TW200819678A - Partial pre-mix flare burner and method - Google Patents

Partial pre-mix flare burner and method Download PDF

Info

Publication number
TW200819678A
TW200819678A TW096129728A TW96129728A TW200819678A TW 200819678 A TW200819678 A TW 200819678A TW 096129728 A TW096129728 A TW 096129728A TW 96129728 A TW96129728 A TW 96129728A TW 200819678 A TW200819678 A TW 200819678A
Authority
TW
Taiwan
Prior art keywords
fuel
air
premixing
burner
inlet
Prior art date
Application number
TW096129728A
Other languages
Chinese (zh)
Inventor
Roger L Poe
James Wilkins
Jeff W White
Original Assignee
John Zink Co Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Zink Co Llc filed Critical John Zink Co Llc
Publication of TW200819678A publication Critical patent/TW200819678A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/08Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Burners (AREA)
  • Incineration Of Waste (AREA)

Abstract

A flare burner that is particularly suitable for use in connection with ground flares and other types of flares in which it is important to control the height of the flame envelope created by the burner is provided. The flare burner includes a pre-mix zone including a pre-mix chamber into which air is entrained. A uniform mixture of fuel and air is formed in the pre-mix zone and caused to exit an air/fuel outlet in the top of the pre-mix chamber. In one embodiment, the amount of air in the fuel/air mixture that exits the air/fuel outlet is in excess of the stoichiometric amount of air required to support combustion of the fuel in the mixture. Fuel is injected around the perimeter of the air/fuel outlet, combustion is initiated and a flame envelope is created. By injecting a mixture of fuel and air that includes excess ate into the center of the flame envelope is accelerated which allows more fuel to be flared which a given flame envelope height. The invention also includes a ground flare and a method of flaring fuel with a flare burner.

Description

200819678 九、發明說明: 【發明所屬之技術領域】 本發明係關於火炬I置及燃燒可燃廢氣及轉向燃料油 方法。在-實施例中,本發明係關於地面式火炬燃燒器之 地面式火炬及相關聯之方法。 σ 【先前技術】 在多種應时皆使用火炬裝置及方法來燃燒及處理可燃 廢氣及轉向燃料油。舉例而言,通常在生產設備、精煉 廠、煉油廠及類似場所處設置火炬,用於處理排棄之二燃 廢氣及/或在排氣、關停、意外故障或緊急情況期間轉向、 之燃料油流。通常期望或甚至強制可燃廢氣及轉向姆料由 (此後稱作,,燃料”)之燃燒不會產生煙塵。藉由確保不會形 ^離開火炬之足置之非氧化性煙灰來達成無煙燃燒。此可 藉由確保足里之氧氣與燃料混合而防止燃料過於富足而無 效之情形來達成。 … 在許多應用中,由火炬形成之外層火焰長度亦相當重 要。其中期望相對較短外層火焰之火炬類型實例包括審美 火炬諸#井型封閉式火炬、地面火炬及在漂浮生產設施 、=回[纟⑬。在該等火炬中,需要防止火焰被周圍 、品看到另方面,該等火炬需要具有在任一既定時間 t丄大里燃料之能力。外層火焰長度往往隨著所燃燒之燃 料體積之增大而增加。 θ也面式火炬(亦稱作多點式火炬)通常用於其中欲燃燒之 在既疋時間内可自一相對較小之體積變化至一極大體 123315.doc 200819678 積(舉例而言,15000,000磅每小時或更高)之應用中。為適 應燃料體積之變化,且允許燃料以一無煙方式燃燒,可使 用多級燃燒器。藉由一控制系統引導至每一燃燒器級之 流’該控制系統因應於欲燃燒燃料之壓力及體積。以此方 . 式,使運作中之每一燃燒器獲得足量之壓力以保證夾帶適 f空氣及發生空氣與燃料之充分混合以確保在應用範圍内 ‘ 之無煙燃燒。 f' 地面式火炬系統通常散佈於一大面積(例如三故地)中, 且圍有一大柵攔或其他圍欄。圍欄用以將人員及動物關在 外面且最大程度地減小對周圍區域之輻射、可見性及雜 訊。該圍欄通常由金屬或其他使熱折射之材料製成且高 至60英尺。作為一結果,建立及維護該圍攔可能係昂貴。 地面式火炬系統中各燃燒器之間距及燃料之流動速率亦 係重要各燃燒器藏要彼此靠近得足以發生交叉點燃,且 通常足夠緊密地封裝以減小系統及周圍圍搁之總大小。出 〇 A成本之考量,期望最少量之點火導引器。典型之單元在 每一列燃燒器末端包括一單個導引器。另一方面,各燃燒 器不得彼此靠得太近以至於限制空氣流且阻礙無煙燃燒或 使火焰結合成-超過圍欄高度之火球。而且,必須控制燃 料之流動速率以使個敎焰之高度不會超過圍搁高度。 -種目前所用類型之地面式火炬包括複數個擴散射流, 用以分配燃料及吸取燃燒所需之空氣。以_足以將燃燒空 氣吸入射肌内之速度將该等射流射入大氣中。在燃料點燃 時,在燃料之出料點上方橫向夾帶來自周圍環境之空氣。 123315.doc 200819678 &quot; 速又減]、8守,熱氣體之浮力效應由此促成使剩餘燃 料:夠7〇王燃燒之燃料與空氣之整個混合狀態。 藉由僅使用用以分配燃料及橫向夾帶燃燒所需之空氣之 擴散射流而形成之整個外層火焰包括一敏密中心燃料核。 《中心燃料核保持原樣,直至外層火焰之外部部分開始燒 光。备外層火焰之外部部分燃燒時,$氣可由此進入外層 火,内部界限以完成氧化過程。遺憾的是,由於該等個別 ζ) L料射机之相互作用,形成於外層火焰中心之緻密燃料核 使得難以在不使外層火焰長度增加及/或不出現煙塵之情 況下增加燃料之流動速率來支援較大之容量。外層火焰長 度增加通常需要包圍地面式火炬之圍攔更高,而此會增加 圍搁成本。 藉由本發明,提供一可與地面式火炬、高壓火炬及其他 類型之火炬結合使用之火炬燃燒器。舉例而言,該發明性 火炬燃燒咨克服了與目前所用之地面式火炬燃燒器相關聯 ϋ 之問題。本發明亦提供一地面式火炬裝置及一在一火炬燃 燒器中燃燒燃料之方法。 【發明内容】 根據本發明,提供一能夠以一相對較短之外層火焰燃燒 一大量燃料之火炬燃燒器。外層火焰長度縮短促成諸多優 勢。舉例而言,一包圍地面式火炬之圍攔高度可縮短,或 使用現有圍攔高度可燃燒燃料量可增加。 該發明性火炬燃燒器包含一包括一預混合室之預混合 區、一用於將燃料喷射進預混合區之補充燃料入口及一主 123315.doc -10- 200819678 燃料出口。較佳地,該發明性火炬燃燒器進一步包括一與 補充燃料入口及主燃料出口流體連通之燃料供給管道。 該預混合室包括-頂部、一低及一連接該頂部及該底部 之側壁。該側壁包括一内表面及一外表面。一空氣入口設 置於該底部及該側壁之一者中,且一空氣/燃料出口設置 於該頂部中。 補充燃料入口相對於預混合區定位於一達成如下之位 置·使將燃料自補充燃料入口至預混合區之噴射可將空氣 災帶進預此a區中,藉此在该預混合區内形成燃料與空氣 之一混合物,且使該混合物離開預混合室之空氣/燃料出 Π 〇 該主燃料出口相對於該預混合室頂部定位於一位置,使 得T自包圍預混合室之空氣/燃料出口周邊之主燃料出口 喷射燃料。在一實施例中,$主燃料出口自該預混合室向 外間隔開以在該預混合室侧壁外表面與主燃料出口之間提 U 供一空間。如下文進一步所述,該空間允許將新鮮空氣自 燃燒器下部夾帶至一毗鄰設置於該主燃料出口一内部部分 上之燃料埠之點。在某些應用中,例如當燃燒重質碳氫化 合物或非飽和燃料時,由此夾帶所形成之增強混合可係重 • 要。 燃料供給管道將燃料引導至補充燃料氣體入口及主燃料 氣體出口。可相依於應用以相同壓力或不同壓力將燃料供 應至補充燃料入口及主燃料出口。 該發明性火炬燃燒器可進一步包括一設置於該預混合室 123315.doc -11 - 200819678 外周邊周圍之燃料膜。該燃料膜包括一燃料入口 :料出口流體連通。在某些實施例中,該燃料膜亦二 充燃料人口流體連通。為提供上文料之线㈣空間, 可使該燃料膜自該預混合室之側壁外表面向外間隔開。 Γ Ο 相依於該發明性火炬燃燒器之特定組態,該預混合區可 由預此口至單獨構成或可包括該預混合室連同該實際預混 合室下部及/或上部之區域。舉例而t,當該預混合室之 :氣入口位於該預混合室底部中,且該補充燃料入口在該 :氣入口下方隔開時’燃料與空氣在該空氣入口及預混合 :下方開始混合。而且,在於該燃燒區中點燃及燃燒之 前’該燃料及空氣通常在設置於該預混合室頂部中之空氣/ 燃料出口上方繼續混合。 該預混合室及燃料膜可形成呈各種形狀及大小。在一實 施例中,該預混合室及燃料膜具有一圓形橫截面。在另一 實施例中,該預混合室及燃料膜具有一矩形橫截面。 為增強將燃料經由補充燃料入口噴射進預混合區内所引 起之空氣夾帶,該預混合室之内表面可包括一係一 表面之部分。該補充燃料入口相對於該預混合室定位於一 達成如下之位置:燃料可自該補充燃料入口喷射至該 Coanda表面上。該燃料往往附著至該c〇anda表面上且沿該 Coanda表面路徑行進,且形成一相對薄膜,此使得將更多 空氣夾帶進該預混合室中,及在該預混合室中發生空氣與 燃料之更加混合。 該預混合室可具有介於自約〇 · 2 5 :1至約4:1範圍内之長度 123315.doc -12- 200819678 與内部液壓直徑之比例。一具有一長度與内部液壓直徑之 比例大於4:1之預混合室之單元會以一額外之好處運行, 但通常會受到成本限制。在一實施例中,該預混合室具有 一介於自約1:1至約3:1範圍内之長度與内部液壓直徑之比 例。在另一實施例中,該預混合室具有約1:丨或更少之長 度與内部液壓直徑之比例。預混合室之相對短之長度在地 面式火炬及其他其中燃燒器長度(或高度)係重要之火炬應 用中或在其中高度活性之燃料可能導致内部燃燒之應用中 可較佳。而且,在某些組態中,即使當預混合室具有極低 之長度與内部液壓直徑比例時,亦可在允許獲得均勻之空 氣與燃料之混合物之條件(例如複數個小射流、高壓)下, 使燃料自該補充燃料入口處喷射。 該發明性地面式火炬包括複數個火炬燃燒器、一包圍該 等^炬燃燒器延伸之柵攔或其他圍攔及一用於將燃料供應 至&quot;亥等火炬燃燒器之燃料供應管。該等火炬燃燒器之至少 之一係上文所述發明性火炬燃燒器。 本發明一包括一使用一火炬燃燒器燃燒燃料之方法,其 中將該欲燃燒之燃料經由該燃燒器之燃料出口喷射進一燃 燒區内且點燃以形成一外層火焰且燃燒該燃料。根據該發 明性方法,以一種將空氣夹帶進該預混合區内且在該預滿 合區内形成空氣與燃料之一混合物之方式將該燃料之一部 ^引入該火炬燃燒H之-預混合區。將空氣與燃料之滿合 物自該預混合區喷射進外層火焰之一中央部分。 夾帶進該預混合區内且噴射進該外層火二央部分之空 123315.doc •13- 200819678 氣量較佳地係用以支援引入預混合區内之燃料燃燒所需化 學計算空氣量之至少約15%。在某些應用中,適合向該外 層火焰中央部分喷射燃料與空氣之”富燃料”混合物(即具有 少於按化學計算用以支援引入預混合區内之燃料燃燒所需 1軋量之1 00%之混合物)。然而,在大多數應用中,皆期 望向外層火焰中央部分噴射燃料與空氣之,,貧燃料&quot;混合物 (即具有多於用以支援引入預混合區内之燃料燃燒所需化 f 學計算空氣量之1〇〇〇/0之混合物)。在大多數應用中,夾帶 進入預混合區且喷射進外層火焰中央部分之空氣量介於用 以支援引入預混合區内之燃料燃燒所需化學計算空氣量之 自約125%至約3 00%範圍内。 引入預混合區内之燃料量較佳地介於該火炬燃燒器所燃 燒燃料總量之自約5%至約50%之範圍内。由於根據該發明 性方法,向該外層火焰之中央部分喷射一預混合燃料流, 因而該外層火焰包括處於其中心之燃燒及其外表面。形成 (J 之環形火焰引起額外之混合及湍流,此導致外層火焰之更 均勻及更快燃燒。作為一結果,可縮短外層火焰高度或可 增加使用一既定外層火焰可燃燒之燃料量。藉由該發明性 火炬燃燒器及方法可達成其他優勢。 因此,本發明提供一火炬燃燒器及相關方法之一概要目 的係藉此可在一相對短且均勻之外層火焰中燃燒大量燃 料。 彼等熟習此項技術者在結合附圖閱讀較佳實施例之說明 後,將易於瞭解本發明之其他及進一步目標、特徵及優 123315.doc -14- 200819678 【實施方式】 Ο Ο 現在參照該等圖式,且特定而言參照圖i至圖3,其圖解 說明一先前技術之地面式火炬燃燒器,且該燃燒器通常由 編號10來標明。先前技術之燃燒器1〇包括一附裝至燃料升 降器14之燃燒器鑄件12。燃燒器鑄件12包括一中央部分μ 及複數個同心佈置於該中央部分周圍且位於升降器Μ頂部 之燃料出口臂16。每-燃料出口臂16均包括一個或多個燃 料璋18。直接將燃料提供至燃料#18,亦即燃料並非首先 與空氣預混合。作為-結果,由埠18形成之該等燃料射流 係擴散燃料射流。 圖3概要地繪示由燃燒器1〇形成之外層火焰2〇。將燃料 (通常由黑色箭頭繪示)以一將空氣吸入射流之高速度經由 璋18噴射進燃燒區22内。自燃料之出料點上方橫向爽帶來 自周圍%境之空氣。當流之速度減小時,熱氣體之浮力效 應由此促成允許完全燃燒之燃料之整個混合狀態。整個外 層火fe 20具有長度23 ’且包括一緻密中心燃料核μ。中 心燃料核24保持不受氧化,直至火焰22之外部部分Μ開始 燒?。雖然外層火焰之中央部分可包括-些氣穴28,但該 等氣八中之工氣里不足以支援中心燃料核Μ之同質燃燒。 緻密中心燃料核24通常保持原樣,直至燃料外部部分%發 夠之消耗以允許足1之空氣進入外層火焰内部界限且 允許氧化過程完成。遺憾的是,外層火㈣巾 燃料核24使得難以在不使火焰長度增加及/或不出現煙塵 123315.doc 200819678 之情況下增加燃料之流動速率來支援較大之火焰。 發明性火炬燃燒器 現在參照圖4·8,其圖解說明該發明性火炬燃燒器之一 實施例,且通常由編號30來標明。火炬燃燒器3〇包含:一 包括此ό至32之預混合區3 1 ;及一用於將燃料噴射該 預混合區之補充燃料入口 34、一主燃料出口 36及一燃料供 給管道38。本文及隨附申請專利範圍中所用,,燃料,,意指廢 氣、轉向燃料油及/或欲藉由該發明性火炬燃燒器、火炬 裝置(例如該發明性地面式火炬裝置)及方法燃燒之其他氣 體或液體。當(例如)重質非飽和或飽和燃料之分壓處於或 低於飽和狀態時,可形成液體。如圖4所示,導引器4〇可 與燃燒器30(以及下文所述之燃燒器13〇、23〇及33〇)相關 聯,以開始點燃燃料與燃燒器所釋放之空氣混合物。 在圖4-8所圖解說明之實施例中,火炬燃燒器3〇之預混 合室32提供預混合區31之主要部分。可在包括預混合室32 之預混合區3 1内形成燃料與空氣之混合物(較佳地係一大 致同質之混合物)。如下文所述,形成於預混合區31内之 混合物可係富燃料或貧燃料。預混合室32包括一圓形橫截 面且具有一圓柱形狀。預混合室包括一頂部42、一底部 44、一連接該頂部至該底部之側壁46、一設置於底部中 之空氣入口 48及一設置於頂部42中之空氣/燃料出口 5〇。 如圖所示,頂部42及底部44係敞開,藉此形成空氣入口 48 及/或燃料出口 50。作為一結果,空氣入口 48及空氣/燃料 出口 50亦各自具有一圓形橫截面。預混合室μ之下部部分 123315.doc -16- 200819678 鐘(勻稱的)形狀,從 一選擇係,預混合室 52向外張開,以賦予至下部部分之一 而增強進入之燃料及空氣之流速。另 32之下部部分52不向外張開,即整個預混合室具有一均句 之圓柱形狀。如圖5最佳顯示,預混合區3丨包括:一位於 預混合室32下方之預混合空間31⑷(位於補充燃料入口 ^ 與預混合室底部44及空氣入口 48之間);預混合室内部 31(b);及緊接於預混合室頂部42及空氣/燃料出口“上方200819678 IX. Description of the Invention: [Technical Field] The present invention relates to a method for setting and burning combustible exhaust gas and steering fuel oil. In an embodiment, the invention relates to a ground flare for a ground flare burner and associated methods. σ [Prior Art] Flare devices and methods are used to burn and treat combustible waste gas and steering fuel oil in a variety of applications. For example, flares are typically placed at production facilities, refineries, refineries, and the like to treat spent fuel emissions and/or fuels that are diverted during exhaust, shutdown, unexpected failure, or emergency situations. Oil flow. It is generally desired or even to force the combustion of the combustible exhaust gas and the turning lubricant from (hereinafter referred to as, fuel) to produce no soot. To achieve smokeless combustion by ensuring that the non-oxidizing soot that leaves the foot of the flare is not formed. This can be achieved by ensuring that the oxygen in the foot is mixed with the fuel to prevent the fuel from becoming too rich and ineffective. ... In many applications, the flame length of the outer layer formed by the torch is also important. The torch with a relatively short outer flame is desired. Examples of types include the aesthetic torches #well-type closed torches, ground flares and floating production facilities, = back [纟13. In these torches, it is necessary to prevent the flame from being seen around, and the other parts of the torch need to have The ability to fuel at any given time t. The length of the outer flame tends to increase as the volume of fuel burned increases. The θ-surface torch (also known as the multi-point torch) is typically used to burn The volume can vary from a relatively small volume to a maximum volume of 123,315.doc 200819678 (for example, 15,000,000 pounds per hour or higher) In order to adapt to changes in fuel volume and allow the fuel to burn in a smokeless manner, a multi-stage burner can be used. The flow is directed to each burner stage by a control system that is adapted to burn the fuel Pressure and volume. In this way, each burner in operation receives sufficient pressure to ensure proper air entrainment and air and fuel mixing to ensure smokeless combustion within the application range. 'The ground-type flare system is usually spread over a large area (such as the three sites) and is surrounded by a large barrier or other fence. The fence is used to keep people and animals outside and minimize the radiation to the surrounding area. Visibility and noise. The fence is usually made of metal or other material that refracts heat and is up to 60 feet. As a result, the establishment and maintenance of the fence may be expensive. The distance between burners in a ground flare system And the flow rate of the fuel is also important for each burner to be close enough to each other to cross-ignite, and usually packaged sufficiently tightly to reduce the system and surrounding circumference. The total size. The minimum amount of ignition guide is expected from the cost of A. Typical units include a single guide at the end of each column of burners. On the other hand, the burners must not be too close to each other. As for the fire ball that restricts air flow and hinders smokeless combustion or combines the flame into a height exceeding the fence height. Moreover, the flow rate of the fuel must be controlled so that the height of the flame does not exceed the height of the enclosure. The torch includes a plurality of diffusing jets for distributing fuel and for drawing the air required for combustion. The jets are injected into the atmosphere at a rate sufficient to draw the combustion air into the muscles. When the fuel is ignited, the fuel is discharged. The air from the surrounding environment is entrained horizontally above the point. 123315.doc 200819678 &quot; Speed and reduction], 8 defensive, the buoyancy effect of hot gas thus contributes to the remaining fuel: the entire mixed state of fuel and air that is burned by the king. The entire outer flame formed by using only the diffusion jet for distributing the fuel and the air required for lateral entrainment combustion comprises a dense center fuel core. The center fuel core remains intact until the outer portion of the outer flame begins to burn. When the outer part of the outer flame is burned, the gas can enter the outer fire and the inner limit is completed to complete the oxidation process. Unfortunately, due to the interaction of these individual L L emitters, the dense fuel core formed in the center of the outer flame makes it difficult to increase the flow rate of the fuel without increasing the length of the outer flame and/or without the presence of soot. To support larger capacity. An increase in the length of the outer flame usually requires a higher enclosure around the ground flare, which increases the cost of the enclosure. By the present invention, a flare burner for use with a ground torch, a high pressure torch and other types of flares is provided. For example, the inventive flare combustion advisor overcomes the problems associated with the currently used ground flare burners. The present invention also provides a floor flare device and a method of burning fuel in a flare burner. SUMMARY OF THE INVENTION In accordance with the present invention, a flare combustor capable of combusting a substantial amount of fuel with a relatively short outer layer of flame is provided. The shortening of the outer flame length contributes to many advantages. For example, the height of the enclosure surrounding a ground flare can be shortened, or the amount of combustible fuel can be increased using existing barriers. The inventive flare combustor includes a premixing zone including a premixing chamber, a supplemental fuel inlet for injecting fuel into the premixing zone, and a primary fuel port. Preferably, the inventive flare combustor further includes a fuel supply conduit in fluid communication with the supplemental fuel inlet and the main fuel outlet. The premixing chamber includes a top portion, a lower portion, and a side wall connecting the top portion and the bottom portion. The sidewall includes an inner surface and an outer surface. An air inlet is disposed in the bottom and one of the side walls, and an air/fuel outlet is disposed in the top. The refueling inlet is positioned relative to the premixing zone at a position that enables injection of fuel from the refueling inlet to the premixing zone to bring an air hazard into the pre-a zone thereby forming a zone in the premixing zone a mixture of fuel and one of the air, and the mixture exits the air/fuel outlet of the premixing chamber. The main fuel outlet is positioned at a position relative to the top of the premixing chamber such that T self-encloses the air/fuel outlet of the premixing chamber The surrounding main fuel outlet injects fuel. In one embodiment, the $ main fuel outlet is spaced outwardly from the premixing chamber to provide a space between the outer surface of the premixing chamber side wall and the main fuel outlet. As further described below, this space allows fresh air to be entrained from the lower portion of the combustor to a point adjacent the fuel crucible disposed on an interior portion of the main fuel outlet. In certain applications, such as when burning heavy hydrocarbons or unsaturated fuels, the enhanced mixing formed by such entrainment can be important. The fuel supply conduit directs fuel to the supplemental fuel gas inlet and the main fuel gas outlet. Fuel may be supplied to the supplemental fuel inlet and the main fuel outlet at the same pressure or at different pressures depending on the application. The inventive flare burner can further include a fuel film disposed about the outer periphery of the premixing chamber 123315.doc -11 - 200819678. The fuel membrane includes a fuel inlet: the feed outlet is in fluid communication. In certain embodiments, the fuel film is also in fluid communication with the dual fuel population. To provide a line (4) of the above material, the fuel film can be spaced outwardly from the outer surface of the side wall of the premixing chamber. Ο Ο Depending on the particular configuration of the inventive flare burner, the premixing zone may be constructed from the pre-existing port or may include the pre-mixing chamber along with the lower and/or upper region of the actual pre-mixing chamber. For example, when the pre-mixing chamber has a gas inlet located in the bottom of the pre-mixing chamber and the supplementary fuel inlet is spaced below the gas inlet, the fuel and air begin to mix at the air inlet and pre-mix: . Moreover, the fuel and air are typically mixed above the air/fuel outlet disposed in the top of the premixing chamber prior to ignition and combustion in the combustion zone. The premixing chamber and fuel film can be formed in a variety of shapes and sizes. In one embodiment, the premixing chamber and fuel film have a circular cross section. In another embodiment, the premixing chamber and fuel film have a rectangular cross section. To enhance air entrainment caused by injection of fuel into the premixing zone via the supplemental fuel inlet, the inner surface of the premixing chamber may include portions of a series of surfaces. The supplemental fuel inlet is positioned relative to the premixing chamber at a position from which fuel can be injected onto the Coanda surface. The fuel tends to adhere to the surface of the canda and travel along the Coanda surface path and form an opposing film that entrains more air into the premixing chamber and air and fuel in the premixing chamber More mixed. The premixing chamber can have a ratio of length 123315.doc -12-200819678 to internal hydraulic diameter ranging from about 〇 2 5:1 to about 4:1. A unit having a premixing chamber with a ratio of length to internal hydraulic diameter greater than 4:1 will operate with an added benefit, but is typically subject to cost constraints. In one embodiment, the premixing chamber has a ratio of length to internal hydraulic diameter ranging from about 1:1 to about 3:1. In another embodiment, the premixing chamber has a ratio of a length of about 1: 丨 or less to an internal hydraulic diameter. The relatively short length of the premixing chamber may be preferred in ground flares and other flare applications where the length (or height) of the burner is important or in applications where highly active fuels may cause internal combustion. Moreover, in some configurations, even when the premixing chamber has a very low length to internal hydraulic diameter ratio, it can be used under conditions that allow a homogeneous mixture of air and fuel (eg, multiple jets, high pressure) , injecting fuel from the supplemental fuel inlet. The inventive ground-type flare includes a plurality of flare burners, a barrier or other enclosure surrounding the extension of the burners, and a fuel supply conduit for supplying fuel to the torch burners such as the Hai. At least one of the flare burners is the inventive flare burner described above. One aspect of the invention includes a method of combusting fuel using a flare burner, wherein the fuel to be combusted is injected into a combustion zone via a fuel outlet of the combustor and ignited to form an outer flame and combust the fuel. According to the inventive method, a portion of the fuel is introduced into the flare combustion H in such a manner that air is entrained into the premixing zone and a mixture of air and fuel is formed in the preheating zone. Mixed area. A mixture of air and fuel is injected from the premixing zone into a central portion of the outer flame. Entrained into the premixing zone and injected into the outer portion of the outer fire portion 123315.doc • 13- 200819678 The gas volume is preferably used to support at least about the stoichiometric amount of fuel required to introduce fuel into the premixing zone 15%. In some applications, a "rich fuel" mixture suitable for injecting fuel and air into the central portion of the outer flame (i.e., having less than one rolling amount required to chemically support the combustion of the fuel introduced into the premixing zone) a mixture of %). However, in most applications, it is desirable to inject fuel and air into the central portion of the outer flame, the lean fuel mixture (ie, having more air to be used to support the combustion of the fuel introduced into the premixing zone) A mixture of 1 〇〇〇 / 0). In most applications, the amount of air entrained into the premixing zone and injected into the central portion of the outer flame is from about 125% to about 300% of the stoichiometric air amount required to support fuel combustion into the premixing zone. Within the scope. The amount of fuel introduced into the premixing zone is preferably in the range of from about 5% to about 50% of the total amount of fuel burned by the flare burner. Since a premixed fuel stream is injected into the central portion of the outer flame in accordance with the inventive method, the outer flame includes combustion at its center and its outer surface. Formation (J ring flame causes additional mixing and turbulence, which results in a more uniform and faster combustion of the outer flame. As a result, the outer flame height can be shortened or the amount of fuel combustible using a given outer flame can be increased. The inventive flare burner and method can achieve other advantages. Accordingly, it is an object of the present invention to provide a flare burner and associated method for the purpose of combusting a large amount of fuel in a relatively short and uniform outer layer of flame. Other and further objects, features, and advantages of the present invention will become apparent to those skilled in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; With particular reference to Figures i through 3, which illustrates a prior art floor flare burner, and the burner is generally designated by the number 10. The prior art burner 1 includes an attachment to the fuel lift The burner casting 12 of the burner 14. The burner casting 12 includes a central portion μ and a plurality of concentrically disposed around the central portion and located at the lifter The top fuel outlet arm 16. Each fuel outlet arm 16 includes one or more fuel ports 18. The fuel is provided directly to fuel #18, that is, the fuel is not first premixed with air. As a result, it is formed by 埠18. The fuel jets diffuse the fuel jets. Figure 3 schematically illustrates the formation of an outer layer of flame 2 from the burner 1 . The fuel (usually indicated by a black arrow) is passed through a crucible at a high velocity that draws the air into the jet. Injected into the combustion zone 22. The lateral cooling zone from the fuel discharge point is from the surrounding air. When the velocity of the flow is reduced, the buoyancy effect of the hot gas thereby contributes to the entire mixed state of the fuel allowing complete combustion. The outer layer fire 20 has a length 23' and includes a uniform dense center fuel core μ. The center fuel core 24 remains unoxidized until the outer portion of the flame 22 begins to burn. Although the central portion of the outer flame may include some of the air pockets 28 However, it is not enough to support the homogenous combustion of the center fuel core. The dense center fuel core 24 is usually kept as it is until the external part of the fuel is released. To allow the air of foot 1 to enter the inner boundary of the outer flame and allow the oxidation process to complete. Unfortunately, the outer fire (four) towel fuel core 24 makes it difficult to increase without increasing the flame length and/or without the presence of soot 123315.doc 200819678 The flow rate of fuel to support a larger flame. Inventive Torch Burner Referring now to Figure 4-8, an embodiment of the inventive flare burner is illustrated and is generally designated by the numeral 30. Torch Burner 3〇 The invention comprises: a premixing zone 31 comprising the weir to 32; and a supplemental fuel inlet 34 for injecting fuel into the premixing zone, a main fuel outlet 36 and a fuel supply conduit 38. This application and the accompanying patent application As used in the scope, fuel, means exhaust gas, steering fuel oil, and/or other gases or liquids to be combusted by the inventive flare burner, flare device (eg, the inventive ground flare device) and method. A liquid can be formed when, for example, the partial pressure of a heavy unsaturated or saturated fuel is at or below a saturated state. As shown in Figure 4, the introducer 4 can be associated with the burner 30 (and the burners 13A, 23A and 33A described below) to initiate ignition of the fuel and the air mixture released by the burner. In the embodiment illustrated in Figures 4-8, the premixing chamber 32 of the flare burner 3 provides a major portion of the premixing zone 31. A mixture of fuel and air (preferably a substantially homogeneous mixture) may be formed in the premixing zone 31 including the premixing chamber 32. As described below, the mixture formed in the premixing zone 31 can be rich in fuel or lean in fuel. The premixing chamber 32 includes a circular cross section and has a cylindrical shape. The premixing chamber includes a top portion 42, a bottom portion 44, a side wall 46 connecting the top portion to the bottom portion, an air inlet 48 disposed in the bottom portion, and an air/fuel outlet port 5 disposed in the top portion 42. As shown, the top 42 and bottom 44 are open, thereby forming an air inlet 48 and/or a fuel outlet 50. As a result, the air inlet 48 and the air/fuel outlet 50 also each have a circular cross section. The lower portion of the premixing chamber μ is 123315.doc -16-200819678 (shapely) shape, from a selection system, the premixing chamber 52 is flared outward to impart to one of the lower portions to enhance the incoming fuel and air. Flow rate. The lower portion 52 of the other 32 is not flared outward, i.e., the entire premixing chamber has a cylindrical shape of a uniform sentence. As best shown in FIG. 5, the premixing zone 3 includes: a premixing space 31 (4) located below the premixing chamber 32 (between the supplemental fuel inlet ^ and the premixing chamber bottom 44 and the air inlet 48); 31(b); and immediately above the top 42 of the premixing chamber and the air/fuel outlet

之預混合空間31(c)。在圖4至圖9所示之實施例中,在預混 合室32之内部3 i (b)及在預混合空間3丨(c)中發生預混合空 氣與燃料之初步混合。 預混合室32具有一長度(或高度)與内部液壓直徑介於約 〇·25··1至約4:1、較佳地介於約1:1至約3:1範圍内之比例。 預混合室32之長度(或高度)與内部液壓直徑之準確比例將 部分地相依於欲燃燒之燃料類型及供用於夾帶及混合之壓 力。一般而言,較長之預混合室可於其中形成燃料與空氣 之較佳混合,然而,此優勢被成本及其他考慮因素所抵 消。在一較佳實施例中,預混合室32之長度(或高度)與内 部液壓直徑之比例係約1·5:1。本文及隨附申請專利範圍中 所用之”内部液壓直徑”意指預混合室内面積之四倍除以預 混合室側壁内表面直徑。 補充燃料入口 34相對於預混合區3 1定位於一達成如下之 位置:使將燃料自補充燃料入口至預混合區之喷射可將空 氣夾帶進預混合空間3 1 (a)且經由空氣入口 48進入預混合室 32,藉此在該預混合區内形成燃料與空氣之一混合物,該 123315.doc •17- 200819678 混合物較佳地係一大致同質之混合物,且使該混合物在預 混合室頂部42之空氣/燃料出口 50離開。燃料與空氣在預 混合空間31(c)繼續混合。通常直至燃料與空氣之混合物離 開空氣/燃料出口 50(通常距空氣/燃料出口一分離之距 離),該混合物才發生燃燒。燃燒發生處距空氣/燃料出口 50之距離因混合物中之空氣量及混合物自空氣/燃料出口 釋放之速率而改變。在某些情況下,由於短離台(心_时吒幻 p 時序,可在預混合區中發生燃燒(例如在短持續時間、壓 力極低之情況下)。如圖6及圖7所示,補充燃料入口 34包 括一其中具有一個或多個燃料埠58之中心燃料噴射器Η。 一環形燃料膜60設置於預混合室32之外周邊周圍。燃料 膜60連接至燃料供給管道38且與主燃料出口%流體連通。 燃料膜60包括一敞開之頂部62、一底部64及一將該頂部連 接至該底部之外側壁66及内側壁67。在圖4至圖8所示之實 施例中,膜60之内側壁67亦係預混合室32之側壁46。一環 〇 形密封68附裝至燃料膜60之底部64,且環繞預混合室32之 側壁46延伸以確保該膜之完整性。在一替代實施例中,如 圖25至圖28所例示及下文所解釋,燃料膜6〇可自預混合室 32之側壁46向外間隔開以在側壁46外表面與主燃料出口 % • 之間提供一環形空間。該環形空間允許將空氣自燃燒器下 部夾帶至一毗鄰於設置於主燃料出口 36内部部分上之燃料 埠74之位置。在該實施例中,膜60之内側壁67與預混合室 32之侧壁46分離。 主燃料出口 36相對於預混合室頂部42定位於一達成如下 123315.doc -18 · 200819678 之位置:使燃料可自預混合室空氣/燃料出口 50之周邊69 周圍的主燃料出口 36噴射。如圖6較佳地顯示,主燃料出 ^6包括-其中具有複數個燃料物之扁平環形燃料喷射 益本體70。埠74所形成之燃料射流係擴散燃料射流。環形 Μ喷射H本體7G附裝至環形膜6()之敞開頂部α,使得燃 料埠74設置於預混合室空氣/燃料出口 5〇之周邊69周圍。 環形膜60與環形燃料噴射器本體7q之内徑及外徑近似相 〇 燃料可自空氣/燃料出口5()之周邊69周圍之主燃料出 口聯環形燃料噴射器本體7〇)以環形形式喷射。可調整 埠74之大小及間距以控制燃料自該等璋喷射之方式(例如 方向及速度)。該特徵結合燃料及空氣經由空氣/燃料出口 5〇之流允許控制整個外層火焰之形狀及長度。 如圖7所不,若需要,可藉由複數個相應之短煤氣登管 或頂端延伸物76使擴散燃料埠74與燃料噴射器本體7〇隔 開。-在某些應用中,使用豎管76將琿74與燃料喷射器本體 〇 7G隔開可形成更佳之空氣橫向夾帶。若需要,豎管亦允許 以機械方式改變該等埠之構造及所形成燃料流之性質。。Pre-mixing space 31 (c). In the embodiment shown in Figures 4 through 9, the preliminary mixing of the premixed air with the fuel takes place in the interior 3 i (b) of the premixing chamber 32 and in the premixing space 3 丨 (c). The premixing chamber 32 has a ratio of a length (or height) to an internal hydraulic diameter of from about 25·25··1 to about 4:1, preferably from about 1:1 to about 3:1. The exact ratio of the length (or height) of the premixing chamber 32 to the internal hydraulic diameter will depend, in part, on the type of fuel to be combusted and the pressure to be used for entrainment and mixing. In general, a longer premixing chamber can form a better mix of fuel and air therein, however, this advantage is offset by cost and other considerations. In a preferred embodiment, the ratio of the length (or height) of the premixing chamber 32 to the internal hydraulic diameter is about 1.5:1. The "internal hydraulic diameter" as used herein and in the scope of the accompanying claims means four times the area of the premixing chamber divided by the inner surface diameter of the side wall of the premixing chamber. The supplemental fuel inlet 34 is positioned relative to the premixing zone 31 at a position such that injection of fuel from the supplemental fuel inlet to the premixing zone can entrain air into the premixing space 3 1 (a) and via the air inlet 48 Entering the premixing chamber 32, thereby forming a mixture of fuel and air in the premixing zone, the mixture preferably being a substantially homogeneous mixture and placing the mixture on top of the premixing chamber The air/fuel outlet 50 of 42 leaves. The fuel and air continue to mix in the premixing space 31 (c). Typically, the mixture will not burn until the mixture of fuel and air leaves the air/fuel outlet 50 (usually a distance from the air/fuel outlet). The distance from which the combustion occurs to the air/fuel outlet 50 varies due to the amount of air in the mixture and the rate at which the mixture is released from the air/fuel outlet. In some cases, combustion can occur in the premixing zone due to short departure times (eg, in the case of short durations, very low pressure), as shown in Figures 6 and 7. The supplemental fuel inlet 34 includes a central fuel injector 其中 having one or more fuel ports 58. An annular fuel membrane 60 is disposed about the periphery of the outer periphery of the premixing chamber 32. The fuel membrane 60 is coupled to the fuel supply conduit 38 and The primary fuel outlet is in fluid communication. The fuel membrane 60 includes an open top 62, a bottom 64, and a top portion that connects the top to the outer sidewall 66 and the inner sidewall 67. In the embodiment illustrated in Figures 4-8 The inner side wall 67 of the membrane 60 is also the side wall 46 of the premixing chamber 32. A ring shaped seal 68 is attached to the bottom 64 of the fuel film 60 and extends around the side wall 46 of the premixing chamber 32 to ensure the integrity of the film. In an alternate embodiment, as illustrated in Figures 25-28 and explained below, the fuel film 6〇 may be spaced outwardly from the sidewall 46 of the premixing chamber 32 to the outer surface of the sidewall 46 and the primary fuel outlet. Provide an annular space between the spaces. Air is entrained from the lower portion of the burner to a position adjacent to the fuel crucible 74 disposed on the inner portion of the main fuel outlet 36. In this embodiment, the inner side wall 67 of the membrane 60 is separated from the side wall 46 of the premixing chamber 32. The fuel outlet 36 is positioned relative to the premixing chamber top 42 at a position that achieves 123315.doc -18 - 200819678 as follows: fuel can be injected from the main fuel outlet 36 around the periphery 69 of the premixing chamber air/fuel outlet 50. 6 preferably shows that the primary fuel outlet 6 comprises a flat annular fuel injection benefit body 70 having a plurality of fuels therein. The fuel jet formed by the crucible 74 is a diffusion fuel jet. The annular helium jet H body 7G is attached to the ring. The open top a of the membrane 6() is such that the fuel crucible 74 is disposed around the periphery 69 of the premixing chamber air/fuel outlet 5A. The annular membrane 60 is approximately opposite to the inner and outer diameters of the annular fuel injector body 7q. The main fuel outlet from the periphery 69 of the air/fuel outlet 5 () is coupled to the annular fuel injector body 7) in a circular form. The size and spacing of the crucibles 74 can be adjusted to control the manner in which fuel is ejected from such imperfections (e.g., direction and speed). This feature, in combination with fuel and air flow through the air/fuel outlet 5, allows control of the shape and length of the entire outer flame. As shown in Fig. 7, if desired, the diffusion fuel cartridge 74 can be separated from the fuel injector body 7 by a plurality of corresponding short gas tubes or tip extensions 76. - In some applications, the use of standpipe 76 to separate the weir 74 from the fuel injector body 〇 7G results in a better air lateral entrainment. The riser also allows mechanical changes to the construction of the crucible and the nature of the fuel stream formed, if desired. .

圖8顯示環形燃料噴射器本體7〇之一替代實施例。在該 實施例令,複數個燃料槔74戰略性地間隔於燃料 I 體7〇外部、内部及中間。燃料璋⑽此方式在燃料喷射器 本體70周圍之間隔允許利用該等射流之間的夹帶通路達成 更好之現合及夾帶。如熟習此項技術者所瞭解,噴射器本 體70可包括埠74之各種迭代。所用特定埠之構造將相依於 各種因素,包括將燃燒之燃料類型(包括分子量、發熱 123315.doc -19- 200819678 量、化學計算法及燃料流之溫度)及與此相關之可用麼 力。 燃料供給管道38與補充燃料入口 34及主 外汉王燃科出口 36流體 連通,用於將燃料引導至此。燃料供給管道刊包括—具有 -第-端82及一第二端84之主分支8〇。第—端以包括二法 蘭86,用於將該第一端連接至一燃料源(如熟習此項技術 纟所知通常藉由直接將㈣管段焊接在—起或藉助某無需 襯墊(例如相應法蘭之間的襯墊通常無法承受周圍環境之 輻射熱度)之其他機械連接來獲得該等類型之連接)。第二 端84連接至燃料膜60之外部側壁66中之一相應入口 μ。燃 料供給管道38亦包括一補充分支9〇,其將該燃料供給管道 連接至補充燃料入口 34。補充分支90包括一第一端92及一 第二端94。第一端92連接至供給管道38之主分支9〇。聯結 器96將第二端94連接至補充燃料入口 34。另一選擇係,分 離之燃料供給管道或豎管可將燃料引導至補充燃料入口 34 及主燃料出口 36(不同於單個組成管道或豎管38)。分離之 管道或豎管通常會自一共用燃料壓頭延伸。 參照圖5,將說明火炬燃燒器30之運作。將欲燃燒燃料 (通常由黑色箭頭來緣示)之一部分經由燃料供給管道3 8之 主分支80引導至燃料膜60及主燃料出口 36。亦將欲燃燒燃 料之一部分經由燃料供給管道38之補充分支9〇引導至補充 燃料入口 3 4。燃料自補充入口 3 4之至預混合區3 1及預混合 室32之喷射將空氣夾帶進預混合空間3 1(a)且經由空氣入口 48進入預混合室内部31(b),藉此在預混合區内形成一燃料 123315.doc -20- 200819678Figure 8 shows an alternative embodiment of the annular fuel injector body 7'. In this embodiment, a plurality of fuel ports 74 are strategically spaced outside, inside, and in the middle of the fuel body 7. The spacing of the fuel rafts (10) around the fuel injector body 70 allows for better rendezvous and entrainment with the entrainment passage between the jets. As will be appreciated by those skilled in the art, the injector body 70 can include various iterations of the weir 74. The specific structure used will depend on a variety of factors, including the type of fuel to be burned (including molecular weight, heat, chemical calculations, and fuel flow temperatures) and the associated forces available. Fuel supply conduit 38 is in fluid communication with supplemental fuel inlet 34 and main external Hanwang outlet 36 for directing fuel thereto. The fuel supply pipeline includes a main branch 8 having a - terminal 82 and a second terminal 84. The first end includes a second flange 86 for connecting the first end to a fuel source (as is conventionally known in the art, by directly welding the (iv) tube section or by means of a non-pad (eg, The gaskets between the respective flanges are generally unable to withstand the radiant heat of the surrounding environment) to obtain such connections. The second end 84 is coupled to a respective one of the outer sidewalls 66 of the fuel film 60. The fuel supply conduit 38 also includes a supplemental branch 9 that connects the fuel supply conduit to the supplemental fuel inlet 34. The supplemental branch 90 includes a first end 92 and a second end 94. The first end 92 is connected to the main branch 9 of the supply conduit 38. Coupling 96 connects second end 94 to supplemental fuel inlet 34. Alternatively, a separate fuel supply conduit or riser may direct fuel to the supplemental fuel inlet 34 and the main fuel outlet 36 (unlike a single component conduit or riser 38). Separate pipes or risers typically extend from a common fuel head. Referring to Figure 5, the operation of the flare burner 30 will be described. A portion of the fuel to be combusted (usually indicated by the black arrow) is directed to the fuel film 60 and the main fuel outlet 36 via the main branch 80 of the fuel supply conduit 38. A portion of the fuel to be combusted is also directed to the supplemental fuel inlet 34 via a supplemental branch 9 of the fuel supply conduit 38. The injection of fuel from the supplementary inlet 34 to the premixing zone 31 and the premixing chamber 32 entrains air into the premixing space 31 (a) and enters the premixing chamber portion 31 (b) via the air inlet 48, thereby A fuel is formed in the premixing zone 123315.doc -20- 200819678

U 與空氣之混合物且使該混合物離開空氣/燃料出口 %。燃 ㈣空氣在空氣/燃料出口 5G上方之—短距離内繼續混 合。其餘欲燃燒燃料圍繞預混合室之空氣/燃料出口 5〇之 周邊69且因此圍繞離開預混合室之空氣/燃料出口之空氣/ 燃料混合物以環形形式自主燃料出口36喷射。該燃燒器較 佳地以一方式設計及運作,使得夾帶進入包括預混合室32 之預混合區31内之空氣量超過用以燃燒喷射進預混合區内 之燃料所需之化學計算空氣量。將過量之空氣賦予外層火 焰中心用於燃燒其中之燃料。然而,如下文進一步解釋, 在某些應用中,以—ne a? ^.ι n _ 方式叹汁及運作該燃燒器,使得夾帶 進入包括預混合室32之預混合區31内之空氣量等於或少於 用以燃燒喷射進預混合區内之燃料(當然其仍然可燃)所需 之化學計算空氣量。在某些應用中,期望向外層火焰之中 央部分喷射&quot;富燃料&quot;之燃料與空氣混合物(即一具有少於用 以支援引入預混纟區内之燃料燃燒所需之化學計算空氣量 的混合物)。 ” 圖24概要地繪示火炬燃燒器3〇(以及下文所述之辦燒器 ?〇、23°及33〇)所形成之外層火焰⑽。如圖所示,將過 量之空氣自預混合室32噴射進外層火焰1〇〇之中央部分 102。以圖24之氣穴103繪示之過量空氣與外層火焰⑽之 中央。P刀102中之燃料混合以有纟地形《兩個最初可燃 區’區104⑷及l〇4(b)。直至外層火焰之外部部分ι〇5開始 燃燒’允許下—燃料層接近空氣,否則’火焰中央部分 1〇2中之燃料不會遇到氧化劑(空氣)。將空氣提供至外層火 123315.doc -21 · 200819678Mixture of U with air and leave the mixture out of the air/fuel outlet %. Combustion (4) Air continues to mix above the air/fuel outlet 5G for a short distance. The remaining portion of the air/fuel outlet 5 around which the fuel is to be combusted surrounds the premixing chamber and thus the air/fuel mixture exiting the air/fuel outlet exiting the premixing chamber is injected in the form of an annular autonomous fuel outlet 36. Preferably, the burner is designed and operated in a manner such that the amount of air entrained into the premixing zone 31 including the premixing chamber 32 exceeds the amount of stoichiometric air required to combust the fuel injected into the premixing zone. Excess air is imparted to the outer flame center for burning the fuel therein. However, as further explained below, in some applications, the burner is operated and operated in a manner of -ne a? ^.ι n _ such that the amount of air entrained into the premixing zone 31 including the premixing chamber 32 is equal to Or less than the stoichiometric amount of air required to burn the fuel injected into the premixing zone (which is of course still flammable). In some applications, it is desirable to inject a &quot;rich fuel&quot; fuel-air mixture into the central portion of the outer flame (i.e., have less than the stoichiometric amount of air required to support combustion of the fuel introduced into the premixed zone) mixture). Figure 24 schematically shows the outer flame (10) formed by the flare burner 3 (and the burners, 23° and 33〇 described below). As shown, excess air is supplied from the premixing chamber. 32 is sprayed into the central portion 102 of the outer flame. The excess air depicted in the air pocket 103 of Fig. 24 is centered with the outer flame (10). The fuel in the P knife 102 is mixed to have a crucible terrain "two initial combustible zones" Zones 104(4) and 104(b) until the outer portion of the outer flame, ι〇5, begins to burn 'allowed—the fuel layer is close to the air, otherwise the fuel in the central portion of the flame 1 〇 2 will not encounter the oxidant (air). Supply air to the outer layer of fire 123315.doc -21 · 200819678

U 焰100之中央部分1〇2不僅形成一可燃中心區,而且當内部 燃燒區在燃燒熱度下擴張時,亦使火焰分開。在較大主火 焰内添加一不同之燃燒火焰增加了明顯之湍流,從而增強 了中〜燃料核之混合及分解。作為一結果,出現了更均勻 且更快之外層火焰燃燒,此縮短火焰之整體長度,或允許 使用相同之火焰長度燃燒明顯更多之燃料。當賦予外層火 焰100之中央部分102之過量空氣量增加時,火焰長度減小 或在一既定火焰高度下可燃燒之燃料量增加。舉例而言, 如圖24所示,外層火焰100具有一長度1〇6,此明顯小於相 同燃料量之圖3所示先前技術外層火焰2〇之長度23。 現在參照圖9至圖12,其圖解說明該發明性火炬燃燒器 之一第二實施例,且通常由參考編號13()來標明。同該發 明性火炬燃燒器之其他實施例一樣,火炬燃燒器13 〇包 含··一包括一預混合室132之預混合區131,·及一用於將燃 料喷射進入預混合區之補充燃料入口 134 ; 一主燃料出口 136及一燃料供給管道138。一導引器(如圖4所示)可與燃燒 器130相關聯以在最初點燃燃燒器所釋放之燃料與空氣之 混合物。 在圖9至圖12所圖解說明之實施例中,火炬燃燒器13〇之 預混合室130提供預混合區13i之主要部分。可在包括預混 合室132之預混合區131中形成一燃料與空氣之混合物(較 佳地係-大致同質之混合物)。如下文所述,形成於預混 。預混合室132包 包括一頂部142、 合區13 1内之混合物可係富燃料或貧燃料 括一圓形橫截面且具有一圓柱形狀。其 123315.doc •22- 200819678 一底部144、一將該頂部連接至該底部之侧壁丨46、一設置 於底部144中之空氣入口 148及一設置於該頂部中之空氣/ 燃料出口 150。如圖所示,頂部142及底部144皆係敞開, 藉此形成空氣入口 148及空氣/燃料出口 15〇。作為一結 果,空氣入口 148及空氣/燃料出口 150亦各自具有一圓形 橫截面。 如圖10最佳顯示,預混合區13 1包括:一位於預混合室 132下方之預混合空間13 1(a)(位於補充燃料入口 134與預混 合室底部144及空氣入口 148之間);預混合室内部131(b); 及一緊接於預混合室頂部142及空氣/燃料出口 ι5〇上方之 預混合空間13 1 (c)。在圖9至圖12所示之實施例中,在預混 合室132之内部13 1(b)及在預混合空間13 1(c)中發生空氣與 燃料之初步混合。預混合室132之侧壁146包括一内表面 154及一外表面156。側壁146之下部部分158以一曲線形式 向外張開,以賦予至侧壁内表面154之一環形c〇anda表面 160 〇 預混合室132具有長度(或高度)與内部液壓直徑介於自 約0.25:1至約4:1、較佳地介於約1:1至約3:1範圍内之比 例。預混合室132之長度(或高度)與内部液壓直徑之準確比 例將部分地相依於欲燃燒燃料之類型及供用於夾帶及混合 之壓力。一般而言,較長之預混合室可於其中形成燃料與 空氣之較佳混合,然而,此優勢被成本及其他考慮因素所 抵消。在一較佳實施例中,預混合室132之長度(或高度)與 内部液壓直徑之比例係約1.5:1。 123315.doc -23 - 200819678 補充燃料入口 134相對於預混合區1 3 1定位於一達成如下 之位置:燃料自補充燃料入口至預混合區之喷射可將空氣 夾帶進預混合空間131(a)且經由空氣入口 148進入預混合 室,藉此在該預混合區内形成燃料與空氣之一混合物,該 混合物較佳地係一大致同質之混合物,且使該混合物在預 混合室頂部142中之空氣/燃料出口 15〇離開。燃料與空氣 在預此合空間13 1 (c)中繼續混合。通常直至燃料與空氣之 混合物離開空氣/燃料出口 1 5〇(通常距空氣/燃料出口一分 離之距離),該混合物才發生燃燒。燃燒發生處距空氣〇然 料出口 150之距離因混合物中之空氣量及混合物自空氣/燃 料出口釋放之速度而改變。在某些情況下,由於短離台 (de-stage)時序,可在預混合區中發生燃燒(例如在短持續 時間且壓力極低之情況下)。如圖10及圖丨2所示,補充燃 料氣體入口 134包括一其中具有複數個燃料埠166之管狀分 配歧管164。燃料埠166係大致圓形之孔。如圖10所示,管 狀分配歧管164相對於預混合室132定位於一位置,使得燃 料可自歧管164以環形方式喷射至環形c〇anda表面ι6〇上。 圖10A圖解說明管狀分配歧管164之一替代實施例。在該 實施例中,燃料埠166係細長孔或槽。燃料埠166之槽溝形 狀使將燃料以一片狀型樣噴射至環形Coanda表面160上, 此用以增強Coanda表面所形成之夾帶及混合效果,且允許 將燃料自歧管164以一較高速率喷射。若需要,可對該等 槽16 6進行連接以在分配歧管16 4中形成連續之細長孔或 槽0 123315.doc -24- 200819678The central portion 1〇2 of the U-flame 100 not only forms a combustible central region, but also separates the flame when the internal combustion zone expands under the heat of combustion. The addition of a different combustion flame to the larger main flame adds significant turbulence, which enhances the mixing and decomposition of the medium-fuel core. As a result, a more uniform and faster outer layer of flame combustion occurs, which shortens the overall length of the flame or allows the combustion of significantly more fuel using the same flame length. As the amount of excess air imparted to the central portion 102 of the outer flame 100 increases, the flame length decreases or the amount of fuel combustible at a given flame level increases. For example, as shown in Fig. 24, the outer layer flame 100 has a length of 1 〇 6, which is significantly less than the length 23 of the prior art outer layer flame 2 shown in Fig. 3 of the same fuel amount. Referring now to Figures 9 through 12, a second embodiment of the inventive flare burner is illustrated and is generally indicated by reference numeral 13(). As with other embodiments of the inventive flare burner, the flare combustor 13 includes a premixing zone 131 including a premixing chamber 132, and a supplemental fuel inlet for injecting fuel into the premixing zone. 134; a main fuel outlet 136 and a fuel supply conduit 138. An introducer (shown in Figure 4) can be associated with the burner 130 to initially ignite the mixture of fuel and air released by the burner. In the embodiment illustrated in Figures 9 through 12, the pre-mixing chamber 130 of the flare burner 13A provides a major portion of the pre-mixing zone 13i. A mixture of fuel and air (preferably a substantially homogeneous mixture) may be formed in the premixing zone 131 comprising the premixing chamber 132. Formed in premix as described below. The premixing chamber 132 includes a top portion 142. The mixture in the junction 13 1 may be rich in fuel or lean in fuel and include a circular cross section and have a cylindrical shape. 123315.doc • 22- 200819678 A bottom 144, a side wall 丨 46 connecting the top to the bottom, an air inlet 148 disposed in the bottom 144, and an air/fuel outlet 150 disposed in the top. As shown, the top 142 and the bottom 144 are both open, thereby forming an air inlet 148 and an air/fuel outlet 15A. As a result, the air inlet 148 and the air/fuel outlet 150 also each have a circular cross section. As best shown in FIG. 10, the premixing zone 13 1 includes a premixing space 13 1 (a) located below the premixing chamber 132 (between the supplemental fuel inlet 134 and the premixing chamber bottom 144 and the air inlet 148); The premixing chamber interior 131(b); and a premixing space 13 1 (c) immediately adjacent to the premixing chamber top 142 and the air/fuel outlet ι5〇. In the embodiment shown in Figures 9 through 12, preliminary mixing of air and fuel occurs in the interior 13 1 (b) of the premixing chamber 132 and in the premixing space 13 1 (c). The side wall 146 of the premixing chamber 132 includes an inner surface 154 and an outer surface 156. The lower portion 158 of the side wall 146 flares outwardly in a curved form to impart an annular c〇anda surface 160 to the inner surface 154 of the side wall. The premixing chamber 132 has a length (or height) and an internal hydraulic diameter of between A ratio ranging from 0.25:1 to about 4:1, preferably from about 1:1 to about 3:1. The exact ratio of the length (or height) of the premixing chamber 132 to the internal hydraulic diameter will depend, in part, on the type of fuel to be combusted and the pressure to be used for entrainment and mixing. In general, a longer premixing chamber can form a better mix of fuel and air therein, however, this advantage is offset by cost and other considerations. In a preferred embodiment, the ratio of the length (or height) of the premixing chamber 132 to the internal hydraulic diameter is about 1.5:1. 123315.doc -23 - 200819678 The supplemental fuel inlet 134 is positioned relative to the premixing zone 133 at a position where the injection of fuel from the refueling inlet to the premixing zone can entrain air into the premixing space 131(a) And entering the premixing chamber via air inlet 148, thereby forming a mixture of fuel and air in the premixing zone, preferably a substantially homogeneous mixture, and causing the mixture to be in the top portion 142 of the premixing chamber The air/fuel outlet 15 〇 leaves. The fuel and air continue to mix in the pre-combined space 13 1 (c). Typically, the mixture will not burn until the mixture of fuel and air leaves the air/fuel outlet 15 〇 (typically a distance from the air/fuel outlet). The distance from which the combustion occurs to the air sump outlet 150 varies depending on the amount of air in the mixture and the rate at which the mixture is released from the air/fuel outlet. In some cases, combustion may occur in the premixing zone due to short de-stage timing (e.g., in the case of short durations and very low pressures). As shown in Figures 10 and 2, the supplemental fuel gas inlet 134 includes a tubular distribution manifold 164 having a plurality of fuel ports 166 therein. The fuel crucible 166 is a substantially circular hole. As shown in Figure 10, the tubular distribution manifold 164 is positioned relative to the premixing chamber 132 in a position such that fuel can be injected from the manifold 164 in an annular manner onto the annular c〇anda surface. FIG. 10A illustrates an alternate embodiment of a tubular distribution manifold 164. In this embodiment, the fuel cartridge 166 is an elongated bore or slot. The shape of the groove of the fuel crucible 166 causes the fuel to be sprayed onto the annular Coanda surface 160 in a sheet-like pattern to enhance the entrainment and mixing effect of the Coanda surface and allow the fuel to be self-manipulated from the manifold 164. Rate injection. If desired, the slots 16 6 can be joined to form a continuous elongated aperture or slot in the distribution manifold 16 4 . 123315.doc -24- 200819678

-環形燃料膜17〇設置於預混合室132之外周邊周圍。姆 料膜m連接至燃料供給管道138且與主燃料出口 136及補 充燃料人口 134流體連通。燃料膜m包括—敞開之頂部 172、一底部174及一將該頂部連接至該底部之外側壁⑺ 及内側壁177。在圖9至圖12所示之實施例中,内側壁π 亦係預混合室之側壁146。一環形密封178附裝至燃料膜 170之底部174,且環繞預混合室132之側壁146延伸以確保 該膜之完整性。在-替代實施例中,如圖25至圖28所例示 及下文所解釋,燃料膜170可自預混合室132之側壁146向 外間隔開以在侧壁146外表面與主燃料出口 136之間提供一 環形空間。該環形空間允許將空氣自燃燒器下部夾帶至一 毗鄰於設置於主燃料出口 136内部部分上之燃料埠192之位 置。在該實施例中,膜17〇之内侧壁177與預混合室Η]之 側壁146分離。 補充燃料供給管道180(a)、180(b)、180(c)及180(d)自環 形燃料膜170延伸至補充燃料入口 134(即管狀分配歧管164) 以將燃料自燃料膜170傳送至入口 134(即歧管164)。補充燃 料供給管道180(a)、180(b)、180(c)及180(d)之每一者均包 括一附裝至膜170之第一端182及一附裝至入口 134(即歧管 164)之第二端184。 主燃料出口 136相對於預混合室頂部142定位於一達成如 下之位置:燃料可自預混合室空氣/燃料出口 150之周邊 1 8 6周圍的主燃料出口喷射。如圖11較佳地顯示,主燃料 出口 136包括一其中具有複數個燃料埠192之扁平環形燃料 123315.doc -25- 200819678 喷射器本體188。埠192所形成之燃料射流係擴散燃料射 流。環形燃料噴射器本體188附裝至環形膜170之敞開頂部 172,使得燃料埠192設置於預混合室132之空氣/燃料出口 150之周邊186周圍。環形膜170與環形燃料噴射器本體188 之内徑及外徑近似相同。燃料可自空氣/燃料出口 15〇之周 邊186周圍之主燃料出口 136(即環形燃料噴射器本體188)以 環形形式喷射。可調整埠192之大小及間距以控制燃料自 該等埠喷射之方式(例如方向及速度)。該特徵結合燃料及 空氣經由空氣/燃料出口 15 〇之流允許控制整個外層火焰之 形狀及長度。 如圖7所示,若需要,可藉由複數個相應之短煤氣豎管 或頂端延伸物196使擴散燃料埠192與燃料噴射器本體188 隔開。使用豎管196將埠192與燃料喷射器本體188隔開可 在某些應用中形成更佳之空氣橫向夾帶。若需要,豎管亦 允許以機械方式改變該等埠之構造及所形成燃料流之性 質。亦可使用圖8所示之燃料喷射器本體7〇替代實施例替 代環形燃料噴射器本體188。如熟習此項技術者所瞭解, 喷射器本體188可包括埠192之各種迭代。所用特定埠之構 造將相依於各種因素,包括將燃燒之燃料類型(包括分子 量、發熱量、化學計算法及燃料流之溫度)及與此相關之 可用壓力。 燃料供給管道138與補充燃料入口 134及主燃料出口 136 流體連通,用於將燃料引導至此。燃料供給管道138具有 一第一端200及一第二端202。第一端2〇〇包括一法蘭2〇4, 123315.doc -26· 200819678 用於將該第一端連接至一燃料源(同樣,通常藉由焊接來 獲得該等類型之連接)。第二端202連接至環形氣體膜17〇 之外部側壁176中之一相應入口 206。另一選擇係,分離之 燃料供給管道或豎管可將燃料引導至補充燃料入口 134及 主燃料出口 136(不同於單個組成管道或豎管138)。分離之 管道或豎管通常會自一共用燃料壓頭延伸。 參照圖10,將說明燃燒器130之運作。將欲燃燒燃料(通 常由黑色箭頭來繪示)經由燃料供給管道138引導至環形氣 體膜170。燃料之一部分藉由燃料膜17〇引導至主燃料出口 136(即環形噴射器本體188)。燃料之剩餘部分藉由膜17〇經 由燃料供給管道180(a)、180(b)、180((〇及180((1)引導至補 充燃料入口 134(即管狀分配歧管164)。燃料自管狀分配歧 管164之燃料埠166經由預混合空間131(勾喷射至預混合室 132内表面154上之環形Coanda表面160上。自氣體璋166向 預混合區131及預混合室132噴射燃料將空氣夾帶進預混合 空間13 1(a)且經由空氣入口 148進入預混合室内部131(b), 藉此在該預混合區中形成燃料與空氣之混合物(較佳地係 一大致同質之混合物),且使該混合物離開空氣/燃料出口 150。燃料與空氣在空氣/燃料出口 15〇上方之一短距離内 繼縯混合。燃料自燃料璋166至Coanda表面160上之喷射使 燃料附著至Coanda表面上,且沿Coanda表面路徑行進,並 形成一相對較薄之膜,此促成更有效之空氣夾帶及空氣與 燃料之混合。欲燃燒燃料圍繞預混合室132之空氣/燃料出 口 150之周邊186且因此圍繞離開預混合室之空氣/燃料出 123315.doc -27- 200819678 口 150之空氣/燃料混合物自主燃料出口 136(環形喷射器本 體188)喷射。火炬燃燒器13〇較佳地以一方式設計及運 作’使得夹帶進入包括預混合室132之預混合區131内之空 氣里超過用以燃燒噴射進預混合區内之燃料所需之化學計 异空氣量。將過量之空氣賦予外層火焰中心用於燃燒其中 之燃料。然而,如下文進一步解釋,纟某些應用中,以一 方式設計及運作該燃燒器,使得夾帶進入包括預混合室 132之預混合區13 1内之空氣量等於或少於用以燃燒喷射進 預混合區内之燃料所需之化學計算空氣量。在某些應用 中’期望向外層火焰中央部分喷射,,富燃料,,之燃料與空氣 混合物(即一具有少於用以支援引入預混合區内之燃料燃 燒所需之化學計算空氣量的混合物)。 火炬燃燒器130達成與火炬燃燒器3〇所達成之優勢相同 之優勢。亦可藉由火炬燃燒器13〇形成圖24概要繪示之外 層火焰100。 現在參照圖13至圖18,其圖解說明該發明性火炬燃燒器 之第一實施例’且通常由參考編號230來標明。同該發 月f生火炬燃:燒器、之其他實施例一樣,《炬燃*堯器包 3 包括一預混合室232之預混合區231 ;及一用於將燃 料喷射進入預混合區内之補充燃料入口 234,· 一主燃料出 口 236及一燃料供給管道238。一導引器(如圖4所示)可與燃 燒器130相關聯以便最初點燃燃燒器所釋放之燃料與空氣 之混合物。 在Η 3至圖1 8所圖解說明之實施例中,火炬燃燒器23〇 123315.doc •28- 200819678 之預混合室232提供預混合區231之主要部分。可在包括預 混合室232之預混合區23 1中形成一燃料與空氣之混合物 (較佳地係一大致同質之混合物)。如下文所述,形成於預 混合區23 1内之混合物可係富燃料或貧燃料。預混合室232 包括一矩形橫截面且具有一矩形形狀。其包括一頂部 242、一底部244、一將該頂部連接至該底部之側壁246、 一設置於底部244中之空氣入口 248及一設置於該頂部中之 空氣/燃料出口 250。如圖所示,頂部242及底部244皆係敞 開,藉此形成空氣入口 248及空氣/燃料出口 250。作為一 結果,空氣入口 248及空氣/燃料出口 250亦各自具有一矩 形橫截面。 如圖14最佳顯示,預混合區231包括:一位於預混合室 232下方之預混合空間23 1(a)(位於補充燃料入口 234與預混 合室底部之底部244及空氣入口 248之間);預混合室内部 231(b);及一緊接於預混合室頂部242及空氣/燃料出口 250 上方之預混合空間231(c)。在圖13至圖18所示之實施例 中,在預混合室232之内部231(b)及在預混合空間231(c)中 發生空氣與燃料之初步混合。 預混合室232之侧壁246包括四個侧面246(a)、246(b)、 246(c)及 246(d)。該等側面 246(a)、246(b)、246(c)及 246(d)之每一者均包括一内表面254及一外表面256。該等 侧面246(a)、246(b)、246(c)及246(d)之每一者之下部部分 258以一曲線形式向外張開以賦予至該側面之内表面254 — 環形Coanda表面260。預混合室232具有長度(或高度)與内 123315.doc -29- 200819678 部液壓直徑介於自約0.25:1至約4:1、較佳地介於約1:1至 約3:1範圍内之比例。預混合室232之長度(或高度)與内部 液壓直徑之準確比例將部分地相依於欲燃燒燃料之類型及 供用於夾帶及混合之壓力。一般而言,較長之預混合室可 於其中形成燃料與空氣之較佳混合,然而,此優勢被成本 及其他考慮因素所抵消。在一較佳實施例中,預混合室 232之長度(或高度)與内部液壓直徑之比例係約1·5:1。 補充燃料入口 234相對於預混合區23 1定位於一達成如下 之位置:燃料自補充燃料入口至預混合區之喷射可將空氣 夾帶進預混合空間23 1 (a)且經由空氣入口 248進入預混合室 232,藉此在該預混合區内形成燃料氣體與空氣之一混合 物’該混合物較佳地係一大致同質之混合物,且使該混合 物在預混合室頂部242中之空氣/燃料出口 250離開。通常 直至燃料與空氣之混合物離開空氣/燃料出口 25〇(通常距空 氣/燃料出口 一分離之距離),該混合物才發生燃燒。燃燒 發生處距空氣/燃料出口 250之距離因混合物中之空氣量及 混合物自空氣/燃料出口釋放之速率而改變。在某些情況 下’由於短離台(de-stage)時序,可在預混合區中發生燃燒 (例如在短持績時間且壓力極低之情況下)。 如圖1 8較佳地顯示,補充燃料入口 234包括兩個管狀分 配歧管264(a)及264(b),其各自於其中具有複數個燃料埠 266。燃料埠266係大致圓形之孔。分配歧管264(a)相對於 預混合室232定位於一位置,使得燃料可自歧管264(a)喷射 至側面264(a)内表面254之Coanda表面260上。同樣,分配 123315.doc -30- 200819678 歧管264(b)相對於預混合室232定位於一位置,使得燃料可 自歧管264(b)喷射至對置側面264(c)内表面254上之Coanda 表面260上。如熟習此項技術者所知,在該實施例中,可 使用各種組態之燃料埠及射流將燃料噴射至該等Coanda表 面上。燃料埠之數量及間距可相依於形成於該等Coanda表 面上所期望之膜厚度而改變。 圖17A圖解說明管狀分配歧管264(a)及264(b)之一替代實 施例。在該實施例中,燃料埠266係細長孔或槽。燃料埠 266之槽溝形狀使將燃料以一片狀型樣喷射至環形Coanda 表面260上,此用以增強Coanda表面所形成之夾帶及混合 效果,且允許燃燒更大體積之氣體。若需要,可對該等槽 266進行連接以在分配歧管264(a)及264(b)中形成連續之細 長孔或槽。除圓形孔及槽外,亦可相依於特定應用形成燃 料埠266。其他形狀之實例包括細長橢圓形及矩形槽。 一矩形燃料膜270設置於預混合室232之外周邊周圍。燃 料膜270連接至燃料供給管道238且與主燃料出口 236及補 充燃料入口 234兩者流體連通。燃料膜270包括一敞開之頂 部272、一底部274及一將該頂部連接至該底部之外侧壁 276及内側壁277。在圖13至圖18所示之實施例中,内側壁 277亦係預混合室之側壁246。一匹配之環形密封278附裝 至燃料膜270之底部274,且環繞預混合室232之側壁246延 伸以確保該膜之完整性。在一替代實施例中,如圖25至圖 28所例示及下文所解釋,燃料膜270可自預混合室232之侧 壁 246之側面 246(a)、246(b)、246(c)及 246(d)之外表面 256 123315.doc -31 - 200819678 向外間隔開以提供一介於側壁246之外表面與主燃料出口 236之間的空間。該空間允許將空氣自燃燒器下部夾帶至 一毗鄰於設置於主燃料出口 236内部部分上之燃料埠292之 位置。在該實施例中,膜270之内側壁277與預混合室232 之側壁246分離。 補充燃料供給管道280(a)、280(b)、280(c)及280(d)自環 形燃料膜270延伸至補充燃料入口 234(即管狀分配歧管 264(a)及264(b))以將燃料自該燃料膜傳送至此。補充燃料 供給管道280(a)、280(b)、280(c)及280(d)之每一者均包括 一附裝至燃料膜270之第一端282及一第二端284。管道 280(a)及280(d)之第二端284附裝至管狀分配歧管264(a)之 對置端。管道280(b)及280(c)之第二端284附裝至管狀分配 歧管264(b)之對置端。 主燃料出口 236相對於預混合室232之頂部242定位於一 達成如下之位置:燃料可自預混合室空氣/燃料出口 250之 周邊286周圍的主燃料出口喷射。如圖15較佳地顯示,主 燃料出口 236包括一其中具有複數個擴散燃料埠292之扁平 環形燃料喷射器本體288。埠292所形成之燃料射流係擴散 燃料射流。燃料噴射器本體288附裝至燃料膜270之敞開頂 部272,使得擴散燃料埠292設置於預混合室232之空氣/燃 料出口 250之周邊286周圍。膜270與燃料喷射器本體288之 内徑及外徑近似相同。燃料可自空氣/燃料出口 250之周邊 286周圍之主燃料出口 236(即環形燃料喷射器本體288)喷 射。可調整埠292之大小及間距以控制燃料自該等埠喷射 123315.doc -32- 200819678 ,方式(例如方向及速度)。該特徵結合燃料及空氣經由空 氣/燃料出口 250之流允許控制整個外層火焰之形狀及 度。 如圖16所示,若需要,可藉由複數個相應之短煤氣豎管 或頂端延伸物296使擴散燃料埠292與燃料噴射器本體288 隔開。使用豎管296將埠292與燃料噴射器本體288隔開可 在某些應用中形成更佳之空氣橫向夾帶。若需要,豐管亦 p 允許以機械方式改變該等埠之構造及所形成燃料流之性 負。如熟習此項技術者所瞭解,喷射器本體288可包括埠 292之各種迭代。所用特定埠之構造將相依於各種因素, 包括將燃燒之燃料類型(包括分子量、發熱量、化學計算 法及燃料流之溫度)及與此相關之可用壓力。 燃料供給管道238與補充燃料入口 234及主燃料出口 236 流體連通,用於將燃料引導至此。燃料供給管道238具有 一弟一端300及一第二端302。如圖所示,第一端3〇〇包括 一法蘭304,用於將該第一端連接至一燃料氣體源(同樣, 通常藉由焊接來獲得該等類型之連接)。第二端3〇2連接至 環形燃料膜270之外部側壁276中之一相應入口 306。另一 選擇係,分離之燃料供給管道或豎管可將燃料引導至補充 • 燃料入口 234及主燃料出口 236(不同於單個組成管道或豎 管23 8)。分離之管道或豎管通常會自一共用燃料壓頭延 伸。 參照圖14,在燃燒器23 0之運作中,將欲燃燒燃料(通常 由黑色箭頭來繪示)經由燃料供給管道238引導至燃料膜 123315.doc -33- 200819678 270。燃料之一部分藉由燃料膜270引導至主燃料出口 236(即燃料喷射器本體288)。燃料之剩餘部分藉由膜270經 由燃料供給管道280(a)、280(b)、280(c)及280(d)引導至補 充燃料入口 234(即其管狀分配歧管264(a)及264(b))。燃料 自分配歧管264(a)及264(b)之燃料埠266喷射至預混合室 232之侧面246(a)及264(b)之内表面254上之Coanda表面260 上。自燃料埠266向預混合區231及預混合室232喷射燃料 將空氣夾帶進預混合空間23 1(a)且經由空氣入口 248進入預 混合室内部23 1(b),藉此在該預混合區中形成燃料與空氣 之混合物(較佳地係一大致同質之混合物),且使該混合物 離開空氣/燃料出口 250。燃料與空氣在空氣/燃料出口 250 上方之一短距離内繼續混合。燃料自燃料埠266至側面 246(a)及246(c)之内表面254上之Coanda表面260上之喷射 使燃料附著至Coanda表面上,且沿Coanda表面路徑行進, 並於其上形成一相對較薄之膜,此促成更有效之空氣夾帶 及空氣與燃料之混合。欲燃燒燃料圍繞預混合室232之空 氣/燃料出口 250之周邊286且因此圍繞離開預混合室之空 氣/燃料出口之空氣/燃料混合物自主燃料出口 236(及環形 燃料喷射器本體288)喷射。火炬燃燒器230較佳地以一方 式設計及運作,使得夾帶進入包括預混合室232之預混合 區23 1内之空氣量超過用以燃燒喷射進預混合區内之燃料 所需之化學計算空氣量。將過量之空氣賦予外層火焰中心 用於燃燒其中之燃料。然而,如下文進一步解釋,在某些 應用中,以一方式設計及運作該燃燒器230,使得夾帶進 123315.doc -34- 200819678 入l括預混合室232之預混合區23丨内之空氣量等於或少於 用X燃燒噴射進預混合區内之燃料所需之化學計算空氣 曰 里 某些應用中,期望向外層火焰中央部分喷射”富燃 料^之燃料與空氣混合物(即一具有少於用以支援引入預混 合區内之燃料燃燒所需之空氣量的化學計算混合物)。 火炬燃燒器230達成與火炬燃燒器30及130所達成之優勢 相同之優勢。亦可藉由火炬燃燒器230形成圖24概要繪示 之外層火焰1〇〇。 〇 火炬燃燒器230之多邊形(在所圖解說明之實施例中係矩 形)形狀可允許在地面式火炬應用中間隔火炬燃燒器方面 更具靈活性。而且,此一形狀由於可旋轉該幾何體以改變 相互作用區之實際而可允許自燃料氣體埠292引導燃料之 方式更靈活。 現在參照圖19至圖23,其圖解說明該發明性火炬燃燒器 之弟四實施例,且通常由編號3 3 0來標明。同該發明性 U 火炬燃燒器之其他實施例一樣,火炬燃燒器330包含··一 包括一預混合室區332之預混合區331 ;及一用於將燃料喷 射進入預混合區内之補充燃料入口 334 ; 一主燃料出口 336 及一燃料供給管道338。一導引器40(如圖4所示)可與燃燒 器330相關聯以便最初點燃燃燒器所釋放之燃料與空氣之 '/昆合物。 可在包括預混合室332之預混合區33!中形成一燃料與空 氣之混合物(較佳地係一大致同質之混合物)。如下文所 述,形成於預混合區331内之混合物可係富燃料或貧燃 123315.doc -35- 200819678 料預/吧5至3 3 2包括一圓形橫截面且具有一圓柱形狀。 預混合室包括一頂部342、一底部344、一將該頂部連接至 該底部之側壁346、一設置於底部344中之空氣入口 348及 一 a又置於该頂部342中之空氣/燃料出口 35〇。侧壁包括 内表面347及一外表面349。如圖所示,頂部342及底部 344皆係敞開,藉此形成空氣入口 348及空氣/燃料出口 350。作為一結果,空氣入口 348及空氣/燃料出口 35〇亦各 自具有一圓形橫截面。預混合室332具有長度(或高度)與内 部液壓直控介於自約0.25:1至約4:1範圍内之比。 在圖19 20 ' 22及23所示之實施例(其不包括下文所述 之延長圓筒400)中,預混合室332具有約1:1或更小之長度 (或高度)與内部液壓直徑比。較佳地,在圖19、2〇、22及 23所示之實施例(其不包括下文所述之延伸圓筒4〇〇)中,預 混合室332具有介於自約〇·25:1至約1:1範圍内之長度(或高 度)與内部液壓直徑之比例。如上文所述,較長之預混合 室一般允許在預混合室中發生燃料與空氣之更佳混合。然 而已發現:在圖19及20所示之實施例中,預混合室332之 長度(或高度)仍足以達成良好之混合,只要藉由調節火焰 傳播速度來保持點燃之延遲不變。如圖2〇最佳顯示,該特 定實施例中之預混合區331(其不包括下文所述之延伸圓筒 400)包括:一位於預混合室332下方之主要預混合空間 331(a)(位於補充燃料入口 334與預混合室底部344及空氣入 口 348之間預混合室内部331(b);及緊接於預混合室頂 部342及空氣/燃料出口 350上方之預混合空間331 (幻。在該 123315.doc -36- 200819678 實施例巾,在預混合區331之所有三個㈣發生空氣與辦 料之混合。 補充燃料入口 334相對於預混合區331定位於一達成如下 之位置·燃料自補充燃料人口至預混合區之喷射可將空氣 夾帶進預混合空間331(a)且經由空氣入口 348進入預混合室 332,藉此在該預混合區内形成燃料氣體與空氣之一混合 物,該混合物較佳地係一大致同質之混合物,且使該混合 物在預混合室頂部342中之空氣/燃料出口 35〇離開。通常 直至燃料與空軋之混合物離開空氣/燃料出口 (通常距空 氣/九,:料出口为離之距離),該混合物才發生燃燒。燃燒 發生處距空氣/燃料出口 35〇之距離因混合物中之空氣量及 混合物自空氣/燃料出口釋放之速度而改變。在某些情況 下,由於短離台(de-stage)時序,可在預混合區中發生燃燒 (例如在短持續時間且壓力極低之情況下)。 如圖19及22所示,補充燃料入口 334包括一燃燒器鑄件 352,燃燒器鑄件352具有一圓頭353及複數個同心地佈置 於該圓頭周圍且聚集於預混合室332之空氣入口 348下方之 燃料出口臂354。該補充燃料入口 334與空氣入口 348及預 混合室332同c。在圖19及2()所示之實施例中,補充燃料 入口 334在預混合室332之空氣入口 348下方隔開。補充燃 料入口 334可位於空氣入口 348下方介於自0至2英吋之範圍 内,較佳地係在该空氣入口下方丨英吋處。該準確距離可 相依於所燃燒之燃料類型、特定應用、所允許之外層火焰 長度及其他因素而改變。 123315.doc -37- 200819678 每一燃料出口臂354及圓頭353均包括複數個燃料埠 3 56。該等埠356沿每一燃料出口臂354之縱向轴線線性佈 置。圖23顯示補充燃料入口 334之一替代實施例。在該實 施例中,每一氣體出口臂354均包括兩列擴散燃料埠356, 每一列中之每一埠均經較直使得其不會與毗鄰列中一埠直 接交叉。包括燃料出口臂354之補充燃料入口 334故意為 小’以允許在所釋放之燃料與所夾帶之空氣之間有盡可能 多之相互作用。最大程度地減小由入口 3 3 4之大小及形狀 形成之’’峭壁體’’效果,形成空氣至被釋放燃料之潔淨通 路。 一環形燃料膜360設置於預混合室332之外周邊周圍。燃 料膜3 60連接至燃料供給管道33 8且與主燃料出口 3 3 6流體 連通。膜360包括一敞開之頂部362、一底部364及一將該 頂部連接至該底部之外側壁366及内侧壁367。在一較佳實 施例中,外侧壁366距内侧壁367約3英吋(該距離相依於燃 料性質及燃燒器之整體構造)。在圖19、2〇、22及23所示 之實施例中,膜360之内側壁367亦係預混合室332之側壁 346之外表面349。在一替代實施例中,如圖25至圖28所例 示及下文所解釋,燃料膜360可自預混合室332之側壁346 之外表面349向外間隔開以在側壁246外表面349與主燃料 出口 336之間提供一環形空間。該空間允許將空氣自燃燒 器下部夾帶至一毗鄰於設置於主燃料出口 336内部部分上 之燃料埠374之位置。在該實施例中,膜36〇之内側壁乂了 與預混合室332之側壁346分離。 123315.doc -38- 200819678 主燃料出口 336相對於預混合室頂部342定位於-達成如 下之位置.使燃料可自預混合室空氣/燃料出 :圍的主燃料―射。如圈22較佳地顯示,= 料出口 336包括一 1由目女為如 m ,、中,、有複數個燃料埠374之扁平環形燃 =喷=2體。埠374所形成之燃料射流係擴散燃料射 …埠374以6度之增量間隔開,當然該間距可相依於 特定制Μ變。環„㈣“本_㈣裝至環形膜 360之敞開頂部362,使得燃料埠μ設置於預混合室空氣/ 燃料出口 350之周邊368周圍。環形膜36〇與燃料喷射器本 體370之内徑及外徑近似相同。燃料可自空氣,燃料出口 350之周邊368周圍之主燃料出口咖(即燃料喷射器本體 370)以環形形式噴射。可調整埠374之大小及間距以控制 燃料自該等蟑噴射之方式(例如方向及速度)。該特徵結合 燃料及空氣經由空氣/燃料出口 35〇之流允許控制整個外層 火焰之形狀及長度。 θ 如圖7所示,若需要,可藉由複數個相應之短煤氣豎管 或頂端延伸物376使擴散燃料埠374與燃料喷射器本體37〇 隔開。在某些應用中,使用豎管376將埠374與燃料噴射器 本體70隔開可形成更佳之空氣橫向夾帶。若需要,豎管亦 允許以機械方式改變該等埠之構造及所形成燃料流之性 質。如熟習此項技術者所瞭解,燃料噴射器本體37〇可包 括埠374之各種迭代。所用特定埠之構造將相依於各種因 素,包括將燃燒之燃料類型(包括分子量、發熱量、化學 計算法及燃料流之溫度)及與此相關之可用壓力。 123315.doc -39- 200819678 2料供給管道338與補充燃料入σ 334及主燃料出口州 一連\用於將燃科導至此。燃料供給管道338包括 第端382及一第二端384之主分支38〇。第一端 7包括-法蘭386,用於將該第_端連接至―燃料源(同 樣,通承藉由谭接來獲得該等類型之連接)。第二端州連 接至燃料膜360之外部側壁366中之—相應入口川。燃料 供給管道338亦包括—補充分支扇,其將該燃料供給管道 連接^補充燃料入口 334。補充分支390包括-第—端392 及一第二端394。第一端392連接至供給管道之主分支 390。第二端394連接至補充燃料人口 334(具體而言係轉件 352)。另-選擇係,分離之燃料供給管道或豎管可將燃料 引導至補充燃料入口 334及主燃料出口 336(不同於單個組 成管道或豎管338)。分離之管道或豎管通常會自一共用燃 料壓頭延伸。 ^ … 現在具體地參照圖21,其圖解說明火炬燃燒器33〇之一 替代實施例。該實施例與上述燃燒器33〇之實施例相同, 只是其亦包括一預混合室延伸圓筒4〇〇。該預混合室延伸 圓筒400延伸預混合室332之長度。在該實施例中,該預混 合室具有一介於自約1:1至約4:1且較佳地介於自約1:1至約 3:1範圍内之長度(或高度)與内部液壓直徑之比。最佳地, 在該實施例中,該預混合室具有約15:1之長度(高度)與内 部液壓直徑之比。圓筒400包括一頂部分4〇2、一底部分 404及一將該頂部分與該頂部分連接在一起之中間部分^ 該中間部分406附裝至環形燃料膜36〇之内側壁367。 123315.doc -40- 200819678 由於預混合室延伸圓筒400,預混合室332之頂部342及 空氣/燃料出口 350在主燃料出口 336上方間隔開。預混合 室332之頂部342及空氣/燃料出口 350位於主燃料出口 336 上方介於自約0.5英吋至約10英吋之範圍内,較佳地介於 自約6英忖至約8英吋之範圍内。該準確距離可相依於所燃 燒之燃料類型、特定應用、所允許之外層火焰高度及氣體 因素而改變。預混合室332之底部344大致與補充燃料入口 334齊平或約在補充燃料入口 334上方一英吋處。如圖21所 示’該特定實施例中之預混合區33 1(其包括延伸圓筒4〇〇) 包括預混合室332下方之預混合空間331 (a)(位於補充燃料 入口 334與預混合室之底部344及空氣入口 348之間)、預混 合室内部33 1(b)、及一緊接於預混合室頂部342及空氣/燃 料出口 350上方之預混合空間331(c)。在該實施例中,在預 混合室332(在預混合區33丨(b))中發生空氣與燃料之主要混 合0 預混合室延伸圓筒400之頂部402用作用以延遲點燃之遮 風屏及物理屏障。具體而言,頂部4〇2抵消可強迫火焰在 預混合室直徑内且干擾火炬燃燒器之無煙容量之有害橫向 流動空氣效應。頂部402亦用以使預混合燃料流與擴散之 火焰點燃分離。同樣,圓筒400之底部404用作_底部遮風 屏且防止火焰向後拉及引起過早點燃。同樣,由延伸圓筒 4〇〇形成之預混合室332之增加長度增強燃料與空氣在預混 合至内之混合。延伸圓筒並非在所用應用中皆必需,例如 當橫向流動效應不是問題或當燃燒低分子量之燃料時,無 123315.doc -41 - 200819678 需延伸圓筒。是否包括遮風屏將相依於欲燃燒燃料之分子 i及發熱值、该燃料是否含有飽和或不飽和之碳氫化合 物、相關溫度及壓力及其他因素。 在圖21所示之實施例中,膜360之内側壁367附裝至延伸 圓筒400之中間部分4〇6。在一替代實施例中,如圖25至圖 28所例示及下文所說明,燃料膜36〇可自延伸圓筒4〇〇(且 . 因此而預混合室332之外表面)向外間隔開,以在延伸圓筒 p 外表面與主燃料出口 336之間提供一空間。該空間允許將 空氣自燃燒器下部夾帶至一毗鄰於設置於主燃料出口 336 内部部分上之燃料埠374之位置。 參照圖20及21,將說明火炬燃燒器33〇之運作。將欲燃 燒燃料(通常由黑色箭頭來繪示)之一部分經由燃料供給管 道338之主分支380引導至燃料膜36〇及主燃料出口 336。亦 將欲燃燒燃料之一部分經燃料供給管道338之補充分支39〇 引導至補充燃料人口 334。自補充燃料人口 334向預混合區 〇 331及預混合室332喷射燃料將空氣夹帶進預混合空間 33i⑷且經由空氣入口 348進入預混合室,藉此在該預混合 區中形成燃料與空氣之混合物(較佳地係一大致同質之混 合物),且使該混合物離開空氣/燃料出口 35〇。燃料與空氣 I空氣/燃料出口 350上方之一短距離内繼續混合。其餘欲 燃燒燃料圍繞預混合室之空氣/燃料出口 35〇之周邊368且 因此圍繞離開預混合室之空氣/燃料出口之空氣/燃料混合 物自主燃料出口 336喷射。同樣,當安裝有延伸圓筒4〇〇 時,獲得額外之混合且在燃料自主燃料出口 336釋放時, 123315.doc •42- 200819678 藉由與所形成之擴散火焰互相影響來防止離開空氣/燃料 出口 350之預混合流過早點燃。延伸圓筒4〇〇之使用用以增 強藉由使用預混合流所形成之整體效果。火炬燃燒器3儿 2佳地以-種方式設計及運作,使得夾帶進人包括預混合 至332之預混合區331内之空氣量超過用以燃燒噴射進預混 合區内之燃料所需之化學計算空氣量。將過量之空氣賦予 外層火焰中心用於燃燒其中之燃料。然而,如下文進一步 (、解釋,在某些應用中,以-方式設計及運作燃燒器33〇, 使得夾帶進入包括預混纟室332之預混合區331内之空氣量 等=或少於用以燃燒喷射進預混合區内之燃料所需之化學 計算空氣量。在某些應用中,期望向外層火焰之中央部分 噴射&quot;富燃料&quot;之燃料與$氣混合物(即一具有少於用以支援 引入預混合區内之燃料燃燒所需之空氣量的化學計算混合 物)。 ^ 火炬燃燒器330達成與火炬燃燒器3〇、13〇、23〇所達成 G 之優勢相同之優勢。亦可藉由火炬燃燒器33〇形成圖24概 要緣示之外層火焰100。 —現在參圖25_28,可對上文所述之發明性火炬燃燒器之 弟四實施例(圖19至圖32所示之實施例)實施一修改。亦可 對上文所述之方面之火炬燃燒器之第―、第=及第三實施 例實施同樣的修改。 也 在該實施例中,火炬燃燒器33()包括預混合室延伸圓筒 400。然而’延伸圓筒400(且因此預混合室332)並不直接附 裝至燃料膜360,而是向裏與該燃料膜間隔開以在延伸圓 123315.doc -43- 200819678 尚與燃料膜之間提供一空氣路徑以允許空氣有效地到達設 置於主燃料出口 336内部部分上之燃料埠374。延伸圓筒 400(且因此預混合室332)之直徑明顯小於燃料膜36〇之内 徑。在該實施例中,該預混合室具有介於自約0.5·· 1至約 4:1且較佳地介於自約^至約3:1範圍内之長度(或高度)與 内部液壓直徑之比例。更佳地,該預混合室具有介於自約 1 · 5 · 1範圍内之長度(或南度)與内部液壓直徑之比例。 由於延伸防護件400之較小直徑,在燃料膜360之内側壁 367與延伸圓筒4〇〇之外表面(其亦係預混合室332側壁346 之外表面349)之間存在一環形空間43〇。使用複數個矩形 薄角撐板432使延伸圓筒4〇〇(且因此預混合室332)居中且保 持於燃料膜360中。如所圖解說明,四個板432相隔9〇。設 置於環形空間430内。每一板432之一端皆附裝至燃料膜 360之内側壁367。板432之每一者之另一端附裝至延伸圓 筒400之外表面(其亦係預混合室332之側壁346之外表面 i) 349)。除上述修改外,圖25_28所圖解說明之燃燒器330在 所用態樣中皆與圖19_23所圖解說明及上文所述之實施例 相同。 主燃料出口 336仍相對於預混合室頂部342位於一達成如 下之位置:使得燃料可自預混合室空氣/燃料出口 35〇之周 邊368周圍之主燃料出口 336噴射。環形空間43〇僅提供一 介於延伸圓筒與燃料膜之間的空氣路徑以允許新鮮之氧化 劑有效地到達設置於主燃料出口 336内部之燃料埠。燃 燒器330之運作保持不變,只是新鮮空氣藉由燃料物β 123315.doc -44- 200819678 内列原動力自燃燒器下部經由環形空間43〇夾帶。被夾帶 之空氣靠近主燃料出口 336上燃料埠374之内列所釋放之燃 料並與之混合。舉例而言,當燃燒往往更易冒煙之相對重 質且不飽和之燃料油時,可使用環形空間43〇所提供之增 強混合狀態。其最佳化燃燒器達成無煙灰燃燒。 如熟習此項技術者所瞭解,可對上述發明性火炬燃燒器 之其他三個實施例做出相同修改。舉例而言,在修改圖4_ 8所圖解說明之實施例中,預混合室32之橫截面直徑被減 小且預混合室32向裏與燃料膜60間隔開。環形燃料膜6〇之 内側壁67或預混合室32之側壁46增加(如圖所示,膜之内 侧壁與預混合室之側壁相同)。省卻環形密封68。使預混 合室32向裏與燃料膜60間隔開,在預混合室與燃料膜之間 提供一空氣隙。新鮮空氣可自燃燒器下方由此夾帶至一靠 近自主燃料出口 3 6内部上之燃料蟀7 4所釋放燃料的點。可 使用圖25-28所示之複數個角撐板將預混合室32置於燃料 膜60中心且附裝至燃料膜60。 圖28概要地繪示由圖25-27所圖解說明之經修改火炬燃 燒器33 0(及若經此方式修改之燃燒器13〇、23〇及33〇)形成 之外層火焰100。如圖所示,過量空氣自預混合室332喷射 進外層火焰100之中央部分102。藉由圖28中之氣穴1〇3繪 示之過量空氣與外層火焰1〇〇之中央部分102中之燃料混合 以有效地形成兩個最初可燃區,區104(a)及104(b)。空氣 亦自燃燒器330經由環形空間430夾帶至一靠近由主燃料出 口 336上燃料埠374之内列所釋放燃料之點。經由環形空間 123315.doc -45- 200819678 4 3 0夾▼之空氣增強該混合狀態且在整個外層火焰1 〇 〇中更 快且更均勻地形成燃燒。如圖28所示,外層火焰1 〇〇具有 一長度106,此長度明顯小於之圖3所示燃料量相同之先前 技術外層火焰2 0之長度2 3。 一般資訊 本發明之部分預混合方法允許在燃燒燃料時,在相同之 外層火焰内發起兩個火焰區。外部火焰區係使用先前所用 類型之燃燒器(即僅使用擴散混合之類型)觀察到的典型的 火焰區。外層氣體被剝去以暴露出連續的氣體層,達成重 複的擴散燃燒及後繼燃燒。第二火焰區由將可燃混合物傳 送到主外層火焰内部之燃燒器之預混合區形成。該燃燒流 場用以在係非典型擴散火焰之火焰中心處形成一明顯的滿 流狀態。當預混合區變得更加貧燃料時,該火焰由於傳送 至該火焰中心之額外氧化劑而變得更短。額外之空氣被其 餘之火焰煙所利用,且用以縮短該火焰(或允許增加質量 流),同時亦進一步用作一熄火機制以減少諸如氧化亞氮 及一氧化礙之散發。過量空氣亦減少煙火之形成,且導致 所有未燃燒碳氫化合物之燃燒。 火炬燃燒器30、130、230及330之每一者均較佳地經設 計及運作使得夾帶進入預混合區且喷射進外層火焰中央1 分之空氣量介於用以支援引入預混合區内之燃料燃燒所兩 化學計算空氣量之自約15%至約300%範圍内。因此, 用富燃料方法(一具有少於用以支援引入預混合區内引入 外層火焰中央部分内之燃料燃燒所需化學計算空氣量之 123315.doc -46- 200819678 100%的燃料盘空翁、、曰 一 5物的噴射)及貧燃料方法(一具有 夕於用以支援引入預混合 M W入外層火焰中央部分内之 燃料燃燒所需化學計算空 τ异工虱1之100%的燃料與空氣之混 合物的喷射)兩者。每一方法 法季父先别所用之典型擴散射流/ '…射&amp;驅動燃燒之狀態具有其自身之優勢。所用特定方法 將㈣於特定應用’包括欲燃燒燃料之類型及可用麼力。 可藉由八^之:^琿及燃料傳送機制來修改該方法。 當使用-富燃料方法時,喷射至外層火焰中心之燃料部 分將在火焰中心處起始一較小之燃燒包圍面,其用以使火 焰變短’同時亦在該外層火焰中心處形成一額外之滿流燃 燒區。當使用貧燃料方法時,由於在火焰中心處燃燒之較 大預混合燃料部分,外層火焰將明顯縮短。由該預混合流 狀態所載攜之過量空氣然後進一步相對於剩餘外層火^中 心起始燃燒。然後,由在燃燒期間在火焰中心處擴張之燃 料形成之額外湍流,藉由使緻密燃料核破裂且將其推至外 部火焰邊界來增加剩餘燃料之混合狀態。 當使用一富燃料方法時,將預混合燃料流傳送至外層火 焰中心以保持在可燃範圍内係重要。否則,在外層火焰中 心中不會發生擴張之混合及燃燒。增強之混合係受益於一 預混合火焰,該火焰在火焰中心處發起且以一明顯速度擴 張以在火焰核處形成明顯滿流。 然而,在大多數應用中,期望向外層火焰中央部分喷射 ’’貧燃料之燃料與空氣混合物(即一具有多於用以支援引入 預混合區内之燃料燃燒所需化學計算空氣量之1〇〇%的混 123315.doc -47- 200819678 口物)纟大夕數應用中,夾帶至預混合區且喷射進外層 火心中央一刀内之空氣量係、介於用以支援引人預混合區内 ,燃料燃燒所需化學計算空氣量之自約125%至約3〇〇%。 幸乂佳地’夾歹進入預混合區内之空氣量係介於用以支援噴 射進預此合區内之燃料燃燒所需化學計算空氣量之自約 150/。至約300/。’較佳地自約175%至約则%。隨著夾帶進 預混合區内之過晋介盔旦十描丄/ 里二乱里之增加(即隨著夾帶進預混合區 玉氣里超過用以支援引入預混合區内之燃料燃燒所需化 子计#二氣里之增加),關於火焰長度及發射之優勢亦增 加。雖然夾帶至預混合區内之空氣量大於用以支援喷射進 預混合區内之燃料燃燒之所需空氣量係有利,但其將需要 一外來空氣夾帶源(例如流喷射)及可能之其他修改,且因 此可受到成本限制。 夾帶進::燒器30、130、230及33〇之每一者之預混合區 内之工氣里極其相依於:自補充燃料人口喷射燃料之壓力 及質量流、所燃燒燃料之類型、補充燃料入口之結構(包 括其中之埠數量及大小)、補充燃料人口相對於進入預混 合室之空氣入口之佈置及空氣入口之大小。在大多數應用 中’最終目標係達成-高度稀薄、較佳不可燃之燃料與空 氣混合物。一不可燃之貧燃料混合物將迅速吸收曾經在外 層火焰中心内需要變成同樣可燃之燃料。一旦獲得一可燃 混合物,空氣與氣體將在外層火焰内側形成一大燃燒區, 此將顯著增加燃料受到氧化之速率,同時亦形成明顯之湍 流以擴張火焰區外表面上之擴散混合。傳輪至外層火焰中 123315.doc -48- 200819678 心之額外質量亦用作一熄火機制以降低諸如一氧化二氮及 一氧化碳等散發產物。在保持兩個火焰前緣之同時增加發 生燃燒之速率亦用以降低一氧化碳及煙灰之產物,且進一 步減小未燃燒碳氳化合物之釋放。 將燃料以足以橫向夾帶空氣且將空氣自燃燒器下方夾帶 進燃料射流及預混合區内之衝力喷射進預混合區内。相依 於燃料之分子量及用於夾帶之傳送壓力,燃燒器可自補充 燃料入口以下多達2英尺處夾帶空氣。 較佳地,引入燃燒器30、13〇、23〇及33〇之每一者之預 混合區内之燃料量均介於欲由該火炬燃燒器燃燒之燃料總 里之自約5%至約50%之範圍内且較佳地介於自約1〇%至約 3 0;之範圍内。最佳地,引入預混合室内之燃料量介於欲 由该火炬燃燒器燃燒之燃料總量之自約丨〇%至約25〇/❹之範 圍内。可藉由操控燃料埠之直徑及燃料壓力來控制引入預 混合區内之燃料量。 引入預混合區之燃料百分比愈大,火焰愈短且燃燒器之 無煙容量愈大。然而,必須達成喷射進預混合區内之燃料 之百分比與可夾帶進預混合區内之空氣量之間的一適當平 衡。當使用-貧燃料方法時,通常使炎帶進該預混合:内 之空氣量係用以支援噴射預混合區内之燃料燃燒所需化學 計算空氣量之至少約125%係^要。車交少量$氣可形成極 具活性(可燃燒)之混合物,其會使燃燒器傾向於以最大速 率發生爐襯燒損或逆火,最終造成對燃燒器之損害。夾帶 空氣之量愈大,熄火效應愈大且燃料之燃燒速度愈低。該 123315.doc -49· 200819678 條件對於增加預混合流之延遲點燃以確保在燃燒前預混合 流之點燃點相對於火焰中心係局部以達成最大利益係理 想。 極其稀薄之空氣與燃料流將確保空氣與燃料之混合物在 其離開空氣/燃料出口且到達外層火焰中心之前不會點 燃。一旦燃料與空氣之混合物離開空氣/燃料出口且進入 外層火焰,該混合物即吸收足夠額外之燃料以獲得一可燃 P 混合物,此時燃料在主外層火焰中點燃。該流狀態在一火 或一裱形火焰幾何體内形成一具有兩個個別火焰前鋒之 火焰。由氣體形成且在燃燒期間在火焰中心擴張之額外湍 流然後用以藉由使緻密燃料核破碎且將其推至外部火焰邊 界來增強剩餘燃料之混合狀態。該方法減小火焰高度及冒 煙能力,同時由於增加之混合而增加了總燃燒效率。 燃燒器30、130、230及330之每一者之預混合區内之空 氣/燃料混合物在離開預混合區之空氣/燃料出口之前不會 G 燃燒係重要。預混合室内之燃燒(舉例而言)將被壓該預混 合室且大大減小夾帶進預混合室内之空氣量。 藉由僅將欲燃燒燃料之一部分傳送至燃燒器3〇、13()、 230及330之每一者之預混合區,燃燒器之總橫截面大小相 ’ 對較小。在一整個預混合方法中,設計及構造一能夠提供 燃燒所需之100%空氣之燃燒器,將受到大小限制。此燃 燒器之文氏管或混合器部分需相當大且缺少提供低燃料壓 力之能力。 儘管該等發明性燃燒器3〇、13〇、23〇及33〇之每一者之預 123315.doc -50- 200819678 混合室均相對較小,但該設置能夠提供足量之空氣及燃料The annular fuel film 17 is disposed around the periphery of the premixing chamber 132. The membrane m is coupled to the fuel supply conduit 138 and is in fluid communication with the primary fuel outlet 136 and the supplemental fuel population 134. The fuel film m includes an open top portion 172, a bottom portion 174, and a top portion (7) and an inner side wall 177 that connect the top portion to the bottom portion. In the embodiment illustrated in Figures 9 through 12, the inner sidewall π is also the sidewall 146 of the premix chamber. An annular seal 178 is attached to the bottom 174 of the fuel membrane 170 and extends around the sidewall 146 of the premix chamber 132 to ensure the integrity of the membrane. In an alternate embodiment, as illustrated in FIGS. 25-28 and explained below, fuel film 170 may be spaced outwardly from sidewall 146 of premix chamber 132 to be between outer surface of sidewall 146 and main fuel outlet 136. Provide an annular space. The annular space allows air to be entrained from the lower portion of the burner to a position adjacent to the fuel cartridge 192 disposed on the interior portion of the main fuel outlet 136. In this embodiment, the inner side wall 177 of the membrane 17 is separated from the side wall 146 of the premix chamber. Supplemental fuel supply conduits 180(a), 180(b), 180(c), and 180(d) extend from annular fuel membrane 170 to supplemental fuel inlet 134 (ie, tubular distribution manifold 164) to transfer fuel from fuel membrane 170 To the inlet 134 (ie, manifold 164). Each of the supplemental fuel supply conduits 180(a), 180(b), 180(c), and 180(d) includes a first end 182 attached to the membrane 170 and an attached to the inlet 134 (ie, the manifold) The second end 184 of the tube 164). The main fuel outlet 136 is positioned relative to the premixing chamber top 142 in a position where fuel can be injected from the main fuel outlet around the periphery of the premixing chamber air/fuel outlet 150. As best shown in Figure 11, the primary fuel outlet 136 includes a flat annular fuel 123315 having a plurality of fuel ports 192 therein. Doc -25- 200819678 injector body 188. The fuel jet formed by 埠 192 diffuses the fuel jet. An annular fuel injector body 188 is attached to the open top 172 of the annular membrane 170 such that the fuel cartridge 192 is disposed about the periphery 186 of the air/fuel outlet 150 of the premixing chamber 132. The annular membrane 170 is approximately the same as the inner and outer diameters of the annular fuel injector body 188. Fuel may be injected from the main fuel outlet 136 (i.e., annular fuel injector body 188) around the circumference 186 of the air/fuel outlet 15 以 in a toroidal form. The size and spacing of the crucibles 192 can be adjusted to control the manner in which fuel is ejected from such imperfections (e.g., direction and speed). This feature, in conjunction with the flow of fuel and air through the air/fuel outlet 15 , allows control of the shape and length of the entire outer flame. As shown in Figure 7, the diffusion fuel cartridge 192 can be separated from the fuel injector body 188 by a plurality of corresponding short gas risers or tip extensions 196, if desired. The use of standpipe 196 to separate 埠 192 from fuel injector body 188 may result in better air lateral entrainment in certain applications. The riser also allows mechanical changes to the construction of the crucible and the nature of the fuel stream formed, if desired. Instead of the annular fuel injector body 188, an alternative embodiment may be used with the fuel injector body 7 shown in FIG. As will be appreciated by those skilled in the art, the injector body 188 can include various iterations of the bore 192. The particular structure used will depend on a variety of factors, including the type of fuel being burned (including molecular weight, calorific value, stoichiometry, and temperature of the fuel stream) and the associated pressures associated therewith. Fuel supply conduit 138 is in fluid communication with supplemental fuel inlet 134 and main fuel outlet 136 for directing fuel thereto. Fuel supply conduit 138 has a first end 200 and a second end 202. The first end 2〇〇 includes a flange 2〇4, 123315. Doc -26·200819678 is used to connect the first end to a fuel source (again, these types of connections are typically obtained by soldering). The second end 202 is coupled to a respective one of the outer sidewalls 176 of the annular gas film 17A. Alternatively, a separate fuel supply conduit or riser may direct fuel to the supplemental fuel inlet 134 and the main fuel outlet 136 (unlike a single component conduit or riser 138). Separate pipes or risers typically extend from a common fuel head. Referring to Figure 10, the operation of the burner 130 will be explained. The fuel to be burned (usually depicted by black arrows) is directed to the annular gas film 170 via a fuel supply conduit 138. A portion of the fuel is directed to the main fuel outlet 136 (i.e., the annular injector body 188) by the fuel membrane 17A. The remainder of the fuel is directed by membrane 17(R) via fuel supply conduits 180(a), 180(b), 180 ((〇 and 180((1) are directed to supplemental fuel inlet 134 (ie, tubular distribution manifold 164). Fuel from The fuel crucible 166 of the tubular distribution manifold 164 is injected onto the annular Coanda surface 160 on the inner surface 154 of the premixing chamber 132 via a premixing space 131. Fuel injection from the gas crucible 166 to the premixing zone 131 and the premixing chamber 132 will The air is entrained into the premixing space 13 1(a) and enters the premixing chamber interior 131(b) via the air inlet 148, thereby forming a mixture of fuel and air (preferably a substantially homogeneous mixture) in the premixing zone. And leaving the mixture exiting the air/fuel outlet 150. The fuel and air are alternately mixed within a short distance above the air/fuel outlet 15A. Injection of fuel from the fuel bowl 166 to the Coanda surface 160 causes the fuel to adhere to Coanda Surfacely, and along the Coanda surface path, and forming a relatively thin film, this promotes more efficient air entrainment and mixing of air and fuel. The periphery of the air/fuel outlet 150 to be combusted around the premixing chamber 132 6 and therefore around the air/fuel leaving the premixing chamber 123315. Doc -27- 200819678 Port 150 air/fuel mixture autonomous fuel outlet 136 (annular injector body 188) is injected. The flare burner 13 is preferably designed and operated in a manner such that entrainment into the air in the premixing zone 131 including the premixing chamber 132 exceeds the chemistry required to combust the fuel injected into the premixing zone The amount of different air. Excess air is imparted to the outer flame center for burning the fuel therein. However, as further explained below, in certain applications, the burner is designed and operated in such a manner that the amount of air entrained into the premixing zone 13 1 including the premixing chamber 132 is equal to or less than that used for combustion injection. The amount of stoichiometric air required for the fuel in the premix zone. In some applications, it is desirable to inject a central portion of the outer flame, a fuel-rich, fuel-air mixture (ie, a mixture having less than the stoichiometric amount of air required to support combustion of the fuel introduced into the premix zone). ). The flare burner 130 achieves the same advantages as the flare burner 3 achieved. The outer layer flame 100 can also be schematically illustrated in Fig. 24 by the formation of the flare burner 13A. Referring now to Figures 13 through 18, a first embodiment of the inventive flare burner is illustrated and generally designated by reference numeral 230. As with the other embodiments of the firing torch, the torch burner 3 includes a premixing zone 231 of a premixing chamber 232; and a means for injecting fuel into the premixing zone. A supplemental fuel inlet 234, a primary fuel outlet 236 and a fuel supply conduit 238. An introducer (shown in Figure 4) can be associated with the burner 130 to initially ignite the mixture of fuel and air released by the burner. In the embodiment illustrated in Η 3 to Figure 18, the flare burner 23 〇 123315. The premixing chamber 232 of doc • 28-200819678 provides the main portion of the premixing zone 231. A mixture of fuel and air (preferably a substantially homogeneous mixture) may be formed in the premixing zone 23 1 including the premixing chamber 232. As described below, the mixture formed in the premixing zone 23 1 may be rich in fuel or lean in fuel. The premixing chamber 232 includes a rectangular cross section and has a rectangular shape. It includes a top portion 242, a bottom portion 244, a side wall 246 connecting the top portion to the bottom portion, an air inlet 248 disposed in the bottom portion 244, and an air/fuel outlet 250 disposed in the top portion. As shown, both the top 242 and the bottom 244 are open, thereby forming an air inlet 248 and an air/fuel outlet 250. As a result, the air inlet 248 and the air/fuel outlet 250 also each have a rectangular cross section. As best shown in FIG. 14, the premixing zone 231 includes a premixing space 23 1(a) located below the premixing chamber 232 (between the supplemental fuel inlet 234 and the bottom 244 of the bottom of the premixing chamber and the air inlet 248) The premixing chamber 231(b); and a premixing space 231(c) immediately above the premixing chamber top 242 and the air/fuel outlet 250. In the embodiment shown in Figures 13 through 18, preliminary mixing of air and fuel occurs in the interior 231(b) of the premixing chamber 232 and in the premixing space 231(c). Side wall 246 of premix chamber 232 includes four sides 246(a), 246(b), 246(c), and 246(d). Each of the sides 246(a), 246(b), 246(c), and 246(d) includes an inner surface 254 and an outer surface 256. Each of the sides 246(a), 246(b), 246(c), and 246(d) is flared outwardly in a curved form to impart an inner surface 254 to the side - a ring Coanda Surface 260. The premixing chamber 232 has a length (or height) and an inner 123315. Doc -29- 200819678 The hydraulic diameter is between about 0. A ratio ranging from 25:1 to about 4:1, preferably from about 1:1 to about 3:1. The exact ratio of the length (or height) of the premixing chamber 232 to the internal hydraulic diameter will depend, in part, on the type of fuel to be combusted and the pressure to be used for entrainment and mixing. In general, a longer premixing chamber can form a better mix of fuel and air therein, however, this advantage is offset by cost and other considerations. In a preferred embodiment, the ratio of the length (or height) of the premixing chamber 232 to the internal hydraulic diameter is about 1.5:1. The supplemental fuel inlet 234 is positioned relative to the premixing zone 23 1 in a position that the injection of fuel from the refueling inlet to the premixing zone can entrain air into the premixing space 23 1 (a) and enter the pre-air via the air inlet 248 Mixing chamber 232 whereby a mixture of fuel gas and air is formed in the premixing zone. The mixture is preferably a substantially homogeneous mixture and the mixture is placed in air/fuel outlet 250 in top portion 242 of premixing chamber. go away. Typically, the mixture will not burn until the mixture of fuel and air exits the air/fuel outlet 25 (usually a distance from the air/fuel outlet). The distance from which the combustion occurs to the air/fuel outlet 250 varies due to the amount of air in the mixture and the rate at which the mixture is released from the air/fuel outlet. In some cases, combustion can occur in the premixing zone due to short de-stage timing (e.g., in the case of short duration and low pressure). As best shown in FIG. 18, the supplemental fuel inlet 234 includes two tubular distribution manifolds 264(a) and 264(b) each having a plurality of fuel ports 266 therein. The fuel crucible 266 is a substantially circular hole. Dispensing manifold 264(a) is positioned in a position relative to premixing chamber 232 such that fuel can be ejected from manifold 264(a) onto Coanda surface 260 on inner surface 254 of side 264(a). Again, assign 123315. Doc -30- 200819678 Manifold 264(b) is positioned in a position relative to premixing chamber 232 such that fuel can be ejected from manifold 264(b) onto Coanda surface 260 on inner surface 254 of opposing side 264(c). . As is known to those skilled in the art, in this embodiment, various configurations of fuel cartridges and jets can be used to inject fuel onto the Coanda surfaces. The amount and spacing of the fuel crucibles may vary depending on the desired film thickness formed on the Coanda surfaces. Figure 17A illustrates an alternative embodiment of tubular distribution manifolds 264(a) and 264(b). In this embodiment, the fuel cartridge 266 is an elongated hole or slot. The shape of the groove of the fuel crucible 266 causes the fuel to be ejected in a piece-like pattern onto the annular Coanda surface 260, which enhances the entrainment and mixing effect of the Coanda surface and allows for the combustion of a larger volume of gas. If desired, the slots 266 can be joined to form continuous elongated holes or slots in the distribution manifolds 264(a) and 264(b). In addition to the circular holes and slots, the fuel crucible 266 can be formed depending on the particular application. Examples of other shapes include elongated oval and rectangular grooves. A rectangular fuel film 270 is disposed around the periphery of the pre-mixing chamber 232. Fuel film 270 is coupled to fuel supply conduit 238 and is in fluid communication with both primary fuel outlet 236 and supplemental fuel inlet 234. The fuel film 270 includes an open top portion 272, a bottom portion 274, and a top side 276 and an inner side wall 277 connecting the top portion to the bottom portion. In the embodiment illustrated in Figures 13-18, the inner sidewall 277 is also the sidewall 246 of the premixing chamber. A mating annular seal 278 is attached to the bottom 274 of the fuel film 270 and extends around the sidewall 246 of the premix chamber 232 to ensure the integrity of the membrane. In an alternate embodiment, as illustrated in Figures 25-28 and explained below, the fuel film 270 can be from the sides 246(a), 246(b), 246(c) of the sidewall 246 of the pre-mixing chamber 232 and 246 (d) outside the surface 256 123315. Doc-31 - 200819678 are spaced outwardly to provide a space between the outer surface of side wall 246 and main fuel outlet 236. This space allows air to be entrained from the lower portion of the burner to a position adjacent to the fuel crucible 292 disposed on the inner portion of the main fuel outlet 236. In this embodiment, the inner sidewall 277 of the membrane 270 is separated from the sidewall 246 of the premix chamber 232. Supplemental fuel supply conduits 280(a), 280(b), 280(c), and 280(d) extend from annular fuel membrane 270 to supplemental fuel inlet 234 (ie, tubular distribution manifolds 264(a) and 264(b)) To transfer fuel from the fuel film thereto. Each of the supplemental fuel supply conduits 280(a), 280(b), 280(c), and 280(d) includes a first end 282 and a second end 284 attached to the fuel film 270. The second ends 284 of the conduits 280(a) and 280(d) are attached to opposite ends of the tubular distribution manifold 264(a). The second ends 284 of the conduits 280(b) and 280(c) are attached to opposite ends of the tubular distribution manifold 264(b). The main fuel outlet 236 is positioned relative to the top 242 of the premixing chamber 232 in a position where fuel can be injected from the main fuel outlet around the periphery 286 of the premixing chamber air/fuel outlet 250. As best shown in Fig. 15, main fuel outlet 236 includes a flat annular fuel injector body 288 having a plurality of diffusion fuel ports 292 therein. The fuel jet formed by 埠292 diffuses the fuel jet. Fuel injector body 288 is attached to open top 272 of fuel film 270 such that diffusion fuel enthalpy 292 is disposed about perimeter 286 of air/fuel outlet 250 of pre-mixing chamber 232. Membrane 270 is approximately the same as the inner and outer diameters of fuel injector body 288. Fuel may be injected from main fuel outlet 236 (i.e., annular fuel injector body 288) around perimeter 286 of air/fuel outlet 250. The size and spacing of the crucible 292 can be adjusted to control the fuel injection from the crucible 123315. Doc -32- 200819678, the way (such as direction and speed). This feature, in conjunction with the flow of fuel and air through the air/fuel outlet 250, allows control of the shape and extent of the entire outer flame. As shown in Figure 16, the diffusion fuel cartridge 292 can be separated from the fuel injector body 288 by a plurality of corresponding short gas risers or tip extensions 296, if desired. The use of standpipe 296 to separate 埠 292 from fuel injector body 288 may result in better air lateral entrainment in certain applications. If necessary, the main pipe also allows mechanical changes to the structure of the crucible and the nature of the resulting fuel flow. As will be appreciated by those skilled in the art, the injector body 288 can include various iterations of the crucible 292. The particular crucible configuration used will depend on a variety of factors, including the type of fuel being burned (including molecular weight, calorific value, stoichiometry, and temperature of the fuel stream) and the associated pressures associated therewith. Fuel supply conduit 238 is in fluid communication with supplemental fuel inlet 234 and main fuel outlet 236 for directing fuel thereto. The fuel supply conduit 238 has a first end 300 and a second end 302. As shown, the first end 3〇〇 includes a flange 304 for connecting the first end to a source of fuel gas (again, typically by welding to obtain the type of connection). The second end 3〇2 is coupled to a respective one of the outer sidewalls 276 of the annular fuel film 270. Alternatively, a separate fuel supply conduit or riser can direct fuel to the supplemental fuel inlet 234 and the main fuel outlet 236 (unlike a single component conduit or riser 23 8). Separate pipes or risers typically extend from a common fuel head. Referring to Figure 14, in the operation of the burner 230, the fuel to be burned (usually drawn by a black arrow) is directed to the fuel film 123315 via the fuel supply conduit 238. Doc -33- 200819678 270. A portion of the fuel is directed to the main fuel outlet 236 (i.e., fuel injector body 288) by fuel membrane 270. The remainder of the fuel is directed to the supplemental fuel inlet 234 via the fuel supply conduits 280(a), 280(b), 280(c), and 280(d) via the membrane 270 (ie, its tubular distribution manifolds 264(a) and 264 (b)). The fuel ces 266 from the fuel distribution manifolds 264(a) and 264(b) are sprayed onto the Coanda surface 260 on the inner surfaces 254 of the sides 246(a) and 264(b) of the premixing chamber 232. Injecting fuel from the fuel helium 266 into the premixing zone 231 and the premixing chamber 232 entrains air into the premixing space 23 1(a) and enters the premixing chamber 23 1(b) via the air inlet 248, whereby the premixing A mixture of fuel and air (preferably a substantially homogeneous mixture) is formed in the zone and the mixture exits the air/fuel outlet 250. Fuel and air continue to mix over a short distance above the air/fuel outlet 250. The injection of fuel from the fuel crucible 266 to the Coanda surface 260 on the inner surface 254 of the sides 246(a) and 246(c) causes the fuel to adhere to the Coanda surface and travel along the Coanda surface path and form a relative thereon. A thinner film, which promotes more efficient air entrainment and mixing of air and fuel. The fuel to be combusted surrounds the periphery 286 of the air/fuel outlet 250 of the premixing chamber 232 and is thus injected around the air/fuel mixture autonomous fuel outlet 236 (and annular fuel injector body 288) exiting the air/fuel outlet of the premixing chamber. The flare combustor 230 is preferably designed and operated in a manner such that the amount of air entrained into the premixing zone 23 1 including the premixing chamber 232 exceeds the stoichiometric air required to combust the fuel injected into the premixing zone. the amount. Excess air is imparted to the outer flame center for burning the fuel therein. However, as explained further below, in some applications, the burner 230 is designed and operated in a manner such that it is entrained into 123315. Doc -34- 200819678 into some applications in which the amount of air in the premixing zone 23 of the premixing chamber 232 is equal to or less than the stoichiometric air enthalpy required to inject the fuel into the premixing zone with X combustion, It is desirable to inject a "fuel-to-air mixture" (i.e., a stoichiometric mixture having less than the amount of air required to support combustion of the fuel introduced into the premixing zone) to the central portion of the outer flame. The flare burner 230 achieves The advantages achieved by the flare burners 30 and 130 are the same. It can also be formed by the flare burner 230. The outer layer flame is schematically illustrated in Figure 24. The polygon of the flare burner 230 (in the illustrated embodiment) The medium-rectangular shape may allow for greater flexibility in spacing the flare burner in ground-type flare applications. Moreover, this shape may allow fuel to be directed from the fuel gas 埠 292 due to the fact that the geometry can be rotated to change the interaction zone. The manner is more flexible. Referring now to Figures 19 to 23, a fourth embodiment of the inventive flare burner is illustrated and is generally indicated by the number 3 3 0 As with the other embodiments of the inventive U-torch burner, the flare burner 330 includes a pre-mixing zone 331 including a pre-mixing chamber zone 332; and a supplement for injecting fuel into the pre-mixing zone. A fuel inlet 334; a main fuel outlet 336 and a fuel supply conduit 338. An introducer 40 (shown in Figure 4) can be associated with the burner 330 to initially ignite the fuel and air released by the burner. A fuel-to-air mixture (preferably a substantially homogeneous mixture) may be formed in the premixing zone 33! including the premixing chamber 332. The mixture formed in the premixing zone 331 is as described below. Can be rich in fuel or lean fuel 123315. Doc -35- 200819678 Material pre/bar 5 to 3 3 2 includes a circular cross section and has a cylindrical shape. The premixing chamber includes a top portion 342, a bottom portion 344, a side wall 346 connecting the top portion to the bottom portion, an air inlet 348 disposed in the bottom portion 344, and an air/fuel outlet 35 disposed in the top portion 342. Hey. The side wall includes an inner surface 347 and an outer surface 349. As shown, the top portion 342 and the bottom portion 344 are both open, thereby forming an air inlet 348 and an air/fuel outlet 350. As a result, the air inlet 348 and the air/fuel outlet 35A each also have a circular cross section. The premixing chamber 332 has a length (or height) and an internal hydraulic direct control between about 0. Ratio from 25:1 to about 4:1. In the embodiment shown in Figures 19 20 '22 and 23 (which does not include the extension cylinder 400 described below), the premixing chamber 332 has a length (or height) of about 1:1 or less and an internal hydraulic diameter. ratio. Preferably, in the embodiment shown in Figures 19, 2, 22, and 23 (which does not include the extension cylinder 4〇〇 described below), the premixing chamber 332 has a ratio of about 25:1 The ratio of the length (or height) to the internal hydraulic diameter in the range of about 1:1. As noted above, longer premixing chambers generally allow for better mixing of fuel and air in the premixing chamber. It has been found, however, that in the embodiment illustrated in Figures 19 and 20, the length (or height) of the premixing chamber 332 is still sufficient to achieve good mixing, as long as the retardation of ignition is maintained by adjusting the flame propagation speed. As best shown in FIG. 2A, the premixing zone 331 (which does not include the extension cylinder 400 described below) in this particular embodiment includes: a primary premixing space 331(a) located below the premixing chamber 332 ( The premixing chamber 331(b) is located between the supplemental fuel inlet 334 and the premixing chamber bottom 344 and the air inlet 348; and a premixing space 331 immediately above the premixing chamber top 342 and the air/fuel outlet 350. In the 123315. Doc-36-200819678 Example towel, in which all three (four) of the premixing zone 331 are mixed with air and material. The supplemental fuel inlet 334 is positioned relative to the premixing zone 331 at a location that achieves the following: fuel injection from the refueling population to the premixing zone may entrain air into the premixing space 331(a) and enter the premixing chamber via the air inlet 348 332, thereby forming a mixture of fuel gas and air in the premixing zone, preferably a substantially homogeneous mixture, and leaving the mixture at the air/fuel outlet 35 of the premixing chamber top 342. . Typically, the mixture does not burn until the mixture of fuel and air-rolling leaves the air/fuel outlet (usually from air/nine, the feed outlet is at a distance). The distance from which the combustion occurs to the air/fuel outlet 35 改变 varies depending on the amount of air in the mixture and the rate at which the mixture is released from the air/fuel outlet. In some cases, combustion may occur in the premixing zone due to short de-stage timing (e.g., in the case of short durations and very low pressures). As shown in Figures 19 and 22, the supplemental fuel inlet 334 includes a burner casting 352 having a rounded head 353 and a plurality of concentrically disposed around the rounded head and gathered below the air inlet 348 of the premixing chamber 332. Fuel outlet arm 354. The supplemental fuel inlet 334 is the same as the air inlet 348 and the premixing chamber 332. In the embodiment shown in Figures 19 and 2(), the supplemental fuel inlet 334 is spaced below the air inlet 348 of the premixing chamber 332. The supplemental fuel inlet 334 may be located between 0 and 2 inches below the air inlet 348, preferably below the air inlet. The exact distance may vary depending on the type of fuel being burned, the particular application, the length of the flame allowed, and other factors. 123315. Doc-37- 200819678 Each fuel outlet arm 354 and round head 353 includes a plurality of fuel ports 356. The turns 356 are linearly disposed along the longitudinal axis of each of the fuel outlet arms 354. FIG. 23 shows an alternate embodiment of a supplemental fuel inlet 334. In this embodiment, each gas outlet arm 354 includes two columns of diffusion fuel crucibles 356, each of which is relatively straight such that it does not directly intersect a row in an adjacent column. The supplemental fuel inlet 334 including the fuel outlet arm 354 is intentionally small to allow as much interaction as possible between the released fuel and the entrained air. The effect of the ''cliff body'' formed by the size and shape of the inlet 3 3 4 is minimized to form a clean passage of air to the released fuel. An annular fuel film 360 is disposed around the periphery of the pre-mixing chamber 332. The fuel film 365 is coupled to the fuel supply conduit 338 and is in fluid communication with the primary fuel outlet 336. The membrane 360 includes an open top portion 362, a bottom portion 364, and a top portion 366 and an inner side wall 367 that connect the top portion to the bottom portion. In a preferred embodiment, the outer sidewall 366 is about 3 inches from the inner sidewall 367 (this distance is dependent on the nature of the fuel and the overall configuration of the burner). In the embodiment illustrated in Figures 19, 2, 22, and 23, the inner sidewall 367 of the membrane 360 is also the outer surface 349 of the sidewall 346 of the premix chamber 332. In an alternate embodiment, as illustrated in Figures 25-28 and explained below, the fuel film 360 can be spaced outwardly from the outer surface 349 of the sidewall 346 of the premixing chamber 332 to the outer surface 349 of the sidewall 246 with the primary fuel. An annular space is provided between the outlets 336. This space allows air to be entrained from the lower portion of the burner to a position adjacent to the fuel crucible 374 disposed on the inner portion of the main fuel outlet 336. In this embodiment, the inner side wall of the membrane 36 is separated from the side wall 346 of the premixing chamber 332. 123315. Doc -38- 200819678 The main fuel outlet 336 is positioned relative to the top 342 of the premixing chamber to achieve the following position. The fuel can be self-premixed from the pre-mixing chamber air/fuel: the main fuel-fired. As circle 22 is preferably shown, = material outlet 336 includes a flat ring-shaped fuel injection = 2 body having a plurality of fuels 374, such as m, medium, and. The fuel jets formed by 埠 374 are spaced apart by a diffusion of fuel 埠 374 in increments of 6 degrees, although the spacing may be dependent on the particular enthalpy change. Ring _(4) "This _(4) is attached to the open top 362 of the annular membrane 360 such that the fuel 埠μ is disposed around the periphery 368 of the premixing chamber air/fuel outlet 350. The annular membrane 36 is approximately the same as the inner and outer diameters of the fuel injector body 370. The fuel may be from the air, and the main fuel outlet coffee (i.e., fuel injector body 370) around the periphery 368 of the fuel outlet 350 is injected in a ring form. The size and spacing of the crucibles 374 can be adjusted to control the manner in which fuel is ejected from such imperfections (e.g., direction and speed). This feature, combined with the flow of fuel and air through the air/fuel outlet 35, allows control of the shape and length of the entire outer flame. θ As shown in Figure 7, the diffusion fuel enthalpy 374 can be separated from the fuel injector body 37 by a plurality of corresponding short gas risers or tip extensions 376, if desired. In some applications, the use of standpipe 376 to space 埠 374 from fuel injector body 70 provides for better air lateral entrainment. The riser also allows mechanical changes to the construction of the crucible and the nature of the fuel stream formed, if desired. As will be appreciated by those skilled in the art, the fuel injector body 37 can include various iterations of the crucible 374. The particular crucible configuration used will depend on a variety of factors, including the type of fuel to be combusted (including molecular weight, calorific value, stoichiometry, and temperature of the fuel stream) and the associated pressures associated therewith. 123315. Doc -39- 200819678 The two-material supply pipe 338 is connected to the supplementary fuel inlet σ 334 and the main fuel exporting state to guide the fuel. Fuel supply conduit 338 includes a first end 38b of a first end 382 and a second end 384. The first end 7 includes a flange 386 for connecting the first end to a "fuel source" (also, the connection is obtained by a tan connection). The second end state is connected to the outer side wall 366 of the fuel film 360 - the corresponding inlet. The fuel supply conduit 338 also includes a supplemental branch fan that connects the fuel supply conduit to the supplemental fuel inlet 334. Supplemental branch 390 includes a - terminal 392 and a second terminal 394. The first end 392 is coupled to the main branch 390 of the supply conduit. The second end 394 is coupled to a supplemental fuel population 334 (specifically, the rotor 352). Alternatively, the separate fuel supply conduit or riser may direct fuel to the supplemental fuel inlet 334 and the main fuel outlet 336 (unlike a single component conduit or riser 338). Separate pipes or risers typically extend from a common fuel head. ^ ... Referring now specifically to Figure 21, an alternative embodiment of a flare burner 33 is illustrated. This embodiment is identical to the embodiment of the burner 33' described above except that it also includes a premixing chamber extension cylinder 4''. The premixing chamber extension cylinder 400 extends the length of the premixing chamber 332. In this embodiment, the premixing chamber has a length (or height) and internal hydraulic pressure ranging from about 1:1 to about 4:1 and preferably from about 1:1 to about 3:1. The ratio of diameters. Most preferably, in this embodiment, the premixing chamber has a ratio of a length (height) of about 15:1 to an inner hydraulic diameter. The cylinder 400 includes a top portion 4, a bottom portion 404 and an intermediate portion connecting the top portion to the top portion. The intermediate portion 406 is attached to the inner side wall 367 of the annular fuel film 36'. 123315. Doc-40-200819678 The top 342 of the premixing chamber 332 and the air/fuel outlet 350 are spaced above the main fuel outlet 336 due to the premixing chamber extension cylinder 400. The top 342 of the premixing chamber 332 and the air/fuel outlet 350 are located above the main fuel outlet 336 at about 0. It is in the range of 5 inches to about 10 inches, preferably in the range of from about 6 inches to about 8 inches. The exact distance can vary depending on the type of fuel being burned, the particular application, the flame height of the outer layer allowed, and the gas factor. The bottom 344 of the premixing chamber 332 is generally flush with the supplemental fuel inlet 334 or approximately one inch above the supplemental fuel inlet 334. As shown in Figure 21, the premixing zone 33 1 (which includes the extension cylinder 4〇〇) in this particular embodiment includes a premixing space 331 (a) below the premixing chamber 332 (located at the supplemental fuel inlet 334 and premixed The bottom of the chamber 344 and the air inlet 348), the premixing chamber 33 1 (b), and a premixing space 331 (c) immediately above the premixing chamber top 342 and the air/fuel outlet 350. In this embodiment, the primary mixing of air and fuel occurs in the premixing chamber 332 (in the premixing zone 33(b)). The top 402 of the premixing chamber extension cylinder 400 serves as a windscreen for retarding ignition. And physical barriers. Specifically, the top 4〇2 counteracts the harmful lateral flow air effects that can force the flame to within the premix chamber diameter and interfere with the smokeless capacity of the flare combustor. The top portion 402 is also used to separate the premixed fuel stream from the diffused flame. Similarly, the bottom 404 of the cylinder 400 acts as a bottom diffuser and prevents the flame from pulling back and causing premature ignition. Similarly, the increased length of the premixing chamber 332 formed by the extension cylinder 4 增强 enhances the mixing of the fuel and air in premixing. The extension cylinder is not required in the application, for example when the lateral flow effect is not a problem or when burning low molecular weight fuels, no 123315. Doc -41 - 200819678 Need to extend the cylinder. Whether or not the shelter screen will depend on the molecule i to burn the fuel and the calorific value, whether the fuel contains saturated or unsaturated hydrocarbons, associated temperatures and pressures, and other factors. In the embodiment shown in Figure 21, the inner side wall 367 of the membrane 360 is attached to the intermediate portion 4"6 of the extension cylinder 400. In an alternate embodiment, as illustrated in Figures 25-28 and described below, the fuel film 36A can be self-extending from the cylinder 4 (and .  Thus the outer surface of the premixing chamber 332 is spaced outwardly to provide a space between the outer surface of the extended cylinder p and the main fuel outlet 336. This space allows air to be entrained from the lower portion of the burner to a position adjacent to the fuel crucible 374 disposed on the inner portion of the main fuel outlet 336. Referring to Figures 20 and 21, the operation of the flare burner 33 will be explained. A portion of the fuel to be burned (generally shown by the black arrow) is directed to the fuel film 36 and the main fuel outlet 336 via the main branch 380 of the fuel supply conduit 338. A portion of the fuel to be combusted is also directed to the supplemental fuel population 334 via a supplemental branch 39 of the fuel supply conduit 338. The self-refueling population 334 injects fuel into the premixing zone 331 and the premixing chamber 332 to entrain air into the premixing space 33i (4) and into the premixing chamber via the air inlet 348, thereby forming fuel and air in the premixing zone. The mixture (preferably a substantially homogeneous mixture) and leaving the mixture exiting the air/fuel outlet 35. Fuel and air I continue to mix within a short distance above the air/fuel outlet 350. The remaining fuel-burning fuel surrounds the periphery 368 of the air/fuel outlet 35〇 of the pre-mixing chamber and thus is injected around the air/fuel mixture autonomous fuel outlet 336 exiting the air/fuel outlet of the pre-mixing chamber. Similarly, when the extension cylinder 4 is installed, additional mixing is obtained and when the fuel autonomous fuel outlet 336 is released, 123315. Doc •42- 200819678 Prevents pre-ignition of the premixed flow leaving the air/fuel outlet 350 by interacting with the resulting diffusion flame. The use of an extension cylinder 4 is used to enhance the overall effect created by the use of a premixed stream. The flare burner 3 is preferably designed and operated in such a manner that the amount of air entrained into the premixing zone 331 including premixing to 332 exceeds the chemistry required to combust the fuel injected into the premixing zone. Calculate the amount of air. Excess air is imparted to the outer flame center for burning the fuel therein. However, as further (and explained), in some applications, the burner 33 is designed and operated in a manner such that the amount of air entrained into the premixing zone 331 including the premixed chamber 332 is equal to or less than The amount of stoichiometric air required to burn the fuel injected into the premixing zone. In some applications, it is desirable to inject a &quot;rich fuel&quot; fuel and gas mixture to the central portion of the outer flame (ie, one has less than one A stoichiometric mixture to support the amount of air required to introduce fuel for combustion in the premixing zone. ^ Torch Burner 330 achieves the same advantages as the G achieved by the flare burners 3〇, 13〇, 23〇. The outer layer flame 100 can be formed by the flare burner 33A. The present invention can be applied to the fourth embodiment of the inventive flare burner described above (Figs. 19 to 32). Embodiments) A modification is implemented. The same modifications can be made to the first, third, and third embodiments of the flare burner of the above aspects. Also in this embodiment, the flare burner 33() Including premixing chamber extension cylinder 400. However, the 'extension cylinder 400 (and therefore the premixing chamber 332) is not directly attached to the fuel film 360, but is spaced inwardly from the fuel film to extend the circle 123315. Doc-43-200819678 provides an air path between the fuel membrane and the fuel membrane to allow air to effectively reach the fuel crucible 374 disposed on the interior portion of the main fuel outlet 336. The diameter of the extension cylinder 400 (and thus the premixing chamber 332) is significantly smaller than the inner diameter of the fuel membrane 36. In this embodiment, the premixing chamber has a ratio of about 0. 5·· 1 to about 4:1 and preferably a ratio of the length (or height) in the range from about ^ to about 3:1 to the internal hydraulic diameter. More preferably, the premixing chamber has a ratio of length (or south) to internal hydraulic diameter ranging from about 1 · 5 · 1 . Due to the smaller diameter of the extension guard 400, there is an annular space 43 between the inner side wall 367 of the fuel film 360 and the outer surface of the extension cylinder 4, which is also the outer surface 349 of the premix chamber 346 side wall 346. Hey. A plurality of rectangular thin gussets 432 are used to center the extension cylinder 4 (and thus the premix chamber 332) and remain in the fuel film 360. As illustrated, the four plates 432 are spaced 9 apart. It is placed in the annular space 430. One end of each plate 432 is attached to the inner side wall 367 of the fuel film 360. The other end of each of the plates 432 is attached to the outer surface of the extension cylinder 400 (which is also the outer surface i of the side wall 346 of the premixing chamber 332) 349). In addition to the above modifications, the burner 330 illustrated in Figures 25-28 is identical in the manner used to the embodiment illustrated in Figures 19-23 and described above. The main fuel outlet 336 is still positioned relative to the premixing chamber top 342 in a position such that fuel can be injected from the main fuel outlet 336 around the periphery 368 of the premixing chamber air/fuel outlet 35A. The annular space 43A provides only an air path between the extension cylinder and the fuel membrane to allow fresh oxidant to effectively reach the fuel enthalpy disposed within the main fuel outlet 336. The operation of the burner 330 remains the same, except that the fresh air is fed by the fuel β 123315. Doc -44- 200819678 The inner prime mover is entrained from the lower part of the burner via the annular space 43〇. The entrained air is adjacent to and mixed with the fuel released by the inner row of fuel slabs 374 on the main fuel outlet 336. For example, when burning a relatively heavy and unsaturated fuel oil that tends to smoke more, the enhanced mixing state provided by the annular space 43 可 can be used. Its optimized burner achieves smokeless ash burning. As will be appreciated by those skilled in the art, the same modifications can be made to the other three embodiments of the inventive inventive flare burner. For example, in modifying the embodiment illustrated in Figures 4-8, the cross-sectional diameter of the pre-mixing chamber 32 is reduced and the pre-mixing chamber 32 is spaced inwardly from the fuel film 60. The inner side wall 67 of the annular fuel film 6 or the side wall 46 of the premixing chamber 32 is increased (as shown, the inner side wall of the film is the same as the side wall of the premixing chamber). The annular seal 68 is omitted. The premixing chamber 32 is spaced inwardly from the fuel membrane 60 to provide an air gap between the premixing chamber and the fuel membrane. Fresh air can be entrained from below the burner to a point near the fuel released by the fuel 蟀 74 on the interior of the autonomous fuel outlet 36. The premixing chamber 32 can be placed in the center of the fuel film 60 and attached to the fuel film 60 using a plurality of gussets as shown in Figs. 25-28. Figure 28 schematically illustrates the formation of an outer layer flame 100 by the modified flare burner 380 (and burners 13 〇, 23 〇 and 33 修改 modified in this manner) as illustrated in Figures 25-27. As shown, excess air is injected from the premixing chamber 332 into the central portion 102 of the outer flame 100. The excess air depicted by the air pockets 1 and 3 in Fig. 28 is mixed with the fuel in the central portion 102 of the outer flame 1 to effectively form two initial combustible zones, zones 104(a) and 104(b). . Air is also entrained from combustor 330 via annular space 430 to a point near the fuel released by the inner column of fuel slabs 374 on main fuel outlet 336. Via the annular space 123315. Doc -45- 200819678 4 3 0 The air of the clamp enhances the mixed state and forms a faster and more uniform combustion throughout the outer flame 1 〇 。. As shown in Fig. 28, the outer flame 1 〇〇 has a length 106 which is significantly smaller than the length 2 3 of the prior art outer flame 20 which is the same amount of fuel as shown in Fig. 3. General Information The partial premixing method of the present invention allows for the initiation of two flame zones within the same outer flame as the fuel is burned. The external flame zone uses a typical flame zone observed with a burner of the type previously used (i.e., using only the type of diffusion mixing). The outer layer of gas is stripped to expose a continuous layer of gas for repeated diffusion and subsequent combustion. The second zone of flame is formed by a premixing zone of the burner that delivers the combustible mixture to the interior of the main outer flame. The combustion flow field is used to form a distinct full flow state at the center of the flame that is an atypical diffusion flame. As the premixing zone becomes more lean fuel, the flame becomes shorter due to the additional oxidant delivered to the center of the flame. Additional air is utilized by the remaining flame smoke and is used to shorten the flame (or allow for increased mass flow) and is further used as a flameout mechanism to reduce emissions such as nitrous oxide and oxidation. Excess air also reduces the formation of pyrotechnics and results in the combustion of all unburned hydrocarbons. Each of the flare burners 30, 130, 230, and 330 is preferably designed and operated such that entrainment enters the premixing zone and the amount of air injected into the center of the outer flame is greater than that used to support introduction into the premixing zone. The two stoichiometric amounts of fuel in the fuel combustion range range from about 15% to about 300%. Therefore, a fuel-rich method (one having less than the stoichiometric amount of gas required to support the combustion of fuel introduced into the central portion of the outer flame introduced into the premixing zone) is used. Doc -46- 200819678 100% fuel injection, injection of fuel, and lean fuel method (a chemical calculation for fuel combustion to support the introduction of premixed MW into the central portion of the outer flame) Both the empty τ and the 100% of the mixture of fuel and air are injected. Each method of the typical diffusion jet used by the father of the season / '... shooting &amp; driving the state of combustion has its own advantages. The particular method used will (iv) the specific application 'includes the type of fuel to be burned and the force available. The method can be modified by means of a fuel transfer mechanism. When using the fuel-rich method, the portion of the fuel injected into the center of the outer flame will initiate a smaller combustion envelope at the center of the flame that will shorten the flame' while also forming an additional at the center of the outer flame. The full flow of the burning zone. When a lean fuel process is used, the outer flame will be significantly shortened due to the larger premixed fuel portion that is burned at the center of the flame. The excess air carried by the premixed flow state is then further combusted relative to the remaining outer fire center. The additional turbulence formed by the fuel expanding at the center of the flame during combustion then increases the state of mixing of the remaining fuel by breaking the dense fuel core and pushing it to the outer flame boundary. When using a fuel rich process, it is important to transfer the premixed fuel stream to the outer flame center to remain within the flammable range. Otherwise, mixing and burning of expansion will not occur in the outer flame center. The enhanced blending benefits from a premixed flame that initiates at the center of the flame and expands at a significant rate to create a distinct full flow at the flame core. However, in most applications, it is desirable to inject a 'fuel-lean fuel-air mixture into the central portion of the outer flame (i.e., one having more than the stoichiometric amount of air required to support combustion of the fuel introduced into the pre-mixing zone). 〇% of the mix 123315. Doc -47- 200819678 口 纟 纟 应用 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕 夕The stoichiometric amount of air ranges from about 125% to about 3%. Fortunately, the amount of air entering the premixing zone is between about 150/s of the stoichiometric air required to support the fuel injection into the pre-mixed zone. To about 300/. 'preferably from about 175% to about 9%. As the entrainment enters the pre-mixing zone, the increase in the Jinxu jiandan 丄 丄 丄 里 里 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着Sub-meter #2 gas increase), the advantages of flame length and launch also increased. While the amount of air entrained into the premixing zone is greater than the amount of air required to support fuel injection into the premixing zone, it would require an external air entrainment source (e.g., flow injection) and possibly other modifications. And therefore can be subject to cost constraints. Entrainment: The working gas in the premixing zone of each of the burners 30, 130, 230 and 33〇 is extremely dependent on: the pressure and mass flow of the fuel injected from the refueling population, the type of fuel burned, and the supplement The structure of the fuel inlet (including the number and size of the crucible therein), the arrangement of the refueling population relative to the air inlet entering the premixing chamber, and the size of the air inlet. In most applications, the ultimate goal is to achieve a highly lean, preferably non-flammable mixture of fuel and air. A non-combustible lean fuel mixture will quickly absorb the fuel that was once required to become the same combustible in the outer flame center. Once a combustible mixture is obtained, air and gas will form a large combustion zone inside the outer flame, which will significantly increase the rate at which the fuel is oxidized, while also forming a significant turbulent flow to expand the diffusion mixing on the outer surface of the flame zone. Passing the wheel to the outer flame 123315. Doc -48- 200819678 The extra quality of the heart is also used as a flameout mechanism to reduce emissions such as nitrous oxide and carbon monoxide. Increasing the rate of combustion while maintaining the two flame fronts also serves to reduce the products of carbon monoxide and soot, and further reduces the release of unburned carbonium compounds. The fuel is injected into the premixing zone with sufficient momentum to entrain air laterally and entrain air from the lower portion of the burner into the fuel jet and premixing zone. Depending on the molecular weight of the fuel and the transfer pressure used for entrainment, the burner can entrain air up to 2 feet below the refueling inlet. Preferably, the amount of fuel introduced into the premixing zone of each of the burners 30, 13A, 23A and 33〇 is from about 5% to about 5% of the total amount of fuel to be combusted by the flare burner. Within the range of 50% and preferably from about 1% to about 30%; Most preferably, the amount of fuel introduced into the premixing chamber is between about 丨〇% to about 25 〇/❹ of the total amount of fuel to be combusted by the flare burner. The amount of fuel introduced into the premixing zone can be controlled by manipulating the diameter of the fuel helium and the fuel pressure. The greater the percentage of fuel introduced into the premixing zone, the shorter the flame and the greater the smokeless capacity of the burner. However, an appropriate balance between the percentage of fuel injected into the premixing zone and the amount of air that can be entrained into the premixing zone must be achieved. When a lean fuel process is used, the inflammation is typically brought into the premix: the amount of air present is at least about 125% of the stoichiometric amount of gas required to support combustion of the fuel in the spray premix zone. A small amount of gas can form a highly active (combustible) mixture that will cause the burner to burn at a maximum rate or backfire, ultimately causing damage to the burner. The greater the amount of entrained air, the greater the flameout effect and the lower the burning rate of the fuel. The 123315. Doc -49· 200819678 The condition is to increase the delayed ignition of the premixed flow to ensure that the ignition point of the premixed stream before combustion is partially localized with respect to the flame center to achieve maximum benefit. Extremely thin air and fuel flow will ensure that the air-fuel mixture will not ignite before it exits the air/fuel outlet and reaches the outer flame center. Once the mixture of fuel and air exits the air/fuel outlet and enters the outer flame, the mixture absorbs enough additional fuel to obtain a combustible P mixture, at which point the fuel ignites in the main outer flame. The flow state forms a flame with two individual flame fronts in a fire or a flame geometry. The additional turbulence formed by the gas and expanding at the center of the flame during combustion is then used to enhance the mixing state of the remaining fuel by breaking the dense fuel core and pushing it to the outer flame boundary. This method reduces flame height and smoke wicking while increasing overall combustion efficiency due to increased mixing. The air/fuel mixture in the premixing zone of each of the combustors 30, 130, 230, and 330 is not critical to G combustion prior to exiting the air/fuel outlet of the premixing zone. Combustion in the premix chamber, for example, will press the premix chamber and greatly reduce the amount of air entrained into the premix chamber. The total cross-sectional size of the burner is relatively small by transferring only a portion of the fuel to be burned to the premixing zone of each of the burners 3, 13, (), 230 and 330. In an entire premixing process, the design and construction of a burner capable of providing 100% of the air required for combustion will be limited in size. The venturi or mixer portion of this burner is quite large and lacks the ability to provide low fuel pressure. Despite the inventors of each of the inventive burners 3〇, 13〇, 23〇 and 33〇. Doc -50- 200819678 The mixing chambers are relatively small, but this setup provides enough air and fuel

Ο 以形成一具有大量被夾帶之過量空氣之預混合空氣及燃料 流。作為一結果,使用一同等火焰高度及直徑即可實現總 燃料流之明顯增加。相依於欲燃燒燃料之類型,該等發明 性燃燒器易於適應一可經設計以超過1.4倍於先前所用擴散 射流型燃燒器通常可達成之速率來傳送燃料之燃料流速。 在某些情況下,此可在大致保持相同火焰長度及直徑的同 時達成。若可容許一較大火焰高度,可達成一在流速上明 顯高於先前所用擴散射流型燃燒器之燃料流速。此外,結 合該發明性燃燒器之每一實施例,可在增加燃料流速之同 時保持點燃間距及調節能力。結合低分子量之燃料,亦可 藉助調節火焰、降低整個火焰溫度來略微減小火焰之輻射 部分。在某些情況下,即使燃料速率流增加,此亦允許燃 燒器保持或僅最大程度地減小燃燒器與柵欄之間的距離。 傳送至火焰中心之過量空氣不僅用以將空氣賦予至火焰中 心,且亦減小其中形成之燃料煙在離開燃燒器頂端時受到 氧化之定時速率。此形成一更清潔之無煙火焰,該火焰對 於一既定之熱量散發按比例縮短。火焰之稀薄及隨後之熄 滅效應亦用以減少一氧化二氮及一氧化碳之散發。經由^ 混合室之燃料及空氣流亦幫助冷卻燃燒器组件。 上文已描述了補充燃料入口之各種組態。額外之组態亦 可行,包括鑒於可用燃料壓力的經鑽孔以最大化空氣夾帶 及混合之多點喷射器本體或集管。上述實施例之:二者= 下部均可包括一 Coanda表面或可係一平直部分。若使用 123315.doc -51 - 200819678Ο to form a premixed air and fuel stream with a large amount of entrained excess air. As a result, a significant increase in total fuel flow can be achieved using an equivalent flame height and diameter. Depending on the type of fuel to be combusted, the inventive burners are readily adaptable to a fuel flow rate that can be designed to deliver fuel at a rate that is typically achievable by more than 1.4 times that previously used for diffuse jet type burners. In some cases, this can be achieved while maintaining approximately the same flame length and diameter. If a larger flame height is tolerated, a fuel flow rate that is significantly higher than the previously used diffusion jet type burner can be achieved. Moreover, in conjunction with each of the embodiments of the inventive burner, the ignition spacing and adjustment capability can be maintained while increasing the fuel flow rate. In combination with low molecular weight fuels, the flame portion of the flame can be slightly reduced by adjusting the flame and lowering the overall flame temperature. In some cases, this allows the burner to maintain or only minimize the distance between the burner and the fence, even if the fuel rate flow is increased. Excess air delivered to the center of the flame not only serves to impart air to the center of the flame, but also reduces the rate at which the fuel fumes formed therein are oxidized as they exit the top of the burner. This creates a cleaner smokeless flame that is proportionally shortened for a given heat dissipation. The thinness of the flame and the subsequent extinguishing effect are also used to reduce the emission of nitrous oxide and carbon monoxide. The fuel and air flow through the mixing chamber also helps to cool the burner assembly. Various configurations of supplemental fuel inlets have been described above. Additional configurations are also possible, including drilling of the available fuel pressure to maximize air entrainment and mixing of the multi-point injector body or header. In the above embodiment: both = the lower portion may comprise a Coanda surface or may be a straight portion. If using 123315.doc -51 - 200819678

Coanda表面,則該補充燃料入口中 自 甲之埠可係圓形孔(射流) 或槽。除Coanda技術外,燃料亦可以一相對較高之速度自 補充燃料入口喷射以快速獲得可噴射進外層火2中心:燃 料與空氣之混合物。該發明性火炬燃燒器之各組件尺寸^ 包括預混合室及燃料臈之尺寸皆可改變。另外,可結合主 燃料出口及補充燃料入口使用各種各樣之埠組態(舉例而 • 言,埠之大小、該等埠之間的間距)。所用之特定尺寸及 〇 組態將相依於燃料類型及分子量、溫度、其發熱值及活 性、運作參數(舉例而言可用壓力)及其他因素。 雖然並非必須,但可向該發明性火炬燃燒器(該火炬燃 燒器之該等實施例之任一者)之預混合區喷射一第三惰性 々IL以&amp;強二氣向該預混合區内之夾帶。第三惰性流之實例 可包括蒸汽、空氣及氮。蒸汽較佳。 該等圖圖解說明該發明性火炬燃燒器之圓形及矩形(多 邊形)實施例。該發明性火炬燃燒器之每一實施例亦可形 成呈其他幾何體。舉例而言,除圓形及矩形形狀外,亦可 採用橢圓形、三角形、方形、五邊形、八邊形及其他多邊 形形狀。該等其他幾何體形狀可在成本或製造方面有利 最佳方法係形成一稀薄之過量空氣流,然後可將該空氣流 自該預混合室傳送至火焰之主體中心。然而,一富燃料流 由於該發明性燃燒器所形成之增強混合而仍提供優於先前 所用之僅有擴散之燃燒器類型之好處。 發明性地面式火炬 現在參照圖29,其示意性地圖解說明該發明性地面式火 123315.doc -52- 200819678 炬且由一般參考編號420來標明該地面式火炬。地面式火 炬420包括複數個火炬燃燒器422、—在該等火炬燃燒器周 圍延伸之圍欄424,及-用於將燃料提供至該等火炬燃燒 器之燃料供應管426。 … 該等火炬燃燒器佈置呈列430⑷-⑴及列432⑷⑷。列 430(a)-(f)形成火炬燃燒器422之第一級434,同時,列 432⑷·⑷形成火炬燃燒器之第二級㈣。該等火炬燃燒器 422中之至少-者係上文所述發明性《炬燃燒器之該等實 施例中之-者。較佳地,火炬燃燒器422(#需要燃燒相對 較大量之燃料時使用之燃燒器)之第二級436中該等火炬燃 燒器4 2 2之每一者係上述發明性火炬燃燒器之該等實施例 之一者。若需要,在火炬燃燒器第一級434及火炬燃燒器 第二級436中之該等火炬燃燒器422之每一者均係上文所述 發明性火炬燃燒器之該等實施例中之一者。 燃料供應管426包括一主管44〇,其終止於一分配歧管 442中。一第一級供應管444及一第二級供應管4私係附裝 且與分配歧管442流體連通。個別第一級供應管45〇(a)_(f) 自第一級燃料供應管444延伸至相應之燃燒器列43〇(外 ⑴。同樣,個別第二級供應管452(aKe)自第二級燃料供 應管446延伸至相應之燃燒器列432(a)_(e)。舉例而言,發 明性火炬燃燒器330之燃料供應管道338之主分支38〇之第 一端382係附裝至個別供應管45〇(勾_(£)或452(a)_(匀中之一 者。若在地面式火炬420中亦使用另一類火炬燃燒器,則 根據需要,將該燃燒器之燃料供給管道附裝至個別供應管 123315.doc -53 - 200819678 450(a)-(f)或 452(a)-(e)中之一者。 一系列導引器460(a)-(f)與第一級供應管444流體連通, 且經疋位以在點火前使燃燒器與燃料適當分離。導引器通 常定位於就鄰相應列430(a)-(f)中之第一火炬燃燒器422。 同樣,一系列導引器462(a)-(e)與第二級供應管446流體連 通且桃鄰於相應列432(a)-(e)中之第一火炬燃燒器422定 - 位。 P 圍攔424包圍火炬燃燒器422且包括複數個柱470及連接 於該等柱之間的栅攔部分472。該圍攔或柵欄之高度係介 於自約30英尺至約60英尺。圍攔424經設計使得可經由該 圍欄及自圍欄下方將空氣拖入地面式火炬中。 在發明性地面式火炬420之運作中,欲燃燒燃料經由主 吕440引導至分配歧管442。一閥控制系統(未顯示)用以將 該燃料分配至第一級燃料供應管444或第一級燃料供應管 444及第二級燃料供應管446。若將相對較少之燃料量引導 至分配歧管442,則閥系統將該燃料僅引導至第一級燃料 供應官444。若引導至分配歧管442之燃料氣體之體積相對 較大,則將該燃料引導至第一級燃料供應管444及第二級 燃料供應管446。亦可根據需要倂入額外之級組以循環進 或循環出。相依於燃料之體積,將燃料自燃料供應管444 及446之一者或兩者引導至相應之個別供應管45〇(a)_(f)及/ 或452(aHe)。燃料自個別供應管450(a)-(f)及/或452(a)_(e) 被引V至相應列430(a)-(f)及432(a)-(e)中之火炬燃燒器 422 〇 123315.doc -54- 200819678 根據需要,導引器460(a)_(f)及460(a)-(e)點燃自每一列 中之相應弟一燃燒器422釋放之燃料。來自每一列中第一 燃燒器422之點燃之燃料然後點燃自此鄰燃燒器釋放之燃 料,此相繼點燃自該列中下一燃燒器釋放之燃料且依此類 推’直至自a亥列中该等燃燒器之每一者釋放之燃料皆已點 燃。燃燒所需之空氣經由圍欄424之壁及/或在圍欄424壁 下方拖入。不必分別將空氣供應至燃燒器422或地面式火 炬。 〇 該發明性地面式火炬可用以燃燒自一相對小之燃料量 (例如3,000磅每小時或更少)至一極大之燃料氣體量(舉例 而吕相依於欲燃燒燃料之分子量、可用壓力、溫度及其他 因素為10,000至15,000磅每小時及更高)。即使以一極高之 流量速率(舉例而言1〇,〇〇〇磅每小時),由發明性地面式火 炬燃燒器形成之外層火焰仍可包含於一典型地面式火炬圍 欄中。由於該發明性火炬燃燒器之結構,可使用較小之埠 〇 及較高之壓力點燃一較高燃料體積,而不必明顯增加地面 式火炬所形成之外層火焰高度。另一選擇係,可減小該火 丈曰尚度,允許圍欄424之高度減小。該發明性燃燒器自燃 燒器下方唧送空氣,允許燃燒器靠近地面放置,此同樣導 致圍攔424之所需高度減小。由於較小數量之燃燒器及相 關組件’可需要較小之地面部分。 在多數情況下,可使用發明性火炬燃燒器422改進離開 也面式火炬以允许燃燒更多燃料,而不使外層火焰高度明 顯超過包圍該地面式火炬之圍欄高度。而且,由於燃燒器 123315.doc -55- 200819678 之結構,一既定火炬末梢之無煙率範圍可明顯變大。由於 實現通過量增加,因而每一個別集管可輸送更多氣體。此 可導致更少之耦合有更少控制結構(諸如氣體控制閱、關 斷閥、調整器及實體管道系統)之集管。具有較少集管之 增加之容量亦允許較小之圍攔434。 該發明性地面式火炬可用以燃燒各種類型之燃料氣體。 實例包括飽和及非飽和碳氫化合物,例如單獨地 &lt; 含有 氫、水蒸氣及/或諸如氮、一氧化碳、氬等惰性氣體之丙 烷及丙稀及其混合物。 以上發明性地面式火炬之描述意欲圖解說明該地面式火 炬及特定地圖解說明該發明性火炬燃燒器如何與其一起使 用。如熟習此項技術者所瞭解,地面式火炬設備可在其組 態方式、燃燒器數量及類型、集管、流系統、控制閥及相 關組件、包圍該設備之圍欄類型及高度方面及諸多其他方 面改變極大。該發明性地面式火炬囊括任一其中使用該發 明性火炬燃燒器之地面式火炬設備。 發明方法 根據該發明性方法,在該發明性火炬燃燒器3〇、13〇、 230或330之一者中燃燒燃料。參照圖24,燃料經由一燃料 喷射器(即主燃料出口 36、136、236或336)本體喷射進燃燒 區101且點燃以形成一外層火焰1〇〇並燃燒該燃料。以一種 將空氣夾帶進預混合區且在該預混合區内形成空氣及燃料 之混合物(較佳地係一大致同質混合物)之方式將欲燃燒燃 料之邛分引入該燃燒器包括預混合室(即預混合室32、 123315.doc -56- 200819678 132、232或332)之預混合區内。空氣及燃料之混合物然後 自該預混合室喷射進外層火焰之中央部分104。同樣,如 上文所述,夾帶進預混合區内且噴射進外層火焰中央部分 之空氣量範圍可自一富燃料但可燃之混合物至一含有超過 燃燒所需化學計算量之夾帶空氣之混合物。該噴射進外層 火焰中心之預混合燃料及空氣流起始一第二火焰區,形成 • 一環形外層火焰。總結果係整體外層火焰之更快且更均勻 之燃燒,藉此達成上文結合該發明性火炬燃燒器所述之優 0 勢。 - 如上文所述,夾γ進預混合區内且喷射進外層火焰中央 部分之空氣量較佳地係用以支援引入預混合區内之燃料燃 燒所需化學計算空氣量之至少約丨5〇/〇。在某些應用中,將 燃料及空氣之”富燃料”混合物(即具有少於用以支援引入預 混合區内之燃料燃燒所需化學計算空氣量之1 〇〇%之混合 物)喷射進外層火焰中央部分係合適。然而,在大多數應 〇 用中,期望將燃料及空氣之,,貧燃料,,之混合物(即具有多於 用以支援引入預混合區内之燃料燃燒所需化學計算空氣量 之100%之混合物)喷射進外層火焰中央部分。在大多數應 用中,夾帶進預混合區内且噴射進外層火焰中央部分之空 亂里之範圍係用以支援引入預混合區内之燃料燃燒所需化 學什异空氣量自約125%至約300%。 引入預混合區及預混合室(即預混合室32、132、232或 332)内之燃料量範圍係該火炬燃燒器欲燃燒燃料總量之自 約5%至約50%,較佳地自約1〇%至約3〇%,最佳地自約 123315.doc -57- 200819678 10%至約 25%。 為進一步闡釋本發明,給出以下實例。On the Coanda surface, the refueling inlet can be a circular hole (jet) or groove. In addition to the Coanda technology, the fuel can also be injected from a refueling inlet at a relatively high rate to quickly obtain a jettable into the outer fire 2 center: a mixture of fuel and air. The dimensions of the various components of the inventive flare burner, including the premixing chamber and the size of the fuel cartridge, can vary. In addition, a variety of configurations can be used in conjunction with the primary fuel outlet and the supplemental fuel inlet (for example, the size of the crucible, the spacing between the crucibles). The specific dimensions and 〇 configuration used will depend on the fuel type and molecular weight, temperature, calorific value and activity, operating parameters (for example, available pressure), and other factors. Although not required, a third inert 々IL may be injected into the premixing zone of the inventive flare burner (any of the embodiments of the flare burner) to &amp; strong two gas to the premixing zone Entrained inside. Examples of the third inert stream may include steam, air, and nitrogen. Steam is preferred. The figures illustrate circular and rectangular (polygonal) embodiments of the inventive flare burner. Each of the embodiments of the inventive flare burner can also be formed in other geometries. For example, in addition to circular and rectangular shapes, elliptical, triangular, square, pentagonal, octagonal, and other polygonal shapes may also be employed. These other geometric shapes may be advantageous in terms of cost or manufacturing. The preferred method is to form a thin excess air stream which may then be passed from the premixing chamber to the center of the body of the flame. However, a rich fuel stream still provides benefits over the previously only diffused burner type due to the enhanced mixing formed by the inventive burner. Inventive Ground Torch Referring now to Figure 29, the inventive ground fire 123315.doc-52-200819678 is schematically illustrated and designated by reference numeral 420. The ground torch 420 includes a plurality of flare burners 422, a fence 424 extending around the flare burners, and a fuel supply pipe 426 for providing fuel to the flare burners. ... The flare burner arrangements are presented in columns 430(4)-(1) and columns 432(4)(4). Columns 430(a)-(f) form a first stage 434 of flare burner 422, while columns 432(4).(4) form a second stage (four) of the flare burner. At least one of the torch burners 422 is one of those embodiments of the inventive "torch burner" described above. Preferably, each of the flare burners 42 2 in the second stage 436 of the flare burner 422 (# burners required to burn a relatively large amount of fuel) is the inventive inventive flare burner One of the embodiments. If desired, each of the flare burners 422 in the flare burner first stage 434 and the flare combustor second stage 436 is one of the embodiments of the inventive inventive flare burner described above. By. Fuel supply tube 426 includes a main tube 44 that terminates in a distribution manifold 442. A first stage supply pipe 444 and a second stage supply line 4 are privately attached and in fluid communication with the distribution manifold 442. The individual first stage supply pipes 45A(a)-(f) extend from the first stage fuel supply pipe 444 to the corresponding burner train 43A (outer (1). Similarly, the individual second stage supply pipes 452(aKe) are from the The secondary fuel supply line 446 extends to a respective combustor train 432(a)-(e). For example, the first end 382 of the main branch 38 of the fuel supply conduit 338 of the inventive flare combustor 330 is attached To individual supply pipes 45 〇 (hook _ (£) or 452 (a) _ (one of the uniforms. If another type of flare burner is used in the ground type torch 420, the fuel of the burner is used as needed The supply conduit is attached to one of the individual supply tubes 123315.doc -53 - 200819678 450(a)-(f) or 452(a)-(e). A series of introducers 460(a)-(f) In fluid communication with the first stage supply line 444 and clamped to properly separate the burner from the fuel prior to ignition. The introducer is typically positioned adjacent to the first flare in adjacent columns 430(a)-(f) Similarly, a series of introducers 462(a)-(e) are in fluid communication with the second stage supply tube 446 and are adjacent to the first flare burner 422 of the respective column 432(a)-(e). - Bit P 424 surrounded by torch burning The 422 includes a plurality of columns 470 and a barrier portion 472 coupled between the columns. The height of the fence or fence is between about 30 feet and about 60 feet. The perimeter 424 is designed to be The air is dragged into the ground flare under the fence and from the fence. In the operation of the inventive ground flare 420, the fuel to be burned is directed to the distribution manifold 442 via the main 440. A valve control system (not shown) is used to The fuel is distributed to the first stage fuel supply pipe 444 or the first stage fuel supply pipe 444 and the second stage fuel supply pipe 446. If a relatively small amount of fuel is directed to the distribution manifold 442, the valve system only uses the fuel The fuel is directed to the first stage fuel supply officer 444. If the volume of fuel gas directed to the distribution manifold 442 is relatively large, the fuel is directed to the first stage fuel supply line 444 and the second stage fuel supply line 446. Additional stages are inserted as needed to cycle in or out. Depending on the volume of fuel, fuel is directed from one or both of fuel supply pipes 444 and 446 to respective individual supply pipes 45(a)_( f) and / or 452 (aHe). Fuel from Individual supply tubes 450(a)-(f) and/or 452(a)-(e) are referenced V to the flare burners in respective columns 430(a)-(f) and 432(a)-(e) 422 〇123315.doc -54- 200819678 The introducers 460(a)-(f) and 460(a)-(e) ignite the fuel released from the respective one-burner 422 in each column, as needed. The ignited fuel from the first combustor 422 in each column then ignites the fuel released from the adjacent combustor, which successively ignites the fuel released from the next combustor in the column and so on until until The fuel released by each of the burners is ignited. The air required for combustion is drawn through the wall of the fence 424 and/or under the wall of the fence 424. It is not necessary to separately supply air to the burner 422 or the ground type torch. The inventive ground-type torch can be used to burn a relatively small amount of fuel (eg, 3,000 pounds per hour or less) to a maximum amount of fuel gas (for example, depending on the molecular weight, available pressure, temperature of the fuel to be burned) And other factors are 10,000 to 15,000 pounds per hour and higher). Even at a very high flow rate (for example, 1 〇, 〇〇〇 pounds per hour), the outer layer of flame formed by the inventive ground-type flare burner can still be included in a typical ground-type flare fence. Due to the structure of the inventive flare burner, a higher fuel volume can be ignited using a smaller crucible and a higher pressure without significantly increasing the flame height of the outer layer formed by the ground flare. Alternatively, the fire can be reduced to allow the height of the fence 424 to decrease. The inventive burner delivers air beneath the burner, allowing the burner to be placed close to the ground, which also results in a reduction in the desired height of the enclosure 424. Since a smaller number of burners and associated components&apos; may require a smaller ground portion. In most cases, the inventive flare burner 422 can be used to modify the exiting flare to allow more fuel to be burned without the outer flame height significantly exceeding the fence height surrounding the ground flare. Moreover, due to the structure of the burner 123315.doc -55- 200819678, the range of smokelessness of a given torch tip can be significantly increased. Each individual header can deliver more gas due to the increased throughput. This can result in fewer headers with fewer control structures, such as gas control readouts, shutoff valves, regulators, and physical piping systems. The increased capacity with fewer headers also allows for smaller enclosures 434. The inventive ground torch can be used to burn various types of fuel gases. Examples include saturated and unsaturated hydrocarbons, such as propane and propylene, respectively, containing hydrogen, water vapor, and/or an inert gas such as nitrogen, carbon monoxide, or argon, and mixtures thereof. The above description of the inventive ground torch is intended to illustrate the ground torch and a particular map illustrating how the inventive flare burner can be used with it. As will be appreciated by those skilled in the art, ground-type flare devices can be configured in a manner, number and type of burners, manifolds, flow systems, control valves and associated components, fence types and heights surrounding the equipment, and many others. The aspect has changed a lot. The inventive floor flare includes any of the ground type torch devices in which the inventive flare burner is used. Method of Invention According to the inventive method, fuel is burned in one of the inventive flare burners 3〇, 13〇, 230 or 330. Referring to Figure 24, fuel is injected into the combustion zone 101 via a fuel injector (i.e., main fuel outlet 36, 136, 236 or 336) and ignited to form an outer flame and burn the fuel. Introducing a fraction of the fuel to be combusted into the combustor including the premixing chamber in a manner that entrains air into the premixing zone and forms a mixture of air and fuel (preferably a substantially homogeneous mixture) in the premixing zone ( That is, the premixing zone of the premixing chamber 32, 123315.doc-56-200819678 132, 232 or 332). A mixture of air and fuel is then injected from the premixing chamber into the central portion 104 of the outer flame. Similarly, as described above, the amount of air entrained into the premixing zone and injected into the central portion of the outer flame can range from a fuel-rich but combustible mixture to a mixture of entrained air containing more than the stoichiometric amount required for combustion. The premixed fuel and air stream injected into the outer flame center initiates a second flame zone to form an annular outer flame. The overall result is a faster and more uniform combustion of the overall outer flame, thereby achieving the advantages described above in connection with the inventive flare burner. - as described above, the amount of air that is clamped into the premixing zone and injected into the central portion of the outer flame is preferably used to support at least about 5 化学 of the stoichiometric air required to introduce fuel into the premixing zone. /〇. In some applications, a "rich fuel" mixture of fuel and air (ie, a mixture having less than 1% of the stoichiometric air required to support combustion of the fuel introduced into the premixing zone) is injected into the outer flame. The central part is suitable. However, in most applications, it is desirable to have a mixture of fuel and air, lean fuel, (ie having more than 100% of the stoichiometric air required to support the combustion of fuel introduced into the premix zone). The mixture) is sprayed into the central portion of the outer flame. In most applications, the range of air entrained into the premixing zone and injected into the central portion of the outer flame is used to support the amount of chemically different air required to fuel the fuel introduced into the premixing zone from about 125% to about 300%. The amount of fuel introduced into the premixing zone and the premixing zone (ie, the premixing chambers 32, 132, 232 or 332) is from about 5% to about 50% of the total amount of fuel to be combusted by the flare burner, preferably from From about 1% to about 3%, optimally from about 123315.doc -57 to 200819678 10% to about 25%. To further illustrate the invention, the following examples are given.

實例I 將該發明性火炬燃燒器之第一實施例即火炬燃燒器3〇與 先丽技術之高容量擴散型地面式火炬燃燒器即圖1及圖2所 圖解說明之燃燒H進行比較。測試兩個發明性火炬燃燒 器,一個長約30英,才,而另一個長約16英忖。對該發明性 火炬燃燒為進仃定埠,以匹配先前技術火炬燃燒器中所包 含的3平方英吋流體區域。 首先單獨測試該等發明性火炬燃燒器。使用丙烷及丙稀 來執行該等測試。將約2〇%之燃料喷射進該等發明性火炬 燃燒器之每一者之預混合室内。然後圍繞自預混合室釋放 之空氣/燃料混合物周邊喷射剩餘燃料。經確定,對於兩 種燃料類型,該等發明性火炬燃燒器之每一者皆能夠支援 一足量燃料㈣時形成—無煙火焰。吾人發現每一燃燒器 之外層火焰皆極其敎,具有顯著之調節&amp;,且在所燃燒 之熱力散發範圍中亦極其均勻。所觀察到的每_燃燒器之 外層火焰皆長度短且具有一小直徑。 /、、:後將具有約30英时長度之發明性火炬燃燒器與先前技 術之燃燒器進行比較。並㈣試該兩似炬㈣器。將該 等Ά器附虞至相同之集管以確保向每一燃燒器提供相同 量之燃料。 -觀察’在所觀測的大多數測試點處,該發明性火炬燃 燒器皆形成一較短外層火焰。在調節期間’該發明性火炬 123315.doc -58- 200819678 燃燒器在較低壓力下保持點燃,顯示略有擴大之可操作性 範圍。在最大畴流速下,與先前技術之高容量擴散型地 面式火炬燃燒器相&amp; ’該發明性火炬燃燒器所產生之外層 火焰總長度較短。在該情況下’先前技術之火炬燃燒器所 形成外層火焰之豎向橫截面(寬度)大於該發明性火炬燃燒 器所形成外層火焰。在壓力日月顯降至wz平方英叶之前, 不會觀察到該發明性火炬燃燒器之爐襯燒損。由該發明性 火炬燃燒器產生之外層火焰之輻射看似等於或略小於由先 前技術之火炬燃燒器所形成外層火焰產生之輻&amp;。在調節 條件期間,先前技術之火炬職^以與該發明性火炬燃燒 器近似相同之速率冒煙。通常可在相同之流速及塵力下從 兩個燃燒器發現拉煙。然而,在最初測試期間,在較低壓 力下&quot;亥發明性火炬燃燒器看似較擴散型燃燒器末梢保持 -較為稀薄之煙跡。當壓力減小時,先前技術燃燒器過渡 至較為濃重之煙產物。EXAMPLE I The first embodiment of the inventive flare burner, namely the flare burner 3, was compared to the high-capacity diffused ground flare burner of the prior art, i.e., the combustion H illustrated in Figures 1 and 2. Two inventive flare burners were tested, one about 30 inches long and the other about 16 inches long. The inventive flare is entangled to match the 3 square inch fluid zone contained in prior art flare burners. These inventive flare burners were first tested separately. These tests were performed using propane and propylene. About 2% of the fuel is injected into the premixing chamber of each of the inventive flare burners. The remaining fuel is then injected around the periphery of the air/fuel mixture released from the premixing chamber. It has been determined that for each of the two fuel types, each of the inventive flare burners is capable of supporting a full amount of fuel (four) to form a smokeless flame. We have found that the flames in the outer layer of each burner are extremely flawed, with significant adjustment &amp; and are extremely uniform in the range of heat dissipation from the combustion. The outer flame of each of the burners observed was short and had a small diameter. /, ,: The inventive flare burner having a length of about 30 inches is compared to the prior art burner. And (4) try the two-like torch (four) device. These dampers are attached to the same header to ensure that the same amount of fuel is supplied to each burner. - Observations] At most of the test points observed, the inventive flare burners formed a short outer flame. During the conditioning period, the inventive torch 123315.doc -58- 200819678 The burner remains ignited at a lower pressure, showing a slightly expanded range of operability. At the maximum domain flow rate, the superior flame length of the outer layer produced by the inventive high-speed diffused ground-type flare burner &amp; In this case, the vertical cross-section (width) of the outer flame formed by the prior art flare burner is greater than the outer flame formed by the inventive flare burner. The furnace lining burn of the inventive flare burner was not observed until the pressure diurnal was reduced to wz square English leaves. The radiation from the outer layer of flame produced by the inventive flare burner appears to be equal to or slightly less than the spoke &amp; produced by the outer flame formed by the prior art flare burner. During the conditioning conditions, prior art torches smoke at approximately the same rate as the inventive flare burner. Smoke can usually be found from both burners at the same flow rate and dust. However, during the initial test, at the lower pressure, the invented flare burner appeared to be a thinner smoke trail than the end of the diffuser burner. When the pressure is reduced, the prior art burner transitions to a relatively heavy smoke product.

實例II 亦測試該發明性火炬燃燒器之第三實施例,即火炬燃燒 器230,且將其與上文所述之先前技術火炬燃燒器進行比 較。該發明性火炬燃燒器實施例之效能看似至少等於先前 技術燃燒器。然而,該發明性火炬燃燒器在低壓下較實例 I中所述發明性火炬燃燒器之第一實施例產生更多煙。此 無煙運作範圍與先前技術之火炬燃燒器之無煙效能相當。 在該測試中,該發明性火炬燃燒器之預混合室之角形成 複雜之流體型樣,其在視覺上看似在某種程度上抑制該預 123315.doc -59- 200819678 混合室内之混合狀態。作為一結果,觀察到在預混合釋放 區域之角處形成偽分層富燃料區,導致在該火焰區表面中 觀不到可見煙層。另-方面’所測試之發明性火炬燃燒器 能夠處理可由先前技術之火炬燃燒器處理之燃料量之約三 倍。 用於組υ實例中所述之發明性火炬燃燒器之測試單元 之焊接有缺點且最終失敗(僅在執行可評估測試後)。僅將Example II A third embodiment of the inventive flare burner, namely the flare burner 230, was also tested and compared to the prior art flare burner described above. The performance of the inventive flare burner embodiment appears to be at least equal to the prior art burner. However, the inventive flare burner produced more smoke at a lower pressure than the first embodiment of the inventive flare burner of Example 1. This smoke-free operating range is comparable to the smoke-free performance of prior art flare burners. In this test, the corners of the premixing chamber of the inventive flare burner form a complex fluid pattern that visually appears to somewhat inhibit the mixing of the pre-123315.doc-59-200819678 mixing chamber. . As a result, it was observed that a pseudo-stratified fuel-rich zone was formed at the corner of the premixed release zone, resulting in no visible smoke layer being visible in the surface of the flame zone. The inventive flare burner tested in another aspect is capable of processing approximately three times the amount of fuel that can be processed by prior art flare burners. The welding of the test unit for the inventive flare burner described in the group υ example has drawbacks and ultimately fails (only after performing the evaluable test). Only will

有問題之焊接用於測試單元(其由碳鋼製成),焊接失敗並 非係由於設計問題,且與實際燃燒器之運作或效能無關。 無响如何’該等測試顯示火炬燃燒器23〇極具以較少煙塵 問題處理大燃料流之能力。 因此,本發明極適於達成該等目標並獲得所提及及彼等 其中固有之結果及優點。雖然彼等熟f此項技術者可做出 諸多改變,但該等改變皆囊括於隨附中請專利範圍所界定 之本發明之精神内。 【圖式簡單說明】 圖1係先前技術之地面式火炬燃燒器之前視圖。 圖2係圖1所示火炬燃燒器之俯視圖。 圖3係由圖1及圖2所示先前技術火矩燃燒器形成之外層 火焰之概要描繪。 第一實施例之透 圖4係該發明性地面式火炬燃燒 視圖。 圖5係沿圖4之線5-5截取之截面圖。 圖6係圖4及圖5所示燃燒器之俯視圖 123315.doc -60· 200819678 圖7係沿圖6之線7-7剖切且顯示可選豎管或頂端延伸物 之剖視圖。 圖8圖解說明一環形燃料噴射器本體之一替代實施例, 其可結合該發明性火炬燃燒器之第一實施例、第二實施例 及第四實施例使用。 圖9係該發明性火炬燃燒器之一第二實施例之透視圖。 圖10係沿圖11之線1 〇- 1 〇剖切之剖視圖。 圖10 A圖解說明一與該第二實施例結合使用之管狀分配 歧管之一替代實施例。 圖11係圖9及圖10所示火炬燃燒器之俯視圖。 圖12係沿圖1〇之線12-12剖切之剖視圖。 圖13係該發明性火炬燃燒器之一第三實施例之透視圖。 圖14係沿圖13之線14-14剖切之剖視圖。 圖1 5係圖13及14所示火炬燃燒器之俯視圖。 圖16係沿圖13之線16-16剖切之剖視圖且顯示可選暨管 或頂端延伸物。 圖17係沿圖1 5之線1 7-1 7剖切之剖視圖。 圖17A圖解說明與該第三實施例結合使用之管狀分配歧 管之一替代實施例。 圖18係沿圖14之線18-18剖切之剖視圖。 圖19係該發明性火炬燃燒器之一第四實施例之透視圖。 圖20係沿圖19之線20-20剖切之剖視圖。 圖21係沿圖22之線21-21剖切且顯示該燃燒器之一可選 組件之剖視圖。 123315.doc -61 - 200819678 圖22係圖19-21所示燃燒器之俯視圖。 圖23圖解說明圖19-22所示燃燒器之補充燃料入口之一 替代實施例。 圖24係該發明性火炬燃燒器之每一實施例所形成外層火 焰之一概要繪示。 圖25係一圖解說明可對該發明性火炬燃燒器之每一實施 例進行之一修改之透視圖。 圖26係沿圖25之線26·26剖切之剖視圖。 圖27係圖25及26所示燃燒器之俯視圖。 圖28係由按照圖25_27所圖解說明之方式修改之發明性 火炬燃燒器之每一實施例形成之外層火焰之概要描繪。 圖29係該發明性地面式火炬之一實施例之示意性圖解説 明。 【主要元件符號說明】 10 燃燒器 12 燃燒器鑄件 14 燃料升降器 15 中央部分 16 燃料出口臂 18 燃料埠 20 外層火焰 22 燃燒區 23 長度 24 中心燃料核 123315.doc • 62 - 200819678 26 火焰之外部部分 30 火炬燃燒器 32 預混合室 34 補充燃料入口 36 主燃料出口 38 燃料供給管道 40 導引器 42 頂部 44 底部 46 側壁 48 空氣入口 50 空氣/燃料出口 52 預混合室之下部部分 54 中心燃料喷射器 58 燃料埠 60 環形燃料膜 62 頂部 64 底部 66 外側壁 67 内側壁 68 環形密封 69 空氣/燃料出口之周邊 70 燃料喷射器本體 74 燃料埠 123315.doc •63 - 200819678 76, 196, 376 煤氣豎管或頂端延伸物 80 主分支 82 第一端 84 第二端 86 法蘭 88 入口 90 補充分支 92 第一端 94 第二端 96 聯結器 130 燃燒器 131(a) 預混合空間 131(b) 預混合室内部 131(c) 預混合空間 132 預混合室 134 補充燃料入口 136 主燃料出口 138 燃料供給管道 142 頂部 144 底部 146 側壁 148 空氣入口 150 空氣/燃料出口 154 内表面 123315.doc -64- 200819678 156 外表面 158 下部部分 160 環形Coanda表面 164 管狀分配歧管 166 燃料埠 170 燃料膜 * 172 頂部 174 底部 1 176 外側壁 177 内側壁 178 環形密封 180(a) 補充燃料供給管道 180(b) 補充燃料供給管道 180(c) 補充燃料供給管道 180(d) 補充燃料供給管道 ^ 182 o 第一端 184 第二端 186 空氣/燃料出口之周邊 188 燃料喷射器本體 192 擴散燃料埠 200 燃料供給管道之第一端 202 燃料供給管道之第二端 204 法蘭 206 入口 123315.doc -65- 200819678 230 火炬燃燒器 231(a) 預混合空間 231(b) 預混合室内部 231(c) 預混合空間 232 預混合室 234 補充燃料入口 236 主燃料出口 238 燃料供給管道 242 頂部 244 底部 246 側壁 246(a) 側面 246(b) 側面 246(c) 側面 246(d) 側面 248 空氣入口 250 空氣/燃料出口 254 内表面 256 外表面 258 下部部分 260 環形Coanda表面 264(a) 分配歧管 264(b) 分配歧管 266 燃料埠 123315.doc -66- 200819678 270 燃料膜 272 頂部 274 底部 276 外側壁 277 内側壁 ' 278 環形密封 ‘ 280(a) 補充燃料供給管道 280(b) Π 補充燃料供給管道 1 280(c) 補充燃料供給管道 280(d) 補充燃料供給管道 282 第一端 284 第二端 286 空氣/燃料出口之周邊 288 環形燃料喷射器本體 292 擴散燃料埠 滅 296 ί 煤氣豎管或頂端延伸物 300 第一端 302 第二端 304 法蘭 306 入口 330 火炬燃燒器 331 預混合區 331(a) 預混合空間 331(b) 預混合室内部 123315.doc -67- 200819678The problematic weld is used for the test unit (which is made of carbon steel) and the failure of the weld is not due to design issues and is independent of the operation or performance of the actual burner. How does it sound? These tests show that the Torch Burner 23 has the ability to handle large fuel flows with less smoke problems. Accordingly, the present invention is to be construed as being a Although many changes may be made by those skilled in the art, such modifications are intended to be included within the spirit of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front view of a prior art ground type flare burner. Figure 2 is a top plan view of the flare burner of Figure 1. Figure 3 is a schematic depiction of an outer layer flame formed by the prior art fire moment burners of Figures 1 and 2. Figure 4 of the first embodiment is a view of the inventive ground-type flare. Figure 5 is a cross-sectional view taken along line 5-5 of Figure 4. Figure 6 is a plan view of the burner of Figures 4 and 5, 123315.doc - 60. 200819678 Figure 7 is a cross-sectional view taken along line 7-7 of Figure 6 and showing an optional standpipe or tip extension. Figure 8 illustrates an alternate embodiment of an annular fuel injector body that can be used in conjunction with the first, second and fourth embodiments of the inventive flare burner. Figure 9 is a perspective view of a second embodiment of one of the inventive flare burners. Figure 10 is a cross-sectional view taken along line 1 〇-1 of Figure 11; Figure 10A illustrates an alternate embodiment of a tubular dispensing manifold for use with the second embodiment. Figure 11 is a plan view of the flare burner shown in Figures 9 and 10. Figure 12 is a cross-sectional view taken along line 12-12 of Figure 1 . Figure 13 is a perspective view of a third embodiment of the inventive flare burner. Figure 14 is a cross-sectional view taken along line 14-14 of Figure 13. Figure 15 is a top plan view of the flare burner shown in Figures 13 and 14. Figure 16 is a cross-sectional view taken along line 16-16 of Figure 13 and showing an optional GI tube or tip extension. Figure 17 is a cross-sectional view taken along line 1 7-1 7 of Figure 15. Figure 17A illustrates an alternate embodiment of a tubular distribution manifold for use with the third embodiment. Figure 18 is a cross-sectional view taken along line 18-18 of Figure 14. Figure 19 is a perspective view of a fourth embodiment of the inventive flare burner. Figure 20 is a cross-sectional view taken along line 20-20 of Figure 19. Figure 21 is a cross-sectional view taken along line 21-21 of Figure 22 and showing an optional component of the burner. 123315.doc -61 - 200819678 Figure 22 is a top plan view of the burner shown in Figures 19-21. Figure 23 illustrates an alternate embodiment of the supplemental fuel inlet of the burner of Figures 19-22. Figure 24 is a schematic illustration of one of the outer layers of flame formed in each of the embodiments of the inventive flare burner. Figure 25 is a perspective view illustrating one modification of each embodiment of the inventive flare burner. Figure 26 is a cross-sectional view taken along line 26·26 of Figure 25. Figure 27 is a plan view of the burner shown in Figures 25 and 26. Figure 28 is a schematic depiction of an outer layer flame formed by each embodiment of the inventive flare burner modified in the manner illustrated in Figures 25-27. Figure 29 is a schematic illustration of one embodiment of the inventive floor flare. [Main component symbol description] 10 Burner 12 Burner casting 14 Fuel lifter 15 Central part 16 Fuel outlet arm 18 Fuel 埠 20 Outer flame 22 Combustion zone 23 Length 24 Center fuel core 123315.doc • 62 - 200819678 26 Exterior of flame Portion 30 Torch Burner 32 Premixing Chamber 34 Supplemental Fuel Inlet 36 Main Fuel Outlet 38 Fuel Supply Duct 40 Introducer 42 Top 44 Bottom 46 Sidewall 48 Air Inlet 50 Air/Fuel Outlet 52 Premixing Chamber Lower Section 54 Central Fuel Injection 58 fuel 埠 60 annular fuel film 62 top 64 bottom 66 outer side wall 67 inner side wall 68 annular seal 69 air/fuel outlet periphery 70 fuel injector body 74 fuel 埠 123315.doc • 63 - 200819678 76, 196, 376 gas vertical Tube or Tip Extension 80 Main Branch 82 First End 84 Second End 86 Flange 88 Inlet 90 Supplementary Branch 92 First End 94 Second End 96 Coupling 130 Burner 131 (a) Premixed Space 131(b) Pre Mixing chamber 131(c) premixing space 132 premixing chamber 134 refueling 136 Main fuel outlet 138 Fuel supply line 142 Top 144 Bottom 146 Side wall 148 Air inlet 150 Air/fuel outlet 154 Inner surface 123315.doc -64- 200819678 156 Outer surface 158 Lower part 160 Ring Coanda surface 164 Tubular distribution manifold 166 Fuel 埠170 Fuel film* 172 Top 174 Bottom 1 176 Outer side wall 177 Inner side wall 178 Annular seal 180 (a) Supplemental fuel supply line 180 (b) Supplemental fuel supply line 180 (c) Supplemental fuel supply line 180 (d) Supplemental fuel supply line ^ 182 o first end 184 second end 186 air/fuel outlet perimeter 188 fuel injector body 192 diffusion fuel 埠 200 fuel supply conduit first end 202 fuel supply conduit second end 204 flange 206 inlet 123315.doc -65- 200819678 230 Torch Burner 231(a) Premixing Space 231(b) Premixing Chamber 231(c) Premixing Space 232 Premixing Chamber 234 Supplemental Fuel Inlet 236 Main Fuel Outlet 238 Fuel Supply Piping 242 Top 244 Bottom 246 Sidewall 246(a) Side 246(b) Side 246(c) Side 246(d) Side 248 Air Inlet 250 Air/Fuel Outlet 254 Inner Surface 256 Outer Surface 258 Lower Section 260 Annular Coanda Surface 264(a) Distribution Manifold 264(b) Distribution Manifold 266 Fuel 埠123315.doc -66- 200819678 270 Fuel Film 272 Top 274 bottom 276 outer side wall 277 inner side wall '278 annular seal '280(a) supplementary fuel supply line 280(b) 补充 supplementary fuel supply line 1 280(c) supplementary fuel supply line 280(d) supplementary fuel supply line 282 first End 284 second end 286 air/fuel outlet perimeter 288 annular fuel injector body 292 diffusion fuel quenching 296 ί gas riser or tip extension 300 first end 302 second end 304 flange 306 inlet 330 flare burner 331 Premixing zone 331(a) Premixing space 331(b) Premixing chamber interior 123315.doc -67- 200819678

Ο 331(c) 預混合空間 332 預混合室 334 補充燃料入口 336 主燃料出口 338 燃料供給管道 342 預混合室頂部 344 底部 346 側壁 347 内表面 348 空氣入口 349 外表面 350 空氣/燃料出口 352 燃燒器鑄件 353 圓頭 354 燃料出口臂 356 燃料埠 360 燃料膜 362 頂部 364 底部 366 外側壁 367 内側壁 368 空氣/燃料出口之周邊 370 燃料喷射器本體 374 埠 123315.doc -68 - 200819678331 331(c) premixing space 332 premixing chamber 334 refueling inlet 336 main fuel outlet 338 fuel supply conduit 342 premixing chamber top 344 bottom 346 side wall 347 inner surface 348 air inlet 349 outer surface 350 air/fuel outlet 352 burner Casting 353 Round head 354 Fuel outlet arm 356 Fuel 埠 360 Fuel film 362 Top 364 Bottom 366 Outer side wall 367 Inner side wall 368 Periphery of air/fuel outlet 370 Fuel injector body 374 埠123315.doc -68 - 200819678

380 主分支 382 第一端 384 第二端 386 法蘭 388 入口 390 補充分支 392 第一端 394 第二端 400 預混合室延伸圓筒 402 頂部分 404 底部分 406 中間部分 420 地面式火炬 422 火炬燃燒器 424 圍欄 426 燃料供應管 430 列 430(a)-(f) 列 432 列 432(a)-(e) 列 434 火炬燃燒器第一級 436 火炬燃燒器第二級 440 主管 442 分配歧管 123315.doc -69- 200819678 444 第一級供應管 446 第二級供應管 450(a)-(f) 第一級供應管 452(a)_(e) 第二級供應管 460(a)-(f) 導引器 462(a)-(e) 導引器 470 柱 472 桃搁部分 100 外層火焰 102 外層火焰之中央部分 103 氣穴 104(a) 可燃區 104(b) 可燃區 105 焰之外部部分 106 長度 123315.doc 70-380 main branch 382 first end 384 second end 386 flange 388 inlet 390 supplementary branch 392 first end 394 second end 400 premixing chamber extension cylinder 402 top portion 404 bottom portion 406 middle portion 420 ground torch 422 torch burning 424 Fence 426 Fuel Supply Pipe 430 Columns 430(a)-(f) Column 432 Columns 432(a)-(e) Column 434 Torch Burner First Stage 436 Torch Burner Second Stage 440 Supervisor 442 Distribution Manifold 123315 .doc -69- 200819678 444 First-stage supply pipe 446 Second-stage supply pipe 450(a)-(f) First-stage supply pipe 452(a)_(e) Second-stage supply pipe 460(a)-( f) Introducer 462(a)-(e) Introducer 470 Column 472 Peach Restoring 100 Outer Flame 102 Outer Flame Central Part 103 Cavity 104(a) Combustible Zone 104(b) Combustible Zone 105 Flame Exterior Part 106 Length 123315.doc 70-

Claims (1)

200819678 十、申請專利範圍: 1. 一種火炬燃燒器,其包括: 一包括一預混合室之預混合區,該預混合室具有一頂 部、一底部、一將該頂部連接至該底部之側壁、一設置 於該底部及該側壁之一者中之空氣入口、及一設置於該 頂部中之空氣/燃料出口; .一用於將燃料喷射至該預混合區内之補充燃料入口, 該補充燃料入口定位於一相對於該預混合區之位置,使 Γ&quot; 得自該補充燃料入口向該預混合區内喷射燃料將空氣夾 帶進該預混合區内,藉此在該預混合區内形成一燃料與 空氣之混合物且使該混合物離開該預混合室之該空氣/燃 料出口;及 一主燃料出口,其定位於一相對於該預混合室之該頂 部之位置,使得可自該預混合室之該空氣/燃料出口周邊 周圍之該主燃料出口喷射燃料。 2. 如請求項1之火炬燃燒器,其中該空氣入口設置於該預 混合室之該底部中。 3. 如請求項1之火炬燃燒器,其中該主燃料出口自該預混 •合室向外間隔開以在兩者之間提供一空氣夾帶空間。 4. 如請求項1之火炬燃燒器,其進一步包括一設置於該預 混合室外周邊周圍之燃料膜,該膜包括一燃料入口且與 該主燃料出口流體連通。 5. 如請求項4之火炬燃燒器,其中該燃料膜及該主燃料出 口自該預混合室向外間隔開以在其之間提供一空氣夾帶 123315.doc 200819678 空間。 6·如請求項4之火炬燃燒器,其中該膜與該補充機料入口 流體連通。 ^ Π200819678 X. Patent Application Range: 1. A flare burner comprising: a premixing zone comprising a premixing chamber having a top, a bottom, a side connecting the top to the bottom side, An air inlet disposed in one of the bottom and the side wall, and an air/fuel outlet disposed in the top portion; a supplemental fuel inlet for injecting fuel into the premixing zone, the supplemental fuel The inlet is positioned at a position relative to the premixing zone such that Γ&quot; from the supplemental fuel inlet injects fuel into the premixing zone to entrain air into the premixing zone thereby forming a zone in the premixing zone a mixture of fuel and air leaving the mixture exiting the air/fuel outlet of the premixing chamber; and a main fuel outlet positioned at a position relative to the top of the premixing chamber such that the premixing chamber is available The main fuel outlet around the periphery of the air/fuel outlet injects fuel. 2. The flare burner of claim 1, wherein the air inlet is disposed in the bottom of the premixing chamber. 3. The flare burner of claim 1 wherein the primary fuel outlet is spaced outwardly from the premix chamber to provide an air entrainment space therebetween. 4. The flare combustor of claim 1 further comprising a fuel film disposed about the periphery of the premixing chamber, the membrane including a fuel inlet and in fluid communication with the main fuel outlet. 5. The flare combustor of claim 4, wherein the fuel film and the main fuel outlet are spaced outwardly from the premixing chamber to provide an air entrainment 123315.doc 200819678 space therebetween. 6. The flare burner of claim 4, wherein the membrane is in fluid communication with the supplemental material inlet. ^ Π 如請求項丨之火炬燃燒器.,其進一步包括一與該補充燃 料入口及g主燃料出口流體連通之燃料供給管道,、* 於將燃料引導至該補充燃料入口及該主燃料出口。、 如請求項1之火炬燃燒器,其中該主燃料出口包括複數 個設置於該預混合室之該空氣/燃料出口周邊周圍之燃 埠。 …、崎 9·如請求項4之火炬燃燒器,其中包括該空氣/燃料出口之 該預混合室及該燃料膜和該主燃料出口各自具有—圓形 橫截面,使得燃料可自該空氣/燃料出口周邊周圍之該^ 燃料出口環形喷射。 ^ 10_如請求項!之火炬燃燒器,其中該預混合室之該側壁包 括一内表面及一外表面,該内表面具有一係一 c〇时如表 面之部分。 Π.如請求項10之火炬燃燒器,其中該補充燃料入口定位於 -相對於該預混合室之位置’使得燃料可自該補充燃料 入口噴射至該Coanda表面上。 12.如請求項4之火炬燃燒器,其中該預混合 括-内表面及-外表面,該内表面具有—係一 c〇anda: 面之部分。 1 3 ·如請求項丨2之火炬燃燒器,其中: 該空氣入口設置於該預混合室之該底部中,且包括該 123315.doc 200819678 空氣入口之該預混合室及該膜和該補充燃料入口各自具 有一圓形橫截面;及 该Coanda表面在該預混合室之該侧壁之該内表面周圍 環狀延伸。 14·如請求項13之火炬燃燒器,其中該補充燃料入口定位於 一相對於該預混合室之位置,使得燃料可自該補充燃料 入口以環狀形式喷射至該Coanda表面上。 15·如睛求項10之火炬燃燒器,其中該内表面包括兩個均為 Coanda表面之對置部分,且該補充燃料入口處於一相對 於該預混合室之位置,使得燃料可自該補充燃料入口噴 射至该專Coanda表面之每一者上。 16·如請求項1之火炬燃燒器,其中該預混合室具有一介於 自約0.25:1至約4:1範圍内之長度對内部液壓直徑比例。 1 7·如叫求項1之火炬燃燒器,其中該預混合室具有一約i:又 或更少之長度對内部液壓直徑比例。 18· —種火炬燃燒器,其包括: 一包括一預混合室之預混合區,該預混合室具有一頂 部、一底部、一將該頂部連接至該底部之侧壁、一設置 於名底邛中之空氣入口、一設置於該頂部中之空氣/燃料 出口及;|於自約〇·25:1至約4:1範圍内之長度對内部 液壓直徑比例; 一用於將燃料喑j|+ $ —_ I射至该預混合區内之補充燃料入口, 該補充燃料入口定朽认 疋位於一相對於該預混合區之位置,使 得自該補充燃料人η A 4 八口向該預混合區内喷射燃料將空氣夾 123315.doc 200819678 帶進該預混合區内,藉此在該預混合區内形成一燃料氣 體與空氣之混合物且使該混合物離開該預混合室之該空 氣/燃料出口; 一主燃料出口定位於一相對於該預混合室之該頂部之 位置,使得可自該預混合室之該空氣/燃料出口周邊周圍 之該主燃料出口喷射燃料;及 一與該補充燃料入口及該主燃料出口流體連通之燃料The fire burner of claim 1 further comprising a fuel supply conduit in fluid communication with the supplemental fuel inlet and the g main fuel outlet, for directing fuel to the supplemental fuel inlet and the main fuel outlet. The flare burner of claim 1, wherein the primary fuel outlet comprises a plurality of burners disposed about the periphery of the air/fuel outlet of the premixing chamber. The pyrotechnic burner of claim 4, wherein the premixing chamber including the air/fuel outlet and the fuel film and the main fuel outlet each have a circular cross section such that fuel can be from the air/ The fuel outlet is annularly sprayed around the periphery of the fuel outlet. ^10_ The torch burner of claim 1, wherein the side wall of the premixing chamber comprises an inner surface and an outer surface, the inner surface having a portion such as a surface. The flare burner of claim 10, wherein the supplemental fuel inlet is positioned at - relative to the position of the premixing chamber such that fuel can be injected from the supplemental fuel inlet onto the Coanda surface. 12. The flare burner of claim 4, wherein the pre-mixing includes an inner surface and an outer surface, the inner surface having a portion that is a c〇anda: face. 13. The flare burner of claim 2, wherein: the air inlet is disposed in the bottom of the premixing chamber and includes the premixing chamber of the 123315.doc 200819678 air inlet and the membrane and the supplemental fuel The inlets each have a circular cross section; and the Coanda surface extends annularly around the inner surface of the side wall of the premixing chamber. 14. The flare burner of claim 13 wherein the supplemental fuel inlet is positioned relative to the premixing chamber such that fuel can be injected from the supplemental fuel inlet into the Coanda surface in an annular form. 15. The flare burner of claim 10, wherein the inner surface comprises two opposing portions of the Coanda surface, and the supplemental fuel inlet is in a position relative to the premixing chamber such that fuel can be replenished therefrom A fuel inlet is sprayed onto each of the dedicated Coanda surfaces. 16. The flare burner of claim 1 wherein the premixing chamber has a length to internal hydraulic diameter ratio ranging from about 0.25:1 to about 4:1. The fire burner of claim 1, wherein the premixing chamber has a ratio of length to internal hydraulic diameter of about i: or less. 18. A flare burner comprising: a premixing zone comprising a premixing chamber having a top, a bottom, a side connecting the top to the bottom, and a bottom The air inlet in the crucible, an air/fuel outlet disposed in the top, and the ratio of the length to the internal hydraulic diameter in the range from about 25·25:1 to about 4:1; |+ $ —_ I is directed to the supplemental fuel inlet in the premixing zone, the supplemental fuel inlet is located at a position relative to the premixing zone such that the refueling person η A 4 Injecting fuel into the premixing zone brings air clips 123315.doc 200819678 into the premixing zone, thereby forming a mixture of fuel gas and air in the premixing zone and leaving the mixture out of the premixing chamber. a fuel outlet; a primary fuel outlet positioned at a position relative to the top of the premixing chamber such that fuel can be injected from the primary fuel outlet around the periphery of the air/fuel outlet of the premixing chamber; and The fuel feed inlet and said main fuel outlet in fluid communication with the 供給管道,以用於將燃料引導至該補充燃料入口及該主 燃料出口。 19.如請求項18之火炬燃燒器,其中包括該空氣入口及該空 軋/燃料出口之該預混合室及該主燃料出口皆具有圓形橫 截面。A supply conduit is provided for directing fuel to the supplemental fuel inlet and the primary fuel outlet. 19. The flare burner of claim 18, wherein the premixing chamber including the air inlet and the air/fuel outlet and the main fuel outlet each have a circular cross section. 20. 21. 如請求項1 8之火炬燃燒器, 合室向外間隔開以在兩者之 如請求項19之火炬燃燒器, 混合室外周邊周圍之環形燃 流體連通且具有一頂部、一 底部之侧壁。 其中該主燃料出口自該預混 間提供一空氣夾帶空間。 其進一步包括一設置於該預 料膜’該膜與該主燃料出口 底部及一將該頂部連接至該 22. 23. 如請求項2 1之火炬燃燒 該燃料膜之該頂部,且 氣/燃料出口之周邊周圍 如請求項22之火炬燃燒 口自該預混合室向外間 空間。 器,其中該主燃料出口係附裝至 包括複數個在該預混合室之該空 延伸之燃料埠。 裔,其中該燃料膜及該主燃料出 隔開以在其之間提供一空氣夾帶 123315.doc 200819678 24·如請求項18之火炬燃燒器,其中該預混合室具有一約1:1 或更少之長度對内部液壓直徑比例。 25. 如請求項24之火炬燃燒器,其中該補充燃料入口在該預 混合室之該空氣入口下方間隔開。 26. 如請求項18之火炬燃燒器,其中該預混合室之該空氣/燃 • 料出口在該主燃料出口之上方間隔開。 • 27· 一種地面式火炬,其包括複數個火炬燃燒器,一在該等 ρ 火炬燃燒器周圍延伸之圍欄及一用於將燃料提供至該等 火炬燃燒器之燃料供應管,其中該等火炬燃燒器中之至 少一者包括: 一包括一預混合室之預混合區,該預混合室具有一頂 部、一底部、一將該頂部連接至該底部之侧壁、一設置 於泫底部及該側壁之一者中之空氣入口、及一設置於該 頂部中之空氣/燃料出口; 用於將燃料喷射至該預混合區内之補充燃料入口, 〇 該補充燃料入口定位於一相對於該預混合區之位置,使 知自忒補充燃料入口向該預混合區内喷射燃料將空氣夾 π進該預混合區内,藉此在該預混合區内形成一燃料與 空氣之混合物且使該混合物離開該預混合室之該空氣/燃 •料出口;及 ’ 一主燃料出口,其定位於一相對於該預混合室之該頂 部之位置’使得可自該預混合室之該空氣/燃料出口周邊 周圍之該主燃料出口噴射燃料。 28·如請求項27之地面式火炬 其中該空氣入口設置於該預 123315.doc 200819678 混合室之該底部中。 29·::求項27之地面式火矩,其中該主燃料出口自該預混 σ至向外間^開以在兩者之間提供_空氣夹帶空間。 3 0·如請求項27之地面式火炬,豆φ 其中该火炬燃燒器進一步包 括'没置於纟亥預混合室外同、息田ρει 卜周邊周圍之燃料膜,該膜包括 一燃料入口且與該主燃料出口流體連通。 31.如請求項30之地面式火炬,其中 、Υ这燃枓膜及該主燃料出 口自該預混合室向外間隔開以在盆 你,、之間提供一空氣夾帶 空間。 3 2 ·如請求項3 0之地面式火炬,盆中兮 /、Τ該膜與該補充燃料入口 流體連通。 33. 如請求項27之地面式火炬,其進一步包括一與該補充燃 料入口及該主燃料出口流體連通之燃料供給管道,以用 於將燃料引導至該補充燃料入口及該主燃料出口。 34. 如請求項27之地面式火炬,其中該主燃料出口包括複數 ϋ 個設置於該預混合室之該空氣/燃料出口周邊周圍之燃料 璋。 35·如請求項30之地面式火炬,其中包括該空氣/燃料出口之 該預混合室及該燃料膜和該主燃料出口各自 分目具有—圓形 橫截面,藉此燃料可自該空氣/燃料出口周邊周圍之該主 燃料出口環形喷射。 / 36·如請求項27之地面式火炬,其中該預混合室之該側辟包 括一内表面及一外表面,且該内表面具有一伤一 丨不 ~ Loanda 表面之部分。 123315.doc 200819678 37·如請求項36之地面式火炬,其中該補充燃料出口定位於 一相對於該預混合室之位置,使得燃料可自該補充燃料 出口噴射至該Coanda表面上。 3 8·如請求項30之地面式火炬,其中該預混合室之該側壁包 括一内表面及一外表面,該内表面具有一係— c〇anda表 面之部分。 39.如請求項38之地面式火炬,其中: 該空氣入口設置於該預混合室之該底部中,且該包括 該空氣入口之預混合室及該燃料膜及該補充燃料入口各 自具有一圓形橫截面;及 該Coanda表面在該預混合室之該侧壁之該内表面周圍 環狀延伸。 40.如請求項39之地面式火炬燃燒器,其中該補充燃料入口 定位於一相對於該預混合室之位置,使得燃料可自該補 充燃料入口以環狀形式噴射至該c〇anda表面上。 〇 41·如請求項36之地面式火炬燃燒器,其中該内表面包括兩 個均為C〇anda表面之對置部分,且該補充燃料入口位於 一相對於該預混合室之位置,使得燃料可自該補絲料 入口喷射至該等Coanda表面之每一者上。 其中將欲燃燒 一燃燒區中且 42. —種使用一火炬燃燒器燃燒燃料之方法, 之燃料經由該燃燒器之一燃料出口噴射至 其改良處 點燃該燃料以形成—外敎焰且燃燒該燃料 包括: 123315.doc 200819678 形成一空氣與燃料混合物之形式將該欲燃燒燃料之一部 分引入該燃燒器之一預混合區内;及 將空氣與燃料之該混合物自該預混合區喷射至該外層 火焰之一中央部分。 43·如請求項42之方法,其中夾帶進入該預混合區且喷射至 該外層火焰之該中央部分中之空氣量在用以支援引入該 預混合區内該燃料之燃燒所需化學計算空氣量之自約 125%至約300%之範圍内。 44·如請求項43之方法,其中夾帶進該預混合區且喷射至該 外層火焰之該中央部分中之空氣量在用以支援引入該預 混合區内該燃料之燃燒所需化學計算空氣量之自約150% 至約3 0 0 %之範圍内。 45.如請求項42之方法,其中引入該預混合區内之該燃料量 係在該火炬燃燒器欲燃燒燃料總量之自約5%至約50%之 範圍内。 46·如請求項45之方法,其中引入該預混合區内之該燃料量 係在該火炬燃燒器欲燃燒燃料總量之自約10%至約30% 之範圍内。 123315.doc20. 21. The flare combustor of claim 18, wherein the chambers are spaced outwardly to provide a flare burner fluid communication around the periphery of the mixing chamber and having a top and a bottom Side wall. Wherein the primary fuel outlet provides an air entrainment space from the premixing compartment. It further includes a first film disposed on the film and the bottom of the main fuel outlet and a top portion connecting the top portion to the 22. 23. The torch of claim 2 1 burns the top of the fuel film and the gas/fuel outlet Around the periphery, the torch burner of claim 22 is from the premixing chamber to the outer space. The primary fuel outlet is attached to a plurality of fuel cartridges extending in the pre-mixing chamber. And wherein the fuel film and the main fuel are separated to provide an air entrainment therebetween. 123315.doc 200819678. The fire burner of claim 18, wherein the premixing chamber has a 1:1 or greater Less length to internal hydraulic diameter ratio. 25. The flare burner of claim 24, wherein the supplemental fuel inlet is spaced below the air inlet of the premixing chamber. 26. The flare combustor of claim 18, wherein the air/fuel outlet of the premixing chamber is spaced above the main fuel outlet. • 27· A ground-type torch comprising a plurality of flare burners, a fence extending around the ρ flare burners and a fuel supply tube for supplying fuel to the flare burners, wherein the torches At least one of the burners includes: a premixing zone including a premixing chamber having a top portion, a bottom portion, a side wall connecting the top portion to the bottom portion, a bottom portion disposed on the bottom portion, and An air inlet in one of the side walls, and an air/fuel outlet disposed in the top; for injecting fuel into the supplemental fuel inlet in the premixing zone, the supplemental fuel inlet being positioned relative to the pre-fill The mixing zone is positioned such that the fuel is injected into the premixing zone to inject fuel into the premixing zone, thereby forming a mixture of fuel and air in the premixing zone and making the mixture Leaving the air/fuel supply outlet of the premixing chamber; and 'a main fuel outlet positioned at a position relative to the top of the premixing chamber' The main fuel outlet around the periphery of the air/fuel outlet of the mixing chamber injects fuel. 28. The floor-type torch of claim 27 wherein the air inlet is disposed in the bottom of the pre-123315.doc 200819678 mixing chamber. 29::: The ground fire moment of claim 27, wherein the main fuel outlet is from the premix σ to the outside to provide an air entrainment space therebetween. 3 0. The ground-type torch of claim 27, wherein the torch burner further comprises a fuel film that is not placed around the periphery of the pre-mixed outdoor, and the surrounding area of the field ρει, the film including a fuel inlet and The primary fuel outlet is in fluid communication. 31. The floor-type torch of claim 30, wherein the ram film and the main fuel outlet are spaced outwardly from the pre-mixing chamber to provide an air entrainment space between the basins. 3 2 • In the case of the ground-type torch of claim 30, the membrane is in fluid communication with the supplemental fuel inlet. 33. The floor flare of claim 27, further comprising a fuel supply conduit in fluid communication with the supplemental fuel inlet and the main fuel outlet for directing fuel to the supplemental fuel inlet and the main fuel outlet. 34. The floor-mounted flare of claim 27, wherein the primary fuel outlet comprises a plurality of fuel cartridges disposed about the periphery of the air/fuel outlet of the pre-mixing chamber. 35. The floor-type flare of claim 30, wherein the pre-mixing chamber including the air/fuel outlet and the fuel film and the main fuel outlet each have a circular cross-section whereby fuel can be from the air/ The main fuel outlet is annularly sprayed around the periphery of the fuel outlet. The ground-type torch of claim 27, wherein the side of the pre-mixing chamber comprises an inner surface and an outer surface, and the inner surface has a portion of the surface that is not damaged. The ground-type torch of claim 36, wherein the supplemental fuel outlet is positioned relative to the pre-mixing chamber such that fuel can be injected from the supplemental fuel outlet onto the Coanda surface. The ground fire torch of claim 30, wherein the side wall of the premixing chamber comprises an inner surface and an outer surface, the inner surface having a portion of the surface of the c〇anda. 39. The floor-type torch of claim 38, wherein: the air inlet is disposed in the bottom of the pre-mixing chamber, and the pre-mixing chamber including the air inlet and the fuel film and the supplemental fuel inlet each have a circle a cross-section; and the Coanda surface extends annularly around the inner surface of the sidewall of the pre-mixing chamber. 40. The floor flare burner of claim 39, wherein the supplemental fuel inlet is positioned at a position relative to the premixing chamber such that fuel can be injected from the supplemental fuel inlet in an annular form onto the c〇anda surface . The ground-type flare burner of claim 36, wherein the inner surface comprises two opposing portions of the C〇anda surface, and the supplemental fuel inlet is located at a position relative to the pre-mixing chamber such that the fuel It can be sprayed from the makeup inlet to each of the Coanda surfaces. Wherein a method of burning a fuel in a combustion zone and using a flare burner is injected, the fuel is injected through a fuel outlet of the burner to its modified portion to ignite the fuel to form an outer flame and burn the The fuel comprises: 123315.doc 200819678 forming an air and fuel mixture in the form of a portion of the fuel to be combusted into a premixing zone of the combustor; and spraying the mixture of air and fuel from the premixing zone to the outer layer One of the central parts of the flame. 43. The method of claim 42, wherein the amount of air entrained into the premixing zone and injected into the central portion of the outer flame is a stoichiometric amount of air required to support the introduction of the fuel into the premixing zone It ranges from about 125% to about 300%. 44. The method of claim 43, wherein the amount of air entrained into the premixing zone and injected into the central portion of the outer flame is a stoichiometric amount of air required to support combustion of the fuel introduced into the premixing zone It ranges from about 150% to about 30,000. 45. The method of claim 42, wherein the amount of fuel introduced into the premixing zone is in a range from about 5% to about 50% of the total amount of fuel to be combusted by the flare burner. 46. The method of claim 45, wherein the amount of fuel introduced into the premixing zone is in a range from about 10% to about 30% of the total amount of fuel to be combusted by the flare burner. 123315.doc
TW096129728A 2006-09-29 2007-08-10 Partial pre-mix flare burner and method TW200819678A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/540,362 US20080081304A1 (en) 2006-09-29 2006-09-29 Partial pre-mix flare burner and method

Publications (1)

Publication Number Publication Date
TW200819678A true TW200819678A (en) 2008-05-01

Family

ID=38835040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096129728A TW200819678A (en) 2006-09-29 2007-08-10 Partial pre-mix flare burner and method

Country Status (11)

Country Link
US (1) US20080081304A1 (en)
EP (1) EP1906089A2 (en)
JP (1) JP2008116195A (en)
KR (1) KR20080029901A (en)
CN (1) CN101153711A (en)
AR (1) AR062920A1 (en)
AU (1) AU2007204081A1 (en)
BR (1) BRPI0703675A (en)
CA (1) CA2600248A1 (en)
MX (1) MX2007011586A (en)
TW (1) TW200819678A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260211B2 (en) * 2007-10-01 2013-08-14 株式会社神戸製鋼所 Combustion device and ground flare equipped with the same
US7811081B2 (en) * 2008-04-18 2010-10-12 Moneyhun Equipment Sales & Service Off-gas flare
US20100291492A1 (en) * 2009-05-12 2010-11-18 John Zink Company, Llc Air flare apparatus and method
US8629313B2 (en) 2010-07-15 2014-01-14 John Zink Company, Llc Hybrid flare apparatus and method
CN102680454B (en) * 2011-09-20 2014-06-18 深圳市爱诺实业有限公司 Second-order differential flame emission spectrometer
CA2808707C (en) 2012-11-23 2014-02-11 Charles Tremblay Gas flare system and method of destroying a flammable gas in a waste gas stream
US20150104752A1 (en) * 2013-10-15 2015-04-16 Jlcc, Inc. Smokeless flare burner
US20150323177A1 (en) 2014-05-06 2015-11-12 Steffes Corporation Air-assist flare
US9416966B2 (en) 2014-07-25 2016-08-16 Flame Commander Corp. Venturi nozzle for a gas combustor
US9816705B2 (en) 2014-11-18 2017-11-14 Honeywell International Inc. Flare burner for a combustible gas
KR101724904B1 (en) * 2015-09-16 2017-04-07 현대자동차주식회사 Hydrogen feed and recirculation device for fuel cell system
CN105135451A (en) * 2015-10-13 2015-12-09 中国石油化工股份有限公司 Heat-removal-coil-pipe-bearing ground torch
CN107152679A (en) * 2016-03-03 2017-09-12 中国海洋石油总公司 Gas spray head and burner
US10598375B2 (en) 2016-11-01 2020-03-24 Honeywell International Inc. Asymmetrical and offset flare tip for flare burners
CN107013912B (en) * 2017-05-31 2023-09-19 深圳智慧能源技术有限公司 Self-cooling injection type combustion device
CN107300172A (en) * 2017-08-17 2017-10-27 上海钜荷热力技术有限公司 A kind of full premix surface combustion burner with multi-point spark and detecting system
CN109798518B (en) * 2019-03-29 2024-03-15 烟台龙源电力技术股份有限公司 Low nitrogen burner and combustion system
WO2021091812A1 (en) * 2019-11-04 2021-05-14 Thiessen Randall J Burner tube
US11781763B2 (en) * 2020-01-13 2023-10-10 Johnson Controls Tyco IP Holdings LLP Air flow amplifier for HVAC system
US11796172B2 (en) * 2020-01-30 2023-10-24 All American Services, LLC Portable flaring apparatus
CN112283701B (en) * 2020-12-29 2021-04-06 烟台工程职业技术学院(烟台市技师学院) Premixed mixed fuel burner
CN117387084B (en) * 2023-12-11 2024-03-08 西安紫光环保科技有限公司 Ground torch burner
CN117883929B (en) * 2024-03-15 2024-05-28 新疆天利石化股份有限公司 Device and process for treating and recovering tail gas discharged by carbon five processing industrial chain

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302596A (en) * 1966-01-21 1967-02-07 Little Inc A Combustion device
US3703349A (en) * 1971-05-17 1972-11-21 Combustion Unltd Inc Ground flare
US3749546A (en) * 1971-09-20 1973-07-31 Zink Co John Smokeless flare pit burner and method
GB1453440A (en) * 1973-01-18 1976-10-20 Flaregas Eng Ltd Apparatus for use in the disposal of waste gas
US3822983A (en) * 1973-04-23 1974-07-09 Proctor A & Montecatini Edison Ground flares
US3982881A (en) * 1975-02-03 1976-09-28 John Zink Company Invisible flare burner
US3954385A (en) * 1975-02-24 1976-05-04 John Zink Company Air powered smokeless flare
GB1551915A (en) * 1975-11-12 1979-09-05 British Petroleum Co Burner element
US3994663A (en) * 1975-11-28 1976-11-30 John Zink Company Method and apparatus to prevent air flow inversion in flare stacks
US4065248A (en) * 1976-01-08 1977-12-27 National Airoil Burner Co., Inc. Ground flare
US4039276A (en) * 1976-03-11 1977-08-02 John Zink Company Noise and smoke retardant flare
US4035171A (en) * 1976-04-26 1977-07-12 John Zink Company Gas liquid separator for flare systems
US4036580A (en) * 1976-06-04 1977-07-19 John Zink Company Turbine-driven air-powered flare
US4105394A (en) * 1976-10-18 1978-08-08 John Zink Company Dual pressure flare
US4140471A (en) * 1977-05-09 1979-02-20 National Airoil Burner Company, Inc. Ground flare stack
US4154570A (en) * 1977-09-12 1979-05-15 John Zink Company Gaseous molecular seal for flare stack
JPS5826497B2 (en) * 1977-10-04 1983-06-03 日立造船株式会社 Grand Flare waste gas introduction control device
GB2005821B (en) * 1977-10-07 1982-01-20 Hitachi Shipbuilding Eng Co Apparatus for disposing of waste gas by burning
US4227872A (en) * 1978-05-30 1980-10-14 John Zink Company Apparatus for supplying alternate gases to steam injection means on a flare stack
US4265611A (en) * 1979-03-15 1981-05-05 John Zink Company Control system for purge gas to flare
US4457696A (en) * 1980-09-24 1984-07-03 John Zink Company Large capacity air-powered smokeless flare
JPS6053810B2 (en) * 1981-01-10 1985-11-27 日揮株式会社 ground flare stack
US4493638A (en) * 1981-02-18 1985-01-15 The British Petroleum Company, P.L.C. Post-aerated burner for ground flare, and ground flare incorporating same
US4419071A (en) * 1981-08-03 1983-12-06 John Zink Company Portable high-flow rate flare for smokeless burning of viscous liquid fuels
US4824361A (en) * 1982-04-05 1989-04-25 Mcgill Incorporated Smoke suppressant apparatus for flare gas combustion
US4652232A (en) * 1983-05-16 1987-03-24 John Zink Co. Apparatus and method to add kinetic energy to a low pressure waste gas flare burner
US4637793A (en) * 1984-08-29 1987-01-20 John Zink Company Flare gas burner
US4565522A (en) * 1984-08-29 1986-01-21 John Zink Company Shielded flare gas burner
US4579521A (en) * 1984-08-29 1986-04-01 John Zink Company Flare gas burner
US4573906A (en) * 1984-08-29 1986-03-04 John Zink Company Shielded smoke suppressing flare gas burner
US4952137A (en) * 1986-09-08 1990-08-28 John Zink Company Flare gas burner
US5195884A (en) * 1992-03-27 1993-03-23 John Zink Company, A Division Of Koch Engineering Company, Inc. Low NOx formation burner apparatus and methods
US5810575A (en) * 1997-03-05 1998-09-22 Schwartz; Robert E. Flare apparatus and methods
US6012917A (en) * 1999-06-25 2000-01-11 Rana Development, Inc. Enclosed ground-flare incinerator
US6146131A (en) * 1999-06-25 2000-11-14 Rana Development, Inc. Enclosed ground-flare incinerator
US6565361B2 (en) * 2001-06-25 2003-05-20 John Zink Company, Llc Methods and apparatus for burning fuel with low NOx formation
US6702572B2 (en) * 2001-08-20 2004-03-09 John Zink Company, Llc Ultra-stable flare pilot and methods
US20060105276A1 (en) * 2004-11-16 2006-05-18 James Wilkins Linear Coanda flare methods and apparatus
US7967600B2 (en) * 2006-03-27 2011-06-28 John Zink Company, Llc Flare apparatus

Also Published As

Publication number Publication date
AU2007204081A1 (en) 2008-04-17
US20080081304A1 (en) 2008-04-03
BRPI0703675A (en) 2008-06-03
CA2600248A1 (en) 2008-03-29
CN101153711A (en) 2008-04-02
JP2008116195A (en) 2008-05-22
KR20080029901A (en) 2008-04-03
AR062920A1 (en) 2008-12-17
MX2007011586A (en) 2008-10-28
EP1906089A2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
TW200819678A (en) Partial pre-mix flare burner and method
US10760784B2 (en) Burner including a perforated flame holder spaced away from a fuel nozzle
TWI237102B (en) Low NOx radiant wall burner
JP5400936B2 (en) Method and apparatus for burning fuel in a gas turbine engine
TWI519739B (en) Combustion burner and boiler including the same
CN107314371A (en) For the fuel nozzle assembly for the burner for including hole flame holder
JP2001241663A (en) Multi-stage multi-plane combustion system for gas turbine engine
TW200809142A (en) COANDA gas burner apparatus and methods
TW201003010A (en) Low NOx burner
JPH01305206A (en) Burner
TW201009261A (en) Burner apparatus and methods
JP2003532858A (en) NOX emission reduction burner assembly and method for reducing NOX content in combustion furnace exhaust gas
CN213930980U (en) Torch burner
CN213930924U (en) Torch combustion system
EP2396596A1 (en) LOW NOx BURNER
US20090311641A1 (en) Gas flame stabilization method and apparatus
CN213930912U (en) A kind of burner
CN213930914U (en) Combustion apparatus
CN112856417A (en) Hollow flame low-nitrogen burner
EP4253838A1 (en) Gas burner with low nox emission
JP2001056107A (en) Gas burner
CN213930926U (en) Extract formula torch combustion system
CN114321900A (en) Burner and combustion method
WO2009151420A1 (en) Gas flame stabilization method and apparatus
CN114321896A (en) Torch combustion system and combustion method