention to effectively reduce the operating voltage without the doping of the light-emitting layer 50. Further, the carrier-providing layer 40 The recombination promotes the subsequent growth of the luminescent layer 50 to have a better crystal. Finally, on the upper surface of the light-emitting layer 50, the second contact layer 60 is formed of a second conductivity type GaN-based material opposite to the first conductivity type. Therefore, in the present embodiment, the second contact layer 60 is made of a p-type GaN-based material (in the n-type GaN-based material with respect to the first contact layer 30). In some other embodiments, the second contact layer 60 can also be made of an n-type GaN-based material. The purpose of providing the second contact layer 60 is to provide the ohmic contact required for the subsequently formed p-type electrode in subsequent wafer processing. Fig. 2 is a schematic view showing the structure of a nitride MQW LED according to a second embodiment of the present invention. Basically, the present embodiment is similar in structure to the first embodiment, and the only difference is that a hole blocking layer 70 is provided between the carrier supply layer 40 and the light-emitting layer 50. The two most important reasons for providing the hole barrier layer 70 are: (1) avoiding holes in the luminescent layer 50 from escaping to the carrier providing layer 40 where they are recombined with electrons in a non-luminescent manner; and (2) After the carrier supply layer 40 is grown, the V-shaped yt formed on the surface thereof is smoothed, so that the subsequently grown luminescent layer 50 can achieve better crystallization. The hole barrier layer 70 is at a growth temperature between 600 ° C and 1200 ° C, 200820457 GaN undoped or doped with Si, or doped with In, or doped with In/Si The material is formed on the upper surface of the carrier supply layer 40 to have a thickness of between 5 A and 0.5 μm. The material of the hole barrier layer 70 has a band gap greater than that of the light-emitting layer 50 to prevent holes from escaping into the carrier supply layer 40. The purpose of having In doping is to further enhance the surface smoothness of the carrier supply layer 40 to effectively avoid the defects and stacking faults of the light-emitting layer 50. According to the actual verification, the presence of the hole barrier layer 70 has other additional advantages such as an increase in the breakdown voltage (Vb) of the LED structure of the present invention and a decrease in its leakage current (Ir). Traditionally, the LED structures shown in Figures 1 and 2 are then subjected to a wafer process to form the electrodes to which the LEDs are electrically connected, and to prepare the LEDs for packaging. Figure 3 is a schematic illustration of the LED arrangement of the LED structure of Figure 1 after passing through the wafer sequence. Note that the same wafer program can be applied to the LED structure shown in Fig. 2, but for the sake of simplicity, the LED structure of Fig. 1 is exemplified below. First, the LED structure is suitably etched to expose a portion of the upper surface of the first contact layer 30. Next, the first electrode 91 is formed of a suitable metal material on the upper surface of the exposed region of the first contact layer 30. On the other hand, on the upper surface of the second contact layer 60, a transparent conductive layer 80 is formed. The transparent conductive layer 80 can be a metallic conductive layer or a transparent oxide layer (transparent 12 200820457 oxide layer). The metal conductive layer is made of, but not limited to, the following materials: Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Pd/Au alloy, Pt/Au alloy, Cr/Au alloy, Ni /Au/Be alloy, Ni/Cr/Au alloy, Ni/Pt/Au alloy, and Ni/Pd/Au alloy. On the other hand, the transparent oxide layer is made of, but not limited to, the following materials: ITO, CTO,

ZnO:A卜 ZnGa204、Sn02:Sb、Ga2〇3:Sn、AgIn02:Sn、Ιη203:Ζη、ZnO: Ab ZnGa204, Sn02: Sb, Ga2〇3: Sn, AgIn02: Sn, Ιη203: Ζη,

CuA102、LaCuOS、NiO、CuGa02、和 SrCu2〇2。接下來,在 透明導電層80之上表面、或如弟3圖所示的在透明性導電層 80之側邊,形成第二電極92。第二電極92係由下列材料、 但不僅限於這些材料所製成:Ni/Au合金、Ni/pt合金、Ni/pd 合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au合金、 cr/Au 合金、Sn/Au 合金、Ta/Au 合金、、TiwNx 咜〇)、 和 WSiy (y2〇)。 藉由以上較佳具體實施例之―,係教能更加清楚描 述本創作之特徵與精神,而並相切所揭露的較佳具體實 - 施例來對本創作之_加以限制。相反地,其目的是希望能 ’涵蓋各種改變及具相等性的安排於本創作所欲申請之專利範 圍的範疇内。 【圖式簡單說明】 第1圖所示係依據本發明之第-實施例的氣化物mqw 結構之示意圖。 13 200820457 第2圖所示係依據本發明之第二實施例的氮化物MQW LED 結構之示意圖。 第3圖所示係第1圖之LED結構在經過晶片程序後的LED 裝置之示意圖。 【主要元件符號說明】 10 基板 20 緩衝層 30 第一接觸層 40 載子提供層 41 井層 42 位障層 50 發光層 51 井層 52 位障層 60 第二接觸層 70 電洞阻隔層 80 透明導電層 91 第一電極 92 第二電極 14CuA102, LaCuOS, NiO, CuGa02, and SrCu2〇2. Next, a second electrode 92 is formed on the upper surface of the transparent conductive layer 80 or on the side of the transparent conductive layer 80 as shown in Fig. 3 . The second electrode 92 is made of, but not limited to, the following materials: Ni/Au alloy, Ni/pt alloy, Ni/pd alloy, Ni/Co alloy, Pd/Au alloy, Pt/Au alloy, Ti/ Au alloy, cr/Au alloy, Sn/Au alloy, Ta/Au alloy, TiwNx®, and WSiy (y2〇). With the above-described preferred embodiments, the teachings will be able to more clearly describe the features and spirit of the present invention, and the preferred embodiments of the present invention will be limited to the present invention. Rather, it is intended to cover a variety of changes and equivalences within the scope of the patent application to which this creative is intended. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a structure of a vaporized mqw according to a first embodiment of the present invention. 13 200820457 Figure 2 is a schematic illustration of a nitride MQW LED structure in accordance with a second embodiment of the present invention. Figure 3 is a schematic diagram of the LED device of Figure 1 after passing through the wafer process. [Main component symbol description] 10 substrate 20 buffer layer 30 first contact layer 40 carrier supply layer 41 well layer 42 barrier layer 50 light-emitting layer 51 well layer 52 barrier layer 60 second contact layer 70 hole barrier layer 80 transparent Conductive layer 91 first electrode 92 second electrode 14

Claims (1)

200820457 十、申請專利範圍: 1· 一種氮化物MQWLED結構,至少包含: 一基板; 方,該第一接觸層 GaN系材料製成; 一第一接觸層,係位於該基板上 係由具有第一導電型之 一載子提供層,係、位於該第_接觸層之上方,該裁 子提供層係由至少兩層井層與至少兩層轉層交替堆最 而成,該井層與該位障層各由摻雜有1型㈣之_ = 系材料製成,該位障層具有高於該井層之-能帶隙; 發光層,係位於該載子提供層上方,該發光層係 具有由複數層之井層與位障層所構成之—MQW結構,該 井層與該位障層各由—GaN系材料製成,·以及 /第二接觸層’係、位於該發光層上方,該第二接觸 曰由具有韻第—導電型相反之第二導電型之一⑽ 系材料製成; 其中,該載子提供層之該井層具有高於該發光層之該井 層之一能帶隙。 2.如申請專利範圍第1項所述之氮化物MQW LED結構, 進步包含-緩衝層,係位於該基板與該第一接觸層之 $間’该緩衝層係以-GaN系材料製成。 3’ ^申請專利範圍第2項所述之氮化物MQW LED結構, 其中,該緩衝層之該GaN系材料,係' ΑΐΑυ 15 200820457 (〇&lt;a?b&lt;l5a+b&lt;l) 〇 4·如申請專利範圍第1項所述之氮化物MQW LED結構, 其中,該載子提供層之該井層與該位障層之該η型雜質 係Si與Ge二者之一。 5·如申請專利範圍第1項所述之氮化物MQW LED結構, 其中,該載子提供層之該井層與位障層,係各具有5 A〜300A之間之一厚度。 6.如申請專利範圍第1項所述之氮化物MQW LED結構, 其中’該載子提供層係具有1 nm〜500 nm之間之一厚度。 如申請專利範圍第1項所述之氮化物MQW LED結構, 其中’該載子提供層係具有lxl〇】7/cm3〜5xl021/cm3之間 之一電子濃度。200820457 X. Patent application scope: 1. A nitride MQWLED structure, comprising at least: a substrate; a first contact layer made of a GaN-based material; a first contact layer on the substrate having a first One of the conductive type carrier layers is disposed above the first contact layer, the cut providing layer is formed by alternately stacking at least two well layers and at least two layers of layers, the well layer and the bit The barrier layers are each made of a _=-type material doped with type 1 (four), the barrier layer having an energy band gap higher than the well layer; and a light-emitting layer above the carrier supply layer, the light-emitting layer The MQW structure is composed of a well layer and a barrier layer of a plurality of layers, the well layer and the barrier layer are each made of a GaN-based material, and/or a second contact layer is located above the light-emitting layer. The second contact 制成 is made of a material of the second conductivity type (10) having the opposite of the rhyme-conductivity type; wherein the well layer of the carrier providing layer has one of the well layers higher than the luminescent layer Can bandgap. 2. The nitride MQW LED structure of claim 1, wherein the progressive inclusion-buffer layer is between the substrate and the first contact layer. The buffer layer is made of a -GaN-based material. 3' ^ The nitride MQW LED structure described in claim 2, wherein the GaN-based material of the buffer layer is 'ΑΐΑυ 15 200820457 (〇&lt;a?b&lt;l5a+b&lt;l) 〇4 The nitride MQW LED structure according to claim 1, wherein the carrier provides one of the well layer of the layer and the n-type impurity system Si and Ge of the barrier layer. 5. The nitride MQW LED structure of claim 1, wherein the well layer and the barrier layer of the carrier providing layer each have a thickness between 5 A and 300 A. 6. The nitride MQW LED structure of claim 1, wherein the carrier provides a layer having a thickness between 1 nm and 500 nm. The nitride MQW LED structure according to claim 1, wherein the carrier provides a layer having an electron concentration of between 1/cm 3 and 5 x 10 21 /cm 3 . 如申請專利範圍第1項所述之氮化物MQW LED結構, 其中’該發光層之該井層與該位障層之該GaN系材料係 ΑΐχΙηΆΐ·χ·&gt;,Ν (x5y2〇,〇£x+y£l)。 如申請專利範圍第1項所述之氮化物MQW LED結構, 其中’該發光層之該井層與該位障層之該GaN系材料係 未加摻雜。 〇.如申請專利範圍第1項所述之氮化物MQW LED結構, 复Φ /、甲’該發光層之該井層與該位障層之該GaN系材料係 AlpInqGaKp_qN (j^qso’o^p+qy)。 16 200820457 U·如申請專利範圍第1項所述之氮化物MQW LED結構, 進一步包含位於該載子提供層與該發光層之間之一電洞 阻隔層,該電洞阻隔層係由具有高於該發光層之一能帶 隙之一 GaN系材料製成。 12·如申請專利範圍第11項所述之氮化物MQW LED結構, 其中,該電洞阻隔層係具有5 A〜〇·5μηι之間之一厚度。 申明專利範圍第11項所述之氮化物Mqw led結構, 其中,該電洞阻隔層之該GaN系材料係未加摻雜。 14.如申請專利範圍第11項所述之氮化物MQW LED結構, 其中,该電洞阻隔層之該GaN系材料摻雜有一雜質,該 雜質係Si、ln、與Si/In三者之一。 15· 一種氮化物MQW LED裝置,至少包含: 一基板; 一緩衝層,係位於該基板上方,該緩衝層係以 AlaGabIni-a,bN (0$a,b&lt;l,a+b$l)製成; -第-接觸層,係位於該緩衝層上方,該第一接觸 層係由具有第一導電型之一 GaN系材料製成; -載子提供層,係位於該第一接觸層之上方並覆蓋 違弟-接觸層之部分上表面,該載子提供層係由至少兩 層 障 开㈣至少兩層位障層交替堆疊而成,該井層與該位 層各由摻雜有一 n型雜質之AlpInqGa…N 17 200820457 (P’q—O’O^p+q^l)製成,该位障層具有高於該井層之一能 帶隙; 一第一電極,係、位該第—接觸層未被該載子提供層 覆蓋之上表面; 一發光層,係位於該載子提供層上方,該發光層係 具有由複數層之井層與位障層所構成之—mqw結構,該 井層與該位障層係各由A1JnyGai ”Ν (χ,於〇,〇分+泊)製 成;以及 一第二接觸層,係位於該發光層上方,該第二接觸 層係由具有與該第—導電型相反之第二導電型之- GaN 系材料製成; 透明導電層,係位於該第二接觸層之至少一部份 上表面’該透明導電層係一金屬導電層與一透明氧化物 層二者之一;以及 一 一第二電極,係位於該透明導電層之上,或位於該 弟-接觸層未被該透明導電層覆蓋的上表面; 其中’該載子提供層之該井層具有高於該發光層之該井 層之一能帶隙。 申°月專利知圍第15項所述之氮化物MQW LED裝置, “中錢子提供層之該井層與該位障層之該η型雜質 係Si與Ge二者之一。 18 200820457 17. 18. 19· 20. 21. 22. 23. 如申請專利範圍第15項所述之氮化物MQW LED裝置, 其中’該載子提供層之該井層與位障層,係各具有5 A〜3〇〇人之間之一厚度。 如申請專利範圍第15項所述之氮化物MQW LED裝置, /、中β亥載子提供層係具有1 nm〜500 nm之間之一厚度。 如申請專利範圍第15項所述之氮化物MQW LED裝置, 其中’該載子提供層係具有lxl〇n/cm3〜5xl〇2i/cm3之間 之一電子濃度。 如申請專利範圍第15項所述之氮化物Mqw LED裝置, 其中’該發光層之該井層與該位障層之該GaN系材料係 未加摻雜。 如申請專利範圍第15項所述之氮化物MQWLED裝置, 進一步包含位於該載子提供層與該發光層之間之一電洞 阻搞層’該電洞阻隔層係由具有高於該發光層之一能帶 隙之一 GaN系材料製成。 如申請專利範圍第21項所述之氮化物MQW LED裝置, 其中’該電洞阻隔層係具有5 A〜0·5μηι之間之一厚度。 如申請專利範圍第21項所述之氮化物MQW LED裝置, 其中’該電洞阻隔層之該GaN系材料係未加摻雜。 如申請專利範圍第21項所述之氮化物MQW LED裝置, 其中’該電洞阻隔層之該GaN系材料摻雜有一雜質,該 19 24· 200820457 雜質係Si、In、與Si/In三者之一。 25. 如申請專利範圍第15項所述之氮化物MQWLED裝置, 其中,該金屬導電層係由選自下列集合之一材料所構成: Ni/Au 合金、Ni/Pt 合金、Ni/Pd 合金、Pd/Au 合金、Pt/Au 合金、Cr/Au 合金、Ni/Au/Be 合金、Ni/Cr/Au 合金、Ni/Pt/Au 合金、以及Ni/Pd/Au合金。 26. 如申請專利範圍第15項所述之氮化物MQWLED裝置, 其中,該透明氧化物層係由係由選自下列集合之一材料 所構成:ITO、CTO、ZnO:Al、ZnGa204、Sn〇2:Sb、 Ga2〇3:Sn、AgIn02:Sn、In2〇3:Zn、CuA1〇2、LaCuOS、NiO、 CuGa〇2、以及 SrCu2〇2。 27. 如申請專利範圍第15項所述之氮化物MQWLED裝置, 其中,該第二電極係由選自下列集合之一材料所構成: Ni/Au 合金、Ni/Pt 合金、Ni/Pd 合金、Ni/Co 合金、Pd/Au 合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、 Ta/Au 合金、TiN、TiWNx (x20)、以及 WSiv (y20)。 20The nitride MQW LED structure according to claim 1, wherein 'the well layer of the light-emitting layer and the GaN-based material system of the barrier layer are ΑΐχΙηΆΐ·χ·&gt;, Ν (x5y2〇, 〇£ x+y£l). The nitride MQW LED structure of claim 1, wherein the well layer of the light-emitting layer and the GaN-based material of the barrier layer are undoped.氮化. For the nitride MQW LED structure according to claim 1, the complex Φ /, A 'the well layer of the light-emitting layer and the GaN-based material of the barrier layer are AlpInqGaKp_qN (j^qso'o^ p+qy). The nitride MQW LED structure of claim 1, further comprising a hole barrier layer between the carrier supply layer and the light-emitting layer, the hole barrier layer being high It is made of a GaN-based material which is one of the band gaps of the light-emitting layer. The nitride MQW LED structure according to claim 11, wherein the hole barrier layer has a thickness of between 5 A and 〇·5 μη. The nitride Mqw led structure according to claim 11, wherein the GaN-based material of the hole barrier layer is undoped. 14. The nitride MQW LED structure according to claim 11, wherein the GaN-based material of the hole barrier layer is doped with an impurity, and the impurity is one of Si, ln, and Si/In. . 15. A nitride MQW LED device comprising: at least: a substrate; a buffer layer disposed above the substrate, the buffer layer being AlaGabIni-a, bN (0$a, b&lt;l, a+b$l) Forming a first contact layer made of a GaN-based material having a first conductivity type; a carrier-providing layer located at the first contact layer Overlying and covering a portion of the upper surface of the smear-contact layer, the carrier providing layer is formed by alternately stacking at least two layers of at least two barrier layers, the well layer and the layer being doped with a n a type of impurity made of AlpInqGa...N 17 200820457 (P'q-O'O^p+q^l), the barrier layer having a band gap higher than one of the well layers; a first electrode, a system, a bit The first contact layer is not covered by the carrier providing layer; the light emitting layer is located above the carrier providing layer, and the light emitting layer is composed of a plurality of layers of well layers and barrier layers - mqw Structure, the well layer and the barrier layer are each made of A1JnyGai "Ν (χ, 〇, 〇 分 + 泊); and a second contact layer Between the luminescent layer, the second contact layer is made of a GaN-based material having a second conductivity type opposite to the first conductivity type; and the transparent conductive layer is located at least one of the second contact layer a portion of the upper surface 'the transparent conductive layer is one of a metal conductive layer and a transparent oxide layer; and the first and second electrodes are located on the transparent conductive layer or are not located in the contact layer The upper surface covered by the transparent conductive layer; wherein the well layer of the carrier providing layer has a band gap higher than the well layer of the light-emitting layer. The nitride according to Item 15 of the patent application The MQW LED device, "the middle layer provides one of the well layer and the n-type impurity system Si and Ge of the barrier layer. 18 200820457 17. 18. 19. 20. 21. 22. 23. The nitride MQW LED device of claim 15, wherein the carrier layer and the barrier layer of the carrier layer are Has a thickness of between 5 A and 3 〇〇 people. For example, in the nitride MQW LED device described in claim 15, the medium-sized carrier provides a layer thickness of between 1 nm and 500 nm. A nitride MQW LED device according to claim 15 wherein the carrier provides a layer having an electron concentration between 1 x 1 〇 n / cm 3 and 5 x 1 〇 2 i / cm 3 . The nitride Mqw LED device of claim 15, wherein the well layer of the light-emitting layer and the GaN-based material of the barrier layer are undoped. The nitride MQWLED device of claim 15, further comprising a hole blocking layer between the carrier providing layer and the light emitting layer, wherein the hole blocking layer has a higher light emitting layer One of the band gaps is made of a GaN-based material. A nitride MQW LED device according to claim 21, wherein the hole barrier layer has a thickness of between 5 A and 0.5 μm. The nitride MQW LED device of claim 21, wherein the GaN-based material of the hole barrier layer is undoped. The nitride MQW LED device according to claim 21, wherein the GaN-based material of the hole barrier layer is doped with an impurity, and the impurity is Si, In, and Si/In. one. 25. The nitride MQWLED device of claim 15, wherein the metal conductive layer is composed of a material selected from the group consisting of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Pd/Au alloy, Pt/Au alloy, Cr/Au alloy, Ni/Au/Be alloy, Ni/Cr/Au alloy, Ni/Pt/Au alloy, and Ni/Pd/Au alloy. 26. The nitride MQWLED device of claim 15, wherein the transparent oxide layer is composed of a material selected from the group consisting of ITO, CTO, ZnO: Al, ZnGa204, Sn? 2: Sb, Ga2〇3: Sn, AgIn02: Sn, In2〇3: Zn, CuA1〇2, LaCuOS, NiO, CuGa〇2, and SrCu2〇2. 27. The nitride MQWLED device of claim 15, wherein the second electrode is composed of a material selected from the group consisting of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Ni/Co alloy, Pd/Au alloy, Pt/Au alloy, Ti/Au alloy, Cr/Au alloy, Sn/Au alloy, Ta/Au alloy, TiN, TiWNx (x20), and WSiv (y20). 20
TW95138755A 2006-10-20 2006-10-20 MQW nitride LED with carrier supply layer TW200820457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138755A TW200820457A (en) 2006-10-20 2006-10-20 MQW nitride LED with carrier supply layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138755A TW200820457A (en) 2006-10-20 2006-10-20 MQW nitride LED with carrier supply layer

Publications (2)

Publication Number Publication Date
TW200820457A true TW200820457A (en) 2008-05-01
TWI359513B TWI359513B (en) 2012-03-01

Family

ID=44770168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138755A TW200820457A (en) 2006-10-20 2006-10-20 MQW nitride LED with carrier supply layer

Country Status (1)

Country Link
TW (1) TW200820457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626766B (en) * 2017-06-01 2018-06-11 錼創科技股份有限公司 Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626766B (en) * 2017-06-01 2018-06-11 錼創科技股份有限公司 Light emitting device

Also Published As

Publication number Publication date
TWI359513B (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5048497B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
TWI436495B (en) Nitride-based light emitting device
CA2528719C (en) Nitride semiconductor light emitting device
TWI548115B (en) Light emitting device
US8089082B2 (en) Nitride semiconductor LED and fabrication method thereof
TWI535055B (en) Nitride semiconductor structure and semiconductor light-emitting element
JP2009514197A (en) Semiconductor light emitting device with electrode for N-polar InGaAlN surface
JP2013065897A (en) Nitride semiconductor light-emitting element
JP2005347728A (en) Nitride semiconductor light-emitting element for flip chip
US8053794B2 (en) Nitride semiconductor light emitting device and fabrication method thereof
US20070187697A1 (en) Nitride based MQW light emitting diode having carrier supply layer
US20130015465A1 (en) Nitride semiconductor light-emitting device
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
TW201034252A (en) Light emitting device
TWI277226B (en) Light emitting diode
TW201330314A (en) Light-emitting device
CN107833956B (en) Nitride semiconductor structure and semiconductor light emitting element
CN102544290A (en) Nitirde semiconductor light emitting diode
TWI359513B (en)
KR101285925B1 (en) Light Emitting Diode of using Graphene
TWI568022B (en) Semiconductor stack structure
TWI610460B (en) Nitride semiconductor structure
TWI570954B (en) Nitride semiconductor structure and semiconductor light-emitting element
TWI508326B (en) Nitride semiconductor structure and semiconductor light-emitting element
TWI637531B (en) Nitride semiconductor structure and semiconductor light-emitting element