TW200816133A - Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method - Google Patents

Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method Download PDF

Info

Publication number
TW200816133A
TW200816133A TW95136488A TW95136488A TW200816133A TW 200816133 A TW200816133 A TW 200816133A TW 95136488 A TW95136488 A TW 95136488A TW 95136488 A TW95136488 A TW 95136488A TW 200816133 A TW200816133 A TW 200816133A
Authority
TW
Taiwan
Prior art keywords
display
liquid crystal
display element
pixels
state
Prior art date
Application number
TW95136488A
Other languages
Chinese (zh)
Inventor
Masaki Nose
Hisashi Yamaguchi
Tsuneo Watanuki
Makoto Fukuda
Toshiaki Yoshihara
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW95136488A priority Critical patent/TW200816133A/en
Publication of TW200816133A publication Critical patent/TW200816133A/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The present invention relates to a display element comprising a plurality of display units stacked together, an electronic paper using the same, an electronic terminal device using the paper, a display system using the device, and an image processing method for a display element. The invention has an object of providing a display element capable of achieving images of high display image quality with improved usability, an electronic paper using the same, an electronic terminal device using the paper and a display system using the device. When a display image is not judged a monochromatic one (step S1-N), the color that the display part reflects, on which rewriting processing of rewriting the already written image data is independently performed along with scanning a plurality of images, is determined (step S4). After starting the rewriting processing (step S5) for the display part that reflects the color determined in step S4, the system is controlled so as to start the rewriting processing to the display parts which reflect residual colors.

Description

200816133 九、發明說明: 【發明所屬之技術領域】 發明領域 本务明係關於積層有複數顯示部之顯示元件、具有該 :員示元件之^子紙、具有該電子紙之電子終端機器及具有 該電子終端機器之顯示系統以及顯示元件之影像處理方 法。 【Jiu 】 背景技術 L年來於各企業及各大學中,電子紙的開發正興盛 進行著。已提案有利用電子紙之適用市場,以電子書籍為 I ’而且更有行動終端機器之副顯示器及1C卡之顯示部等 多用途應用行動式機器。電子紙之有力的顯示方式之_, 1有使用可域膽固醇相之液晶組成物(稱為膽固醇液晶)的 夜曰曰〜員示元件。膽固醇液晶,具有半永久性的顯示保持特 性(記憶性)、鮮明的色彩顯示特性、高對比特性及高解析度 特性等優異的特點。 第12圖係模式化地表示使用膽固醇液晶之可全彩顯示 之液晶顯示元件51的剖面構造。液晶顯示元件51具有從顯 2〇不面順序地積層藍色(B)顯示部46b、綠色(G)顯示部46g、紅 色(R)顯示部46r的構造。於圖式中,建構成上侧的基板4几 側為顯示面,外來光源(實線箭頭)從基板47b上方朝向顯示 面射入。又,在基板47b上方係模式化表示觀測者的眼睛及 其觀察方向(虛線箭頭)。 5 200816133 B顯不部46b具有已密封於一對上下基板47b、4%間的 藍色(B)用液晶43b、可對B用液晶層43b施加預定之脈波電 壓的脈波電壓源41b。G顯示部46g具有已密封於一對上下基 板47g、49g間的綠色(G)用液晶43g、可對G用液晶層43g施 5加預定之脈波電壓的脈波電壓源41g。R顯示部46r具有已密 封於一對上下基板47r、49r間的紅色(R)用液晶43r、可對r 用液晶層43r施加預定之脈波電壓的脈波電壓源41r。R顯示 部46r之下基板49r背面配置著光吸收層45。 使用於各B、G、R用液晶層43b、43g、43r之膽固醇液 10晶係以數十wt %之掌狀性(掌徵性)之添加物(亦稱掌狀材) 含有率較大量地添加於扭轉性液晶的液晶混合物。一旦扭 轉性液晶以較大量地含有對掌性材,則能形成將扭轉性液 晶分子強力地扭轉成螺旋狀的膽固醇相。膽固醇液晶亦稱 為對掌性扭轉液晶。 15 膽固醇液晶具有雙安定性(記憶性),依據調整施加於液 晶的電場強度而可呈平行螺旋狀態、垂直螺旋狀態或平行 螺旋狀態與垂直螺旋狀態混合存在之中間性狀態之其中任 何狀態,一旦形成平行螺旋狀態、垂直螺旋狀態,則之後 即使是在無電場情形下亦呈穩定而保持其狀態。 20 平行螺旋狀態係將預定的高電壓施加於上下基板47、 49間,並對液晶層43施予強電場之後,急劇地使電場設成 零而獲得。垂直螺旋狀態係例如將比前述高電壓低的預定 電壓施加於上下基板47、49間,並且對液晶層43施予電場 之後,再急劇地使電場設成零的狀態而獲得。平行螺旋狀 6 200816133 態與垂直螺旋狀態混合存在之中間性狀態,係例如將比可 獲得垂直螺旋狀態之電壓低的電壓施加於上下基板47、49 間’並且對液晶層43施予電場之後,再急劇地使電場設成 零而獲得。 5 使用第13圖並且以B顯示部46b為例來說明使用了此膽 固醇液晶的液晶顯示元件的顯示原理。第13圖(a)表示B顯 示部46b之B用液晶層43b於平行螺旋狀態中之膽固醇液晶 之液晶分子33的配向狀態。第13圖(b)表示B顯示部46b之B 用液晶層43b於垂直螺旋狀態中之膽固醇液晶之液晶分子 10 33的配向狀態。 如第13圖(a)所示,在平行螺旋狀態下之液晶分子33朝 基板厚度方向順序地旋轉而形成螺旋構造,螺旋構造之螺 旋軸約垂直於基板面。在平行螺旋狀態下,對應液晶分子 之螺旋間距之預定波長領域的光會在液晶層被選擇性地反 15射。若是將液晶層之平均折射率設為η,而將螺旋間距設為 Ρ,則反射呈最大的波長λ能以;ι = η · ρ表示。 因此’在Β顯示部46b之Β用液晶層43b於平行螺旋狀態 時要選擇性地反射藍色光的場合,乃要決定平均折射率η及 螺方疋間距ρ以達到例如λ =48〇nm。而以選擇液晶材料及對 20莩材而旎调整平均折射率η,且以調整對掌材之含有率而能 調整螺旋間距ρ。 另一方面’如第13圖(b)所示,在垂直螺旋狀態下的液 晶分子3 3朝向基板内面方向順次地轉旋後形成螺旋構造, 螺旋構造的螺旋轴約平行於基板面。若是垂直螺旋狀態的 200816133 話,對B用液晶層43b失去反射波長的選擇性,入射光幾乎 全都透過。透過光被配置在R顯示部46r之下基板49r背面的 光吸收層45吸收,因此能實現暗(黑)顯示。 如上所述,膽固醇液晶以扭轉成螺旋狀之液晶分子33 5的配向狀態而能控制光的反射透過。與上述b用液晶層43b 同樣地,將平行螺旋狀態時可選擇性地反射綠或紅的光的 膽固醇液晶’分別封入G用液晶層43g及R用液晶層43r而可 製成全彩顯示之液晶顯示元件51。 第14圖表示各液晶層43b、43g、43r於平行螺旋狀態之 10反射光譜的一例。橫軸表示反射光之波長(nm),縱軸表示 反射率(白色板比;%)。在B用液晶層3b之反射光譜在圖中 以連結▲記號之曲線表示。同樣地,在G用液晶層3g之反射 光譜在圖中以連結記號之曲線表示,而在r用液晶層3r 之反射光譜在圖中以連結♦記號之曲線表示。 15 如第14圖所示,各液晶層43b、43g、43r之平行螺旋狀 態之反射光譜的中心波長以B、G,R的順序變長,因此膽固 醇液晶之螺旋間距以液晶層43b、43g、43r的順序變長。如 此一來’液晶層43b、43g、43r之膽固醇液晶的對掌性材的 含有率必須以液晶層43b、43g、43r的順序變低。 20 一般而論,若是反射波長愈短,就必須強力地扭轉液 晶分子而將螺旋間距弄短,因此膽固醇液晶中的對掌性材 的含有率會變高。又,一般而言,會有對掌性材之含有率 愈高,則驅動電壓會變高的傾向。又,反射頻帶幅△入會 隨著膽固醇液晶之折射率異方向性Δη變大而變大。 8 200816133 專利文獻1 :特開2004 —219715號公報 專利文獻2 :特開2002— 139746號公報 L發明内容】 發明概要 5 發明欲解決的課題 使用膽固醇液晶之液晶顯不元件’會有一旦長時間顯 示靜止畫面,則即使更新成不同晝面,亦會發生稍稍地殘 留之前之顯示影像之所謂「燒烙」的問題。燒烙的原因可 推測有水分、離子性不純物或液晶與基板界面之相性等各 10 種各樣的要因。為了根絕燒烙,在材料的精製度及界面狀 態上要求非常高的穩定性。又,為了防止此燒烙情形,乃 有使液晶顯示元件具備計時器或光感測器,並藉著檢測出 經過連續動作時間或液晶顯示元件置於暗的環境的情形, 而使全畫面設於待機狀態(關閉顯示)以防止燒烙的方法。但 15 是,此等方法從待機狀態至復原(再顯示)會花費時間,因此 在急切必須看顯示影像時等情形下,會有液晶顯示元件之 便利性明顯降低的問題。 專利文獻1揭示了由於環境溫度愈高則燒烙現象發生 愈強,因此當溫度感測器檢測到預定以上的溫度的話,例 20 如會顯示全晝面變全黑之防止燒烙圖案,而將液晶設於垂 直螺旋狀態,藉此防止燒烙的方法。然而,一旦於顯示畫 面顯示防止燒烙圖案,則至此所顯示之影像會暫時消滅 了。如此一來,會產生液晶顯示元件之便利性顯著降低的 問題。 9 200816133 專利文獻2揭示了於7段的單色顯示中,於各階段分割 共用電極而降低消耗電力的方法。又,專利文獻2揭示了用 以防止燒烙而將顯示元件初始化的技術。但是,專利文獻2 僅揭示了 7段的單色顯示,而無關可彩色顯示之點陣型顯示 5 裝置的技術思想。 本發明之目的在於提供可獲得顯示品質優良之顯示影 像,提昇便利性之顯示元件、使用該顯示元件之電子紙、 使用該電子紙之電子終端機器及使用該電子終端機器之顯 示系統。 10 而且,本發明之目的在於提供可獲得良好的顯示狀 態,提昇便利性之顯示元件的影像處理方法。 用以解決課題的手段 上述目的依據一種顯示元件而達成,該顯示元件的特 點在於具有:具備了複數第1像素的第1顯示部、與前述第1 15 顯示部積層,且具備了對應前述複數第1像素而配置之複數 第2像素的第2顯示部、可控制對前述第1顯示部一面掃描複 數像素而一面對前述第1顯示部開始進行將已寫入之影像 資料予以再寫入的再寫入處理後,對前述第2顯示部開始前 述再寫入處理的顯示控制部。 20 如上述本發明之顯示元件,其中前述顯示控制部可進 行控制使大約相同波形之電壓脈波,順序施加於前述複數 第1像素或第2像素,並於前述第1或第2顯示部進行前述再 寫入處理。 如上述本發明之顯示元件,其中更具有第3顯示部,該 10 200816133 第3顯示部與分別表示反射光之狀態、透過光之狀態或此等 狀態之中間性之狀態並反射相互不同色之光的前述第1及 第2顯示部一同積層,並具備了對應前述複數第1及第2像素 而配置之第3像素,且該第3顯示部顯示反射光之狀態、透 5 過光之狀態或此等狀態之中間性之狀態,並反射與在前述 第1及第2顯示部反射之光不同色的光。 如上述本發明之顯示元件,其中前述顯示控制部控制 前述第1至第3顯示部之中可反射最接近顯示影像之色調之 顏色的一個顯示部,以與其他顯示部呈獨立之時序開始前 10 述再寫入處理。 如上述本發明之顯示元件,其中更具有測知前述再寫 入處理之開始時期的測知部。 如上述本發明之顯示元件,其中前述測知部具有用以 計測可避免前述像素之燒烙之時間間隔的計測部。 15 如上述本發明之顯示元件,其中前述測知部具有測出 外部環境之照度的光測出部。 如上述本發明之顯示元件,其中前述顯示控制部可進 行控制使當前述光測出部所測出之前述照度比預定值低 時,開始前述第1顯示部的前述再寫入處理。 20 如上述本發明之顯示元件,其中前述第1至第3顯示部 具有記憶性。 如上述本發明之顯示元件,其中前述第1至第3顯示部 具有對向配置之一對基板、及密封在前述基板間並形成膽 固醇相的液晶。 200816133 如上述本發明之顯示元件,其中前述顯示控制部在前 述再寫入處理執行復置處理與及寫入處理,該復置處理係 j吏前述像素之已顯示狀態暫時性地設成不同顯示狀態,而 ) . 該寫入處理係將影像資料寫入前述像素,以使於前述復置 5 處理後形成與前述已顯示狀態相同的顯示狀態。 如上述本發明之顯示元件,其中前述複數第1及第2像 素分別為分段式顯示方式的顯示段。200816133 IX. Description of the Invention: [Technical Field of the Invention] Field of the Invention The present invention relates to a display element having a plurality of display portions stacked thereon, a paper having the member element, an electronic terminal device having the electronic paper, and The display system of the electronic terminal device and the image processing method of the display element. [Jiu] Background Art In the past years, the development of electronic paper has been flourishing in various companies and universities. A multi-purpose application mobile machine such as an electronic book is used as an electronic book, and a sub-display of a mobile terminal device and a display unit of a 1C card have been proposed. The powerful display method of electronic paper, 1 has a nighttime ~ member element using a liquid crystal composition of the domain cholesterol phase (called cholesteric liquid crystal). Cholesterol liquid crystals have excellent characteristics such as semi-permanent display retention characteristics (memory), vivid color display characteristics, high contrast characteristics, and high resolution characteristics. Fig. 12 is a view schematically showing a cross-sectional structure of a liquid crystal display element 51 which can be displayed in full color using a cholesteric liquid crystal. The liquid crystal display element 51 has a structure in which a blue (B) display portion 46b, a green (G) display portion 46g, and a red (R) display portion 46r are laminated in this order. In the drawing, the side of the substrate 4 on the upper side is a display surface, and an external light source (solid arrow) is incident from the upper side of the substrate 47b toward the display surface. Further, the upper surface of the substrate 47b is patterned to indicate the observer's eye and its observation direction (dashed arrow). 5 200816133 The B display portion 46b has a blue (B) liquid crystal 43b sealed between the pair of upper and lower substrates 47b and 4%, and a pulse wave voltage source 41b capable of applying a predetermined pulse wave voltage to the B liquid crystal layer 43b. The G display portion 46g has a green (G) liquid crystal 43g sealed between the pair of upper and lower substrates 47g and 49g, and a pulse wave voltage source 41g capable of applying a predetermined pulse wave voltage to the G liquid crystal layer 43g. The R display portion 46r has a red (R) liquid crystal 43r sealed between the pair of upper and lower substrates 47r and 49r, and a pulse wave voltage source 41r capable of applying a predetermined pulse wave voltage to the r liquid crystal layer 43r. The light absorbing layer 45 is disposed on the back surface of the substrate 49r under the R display portion 46r. The cholesterol liquid 10 crystal system used for each of the B, G, and R liquid crystal layers 43b, 43g, and 43r has a large content of the additive (also referred to as palm material) of tens of weight % of palm-like property (also known as palmate). A liquid crystal mixture added to a torsional liquid crystal. Once the twisted liquid crystal contains a large amount of the palm material, a cholesterol phase which strongly twists the torsional liquid crystal molecules into a spiral shape can be formed. Cholesterol liquid crystals are also known as palmar torsion liquid crystals. 15 Cholesterol liquid crystal has double stability (memory), which can be in any state of parallel state, vertical spiral state or parallel spiral state mixed with vertical spiral state depending on the electric field strength applied to the liquid crystal. A parallel spiral state and a vertical spiral state are formed, and then the state is maintained even in the absence of an electric field. The parallel spiral state is obtained by applying a predetermined high voltage between the upper and lower substrates 47, 49 and applying a strong electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. The vertical spiral state is obtained, for example, by applying a predetermined voltage lower than the above-described high voltage between the upper and lower substrates 47 and 49, and applying an electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. The intermediate state in which the parallel spiral 6 200816133 state is mixed with the vertical spiral state is, for example, a voltage lower than a voltage at which a vertical spiral state can be obtained is applied between the upper and lower substrates 47, 49' and an electric field is applied to the liquid crystal layer 43. It is obtained by sharply setting the electric field to zero. 5 The display principle of the liquid crystal display element using this cholesteric liquid crystal is explained using the Fig. 13 and taking the B display portion 46b as an example. Fig. 13(a) shows the alignment state of the liquid crystal molecules 33 of the cholesteric liquid crystal in the parallel spiral state of the B liquid crystal layer 43b of the B display portion 46b. Fig. 13(b) shows the alignment state of the liquid crystal molecules 1033 of the cholesteric liquid crystal in the vertical spiral state of the liquid crystal layer 43b of the B display portion 46b. As shown in Fig. 13(a), the liquid crystal molecules 33 in the parallel spiral state are sequentially rotated in the thickness direction of the substrate to form a spiral structure, and the spiral axis of the spiral structure is approximately perpendicular to the substrate surface. In the parallel spiral state, light of a predetermined wavelength region corresponding to the helical pitch of the liquid crystal molecules is selectively inverted in the liquid crystal layer. If the average refractive index of the liquid crystal layer is η and the pitch of the spiral is Ρ, the maximum wavelength λ of the reflection can be expressed by ι = η · ρ. Therefore, when the blue light is selectively reflected in the parallel spiral state of the liquid crystal layer 43b in the Β display portion 46b, the average refractive index η and the pitch 疋 pitch ρ are determined so as to be, for example, λ = 48 〇 nm. The average refractive index η is adjusted by selecting the liquid crystal material and the 20 coffin, and the helical pitch ρ can be adjusted by adjusting the content of the palm material. On the other hand, as shown in Fig. 13(b), the liquid crystal molecules 3 in the vertical spiral state are sequentially rotated toward the inner surface of the substrate to form a spiral structure, and the spiral axis of the spiral structure is approximately parallel to the substrate surface. In the case of the vertical spiral state of 200816133, the liquid crystal layer 43b for B loses the selectivity of the reflection wavelength, and the incident light is almost completely transmitted. The transmitted light is absorbed by the light absorbing layer 45 disposed on the back surface of the substrate 49r under the R display portion 46r, so that dark (black) display can be realized. As described above, the cholesteric liquid crystal can control the reflection of light by the alignment state of the liquid crystal molecules 33 5 which are twisted into a spiral shape. Similarly to the liquid crystal layer 43b for b, the cholesteric liquid crystal 'selectively reflecting green or red light in a parallel spiral state is sealed in the liquid crystal layer 43g for G and the liquid crystal layer 43r for R, respectively. Liquid crystal display element 51. Fig. 14 shows an example of a reflection spectrum of each of the liquid crystal layers 43b, 43g, and 43r in a parallel spiral state. The horizontal axis represents the wavelength (nm) of the reflected light, and the vertical axis represents the reflectance (white plate ratio; %). The reflection spectrum of the liquid crystal layer 3b for B is shown by a curve connecting ▲ marks in the figure. Similarly, the reflection spectrum of the liquid crystal layer 3g for G is indicated by a curved line in the figure, and the reflection spectrum of the liquid crystal layer 3r for r is indicated by a curve connecting ♦ marks in the figure. As shown in Fig. 14, the center wavelength of the reflection spectrum of the parallel spiral state of each of the liquid crystal layers 43b, 43g, and 43r becomes longer in the order of B, G, and R. Therefore, the spiral pitch of the cholesteric liquid crystal is the liquid crystal layers 43b and 43g. The order of 43r becomes longer. As a result, the content of the palmitic material of the liquid crystal layers 43b, 43g, and 43r must be lower in the order of the liquid crystal layers 43b, 43g, and 43r. 20 In general, if the reflection wavelength is shorter, the liquid crystal molecules must be strongly twisted to shorten the spiral pitch, so that the content of the palm material in the cholesteric liquid crystal becomes high. Further, in general, the higher the content of the palm material, the higher the driving voltage tends to be. Further, the reflection band width Δ is increased as the refractive index anisotropy Δη of the cholesteric liquid crystal becomes larger. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 When the still picture is displayed, even if it is updated to a different picture, the problem of the so-called "burning" of the previous display image slightly remains. The reason for the burning is estimated to be 10 kinds of various factors such as moisture, ionic impurities or phase interaction between the liquid crystal and the substrate. In order to eliminate the burning, very high stability is required in the fine system and interface state of the material. Further, in order to prevent this burning, the liquid crystal display element is provided with a timer or a photo sensor, and the full screen is set by detecting that the continuous operation time or the liquid crystal display element is placed in a dark environment. In standby mode (turn off display) to prevent burning. However, in the case where these methods take time from the standby state to the restoration (redisplay), there is a problem that the convenience of the liquid crystal display element is remarkably lowered in the case where it is urgent to look at the display image. Patent Document 1 discloses that the higher the ambient temperature, the stronger the burning phenomenon occurs. Therefore, when the temperature sensor detects a predetermined temperature or higher, the example 20 shows that the full-faced all-black anti-burning pattern is displayed. The liquid crystal is placed in a vertical spiral state, thereby preventing the method of burning. However, once the burn-in prevention pattern is displayed on the display screen, the image displayed so far is temporarily erased. As a result, there is a problem that the convenience of the liquid crystal display element is remarkably lowered. 9 200816133 Patent Document 2 discloses a method of dividing a common electrode at each stage and reducing power consumption in a monochrome display of seven stages. Further, Patent Document 2 discloses a technique for initializing a display element to prevent burning. However, Patent Document 2 only discloses a monochrome display of 7 segments, and the technical idea of the dot device type display device of the color display is irrelevant. SUMMARY OF THE INVENTION An object of the present invention is to provide a display element which can obtain a display image excellent in display quality, to improve convenience, an electronic paper using the display element, an electronic terminal device using the electronic paper, and a display system using the electronic terminal device. Further, it is an object of the present invention to provide an image processing method for a display element which can obtain a good display state and improve convenience. Means for Solving the Problem The above object is achieved by a display device characterized in that it has a first display portion including a plurality of first pixels and a first display portion, and is provided with a plurality of corresponding numbers The second display unit of the plurality of second pixels arranged in the first pixel controls the first display unit to scan the plurality of pixels and simultaneously writes the written image data to the first display unit After the rewriting process, the display control unit that starts the above-described rewriting process to the second display unit is performed. According to the display device of the present invention, the display control unit is configured to control the voltage pulse waves of the same waveform to be sequentially applied to the plurality of first pixels or the second pixels, and to perform the first or second display unit. The above rewriting process. The display element of the present invention further includes a third display portion, and the third display portion of the 10200816133 respectively indicates a state of reflected light, a state of transmitted light, or an intermediate state of the states, and reflects different colors. The first and second display portions of the light are laminated together, and include a third pixel disposed corresponding to the plurality of first and second pixels, and the third display portion displays a state of reflected light and a state of passing through the light Or an intermediate state of the states, and reflecting light of a different color from the light reflected by the first and second display portions. In the display element according to the above aspect of the invention, the display control unit controls one of the first to third display portions to reflect the color of the color tone closest to the display image, and starts at a timing independent of the other display portions. 10 Rewrite processing. The display element of the present invention as described above further includes a detecting unit that detects the start timing of the rewriting process. The display device of the present invention as described above, wherein the detecting portion has a measuring portion for measuring a time interval during which burning of the pixels can be avoided. In the display element according to the above aspect of the invention, the detecting unit has a light detecting unit that measures the illuminance of the external environment. In the display device of the present invention, the display control unit is configured to control the rewriting process of the first display unit when the illuminance measured by the light detecting unit is lower than a predetermined value. The display element of the present invention as described above, wherein the first to third display portions have a memory property. In the display element according to the above aspect of the invention, the first to third display portions have a pair of substrates disposed opposite to each other and a liquid crystal sealed between the substrates to form a cholesteric phase. The display device of the present invention, wherein the display control unit performs a reset process and a write process in the rewrite process, wherein the display process temporarily sets the display state of the pixel to be differently displayed. The state, and the writing process writes the image data into the pixels so that the display state of the same display state is formed after the reset 5 process. In the display element according to the above aspect of the invention, the plurality of first and second pixels are display segments of the segment display mode.

又,上述目的可依據一種電子終端機器而達成,該電 子終端機器係用以顯示影像者,且其特點在於具有上述本 10 發明之顯示元件。 又,上述目的可依據一種顯示系統而達成,該顯示系 統係用以顯示影像者,且其特點在於具有上述本發明之電 子終端機器。 上述目的依據一種顯示元件之影像處理方法而達成, 15 該顯示元件之影像處理方法係用以驅動第1顯示部及第2顯 不部並顯示影像者,該弟1顯不部係具有弟1像素者’而該 第2顯示部係與前述第1顯示部積層,且具有對應前述第1像 素而配置之第2像素者,其特點在於可進行控制使一面掃描 複數像素而^一面對前述弟1顯不部開始進行將已寫入之影 20像資料予以再寫入的再寫入處理後,對前述第2顯示部開始 前述再寫入處理。 如上連料队切元件之影像處理方法,1中可進 行控制使大_同波形4壓脈波,順 ^ 第1像素或第2像素,並使骑 、則达後數 別述弟1或弟2顯示部進行前述再 12 200816133 V 5 • 寫入處理。 如上述本發明之顯示元件之影像處理方法,其中第1 顯示部、第2顯示部、及與前述第1及第2顯示部一同積層且 具有第3像素的第3顯示部,反射相互不同色之光,且控制 前述第1至第3顯示部之中可反射最接近顯示影像之色調之 顏色的一個顯示部,以與其他顯示部呈獨立之時序,開始 前述再寫入處理。 如上述本發明之顯示元件之影像處理方法,其中以可 避免前述像素之燒烙之時間間隔,開始前述再寫入處理。 10 如上述本發明之顯示元件之影像處理方法,其中當外 部環境之照度比預定值低時,開始前述第1顯示部的前述再 寫入處理。 如上述本發明之顯示元件之影像處理方法,其中在前 述再寫入處理執行使前述像素之已顯示狀態暫時性地設成 15 不同顯示狀態的復置處理、以及將影像資料寫入前述像素 之寫入處理,以使於前述復置處理後形成與前述已顯示狀 態相同的顯示狀態。 發明效果 依據本發明,可實現能獲得顯示品質優良之顯示影 ^ 20 W 像,提昇便利性之顯示元件、使用該顯示元件之電子紙、 使用該電子紙之電子終端機器及使用該電子終端機器之顯 示系統。 圖式簡單說明 第1圖表示作為本發明之第1實施樣態所構成之顯示元 13 200816133 5 件之液晶顯示元件1的概略構造。 第2圖係模式化表示作為本發明之一實施樣態所構成 之顯示元件之液晶顯示元件1的剖面構造。 第3圖(a)、(b)表示作為本發明之一實施樣態所構成之 顯示元件之液晶顯示元件1之驅動波形的一例。 第4圖表示作為本發明之一實施樣態所構成之顯示元 件之液晶顯示元件1之液晶組成物之電壓一反射率特性的 一例0 第5圖表示作為本發明之一實施樣態所構成之顯示元 10 件之液晶顯不元件1之影像處理方法的流程圖。 第6圖(a)-(d)係模式化表示使用本發明之一實施樣態所 構成之顯示元件之影像處理方法,而進行再新處理中的顯 示部6。 第7圖表示於本發明之一實施樣態所構成之顯示元件 15 之影像處理方法中,可保持較高高速之掃描速度之驅動方 法的實施例。 第8圖表示於本發明之一實施樣態所構成之顯示元件 之影像處理方法中,可保持較高高速之掃描速度之驅動方 法的實施例。 ^ 20 • 第9圖表示於本發明之一實施樣態所構成之顯示元件 之影像處理方法中,可保持較高高速之掃描速度之驅動方 法的實施例。 第10圖係說明本發明之一實施樣態所構成之顯示元件 之影像處理方法中,顯示領域之燒烙的評價方法。 14 200816133 =圖係說明本發明之—實施樣態所構成之顯示元件 ^理方法中,顯示領域之燒烙的評價方法。 弟12圖係模式化表示習知可全彩顯示之液晶顯示元件 的剖面構造。 第13圖(a )、( b)係模式化表示習知之液晶顯示元件之一 液晶層的剖面構造。 弟14圖表示習知之液晶顯示元件在平行螺旋狀態之反 射光譜的一例。 【Jif 方式】 10較佳實施例之詳細說明 使用苐1至弟11圖來說明依據本發明之一實施樣態所 構成之顯示元件、使用該顯示元件之電子紙、使用該電子 紙之電子終端機器及使用該電子終端機器之顯示系統以及 顯示元件之影像處理方法。本實施樣態以使用了藍(B)、綠 5 (G)及紅⑻用_醇液晶之液晶顯示元件丨為例來說明顯示 元件。首先,使用第1至第4圖來說明依據本實施樣態所構 成之液晶顯示元件1的概略構造。第丨圖表示依據本實施樣 怨所構成之液晶顯示元件1的概略構造的一例。第2圖係模 式化表示以平行於第1圖之左右方向的直線來切斷液晶顯 20 示元件1的剖面構造。 如弟1圖及弟2圖所示,液晶顯示元件1具有電路區塊& 與顯示騸塊lb。電路區塊la具有顯示部6,該顯示部6具有b 顯示部6b、G顯示部6g及R顯示部6r,該B顯示部6b具有在 平行螺旋狀態下反射藍色光的B用液晶層3b,該G顯示部6g 15 200816133 具有在平行螺旋狀態下反射綠色光的G用液晶層3g,該R顯 示部6r具有在平行螺旋狀態下反射紅色光的尺用液晶層 3r。以B、G、R顯示部6b、6g、6r的順序從光入射面(顯示 面)這一側積層。而且,顯示驅塊lb具有用以驅動顯示部6 5之掃描電極驅動電路20及資料電極驅動電路21。 相對於此,電路區塊la具有將由例如未以圖式顯示之 系統侧輸入之3〜5V直流電壓,轉換成驅動顯示驅塊化必須 之直流電壓的電源部28。又,電路區塊^具有顯示控制電 路29(顯不控制部),該顯示控制電路29可進行控制使一面掃 1〇描複數的像素而一面對R、G、B顯示部6r、6g、6r之其中一 者開始再寫入已寫入之影像資料的再寫入處理後,對剩餘 的顯示部開始再寫入處理,或是於顯示部6產生用以顯示影 像之預定的控制信號。而且,電路區塊城有記憶從系統 側輸入之輸入影像資料的影像資料記憶體3〇、以及測知顯 15示部6之再寫入處理之開始時期的測知部25。 建構成電源部28具有昇壓部22、顯示元件驅動電壓產 生部23及調整器24。昇壓部22具有例如DC —DC變流器,可 將由系統側輸入之直流3〜5V的輸入電壓,昇壓至驅動顯示 16所必須之直流3〇〜.前後的電壓。顯示元件驅動電壓 20產生部23使用以昇壓部22所昇屡的電壓與輸入電壓,並可 因應各像素之灰階值及選擇/非選擇之個別狀況而產生必 要的複數位準的電壓。調整器24具有基納二極體及運算放 大器等,可使電壓產生部23所產生之電壓穩定,並供給至 …員不區塊lb所具備之掃描電極電路2()及資料電極電路。 16 200816133 建構成測知部25具有計時器(計測部)27與光感測器(光 測出部)26。計時器27使用於用以計測可避免顯示部6之顯 不領域之燒烙的時間間隔。光感測器26可測出放置液晶顯 不兀件1之外部環境的照度。測知部25可將計時器27計測之 5時間資料與光感測器%測出之照度資料輸出至顯示控制電 路29。 建構成顯示控制電路29使用從測知部25輸出之時間資 料及…、度資料,而將用以開始顯示部6之再寫入處理的控制 #號’輸出至掃描電極驅動電路20及資料電極驅動電路 1〇 21。又,顯示控制電路29依據從影像資料記憶體3〇讀出之 每一R、G、β顯示部6r、6g、6b之影像資料,與預先設定 之I區動波$寅料而產生驅動資料。建構成顯示控制電路29 將已產生之驅動資料配合資料擷取時鐘,而輸出至掃描電 極驅動電路20及資料電極驅動電路2;1。又,建構成顯示控 15制電路29將掃描方向信號、脈波極性控制信號、訊框開始 信號、資料鎖存掃描移位、關閉驅動器輸出等控制信號, 輸出至該二電路20、21。 其次,詳細說明顯示區塊15的構造。如第1圖及第2圖 所示,顯示區塊1b所具有之B顯示部6b具有對向配置之一對 2〇上下基板7b、%、以及密封在兩基板7b、%間的B用液晶層 3b。B用液晶層3b具有B用膽固醇液晶,該β用膽固醇液晶 已被调整平均折射率n及螺旋間距p而用以選擇性地反射藍 色。 G顯示部6g具有對向配置之一對上下基板%、9§、以及 17 200816133 岔封在兩基板7g、9g間的G用液晶層3g。G用液晶層3g具有 G用膽固醇液晶,該G用膽固醇液晶已被調整平均折射率n 及螺旋間距p而用以選擇性地反射綠色。 R顯示部6r具有對向配置之一對上下基板7r、9r、以及 5密封在兩基板7r、9r間的R用液晶層3r。G用液晶層3ι*具有R 用膽固醇液晶,該r用膽固醇液晶已被調整平均折射率^及 螺旋間距p而用以選擇性地反射紅色。 構成B、G、R用液晶層3b、3g、3r的液晶組成物,係 將掌狀性材添加1〇〜4〇wt%於扭轉液晶的膽固醇液晶。對 10掌狀性材之添加率為扭轉液晶成分與掌狀性材之合計量設 為lOOwt%時的值。雖然可使用習知之各種材料作為扭轉液 晶,但是,作為膽固醇液晶組成物之介電率異方向性么£ 取好為20$ △ ε $50。若是介電率異方向性△ ε為加以 上,則可使用之掌狀性材的選擇範圍變廣。又,一旦介電 15率異方向性Δε比上述範圍低,則各液晶層3b、3g、3r之 驅動電壓會變高。相對於此,一旦介電率異方向性△ £高 過上述範圍,則液晶顯示元件!之穩定性及可靠度降低而易 發生影像缺陷或影像失真。 膽固醇液晶之折射率異方向,&Δη係支配畫質之重要 2〇的物性。折射率異方向性—之值最好為ο · △似2心 一 ^折射率異方向性Δη比此範圍小,則平行螺旋狀態之各 液的層3b、3g、3r的反射率會變低,因此呈亮度不足的暗 顯:。相對於此’折射率異方向性Δη若是比此範圍大,則 液晶層3b、3g、3r在垂直螺旋狀態的散射反射會變大,因 18 200816133 % 5 此顯示晝面之色純度及對比不足而形成模糊顯示。而且, 折射率異方向性△!!若是比上述範圍大,則黏度會變高而會 使膽固醇液晶降低反應速度。 膽固醇液晶之電阻率Ρ之值最好是1010 ^ Ρ $ 1〇13(Ω · cm)。又,膽固醇液晶之黏性低者可抑制低溫時之 電壓上昇及對比降低,故以此為佳。 • 10 於B、G、R之各顯示部βΐ)、6g、6r之積層構造中,平 行螺旋狀態中的G用液晶層3g的旋光性與B用及R用液晶層 3b、3r之旋光性不同,因此,在第14圖所示之藍與綠、及 綠與紅之反射光譜重畳的領域,例如B用液晶層3b可使右圓 偏光之光反射,G用液晶層3g可使左圓偏光之光反射。藉 此’可降低反射光的損失,並能提昇液晶顯示元件1之顯示 晝面的明亮度。 15 • 上基板7b、7g、7r及下基板%、9g、9r必須具有透光性。 本實施樣態使用二片玻璃基板。又,可取代玻璃基板而使 用聚碳酸酯(PC)或聚對苯二曱酸乙二酸酯(PET)等薄膜基 板。在本實施樣態中,上基板7b、7g、7r及下基板9b、9g、 9r均具有透光性,惟,配置於最下層之R顯示部6r之下基板 91*可為不透光性。 ^ 20 ή 於B顯示部6b之下基板9b之B用液晶層3b側並列形成 著朝向第1圖中之上下方向延伸之複數帶狀的資料電極 l9b。又,於上基板7b之B用液晶層3b侧並列形成有朝向第1 圖中之左右方向延伸之複數帶狀的資料電極17b。本實施樣 怨中’將銦錫氧化物(indium Tin Oxide ; ITO)所構成之透明 19 200816133 電極予以圖案化,而形成條帶狀掃描電極17b及複數的資料 電極19b。兩電極17b、19b之形成材料例如可以nr為代表, 惟’此外可使用銦鋅氧化物(in(jium Zic Oxide ; IZO)等透明 導電膜或非晶質矽等光導電性膜等。 5 如第1圖所示,於法線方向觀看上下基板7b、9b之電極 形成面,兩電極17b、19b係相互交叉對向配置。兩電極i7b、 19b之各父叉領域分別構成像素(晝素)。複數的像素以兩電 極17b、19b晝定而配列成矩陣狀而形成顯示晝面。又,第2 圖所示之編號17b、19b表示兩電極17b、19b之存在領域, 10而未教示該等電極的形狀。 於兩電極17b、19b上配置之機能膜最好是分別塗上絕 緣性薄膜或液晶分子之配向穩定化膜(均未以圖式顯示> 絕 緣性薄膜具有防止電極17b、19b間的短路,且作為氣體屏 障層而能提昇液晶顯示元件1之可靠度的機能。又,可使用 15聚醯乙胺樹脂或丙稀酸酯樹脂等作為配向穩定化膜。本實 施樣態例如於電極17b、19b上的分別的基板全面塗上 (coadmg)配向穩定膜。配向穩定膜亦可兼用絕緣性薄膜。 藉著塗在上下基板7b、9b之外周圍的密封材18b而使B 用液晶層3b被密封在兩基板7b、9b間。又,B用液晶層3b 20之厚度(晶胞間距)必須保持成均一。為了維持預定的晶胞間 距’將樹脂製或無機氧化物製之球狀間隔件(spacer)散置於 B用液晶層3b内,或將表面已塗上熱可塑性樹脂之柱狀間隔 件以多數形成在B用液晶層3b内。於本實施樣態之液晶顯示 凡件1,在B用液晶層3b内亦***球狀間隔件(圖式未顯示) 20 200816133 而保持晶胞間距的均一性。B用液晶層3b之晶胞間距d最好 是在的範圍。 G顯示部6g及R顯示部6r具有與B顯示部6b相同的構 造,因此省略其說明。R顯示部6r之下基板9r的外面(背面) 5 設置有可見光吸收層15。因此在所有B、G、R之各液晶層 3b、3g、3r於垂直嫘旋狀態時’液晶顯示元件1之顯示畫面 可顯示黑色。又,因應必要來設置可見光吸收層15即可。 安裝有用以個別驅動複數掃描電極17b、17g、171*之掃 描電極用驅動器1C的掃描電極驅動電路20連接於上基板 10 7b、7g、7r。又,安裝有用以個別驅動複數資料電極19b、 19g、19r之資料電極用驅動器之資料電極驅動電路21連 接於下基板9b、9g、9r。建構成此等驅動電路2〇、21依據 從顯示控制電路29輸出之預定信號,而將脈波狀之掃描信 號或資料信號輸出至預定的掃描電極17b、17g、nr或資料 15 電極 19b、19g、19r。 藉著將輸入輸出裝置及總括整體的控制裝置(均未以 圖式顯示)設置於第1圖所示之液晶顯示元件1而構成電子 紙。該電子紙可當作電子終端機益的顯不裝置使用。該電 子終端機器可當作顯示系統的顯示裝置使用。 20 接著,使用第3圖及第4圖來說明液晶顯示元件1之驅動 方法。第3圖表示液晶顯示元件1之驅動資料之驅動波形的 一例。第3圖(a)表示用以將膽固醇液晶驅動成平行螺旋狀態 的驅動波形,第3圖(b)表示用以將膽固醇液晶驅動成垂直螺 旋狀態的驅動波形。於第3圖(a)及第3圖(b)中,圖的上段表 21 200816133 示從資料電極_電路2()輸 形,圖的中段表示從掃打虎電壓波形Vd的波 m ^極驅動电路21輸出之掃描信號 私壓\^的波形,圖的下玉凡本一 的下奴表不施加於B、G、R用之各液晶 ^ S 任何—像素的施加電壓Vic的波形。又, 於第3圖⑻及第3圖(b)中,從圖左至圖右表示經過時間,而 圖之上下方向表示電壓。 _ 10 第4圖表示膽固醇液晶之電壓—反射率特性的一例。橫 軸表示施純膽轉衫之«值(V),縱録示膽固醇液 晶的反射率(%)。第4圖所示之實線的曲線p表示初始狀能為 平行螺旋狀態之膽固醇液晶的電壓—反射率特性,虛線之 曲線FC表抑始狀態為垂直螺錄態之膽崎液晶的電壓 〜反射率特性。 以例子說明將預定電壓施加於第!圖所示之峨示部仍 之第1列之資料電極19b與第丨行之掃描電極17b之交又部的 15藍⑻像素(卜1)的情形。如第3圖⑻所示,於選擇第i行之 掃描電極17b之選擇期間T1之前半的約1/2期間,相對於資 料信號電壓Vd為+ 32V,掃描信號電壓^^為〇乂,而在後半 的約1/2期間,相對於資料信號電壓¥(1為〇¥,掃描信號電 壓Vs為+32V。如此一來,B像素(1、之B用液晶層讣於 2〇選擇期間T1之間被施加±32V的脈波電壓。如第4圖所示, 一旦預定的高電壓VP100(例如32V)施加於膽固醇液晶而產 生強的電場,則液晶分子之螺旋構造完全解開,所有液晶 刀子會隨者電場的方向而形成垂直配向狀態。因此,B像素 (1、1)之B用液晶層3b的液晶分子在選擇期間丁丨係呈垂直配 22 200816133 向狀態。 一旦選擇期間T1結束而達到非選擇期間丁2,則以選擇 期間T1之1周期對第1行的掃描電極17b施加例如+ 28V 及+ 4V的電壓。相對於此,預定的資料信號電壓Vd施加於 5第1列之資料電極19b。於第3圖⑻中,以選擇期間们之!/^ 周期對第1列的資料電極17施力口例如+ 32乂及評的電壓。因 此在非選擇期間丁2之間可卵像素(!、!)之B用液晶層补 施加±4V的脈波電壓。依據以上所述,在非選擇期間T2之 間,於B像素U、用液晶層%產生的電場約為零。 10 液晶分子呈垂直配向狀態時,施加液晶電壓Vlc從Further, the above object can be attained by an electronic terminal device for displaying an image, and characterized in that it has the display element of the above-described tenth invention. Further, the above object can be attained in accordance with a display system for displaying an image, and is characterized by having the above-described electronic terminal machine of the present invention. The above object is achieved according to an image processing method for a display element, wherein the image processing method of the display element is for driving the first display portion and the second display portion and displaying the image, and the brother 1 has a department 1 The pixel display unit is configured such that the second display unit is laminated with the first display unit and has a second pixel disposed corresponding to the first pixel, and is characterized in that it is controllable to scan a plurality of pixels while facing the foregoing When the first reading is performed, the second display unit starts the rewriting process after the rewriting process of rewriting the already written image 20 is started. As above, the image processing method of the unit cutting component can be controlled to make the large _ the same waveform 4 pressure pulse wave, the first pixel or the second pixel, and the ride, then the number is not the same as the younger brother or brother 2 The display unit performs the above-mentioned further 12 200816133 V 5 • Write processing. In the image processing method of the display device of the present invention, the first display unit, the second display unit, and the third display unit having the third pixel stacked together with the first and second display units are mutually different in color. The light is controlled to control one of the first to third display portions to reflect the color of the color tone closest to the display image, and the rewriting process is started at a timing independent of the other display portions. The image processing method of the display element of the present invention as described above, wherein the rewriting process is started at a time interval during which the burning of the pixels is avoided. According to the image processing method of the display device of the present invention, when the illuminance of the external environment is lower than a predetermined value, the rewriting process of the first display portion is started. The image processing method of the display device of the present invention, wherein the rewriting process performs a reset process of temporarily setting the displayed state of the pixel to 15 different display states, and writing image data to the pixel. The writing process is such that the display state is the same as that of the previously displayed state after the above-described reset processing. Advantageous Effects of Invention According to the present invention, it is possible to realize a display element capable of obtaining a display image excellent in display quality, to improve convenience, an electronic paper using the display element, an electronic terminal device using the electronic paper, and a device using the electronic terminal Display system. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a schematic configuration of a liquid crystal display element 1 of a display element 13 200816133 which is configured as a first embodiment of the present invention. Fig. 2 is a schematic view showing a cross-sectional structure of a liquid crystal display element 1 as a display element constituting one embodiment of the present invention. Fig. 3 (a) and (b) show an example of driving waveforms of the liquid crystal display element 1 as a display element constituted by an embodiment of the present invention. Fig. 4 is a view showing an example of a voltage-reflectance characteristic of a liquid crystal composition of a liquid crystal display element 1 as a display element of an embodiment of the present invention. Fig. 5 is a view showing an embodiment of the present invention. A flowchart of an image processing method for displaying a liquid crystal display element 1 of 10 elements. Fig. 6 (a) - (d) schematically shows the display unit 6 in the reprocessing process using the image processing method of the display element constituted by one embodiment of the present invention. Fig. 7 is a view showing an embodiment of a driving method capable of maintaining a high-speed scanning speed in the image processing method of the display element 15 constructed in an embodiment of the present invention. Fig. 8 is a view showing an embodiment of a driving method capable of maintaining a high-speed scanning speed in an image processing method of a display element constructed in an embodiment of the present invention. ^ 20 • Fig. 9 is a view showing an embodiment of a driving method capable of maintaining a high-speed scanning speed in an image processing method of a display element constituted by an embodiment of the present invention. Fig. 10 is a view showing an evaluation method of burning in the display field in the image processing method of the display element constituted by an embodiment of the present invention. 14 200816133 = The figure shows the display element formed by the embodiment of the present invention. The pictorial representation of the 12 is a cross-sectional structure of a conventional liquid crystal display element that can be displayed in full color. Fig. 13 (a) and (b) schematically show a cross-sectional structure of a liquid crystal layer which is one of conventional liquid crystal display elements. Fig. 14 is a view showing an example of a reflection spectrum of a conventional liquid crystal display element in a parallel spiral state. [Jif Mode] 10 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A display element constructed in accordance with an embodiment of the present invention, an electronic paper using the display element, and an electronic terminal using the same are illustrated using FIG. 1 to FIG. A machine and a display system using the electronic terminal device and an image processing method of the display element. In the present embodiment, a display element will be described by taking a liquid crystal display element 蓝 using a blue (B), a green 5 (G), and a red (8) liquid crystal. First, a schematic configuration of a liquid crystal display element 1 constructed in accordance with the present embodiment will be described using Figs. 1 to 4 . The figure is an example of a schematic structure of the liquid crystal display element 1 constructed in accordance with the present embodiment. Fig. 2 is a view showing the cross-sectional structure of the liquid crystal display element 1 cut in a line parallel to the left-right direction of Fig. 1 . As shown in FIG. 1 and FIG. 2, the liquid crystal display element 1 has a circuit block & and a display block lb. The circuit block 1a has a display unit 6 having a b display portion 6b, a G display portion 6g, and an R display portion 6r having a B liquid crystal layer 3b that reflects blue light in a parallel spiral state. The G display portion 6g 15 200816133 has a G liquid crystal layer 3g for reflecting green light in a parallel spiral state, and the R display portion 6r has a rule liquid crystal layer 3r that reflects red light in a parallel spiral state. The B, G, and R display portions 6b, 6g, and 6r are stacked in this order from the light incident surface (display surface). Further, the display driver block 1b has a scan electrode driving circuit 20 and a data electrode driving circuit 21 for driving the display portion 65. On the other hand, the circuit block 1a has a power supply unit 28 that converts a DC voltage of 3 to 5 volts input from, for example, a system side not shown in the figure, into a DC voltage necessary for driving display display. Further, the circuit block has a display control circuit 29 (display control unit), and the display control circuit 29 can perform control so as to scan the pixels of the plurality of pixels and face the R, G, and B display portions 6r, 6g, After one of the 6r starts to rewrite the rewritten processing of the written image data, the remaining display unit starts the rewriting process, or the display unit 6 generates a predetermined control signal for displaying the image. Further, the circuit block memory has a video data memory 3 that stores the input image data input from the system side, and a detecting unit 25 that detects the start time of the rewriting process of the display unit 6. The power supply unit 28 includes a boosting unit 22, a display element driving voltage generating unit 23, and an adjuster 24. The boosting unit 22 has, for example, a DC-DC converter, and can boost the input voltage of the DC of 3 to 5 V input from the system side to the voltages of the DCs before and after driving the display 16. The display element driving voltage 20 generating unit 23 uses the voltage and the input voltage which are boosted by the boosting unit 22, and generates a voltage of a necessary complex level in accordance with the gray scale value of each pixel and the individual conditions of selection/non-selection. The regulator 24 has a kinetic diode, an operational amplifier, and the like, and stabilizes the voltage generated by the voltage generating unit 23, and supplies it to the scan electrode circuit 2 () and the data electrode circuit provided in the block lb. 16 200816133 The construction detecting unit 25 includes a timer (measurement unit) 27 and a photo sensor (light detecting unit) 26. The timer 27 is used to measure the time interval during which the burning of the display area of the display portion 6 can be avoided. The photo sensor 26 measures the illuminance of the external environment in which the liquid crystal display element 1 is placed. The detecting unit 25 can output the time data measured by the timer 27 and the illuminance data measured by the photosensor % to the display control circuit 29. The display control circuit 29 outputs the control ##' for starting the rewriting process of the display unit 6 to the scan electrode driving circuit 20 and the data electrode using the time data and ... and the degree data output from the detecting unit 25. The drive circuit 1〇21. Further, the display control circuit 29 generates the driving data based on the image data of each of the R, G, and β display portions 6r, 6g, and 6b read from the image data memory 3, and the previously set I-area wave data. . The display control circuit 29 combines the generated drive data with the data capture clock and outputs it to the scan electrode drive circuit 20 and the data electrode drive circuit 2; Further, the display control circuit 29 is configured to output control signals such as a scanning direction signal, a pulse polarity control signal, a frame start signal, a data latch scan shift, and a shutdown driver output to the two circuits 20, 21. Next, the configuration of the display block 15 will be described in detail. As shown in FIGS. 1 and 2, the B display portion 6b included in the display block 1b has a pair of upper and lower substrates 7b, % disposed opposite to each other, and a liquid crystal for B sealed between the substrates 7b and %. Layer 3b. The liquid crystal layer B for B has a cholesteric liquid crystal for B which has been adjusted to have an average refractive index n and a pitch p of p to selectively reflect blue. The G display portion 6g has a liquid crystal layer 3g for G which is disposed between the two substrates 7g and 9g by one of the pair of upper and lower substrates %, 9 §, and 17 200816133. The G liquid crystal layer 3g has a cholesteric liquid crystal for G, and the G cholesteric liquid crystal has been adjusted to have an average refractive index n and a spiral pitch p for selectively reflecting green. The R display portion 6r has an R liquid crystal layer 3r that is disposed between the upper and lower substrates 7r, 9r, and 5, and is sealed between the two substrates 7r and 9r. The G liquid crystal layer 3i* has a chromic liquid crystal for R which has been adjusted to have an average refractive index and a spiral pitch p for selectively reflecting red. The liquid crystal composition constituting the liquid crystal layers 3b, 3g, and 3r for B, G, and R is a cholesteric liquid crystal in which a palm-shaped material is added in an amount of 1 Torr to 4 Å by weight to twist the liquid crystal. The addition ratio of the 10 palm-shaped material was a value when the total amount of the twisted liquid crystal component and the palm-shaped material was set to 100% by weight. Although various materials can be used as the torsion liquid crystal, the dielectric constant of the cholesteric liquid crystal composition is preferably 20$ Δ ε $50. If the dielectric variability Δ ε is added, the selection range of the palm-shaped material that can be used is widened. When the dielectric Δ Δ ε is lower than the above range, the driving voltage of each of the liquid crystal layers 3b, 3g, and 3r becomes high. On the other hand, when the dielectric anisotropy Δ £ is higher than the above range, the liquid crystal display element! The stability and reliability are reduced, and image defects or image distortion are liable to occur. The refractive index of the cholesteric liquid crystal is in the opposite direction, and the & Δη system dominates the image quality. The value of the refractive index anisotropy - preferably ο · Δ like 2 core - ^ refractive index anisotropy Δη is smaller than this range, the reflectivity of the layers 3b, 3g, 3r of each liquid in the parallel spiral state becomes lower Therefore, there is a lack of brightness: On the other hand, if the refractive index anisotropy Δη is larger than this range, the scattering reflection of the liquid crystal layers 3b, 3g, and 3r in the vertical spiral state becomes large, because 18 200816133 % 5 shows that the color purity and contrast of the surface are insufficient. And a fuzzy display is formed. Further, if the refractive index anisotropy Δ!! is larger than the above range, the viscosity is increased to lower the reaction rate of the cholesteric liquid crystal. The value of the resistivity 胆固醇 of the cholesteric liquid crystal is preferably 1010 ^ Ρ $ 1 〇 13 (Ω · cm). Further, since the viscosity of the cholesteric liquid crystal is low, the voltage rise at a low temperature and the decrease in contrast can be suppressed, so that it is preferable. • In the laminated structure of the display portions βΐ), 6g, and 6r of B, G, and R, the optical rotation of the liquid crystal layer 3g for G in the parallel spiral state and the optical rotation of the liquid crystal layers 3b and 3r for the B and R. Therefore, in the field where the reflection spectrums of blue and green, and green and red are shown in Fig. 14, for example, the liquid crystal layer 3b for B can reflect the light of the right circular polarization, and the liquid crystal layer 3g for G can make the left circle. Polarized light reflects. By this, the loss of reflected light can be reduced, and the brightness of the display surface of the liquid crystal display element 1 can be improved. 15 • The upper substrates 7b, 7g, and 7r and the lower substrates %, 9g, and 9r must have light transmissivity. In this embodiment, two glass substrates are used. Further, a film substrate such as polycarbonate (PC) or polyethylene terephthalate (PET) may be used instead of the glass substrate. In the present embodiment, the upper substrates 7b, 7g, 7r and the lower substrates 9b, 9g, and 9r are all translucent, but the substrate 91* disposed under the R display portion 6r of the lowermost layer may be opaque. . ^ 20 B B on the bottom surface of the substrate 9b below the B display portion 6b is formed with a plurality of strip-shaped data electrodes l9b extending in the upper and lower directions in the first drawing in parallel with the liquid crystal layer 3b side. Further, a plurality of strip-shaped data electrodes 17b extending in the left-right direction in the first drawing are formed side by side on the B liquid crystal layer 3b side of the upper substrate 7b. In the present embodiment, the transparent 19 200816133 electrode composed of indium tin oxide (ITO) is patterned to form a strip-shaped scan electrode 17b and a plurality of data electrodes 19b. The material for forming the two electrodes 17b and 19b can be represented by, for example, nr. Alternatively, a transparent conductive film such as indium zinc oxide (IZO) or a photoconductive film such as amorphous germanium can be used. As shown in Fig. 1, the electrode forming faces of the upper and lower substrates 7b and 9b are viewed in the normal direction, and the electrodes 17b and 19b are arranged to face each other in the opposite direction. The parent fork regions of the two electrodes i7b and 19b respectively constitute pixels (alloys). The plurality of pixels are arranged in a matrix shape by the two electrodes 17b and 19b to form a display pupil plane. Further, the numbers 17b and 19b shown in Fig. 2 indicate the existence areas of the two electrodes 17b and 19b, and 10 is not taught. The shape of the equal electrode. The functional film disposed on the two electrodes 17b and 19b is preferably coated with an insulating film or an alignment-stabilized film of liquid crystal molecules (all of which are not shown in the drawings). The insulating film has an electrode 17b, A short circuit between 19b and a function as a gas barrier layer can improve the reliability of the liquid crystal display element 1. Further, a 15 mercaptoethylamine resin, an acrylate resin or the like can be used as the alignment stabilizing film. For example on the electrodes 17b, 19b The respective substrates are integrally coated with an alignment stabilizing film. The alignment stabilizing film may also be an insulating film. The liquid crystal layer 3b for B is sealed by the sealing material 18b applied around the upper and lower substrates 7b and 9b. Between the substrates 7b and 9b, the thickness (cell pitch) of the liquid crystal layer 3b 20 for B must be kept uniform. In order to maintain a predetermined cell pitch, a spherical spacer made of resin or inorganic oxide is used. The columnar spacers which are interposed in the liquid crystal layer 3b for B or which are coated with a thermoplastic resin are formed in a plurality of liquid crystal layers 3b for B. In the present embodiment, the liquid crystal display unit 1 is used for B. A spherical spacer (not shown) 20 200816133 is also inserted into the liquid crystal layer 3b to maintain the uniformity of the cell pitch. The cell pitch d of the liquid crystal layer 3b for B is preferably in the range of G. Display portions 6g and R Since the display portion 6r has the same structure as the B display portion 6b, the description thereof will be omitted. The outer surface (back surface) 5 of the substrate 9r under the R display portion 6r is provided with the visible light absorbing layer 15. Therefore, the liquid crystals of all B, G, and R are provided. When the layers 3b, 3g, and 3r are in the vertical state of the circle, the liquid crystal display element 1 The display screen can display black. Further, the visible light absorbing layer 15 can be provided as necessary. The scan electrode driving circuit 20 for driving the scanning electrode driver 1C for individually driving the plurality of scanning electrodes 17b, 17g, and 171* is connected to the upper substrate 10 7b, 7g, and 7r. Further, a data electrode driving circuit 21 for driving the data electrode driver for individually driving the plurality of data electrodes 19b, 19g, and 19r is connected to the lower substrates 9b, 9g, and 9r. These driving circuits are constructed. The pulse-like scanning signal or data signal is output to the predetermined scanning electrodes 17b, 17g, nr or the material 15 electrodes 19b, 19g, 19r in accordance with a predetermined signal output from the display control circuit 29. The electronic paper is constructed by providing the input/output device and the overall control device (all not shown in the drawings) on the liquid crystal display element 1 shown in Fig. 1 . The electronic paper can be used as a display device for electronic terminals. The electronic terminal machine can be used as a display device of a display system. 20 Next, the driving method of the liquid crystal display element 1 will be described using Figs. 3 and 4. Fig. 3 shows an example of a driving waveform of driving data of the liquid crystal display element 1. Fig. 3(a) shows a driving waveform for driving the cholesteric liquid crystal to a parallel spiral state, and Fig. 3(b) shows a driving waveform for driving the cholesteric liquid crystal to a vertical spiral state. In Fig. 3(a) and Fig. 3(b), the upper table of the figure 21, 200816133 shows the shape from the data electrode_circuit 2(), and the middle part of the figure shows the wave m^ pole from the sweeping voltage waveform Vd. The waveform of the scanning signal private voltage outputted by the driving circuit 21 is not applied to the waveforms of the applied voltage Vic of any liquid crystals of B, G, and R. Further, in Figs. 3(8) and 3(b), the elapsed time is shown from the left to the right, and the voltage is indicated in the upper and lower directions. _ 10 Fig. 4 shows an example of voltage-reflectance characteristics of cholesteric liquid crystal. The horizontal axis indicates the value (V) of the pure-breasted sweater, and the reflectance (%) of the cholesterol liquid crystal is recorded vertically. The curve p of the solid line shown in Fig. 4 indicates the voltage-reflectance characteristic of the cholesteric liquid crystal in which the initial shape can be a parallel spiral state, and the curve of the dotted line is the voltage of the biliary liquid crystal in the vertical spiral state. Rate characteristics. An example is given to apply a predetermined voltage to the first! The display portion shown in the figure is still in the case of 15 blue (8) pixels (1) of the intersection of the data electrode 19b of the first column and the scanning electrode 17b of the third row. As shown in FIG. 3 (8), during about 1/2 of the first half of the selection period T1 of the scan electrode 17b of the i-th row, the data signal voltage Vd is +32 V, and the scan signal voltage is 〇乂, and During about 1/2 of the second half, with respect to the data signal voltage ¥ (1 is 〇¥, the scanning signal voltage Vs is +32V. Thus, the B pixel (1, B uses the liquid crystal layer 讣 in the 2 〇 selection period T1) A pulse wave voltage of ±32 V is applied between them. As shown in Fig. 4, once a predetermined high voltage VP100 (for example, 32 V) is applied to the cholesteric liquid crystal to generate a strong electric field, the spiral structure of the liquid crystal molecules is completely untwisted, and all the liquid crystals The knives form a vertical alignment state with the direction of the electric field. Therefore, the liquid crystal molecules of the liquid crystal layer 3b for B of the B pixel (1, 1) are in a state of vertical alignment 22 200816133 during the selection period. When the non-selection period D2 is reached, a voltage of, for example, +28 V and +4 V is applied to the scan electrode 17b of the first row in one cycle of the selection period T1. In contrast, a predetermined data signal voltage Vd is applied to the fifth column. Data electrode 19b. In Figure 3 (8), the selection period Between the two! / ^ cycle to the data electrode 17 of the first column, such as + 32 乂 and the voltage of the evaluation. Therefore, in the non-selection period between the two can be egg pixels (!, !) B with liquid crystal layer A pulse wave voltage of ±4 V is applied. According to the above, between the non-selection period T2, the electric field generated in the B pixel U and the liquid crystal layer % is about zero. 10 When the liquid crystal molecules are in the vertical alignment state, the liquid crystal voltage Vlc is applied. From

VP100(±32V)改變至VF〇(土4V)後急劇地將電場設成約零 時,則液晶分子的螺旋軸相對於兩電極171>、1%而形成朝 向約垂直之方向的螺旋狀態,並形成選擇性反射其對應螺 旋間距之光的平行螺旋狀態。因此,由於B像素G、i)之B 15用液晶層3b形成平行螺旋狀態後會反射光線,因此於B像素 (1、1)顯示藍色。 另一方面,如第3圖(b)所示,於選擇期間丁丨之前半的 約1/2期間及後半的約丨/2期間,相對於資料信號電壓vd 為24V/8V的情形,當掃描信號電壓Vs為0v/ + 32v,則土 20 24V之脈波電壓施加於B像素(i、丨)之6用液晶層汕。如第4 圖所示,一旦預定的低電壓VF! 〇〇b(例如24v)施加於膽固醇 液晶後產生弱的電場,則液晶分子之螺旋構造會形成未完 全解開的狀態。當達到非選擇期間T2,則以選擇期間们之工 /2周期對第1行的掃描電極17b施加例如+ 28v/ + 4V的 23 200816133 電壓,而預定的資料信號電壓vd(例如+ 24V/8V)的電壓 以選擇期間T1之1/2周期施加於資料電極19b。故在非選擇 期間T2之間可對B像素(1、用液晶層补施加—4V/ + 4V的脈波電壓。藉此,在非選擇期間丁2之間,於B像素(1、 5丨)之B用液晶層3b所產生的電場約為零。 於液晶分子之螺旋構造不完全解開的狀態下,若是將 施加於膽固醇液晶之電壓從VF1 oowuAV)改變至VF0(±4 V) 之後急劇地使電場變成約零,則液晶分子之螺旋軸相對於 兩電極17b、19b係朝向約平行的方向而呈螺旋狀態,而成 10為透過入射光的垂直螺旋狀態。因此,B像素(1、1)之B用 液晶層3b呈垂直螺旋狀態而會透過光。再者,如第4圖所 不’施加VP100(±32V)的電壓之後並使液晶層產生強的電場 後,即便是漸漸地除去電場,膽固醇液晶也能形成垂直螺 旋狀態。 15 上述驅動電壓為一例,在室溫下一旦將30〜35V的脈波 狀電壓對兩電極17b、19b之間施加實際效用時間2〇ms,則 B用液晶層3b之膽固醇液晶呈選擇反射狀態(平行螺旋狀 態),若是將15〜22V之脈波狀的電壓施加實際效用時間 2〇ms,則會呈良好的透過狀態(垂直螺旋狀態)。 2 0 藉著與上述B像素(1、1)之驅動同樣進行而驅動對應上 述B像素(1、1)而配置之綠像素及像素〇、u, 處於已積層三個B、G、R像素(1、1)的像素(1、1),進行彩 色顯示。又,使從第1行至第11行之掃描電極17b、17g、l7r, 進行所謂線順序驅動而於每一行改寫各資料電極1 %的資 24 200816133 料電壓,如此一來,可將顯示資料輸出至由像素(1、1)至像 素(n、m)之全部領域’而能實現1訊框(顯示畫面)的彩色顯 示。又,將中間強度之電場賦與膽固醇液晶並急劇地去除 該電場,則呈平行螺旋狀態與垂直螺旋狀態混合存在的中 5間灰階,而能作全彩顯示。When VP100 (±32V) is changed to VF〇 (soil 4V) and the electric field is sharply set to about zero, the spiral axis of the liquid crystal molecules forms a spiral state toward the vertical direction with respect to the two electrodes 171>, 1%. And forming a parallel spiral state of light that selectively reflects its corresponding helical pitch. Therefore, since B 15 of the B pixel G, i) forms a parallel spiral state with the liquid crystal layer 3b, the light is reflected, so that the B pixel (1, 1) displays blue. On the other hand, as shown in Fig. 3(b), during the selection period, the period of about 1/2 of the first half and the period of about 1/2 of the second half are relative to the data signal voltage vd of 24V/8V. When the scanning signal voltage Vs is 0v/+32v, the pulse voltage of the earth 20 24V is applied to the liquid crystal layer of the B pixel (i, 丨). As shown in Fig. 4, once a predetermined low voltage VF! 〇〇b (e.g., 24v) is applied to the cholesteric liquid crystal to generate a weak electric field, the spiral structure of the liquid crystal molecules is in an uncompleted state. When the non-selection period T2 is reached, a voltage of 23 200816133 of, for example, + 28v / + 4V is applied to the scan electrode 17b of the first row by the work period of 2 cycles, and the predetermined data signal voltage vd (for example, + 24V/8V) is applied. The voltage is applied to the data electrode 19b at a period of 1/2 of the selection period T1. Therefore, the B pixel can be applied between the non-selection periods T2 (1, the pulse voltage of -4V/+4V is applied by the liquid crystal layer. Thereby, between the non-selection period and the B pixel (1, 5丨) The electric field generated by the liquid crystal layer 3b is substantially zero. In the state where the spiral structure of the liquid crystal molecules is not completely solved, if the voltage applied to the cholesteric liquid crystal is changed from VF1 oowuAV) to VF0 (±4 V) When the electric field is sharply changed to about zero, the spiral axis of the liquid crystal molecules is spiraled toward the parallel directions with respect to the two electrodes 17b and 19b, and 10 is a vertical spiral state in which incident light is transmitted. Therefore, the B liquid crystal layer 3b of the B pixel (1, 1) is in a vertical spiral state and transmits light. Further, as shown in Fig. 4, after applying a voltage of VP100 (±32 V) and generating a strong electric field in the liquid crystal layer, even if the electric field is gradually removed, the cholesteric liquid crystal can form a vertical spiral state. The driving voltage is an example. When a pulse-like voltage of 30 to 35 V is applied to the electrodes 17b and 19b for 2 〇ms at room temperature, the cholesteric liquid crystal of the B liquid crystal layer 3b is selectively reflected. (Parallel spiral state), if a pulse-like voltage of 15 to 22 V is applied for 2 μms in actual effect time, a good transmission state (vertical spiral state) is obtained. The green pixel and the pixels 〇 and u arranged corresponding to the B pixel (1, 1) are driven in the same manner as the driving of the B pixel (1, 1), and are stacked in three B, G, and R pixels. The pixels (1, 1) of (1, 1) are displayed in color. Further, the scanning electrodes 17b, 17g, and l7r from the first row to the eleventh row are subjected to so-called line sequential driving to rewrite the material voltage of each data electrode 1% in each row, so that the display data can be displayed. Output to the entire field of pixels (1, 1) to pixels (n, m) enables color display of 1 frame (display screen). Further, when the electric field of the intermediate intensity is imparted to the cholesteric liquid crystal and the electric field is sharply removed, the five gray scales which are mixed in the parallel spiral state and the vertical spiral state are displayed, and can be displayed in full color.

10 1510 15

20 其次,利用弟i土木」固/丨、机%以本貫施橡態所構成之 液晶顯示元件1之影像處理方法。以本實施樣態所構成之顯 至元件的影像處理方法,可控制對前述第1顯示部一面掃描 複數像素而一面對前述第1顯示部開始進行將已寫入之影 像資料予以再寫入的再寫入處理後,對前述第2顯示部開2 前述再寫入處理。如此一來,可建構成保持顯示元件之辨 識度在可能限度的情形下來進行顯示部的再寫入處理。 再者,本實施樣態之再寫入處理包含在相同訊框内, 將像素之已顯示狀態設成暫時性不同顯示狀態的復置處 理、以及㈣復置處理後,將影像資料寫人像素,以使二 成與該已顯示狀態相同的顯示狀態的寫人處理。在膽固醇 液晶的情形下,於再寫人處理巾,在設成與示狀 時性不同之齡狀II之垂直配向狀態的復置處理後,^ 寫入影像資料以形成已顯示狀態1此,能將待 = 初始化中的顯示元件之辨識度降低的情形::次 度。又,以下說明將對於顯示元件所具有之全部顯取= 行再寫入處理的情形稱為再新處理。 〜不㈠進 而且本實施樣態以能避免顯示部之 間間隔來開始復置處理。藉此, 、’、、/燒烙的時 此可有效地防止顯示元件的 25 200816133 燒烙而維持良好的顯示狀態。 接著’以第1圖所示之液晶顯示元件1為例來說明依據 本實施樣態所構成之顯示元件的影像處理方法。第5圖表示 依據本實施樣態所構成之顯示元件之影像處理方法的流程 5圖。第6圖係模式化表示依據本實施樣態所構成之顯示元件 之影像處理方法,而進行再新處理中的顯示部6。第6圖0) 表不再新處理之開始前及結束後的顯示部6,第6圖作)及第6 圖(d)表示再寫入處理結束時之顯示部6,第6圖(c)表示作為 第1頒示部之G顯示逝6g之再寫入處理結束之狀態的顯示部 10 6。第6圖⑻至第6圖⑷中,上段所示之圖係模式化表示顯 示口卩6的π彳面,下&所示之圖表示顯示部6的顯示影像。第6 圖⑻至第6圖(d)之上段圖中,顯示部反射或透過己入射之 光L的狀態乃表示通常的顯示狀態,顯示部不反射光匕而僅 透過光的狀態乃表示進行著再寫入處理的狀態。 15 以下如第6圖⑷所示,以塗滿紅色之圓形的圖形r、塗 滿綠色之二角形的圖形g及塗滿藍色之四角形的圖形b,配 置於上側半部為白色而下側半部為灰色之背景的顯示影像 為例,說·示元件的影像處理方法。再者,圖形r配置於 白色背景的領域’圖形g跨白色及灰色背景的領域而配置, 20圖幵/b配置於灰色背景之領域内。本實施樣態建構成因應顯 不影像整體的色調而變更進行再寫入處理之顯示部的順序 或、且5以達到更忐保持復置處理時顯示影像的辨識度。 顯不影像整體的色調可依據例如膽各影像資料的像素值 (灰I5白值)的平均值來判斷,或是抽出已顯示在晝面中心之顯 26 200816133 一、μ象而仗已抽出的顾示影像來判斷。顯示影像整體之色 調以顯示控制電路29來判斷。 —依據本實施樣態所構成之顯示元件的影像處理方法, 如第5圖所示,首先,判斷顯示影像是否為單色(步驟叫。 5於步驟S1比較已寫入在R、G、B顯示部6r、6g、6b之顯示 領域内對應配置之像素的各個影像資料,若是於全部像素 對應配置之各個像素的影像㈣互為侧,關斷為單 色如第1圖所示’例如B像素(i、丨)與分別配置於B像素(1、 1)之正下方的G像素(卜像素〇、1)(均未以圖式顯示) 1〇的影像資料相同,以下同樣地,若是B像素(1、2)至(n、m)、 G像素(1、2)至(η、m)及R像素(1、2)至(n、m)之影像資料分 別相同,則判斷為單色。本例子如第6圖⑻所示為彩色顯 示,因此判斷為非單色顯示(步驟S1之否)。 其次,獨立並決定執行再寫入處理的顏色(步驟S4)。 15於步驟S4,例如顯示控制電路29從影像資料記憶體3〇分別 讀出RGB各影像資料後,對每— RGB求取顯示影像整體之 灰階的平均值。接著,顯示控制電路29將灰階之平均值最 大的顏色判斷為最接近顯示影像整體的色調。如第6圖(a) 所示,本例子之圖形g比其他的圖形r及圖形|3大,因此綠色 20之灰階資料的平均值比其他顏色大。爰此,顯示控制電路 29判斷顯示影像的色調為綠色系。 接著,如第5圖所示,在r、g、B顯示部6r、6g、6b之 中,使反射最接近顯示影像之色調顏色的顯示部,以獨立 於其他顯示部的時序進行再寫入處理(步驟S5)。本例子對於 27 200816133 作為第1顯示部之G顯示部以以獨立的時序開始進行再寫入 處理。如此一來,顯示控制部29可進行控制使錯開R、B顯 不部6r、6b,而開始對g顯示部6g的再寫入處理。 在此’使用第7至9圖來說明再寫入處理時之液晶顯示 5儿件1之驅動方法。第7圖至第9圖表示以比畫面改寫時總括 地復置顯示晝面的方式還低的消耗電力,能復置顯示畫面 之驅動方法的實施例。本實施樣態於再寫入處理中的復置 處理’以數線數線地順序地將液晶復置成垂直配向狀態或 垂直螺旋狀態。如第7圖所示,例如每4線進行復置處理, 1〇將同時進行1線之資料寫入處理的動作以數條線數來反 覆’並進行晝面改寫而能以低消耗電力進行顯示部6的再寫 入處理。 第8圖表示畫面改寫時之施加於1個掃描電極17上之各 素的%壓。於各像素每一次施加正負的交流脈波。於1像 15素之液晶’在第8圖所示之復置期間施加例如4次復置脈 、、士 、 '’並隔著休止區間而在寫入區間施加寫入電壓。 藉著使用本復置驅動方法而能以低消耗電力且高速地 進订再寫入處理。又,可不使用例如將全部像素設成白之 特別的復置資料,即能將寫入資料本身利用於復置處理。 2〇 第7圖中’畫面的下半部表示前次顯示份量的畫面,上 半部表示新的顯示晝面。第7圖所記載之共通模式係順序地 ^擇掃描電極17的線順序掃描模式,段模式係可選擇對每 貪料電極19之施加電壓的模式。掃描側驅動器順序地選 擇掃插電極(掃描線)而輸出ON掃描脈波,而資料電極側驅 28 200816133 動抑並因應要顯示之資料而輸出〇N資料或〇ff資料的脈 波第7圖所示者,表示從最上側的掃描線開始寫入前頭 線卩别述之一線一線的寫入線達到約晝面中央附近的狀 m進行此線上的資料之寫入的同時,進行復置線處理, 5例如就4線進行使用寫入資料之復置的狀態。使用第9圖進 .一步說明此動作。 如第9圖所示,首先進行設定4條線作為復置線的動 作。第9圖中,一旦掃描側之掃描開始信號的Eio信號、及 賦與資料側之存鎖與掃描側之移位的時序的Lp信號被同時 10輸入,則首先從第7圖中的畫面上之上選擇第1條線,而構 成可將貧料寫入此線的狀態。接著當Eio信號與Lp信號等兩 個脈波同時被輸入,則最初被選擇之第1線依據Lp信號而移 位’而選擇第2線,且依據同時輸入之E〇信號而也同時選擇 第1線’而構成選擇了第1線與第2線等兩條線的狀態。反覆 15此動作而在復置線設定區間,從第1線至第4線呈選擇狀 態’且構成可將資料寫入該4條線的狀態。 在其久的休止線設定區間’僅輸入Lp信號,並依據此 脈波而進行1線的移位,而構成選擇了第2線至第5線的狀 態。 2〇 在其次的寫入區間的最初,同時輸入Eio信號與Lp信 號,而從之前選擇的第2線至第5線以每1線1線地移位。其 結果從第3線至第6線呈被選擇的狀態,且因輸入Eio信號而 使畫面上最初的線,即第1線亦呈被選擇的狀態。以此狀態 賦與第1線的資料而可於第1線寫入本來應寫入的資料,且 29 200816133 從第3線至第6線被賦予用以復置第1線之資料的資料,而進 行前次顯示之資料的復置。此時,第2線呈在休止線設定區 間所設定的休止線,而不進行資料的寫入。 對應下一個Lp脈波的輸入,之前所選擇之線被移位, 5從第2線與第4線至第7線呈選擇狀態。以此狀態賦予第2線 的資料而可於第2線寫入本來應寫入的資料,且進行從第4 線至第7線之前次顯示資料的復置。 又,依據下一個Lp脈波的輸入,同樣地選擇從第2線與 第5線至第8線而進行第3線之資料的寫入。於第3線在其二 10個之前的Lp脈波輪入時已寫入第1線的資料,惟,一般而 言,膽固醇液晶之反應時間因材料的物性而不同,為數十 ms範圍。在作為第2線之資料寫入時序之Lp脈波的輸入時 點’第3線呈休止區間,於此區間(例如50ms以下),第3線 之像素呈垂直螺旋狀態、或朝向平行螺旋狀態轉移之中途 15的過渡狀態,而在實際賦與第3線資料的時點,乃決定垂直 螺旋狀態或平行螺旋狀態之其中任一者以作為實際的寫入 狀態。如此的動作反覆至例如第240線,即反覆至進行書面 上最下側之線之資料的寫入。 復置區間之第5至8線與寫入線之第3線同步。因此,第 20 $至弟8線係混合存在垂直配向狀態的像素與垂直螺旋狀維 的像素。爰此,於第5至第8線,光會透過液晶層而顯示光 吸收層的顏色(例如黑色)。在此復置區間,液晶分子從依據 已寫入之影像資料的狀態轉移至垂直配向狀態那般已解開 螺旋構造的狀態。之後,經過休止區間而於寫入區間,為 30 200816133 :再次寫入影像資料而對液晶層施加預定的液晶施加電 上述之復置_紐較於第4_化財法那般無 ^區間的情形’由於要先將液晶分子設成垂直配向狀態 5 因此能將液晶層設成良好的垂直螺旋狀態。如 末:夜晶顯示元件1可獲得優異的對比之比。20 Next, the image processing method of the liquid crystal display element 1 which is composed of the solid state, the solid state, and the machine is used. According to the image processing method of the display device configured in the present embodiment, it is possible to control scanning of the plurality of pixels on the first display portion and to rewrite the written image data to the first display portion. After the rewriting process, the second display unit is turned on by the second rewriting process. In this way, it is possible to construct a rewriting process of the display unit while keeping the visibility of the display element to a limit. Furthermore, the re-writing process of the present embodiment includes the reset processing of setting the displayed state of the pixel to a temporarily different display state in the same frame, and (4) after the reset processing, writing the image data to the human pixel. , in order to make the 20% of the displayed state of the same display state of the writer processing. In the case of the cholesteric liquid crystal, after the human processing towel is rewritten, after the resetting process of the vertical alignment state of the age II different from the time of the display, the image data is written to form the displayed state. The case where the visibility of the display element to be initialized can be reduced: sub-degree. Further, the following description will be referred to as a re-processing for the case where all the display=row rewrite processing of the display element is performed. ~ No (1) In the present embodiment, the reset processing is started in such a manner as to avoid the interval between the display portions. Thereby, when ', ', or after burning, the display element 25 200816133 can be effectively prevented from being burned to maintain a good display state. Next, the image processing method of the display element constructed in accordance with the present embodiment will be described by taking the liquid crystal display element 1 shown in Fig. 1 as an example. Fig. 5 is a flow chart 5 showing an image processing method of a display element constructed in accordance with the present embodiment. Fig. 6 is a view schematically showing the display unit 6 in the reprocessing process according to the image processing method of the display element constituted by the present embodiment. Fig. 6 is a view showing the display unit 6 before and after the start of the new process, and Fig. 6 (d) showing the display unit 6 at the end of the rewrite process, Fig. 6 (c) The display unit 106 indicates a state in which the rewriting process of 6 g is completed as the G of the first issuing unit. In Figs. 6(8) to 6(4), the diagram shown in the upper stage is a schematic representation of the π-彳 plane of the display port 6, and the diagram shown in the lower & shows the display image of the display unit 6. In the upper diagrams of FIGS. 6(8) to 6(d), the state in which the display portion reflects or transmits the incident light L indicates a normal display state, and the state in which the display portion does not reflect the pupil and transmits only the light indicates that the display is performed. The state of rewriting processing. 15 As shown in Fig. 6 (4), the pattern r painted with a red circle, the pattern g coated with a green triangle, and the pattern b coated with a square of blue are arranged in the upper half to be white and down. The display image in which the side half is a gray background is an example, and the image processing method of the component is shown. Furthermore, the graphic r is arranged in the field of the white background. The graphic g is arranged across the fields of the white and gray backgrounds, and the 20 images/b are arranged in the field of the gray background. In the present embodiment, the order of the display unit for rewriting processing is changed in accordance with the hue of the entire image, and 5 is used to achieve the visibility of the displayed image when the reset processing is performed. The overall color tone of the image can be judged according to the average value of the pixel value (the gray value of the gray I5) of the image data of the biliary image, or the image that has been displayed at the center of the sputum surface is extracted. Judging by images. The color of the entire display image is judged by the display control circuit 29. - According to the image processing method of the display element constructed in this embodiment, as shown in Fig. 5, first, it is judged whether or not the display image is monochrome (step is called. 5. The comparison is written in R, G, B in step S1. The respective video data of the pixels arranged in the display area of the display units 6r, 6g, and 6b are turned off to be monochrome as shown in FIG. 1 when the video (4) of each pixel corresponding to all the pixels is disposed on the side of each other. The pixels (i, 丨) are the same as the image data of the G pixels (the pixels 〇, 1) disposed directly below the B pixels (1, 1) (both are not shown in the figure), and the same applies hereinafter. When the image data of the B pixels (1, 2) to (n, m), the G pixels (1, 2) to (η, m), and the R pixels (1, 2) to (n, m) are the same, it is judged as Monochrome. This example shows a color display as shown in Fig. 6 (8), so it is judged to be non-monochrome display (No in step S1). Next, the color of the rewrite process is determined independently (step S4). S4, for example, the display control circuit 29 reads out each of the RGB image data from the image data memory 3, and then obtains a display for each RGB. The display control circuit 29 determines the color having the largest average value of the gray scale as the color closest to the entire display image. As shown in Fig. 6(a), the graph g ratio of this example is shown. The other graphics r and graphics|3 are large, so the average value of the grayscale data of the green 20 is larger than the other colors. Thus, the display control circuit 29 determines that the color tone of the display image is green. Next, as shown in FIG. Among the r, g, and B display portions 6r, 6g, and 6b, the display portion that reflects the hue color closest to the display image is subjected to rewrite processing at a timing independent of the other display portions (step S5). 27 200816133 The G display unit as the first display unit starts the rewrite process at an independent timing. In this way, the display control unit 29 can perform control so as to shift the R and B display portions 6r and 6b to start the operation. The rewriting process of the display unit 6g. Here, the driving method of the liquid crystal display device 1 at the time of the rewriting process will be described using Figs. 7 to 9. Fig. 7 to Fig. 9 show the case of rewriting in the case of rewriting the picture. The way to reset the display surface is still low. An embodiment of the driving method capable of resetting the display screen. In the present embodiment, the resetting process in the rewriting process sequentially resets the liquid crystal into a vertical alignment state or a vertical spiral state in a number line. As shown in Fig. 7, for example, the reset processing is performed every four lines, and the operation of writing data for one line at the same time is repeated by a number of lines and the surface is rewritten to enable low power consumption. The rewriting process of the display unit 6. Fig. 8 is a view showing the % voltage of each element applied to one scanning electrode 17 at the time of screen rewriting. Positive and negative AC pulse waves are applied to each pixel at a time. In the reset period shown in FIG. 8, the liquid crystal 'applies, for example, four times to reset the pulse, and the '', and applies a write voltage in the writing section across the rest interval. By using this reset driving method, the rewriting process can be ordered with low power consumption and high speed. Further, it is possible to use the write data itself for the reset processing without using, for example, a special reset data in which all the pixels are set to white. 2〇 In the seventh figure, the lower half of the screen indicates the screen for the previous display of the weight, and the upper half indicates the new display panel. The common mode described in Fig. 7 sequentially selects the line sequential scanning mode of the scanning electrode 17, and the segment mode selects a mode for applying a voltage to each of the grazing electrodes 19. The scanning side driver sequentially selects the scanning electrode (scanning line) and outputs the ON scanning pulse wave, and the data electrode side drive 28 200816133 is deactivated and outputs the pulse data of the 〇N data or the 〇 ff data according to the data to be displayed. In the case shown, it is indicated that the writing line is written from the uppermost scanning line, and the writing line of one line of the line is up to the vicinity of the center of the pupil surface, and the data is written on the line. In the processing, for example, the state in which the write data is reset is performed on the four lines. Use Figure 9 to proceed with this step. As shown in Fig. 9, first, four lines are set as the operation of the reset line. In Fig. 9, once the Eio signal of the scanning start signal on the scanning side and the Lp signal of the timing of shifting the data side and the shifting of the scanning side are simultaneously input 10, first from the screen in Fig. 7 The first line is selected above, and constitutes a state in which the poor material can be written to the line. Then, when two pulses such as the Eio signal and the Lp signal are simultaneously input, the first selected line is shifted by the Lp signal to select the second line, and the second line is simultaneously selected according to the simultaneously input E〇 signal. The 1 line ' constitutes a state in which two lines such as the first line and the second line are selected. By repeating this operation, in the reset line setting section, the first line to the fourth line are in a selected state', and a state in which data can be written into the four lines is formed. Only the Lp signal is input in the long-term rest line setting section ‘, and the 1-line shift is performed in accordance with the pulse wave, and the state in which the second line to the fifth line are selected is formed. 2〇 At the beginning of the next write interval, the Eio signal and the Lp signal are simultaneously input, and the second line to the fifth line selected from the previous line are shifted by one line per line. As a result, the third line to the sixth line are selected, and the first line on the screen, that is, the first line is also selected by the input of the Eio signal. In this state, the data of the first line can be written, and the data to be written can be written in the first line, and 29 200816133 is given the data for resetting the data of the first line from the third line to the sixth line. The resetting of the previously displayed data is performed. At this time, the second line is the rest line set in the rest line setting area, and data is not written. Corresponding to the input of the next Lp pulse wave, the previously selected line is shifted, and 5 is selected from the 2nd line and the 4th line to the 7th line. By adding the data of the second line in this state, the data to be written can be written on the second line, and the data to be displayed from the fourth line to the seventh line can be displayed. Further, based on the input of the next Lp pulse wave, the writing of the data of the third line from the second line and the fifth line to the eighth line is similarly selected. In the third line, the data of the first line has been written when the Lp pulse before the second time is rounded. However, in general, the reaction time of the cholesteric liquid crystal differs depending on the physical properties of the material, and is in the range of several tens of ms. At the input of the Lp pulse as the data write timing of the second line, the third line is a pause interval. In this interval (for example, 50 ms or less), the pixels of the third line are in a vertical spiral state or are shifted toward a parallel spiral state. The transition state of the middle 15 is determined, and when the third line data is actually assigned, any one of the vertical spiral state or the parallel spiral state is determined as the actual write state. Such an action is repeated, for example, to the 240th line, that is, the writing of the data to the line on the lowermost side of the writing is repeated. Lines 5 through 8 of the reset interval are synchronized with the third line of the write line. Therefore, the 20th to the 8th line is a mixture of pixels in the vertical alignment state and pixels in the vertical spiral dimension. Thus, on the 5th to 8th lines, light passes through the liquid crystal layer to display the color (e.g., black) of the light absorbing layer. In this reset section, the state in which the liquid crystal molecules are shifted from the state in which the image data have been written to the state of the vertical alignment has been unwrapped. Then, after the rest interval is in the writing section, it is 30 200816133 : the image data is written again, and a predetermined liquid crystal is applied to the liquid crystal layer to apply the above-mentioned resetting_News compared with the fourth_chemical method. In the case, since the liquid crystal molecules are first set to the vertical alignment state 5, the liquid crystal layer can be set to a good vertical spiral state. For example, the night crystal display element 1 can obtain an excellent contrast ratio.

又,上述復置驅動法使用泛用的驅動器扣而能驅動膽 因此可實«且省電力。於上述復置驅動法使 =用㉔動抓的情形下,例如—旦資料電極形成開啟 各像細使從垂直配㈣態轉移至垂直螺 第6圖⑻表示使用上述復置驅動法而進行再寫入處理 部6。第6圖(b)之圖中的下段表示從G顯示部6g之主 面上侧順序地掃描該掃描電極17g(參照第旧)而至畫面約—2 /3結束再寫入處理(箭頸Sg),使用復置驅動法而對領域。 b所包含之例如6條掃描電極進行再寫人處理的㈣。再寫入 處理之復置處理於第7圖所示之復置區間執行,再寫入處理 之寫入處理於第7圖所示之寫入區間執行。 顯示控制部29控制掃描電極驅動電路20及資料電極驅 動電路21而對G顯示部Μ進行再寫入處理,以使約相同时 加的電壓脈波施加於G顯示部0g之複數的像素。顯示控制電路 29將例如第9圖所示之信號輸出至掃描電極驅動電路二及 資料電極驅動電路21。進行著再寫入處理之復置處理的液 晶層形成垂直配向狀態或垂直螺旋狀態,因此,作為第^顯 不部之G顯示部6g的領域α形成透過光L的狀態。轉移至垂 31 200816133 第巧向狀態而成為透過光L的狀態。相對於此,作為第2及 _ 10 15 20 ㈣,示^ 6b維持反射或透過光l之通常 之進=態。藉此,如第6_下段所示,液晶顯示元^ 域為綠—再寫人處理之掃描電極17bjL顯示黑色,而其他領 該色Ί一角形的圖形g、與通常顯示同樣的紅色圖形r及 Γ7ίΓΓ角形的圖形b、以及進行著再寫入處理之掃描電極 為中間灰階的洋紅,而其他則顯示與通常顯示同樣的 入^灰色的背景。如此—來,液晶顯示私冰進行再寫 顯之掃財上的顯示畫面,能維持可充分辦識與通常 、、同顏色之;it#顯不時的影像資料那般程度的顯示。 t上所述’使用第7圖至第9圖所至之復置驅動方法, 之/掃描例如分別配置於^行至第η行之掃描電極i7gFurther, the above-described reset driving method can drive the biliary using a general-purpose driver buckle, thereby saving power and saving power. In the case of the above-mentioned reset driving method, in the case of using 24 moving, for example, the data electrode is formed to open the image, and the image is transferred from the vertical (four) state to the vertical screw. FIG. 6 (8) shows that the above-described reset driving method is used. The processing unit 6 is written. The lower part of the diagram of Fig. 6(b) shows that the scanning electrode 17g is sequentially scanned from the main surface side of the G display portion 6g (refer to the old), and the screen is re-written at about -2 /3 (arrow and neck) Sg), using the reset drive method for the field. b includes, for example, six scanning electrodes for rewriting (4). The reset processing of the rewrite processing is executed in the reset section shown in Fig. 7, and the write processing of the rewrite processing is executed in the write section shown in Fig. 7. The display control unit 29 controls the scan electrode driving circuit 20 and the data electrode driving circuit 21 to rewrite the G display unit , so that voltage pulses applied at the same time are applied to a plurality of pixels of the G display unit 0g. The display control circuit 29 outputs, for example, the signals shown in Fig. 9 to the scan electrode driving circuit 2 and the data electrode driving circuit 21. Since the liquid crystal layer subjected to the re-writing process is formed in a vertical alignment state or a vertical spiral state, the field α of the G display portion 6g as the second display portion is in a state of transmitting the light L. It shifts to the state in which the light L is transmitted through the state of the light. On the other hand, as the second and _ 10 15 20 (d), the display 6 6b maintains the normal state of the reflected or transmitted light l. Thereby, as shown in the sixth paragraph, the liquid crystal display element is green - the scanning electrode 17bjL which is processed by the person is displayed in black, and the other image g which is the one color of the color is displayed, and the same red pattern as the normal display The image b of the ΓΓ7ίΓΓ shape and the scanning electrode subjected to the rewriting process are magenta in the middle gray scale, and the others display the same background of the gray image as the normal display. In this way, the liquid crystal display private ice is re-written to display the display screen of the sweeping money, which can maintain the full display and the usual color, the same color; it# display the image data from time to time. In the above, the reset driving method using the seventh to ninth diagrams is used, and the scanning/scanning is performed, for example, on the scanning electrodes i7g of the n rows to the nth rows, respectively.

一立. ' I )灸 ’結束作為第1顯示部之G …、員不部6g的再寫入處理。 接著,如第5圖所示,開始作為第2及第3顯示部之r、 用顯示部6r、6b的再寫入處理(步驟S5)〇r、b用顯示部6r、 >據/、G顯不部6g同樣的復置驅動法進行再寫入處理。如 弟6圖⑷中下段所示,從R、B用顯示物、6b之畫面上側 順序地掃描該掃描電㈣、17b(參照第碉)至畫面的Μ 而結束再寫入處理(箭頭Sr、Sb),且表示使用復置驅動法對 ϋ或α所包含之例如6條掃描電極n —進行再寫入處 理的狀態。 .、、員不控制部29控制掃描電極驅動電路Μ及資料電極驅 動電㈣而對R、B顯示雜、_行再寫人處理,以使約 32 200816133 10 15 20 相同波形的電壓脈波施加於R、B顯示部6r、6b之複數的像 素(複數的第2及第3像素)。進行著再寫入處理之復置處理的 液晶層形成垂直配向狀態或垂直螺旋狀態。因此,如第6圖 (d)之上段所示’作為R、B顯示部6r、6b的領域α形成透過 光L的狀態。相對於此,G顯示部6g維持反射或透過光L之 通常的顯示狀態。藉此,如第6圖(d)下段所示,液晶顯示元 件1之進行著與通常顯示同樣的紅色圖形]^及綠色之三角形 的圖形g、進行著再寫入處理之掃描電極17『、171^上為黑色 而其他領域為監色的四角形圖形b、以及進行著再寫入處理 之掃描電極17r、17b上為中間灰階的綠色,而其他為與通 常顯示同樣的白色或灰色的背景。如第6圖⑷下段所示,液 晶顯示元件i於進行再寫入處理之R、B顯示部&、处之掃描 線171·、17b上_示4面’能維持可充分辦識與通常顯示 不同顏色之通常顯示時的影像㈣那般程度的顯示。 如上所述,使用第7圖至第9圖所至之復置驅動法,順 序地掃描例如分別配置於第1行至第晴之掃描電極17r、 ⑺之複數的像素(複數的第2及第3像素)後,結束作為第2 及第3顯㈣之R、_部6P❿的再寫人處理,同時結束 顯示部6的再新處理。 =影像整體色調為綠色系為前提來說明,而在 忒色凋為藍色糸的情形於步驟料 _ ^ 対於作為第1顯示部之Β =里錯開會反射其他色的R、B顯示部&、一 接著於步·5執行對於作為第2及_示部 欠色之R、G顯示部6r、6g的再寫入處理。又,該 33 200816133 色調為紅色系的情形下,於步驟S4對於作為第1顯示部之b 顯示部6b,錯開會反射其他色的R、b顯示部6r、6b而開始 再寫入處理。接著於步驟S5,對於作為第2及第3顯示部之 反射殘留色之R、G顯示部6r、6g進行再寫入處理。 5 又’本實施樣態如第6圖⑻至第6圖(d)之下段所示,R、 B顯示部6r、6b之再寫入處理係於G顯示部6g之1訊框的再寫 入處理結束後開始進行。但是,如第6圖(b)之下段所示,再 寫入處理時之顯示影像與通常不同的情形為全部晝面中的 一部分。因此’若是R、G、B顯示部6r、6g、6b之分別的 10再寫入處理不同步開始的話,作為第2及第3顯示部之R、b 顯示部6r、6b之再寫入處理亦可於作為第^員示部之g顯示 部6g之1訊框的再寫入處理結束前開始。此情形下,於再寫 入處理時顯示領域與通常不同的領域雖然比第6圖(b)之下 段所示之該領域寬廣,但是因相對於全部顯示領域之該領 15 域較窄,因此可維持能充分辨識通常顯示時之影像資訊之 程度的顯示。 如第5圖所示,於步驟81若是判斷為單色顯示的話(步 驟S1之Y) ’進行作為第1顯示部之G顯示部6g的再寫入處理 (步驟S2)。綠色在RGB之中視覺度最高且對於觀看顯示影像 2〇之眼睛的影響最大,因此單獨對作為G顯示部6g進行再寫入 處理。接著對作為第2及第3顯示部之R、B顯示部6r、6b進 行再寫入處理(步驟S3)。如此一來,於R、B顯示部6r、6b 之再寫入處理結束之同時,結束顯示部6之再新處理。步驟 S2、S3之各處理分別與步驟s5、s6之各處理相同,因此省 34 200816133 略說明 進行再寫入處理之順序不限於第 可於處理步驟㈣以步㈣/ 之順序,例如 ,職後處理步·2 ’於處理步獅後處理步驟 5I I. ' I ) Moxibustion 'End of the re-writing process of G ... and 6g of the first display unit. Then, as shown in FIG. 5, the rewriting process for the display portions 6r and 6b as the second and third display portions (step S5) 〇r, b for the display portion 6r, > The re-writing process is performed by the same reset driving method of the G display portion 6g. As shown in the lower part of Fig. 4 (4), the scanning power (4) and 17b (refer to the third) are sequentially scanned from the upper side of the R and B display objects and the screen of 6b to the screen Μ, and the rewriting processing is ended (arrow Sr, Sb), and shows a state in which, for example, six scanning electrodes n included in ϋ or α are rewritten by the reset driving method. The member control unit 29 controls the scan electrode driving circuit Μ and the data electrode driving circuit (4), and displays the R and B display miscellaneous and _ lines to write the human pulse so that the voltage waveform of the same waveform is applied to about 32 200816133 10 15 20 A plurality of pixels (a plurality of second and third pixels) of the R and B display portions 6r and 6b. The liquid crystal layer subjected to the reset processing of the rewriting process forms a vertical alignment state or a vertical spiral state. Therefore, as shown in the upper part of Fig. 6(d), the field α of the R and B display portions 6r and 6b forms a state in which the transmitted light L is formed. On the other hand, the G display unit 6g maintains the normal display state of the reflected or transmitted light L. As a result, as shown in the lower part of FIG. 6(d), the liquid crystal display element 1 is subjected to the same red pattern as the normal display and a green triangle pattern g, and the scanning electrode 17 subjected to the rewriting process. 171^ is a black and other areas of the quadrilateral pattern b, and the scanning electrodes 17r, 17b performing the rewriting process are green of the intermediate gray scale, and the others are the same white or gray background as the normal display. . As shown in the lower part of Fig. 6 (4), the liquid crystal display element i can be maintained on the R and B display portions & the scanning lines 171· and 17b at the rewriting process. Display the display of different colors (4) of the usual display. As described above, by using the reset driving method shown in FIGS. 7 to 9 , for example, pixels of the plurality of scanning electrodes 17r and (7) arranged in the first row to the sunny state are sequentially scanned (the second and third of the plurality) After the pixel, the rewriting process as the R and _ portions 6P of the second and third display (four) is completed, and the renewing process of the display unit 6 is ended. = The overall color tone of the image is assumed to be green, and the case where the color is blue is 于 于 步骤 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 Β Β Β Β Β Β Β Β Β Β &, then, in step 5, the rewriting process for the R and G display portions 6r and 6g which are the under-colors of the second and _th portions is performed. In the case where the color tone is red, the display unit 6b as the first display unit is erroneously reflected in the R and b display units 6r and 6b of the other colors to start the rewriting process. Next, in step S5, the R and G display portions 6r and 6g which are the reflection residual colors of the second and third display portions are rewritten. 5 In the present embodiment, as shown in the lower part of FIGS. 6(8) to 6(d), the rewriting process of the R and B display portions 6r and 6b is performed by rewriting the frame of the G display portion 6g. The process starts after the process is completed. However, as shown in the lower part of Fig. 6(b), the display image at the time of rewriting processing is a part of all the faces except for the usual case. Therefore, if the 10 rewrite processes of the R, G, and B display sections 6r, 6g, and 6b are not synchronized, the rewriting processing of the R and b display sections 6r and 6b as the second and third display sections is performed. It is also possible to start before the end of the rewriting process of the 1 frame of the g display unit 6g as the second member. In this case, the field in which the display field is different from the usual one in the rewriting process is wider than the field shown in the lower part of Fig. 6(b), but since the domain 15 is narrow relative to the entire display field, It is possible to maintain a display that fully recognizes the degree of image information normally displayed. As shown in Fig. 5, if it is determined in step 81 that the monochrome display is performed (Y in step S1), the rewriting process as the G display portion 6g of the first display portion is performed (step S2). Green has the highest visibility among RGB and has the greatest influence on the eyes that view the display image. Therefore, the G display unit 6g is separately rewritten. Next, the R and B display portions 6r and 6b as the second and third display portions are rewritten (step S3). As a result, the rewriting process of the display unit 6 is completed at the same time as the rewriting process of the R and B display portions 6r and 6b is completed. The processes of steps S2 and S3 are the same as the processes of steps s5 and s6, respectively. Therefore, the process of re-writing processing is not limited to the order of step (4)/, for example, after the job. Processing step · 2 'after processing step lion processing steps 5

10 序進行顯示部6之再寫人處理時,以第步卿 =之Τ之顯示部成為第1顯示部,以第地2或步驟 S5驗之料部成為糊導又,亦可於步_、%, 處理r、b_阶、6b而分別單獨地處理各顯示部 2鴨,™_8、响曝_餘的顏 色而以母-顏色分別單麟理縣部。而且,亦可不進行 步職之處理,而分別單獨地順序進行R、G、_示物、 6g、6b的再寫入處理。When the re-writing process of the display unit 6 is performed in sequence, the display unit of the step === becomes the first display unit, and the material portion of the second or step S5 is the paste guide, and the step _ , %, processing r, b_order, and 6b, and processing the respective display unit 2 ducks, TM_8, and the remaining colors, respectively, and the mother-colors are separately used in the county. Further, the rewriting process of R, G, _ exhibit, 6g, and 6b may be sequentially performed separately without performing the stepping process.

束後的顯不部6。第Ug 接著使用第10圖及第11圖來說明液晶顯示元件!之再 ^處理的開始時期。本實施樣態之再新處理係以能避免 顯不領域内之像素燒烙的時間間隔或依據設置液晶顯示元 15件1之外抑境的照度而進行。第職及第丨丨圖係說明顯示 項域之认的5平價方法。第1〇圖表示燒烙評價時及評價結 束後之顯不衫像的一例。圖中之左側圖係例示像素之燒絡 評價時的顯示部6,圖中之右側圖係例示像素之燒烙評價結 表示第10圖所示之黑白相間方袼花 20 紋(方格花紋圖安彳+时 木)之_示時間與燒烙度ΔΥ之關係的曲線 圖。第11圖之播鉍主-咖 、袖表不黑白相間花紋之顯示時間(h),縱軸After the bundle, there is no part 6. Ug Next, use the 10th and 11th drawings to illustrate the liquid crystal display element! The beginning of the processing. The reprocessing of this embodiment is performed at a time interval which avoids burning of pixels in the display field or according to the illumination of the liquid crystal display element. The first and third figures illustrate the 5 parity method that shows the recognition of the item field. Fig. 1 is a view showing an example of the appearance of the shirt after the evaluation of the burn and the end of the evaluation. The left side of the figure is an example of the display unit 6 for the evaluation of the burning of the pixels, and the right side of the figure is an example of the burning evaluation of the pixel, which shows the black and white square flower 20 pattern shown in Fig. 10 (checkered pattern) The graph of the relationship between the time and the degree of burnt ΔΥ of Anzhen + Shimu. Figure 11 shows the display time (h) of the black and white pattern between the main and the coffee and the sleeves, and the vertical axis.

表示燒烙度Δ γ。w A 乂向圖中之左右方向延伸的虛線所示之直 線# ;、凡丈。之辨識界限的境界,以向圖中之上下方向延 伸的虛線所示之言始 農緣,表示本實施樣悲之再新處理的時間 35 200816133 間隔。又,圖中所示之粗箭頭表示可辨識燒烙之燒烙度Δγ 的範圍。 如第10圖所示,例如使顯示部6顯示黑白相間方格花紋 預疋%間後,使喊不畫面全面顯不白色或一定中間灰階 5的顏色。如此一來,不論使顯示畫面全面顯示白色或一定 中間灰階的顏色,均會有第10圖之圖中右侧例示之燒烙了 黑白相間方格花紋而殘留於顯示畫面的情形。顯示部6之燒 絡程度能以ΔΥ為指標來評價。ΔΥ可由黑白相間方格花紋 之中的顯示白領域Α之明亮度yw及顯示黑領域β之明亮度 1〇 Yb ’並藉由△YcYw —Yb而算出。顯示部6之燒烙愈強則 頒不黑領域B會變黑,因此Yb值會降低而Yw與Yb之差 會變 大。因此,可判斷ΔΥ值愈大,則像素之燒烙愈強。以預定 的時間間隔例如經過〇日〜數日反覆計算出ΔΥ,而可獲得 第11圖所示的曲線圖。又,在測定反射率方面,可使用例 15如大塚電子株式會社製之分光測定機。 如第11圖所示,像素之燒烙係顯示時間愈長ΔΥ愈增 加。如圖中以虛線之直線所示,一般為ΔΥ^〇·5(將標準白 色板之Υ值設為1〇〇時)的話,可以說顯示畫面之燒烙為不構 成影響的程度。因此,本實施樣態之像素燒烙的容許範圍 5又疋於△ YS 0.5。對顯示時間之△ γ的特性因使用的液晶材 料等而不同。本實施樣態若將相同影像顯示13.5小時,則 △ Υ>〇·5,於顯示晝面可辨識燒烙現象。因此,本實施樣 悲在對於像素之燒烙要確保預定效益的目的下,再新處理 設定成以12小時周期來進行。如此一來,液晶顯示元件1之 36 200816133 △γ可控制在未滿〇·5,因此可防止顯示畫面的燒烙而能達 到提昇顯示品質。若是本實施樣態之再新處理以24小時周 期來進行,則ΔΥ超過〇·5,因此顯示畫面會產生燒烙而損 吾液晶顯示元件1的顯示品質。 5 例如顯示控制電路2 9記憶著開始用以防止發生燒烙之 再新處理的時間間隔。顯示控制電路29在從計時器27輸出 之時間資料超過該時間間隔的話,開始第5圖所示之顯示部 6的再新處理。顯示控制電路29於R、g、Β顯示部6r、6g、 6b之再新處理結束後,復置該計時器27的時間資料而再開 10始比較從計時器27輸出之時間資料與開始再新處理的時間 間隔。 又,建構成液晶顯示元件1依據從測知部25之光感測器 26輸出之照度資料,而能與上述時間間隔獨立且自發性地 開始再新處理。顯示控制電路29於從光感測器26輸出之照 15度資料低於預定門檻值的話,開始第5圖所示之顯示部6的 再新處理。顯示控制電路29於顯示部6之再新處理結束後, 再開始比較從光感測器26輸出之照度資料與開始再新處理 的門根值。如此一來’液晶顯示元件1以具有光感測器26, 而於液晶顯示元件1被帶入暗的場所而變成無法看到書面 20的狀況下,即使達到12小時周期,顯示控制電路29亦能自 發性地開始顯示部6的再新處理。如此一來,可防止像素的 燒烙且能提昇液晶顯示元件1的便利性。用以開始再新處理 的門檻值預先設定成例如50(1χ)。由於液晶顯示元件丨為反 射型顯示元件’因此一旦周圍的照度在50(1χ)以下,則辨識 37 200816133 度明顯降低。因此, 理的指標。 (ΐχ)的…、度適合作為自發性的再新處 如以上說明,依據本實施樣態的話, 液晶顯示元件1Indicates the degree of burnt Δ γ. w A 直 The straight line indicated by the dotted line extending in the left-right direction in the figure; The boundary of the boundary is identified by the dotted line extending upwards and downwards in the figure, indicating the time of re-processing of this implementation. 35 200816133 Interval. Further, the thick arrow shown in the figure indicates the range in which the degree of burnt Δγ of the burnt can be recognized. As shown in Fig. 10, for example, after the display unit 6 displays the black and white checkered pattern, the color of the screaming screen is not white or the intermediate gray scale 5 is displayed. In this case, regardless of whether the display screen is completely white or has a certain intermediate gray scale color, the black and white checkered pattern burned on the right side of the figure in Fig. 10 may remain on the display screen. The degree of burning of the display unit 6 can be evaluated by using ΔΥ as an index. ΔΥ can be calculated by displaying the brightness yw of the white field 及 and the brightness 1 〇 Yb ′ of the black field β among the black and white checkered patterns and by ΔYcYw — Yb. The stronger the burning of the display unit 6 is, the black area B will be blackened, so the Yb value will decrease and the difference between Yw and Yb will become larger. Therefore, it can be judged that the larger the ΔΥ value, the stronger the burning of the pixels. The ΔΥ is repeatedly calculated at predetermined time intervals, for example, from the next day to several days, and the graph shown in Fig. 11 can be obtained. Further, in the measurement of the reflectance, a spectroscopic measuring machine manufactured by Otsuka Electronics Co., Ltd. can be used. As shown in Fig. 11, the burning time of the pixel shows that the longer the Δ is, the more the aging is increased. As shown by the dotted line in the figure, generally ΔΥ^〇·5 (when the 白 value of the standard white plate is set to 1 )), it can be said that the burning of the display screen is such that it does not constitute an influence. Therefore, the allowable range 5 of pixel burning in this embodiment is again Δ YS 0.5. The characteristics of Δ γ for the display time differ depending on the liquid crystal material used and the like. In the present embodiment, if the same image is displayed for 13.5 hours, Δ Υ > 〇·5, the burnt phenomenon can be recognized on the display side. Therefore, in the present embodiment, the new processing is set to be performed in a 12-hour cycle for the purpose of ensuring a predetermined benefit for the burning of the pixels. As a result, the liquid crystal display element 1 36 200816133 Δγ can be controlled to be less than 〇·5, so that the display screen can be prevented from being burned and the display quality can be improved. If the reprocessing of the present embodiment is performed in a 24-hour period, ΔΥ exceeds 〇·5, so that the display screen is burned to deteriorate the display quality of the liquid crystal display element 1. 5 For example, the display control circuit 29 memorizes the time interval from which the reprocessing of the burn-in is started. When the time data output from the timer 27 exceeds the time interval, the display control circuit 29 starts the renewing of the display unit 6 shown in Fig. 5. After the re-processing of the R, g, and Β display units 6r, 6g, and 6b is completed, the display control circuit 29 resets the time data of the timer 27 and restarts 10 to compare the time data output from the timer 27 and start renewing. The time interval for processing. Further, the liquid crystal display element 1 is constructed so that the illuminance data output from the photo sensor 26 of the detecting unit 25 can be independently and spontaneously started to be newly processed in accordance with the above-described time interval. The display control circuit 29 starts the renewing of the display unit 6 shown in Fig. 5 when the 15 degree data output from the photo sensor 26 is lower than the predetermined threshold value. After the re-processing of the display unit 6 is completed, the display control circuit 29 starts comparing the illuminance data output from the photo sensor 26 with the gate root value at which the re-processing is started. In this way, the liquid crystal display element 1 has the photo sensor 26, and when the liquid crystal display element 1 is brought into a dark place and the writing 20 cannot be seen, even if the 12-hour period is reached, the display control circuit 29 The renewing of the display unit 6 can be started spontaneously. As a result, the burning of the pixels can be prevented and the convenience of the liquid crystal display element 1 can be improved. The threshold value for starting the re-processing is preset to, for example, 50 (1 χ). Since the liquid crystal display element 丨 is a reflective display element', once the ambient illuminance is below 50 (1 χ), the recognition 37 200816133 degree is significantly lowered. Therefore, the rational indicators. (ΐχ)..., degree is suitable as a spontaneous renewed place. As explained above, according to this embodiment, the liquid crystal display element 1

10 藉著以不同的時序對R、G、B顯示部6r、6g、6b之中至+ 之一顯示部進行再寫人處理,而在可保持顯示畫面之可二 識度的情形下,能執行顯示部6的再新處理。又 一丨丄'一 4文日日”、、員 讀1能因應顯示影像而選擇可進行再寫人處理之R、G、色 顯示部的組合’因此可將對於再寫人處理時之_性的影 響降低示最小限度。而且,液晶顯示元則能以顯示部 複數的像素不產生燒烙的間隔來進行再新處理,而能防止 像素的燒烙且能獲得良好的顯示品質。10 by re-writing the display unit of one of the R, G, and B display portions 6r, 6g, and 6b to the display portion at a different timing, and while maintaining the visibility of the display screen, The re-processing of the display unit 6 is performed. Another one's 'one-four-day day', and the member's reading 1 can select the combination of R, G, and color display parts that can be rewritten by the user in response to the display of the image. The liquid crystal display element can be reprocessed at intervals in which the pixels of the display portion are not burned at the interval of firing, and the burning of the pixels can be prevented and good display quality can be obtained.

本發明不限於上述實施樣態而能作各種的變形。 上述實施樣態係建構成R、G、B顯示部6r、6g、6r可佃 別獨立地驅動,惟,本發明不限於此,例如亦可將掃描電 15極驅動電路20之預定的輸出端子共通連接於掃描電^ 17b、17g、17r之預定的各輸入端子。此情形下,會對尺、q B顯示部6r、6g、6r之各掃描電極17b、17g、17r施加相同電 壓。惟,藉著調整施加於資料電極之電壓以使施加於不壤 行再寫入處理之顯示部之液晶層的電壓約呈〇V,而可獲得 20 與上述第1及第2實施樣態同樣的效果。 上述實施樣態以矩陣型顯示方式之液晶顯示元件為例 來說明,惟,本發明不限於此。例如亦可應用於使用僅竭 立地將電壓施加於要顯示之段的靜態型或將顯示段予以時 系列地配合時序來驅動之動態(多工)型等驅動方式之分段 38 200816133 式顯示方式的液晶顯示元件。 上述實施樣態之液晶顯示元件1具有光感測器2 6及計 時器27,惟,本發明不限於此。例如液晶顯示元件1僅具有 計時器亦能防止像素的燒烙,因此可獲得與上述實施樣態 ** 5 同樣的效果。 產業上的利用性 本發明可應用於能執行顯示部之再新處理的顯示元 件。 • 【圖式簡單說明】 10 第1圖表示作為本發明之第1實施樣態所構成之顯示元 件之液晶顯不元件1的概略構造。 第2圖係模式化表示作為本發明之一實施樣態所構成 之顯示元件之液晶顯示元件1的剖面構造。 第3圖(a)、(b)表示作為本發明之一實施樣態所構成之 15 顯不兀件之液晶顯不兀件1之驅動波形的一例。 第4圖表示作為本發明之一實施樣態所構成之顯示元 ^ 件之液晶顯示元件1之液晶組成物之電壓一反射率特性的 一例0 第5圖表示作為本發明之一實施樣態所構成之顯示元 , 20 件之液晶顯不元件1之影像處理方法的流程圖。 第6圖(a)-(d)係模式化表示使用本發明之一實施樣態所 » 構成之顯示元件之影像處理方法,而進行再新處理中的顯 示部6。 第7圖表示於本發明之一實施樣態所構成之顯示元件 39 200816133 之影像處理方法中,可保持較高高速之掃描速度之驅動方 法的實施例。 第8圖表示於本發明之一實施樣態所構成之顯示元件 t 之影像處理方法中,可保持較高高速之掃描速度之驅動方 5 法的實施例。 第9圖表示於本發明之一實施樣態所構成之顯示元件 之影像處理方法中,可保持較高高速之掃描速度之驅動方 法的實施例。 ® 第10圖係說明本發明之一實施樣態所構成之顯示元件 10 之影像處理方法中,顯示領域之燒烙的評價方法。 第11圖係說明本發明之一實施樣態所構成之顯示元件 之影像處理方法中,顯示領域之燒烙的評價方法。 第ί2圖係模式化表示習知可全彩顯示之液晶顯示元件 的剖面構造。 15 第13圖(a)、(b)係模式化表示習知之液晶顯示元件之一 液晶層的剖面構造。 第14圖表示習知之液晶顯示元件在平行螺旋狀態之反 射光譜的一例。 【主要元件符號說明】 l···液晶顯示元件 la…電路區塊 lb···顯示驅塊 3b、43b" ·Β用液晶層 3r、43r."R用液晶層 6b、46b" .B顯示部 6g、46g".G顯示部 6r、46r"R顯示部 3g、43g"*G用液晶層 7b、7g、7r···上基板 40 200816133 9b、9g、9r···下勒反 24…調整器 47、49…基板 25…測知部 15…可見光吸收層 26…光感測器 17r、17g、17b…掃描電極 27…計時器 19r、19g、19b…資料電極 28…電源部 20…掃描電極驅動電路 29…顯示控制電路 21…資料電極驅動電路 30···影像資料記憶體 18b、18g、18r···密封材 31…液晶層 22…昇壓部 33、33b、33s···液晶分子 23…顯示元件驅動電壓產生部 41…脈波電壓源 41The present invention is not limited to the above embodiments and can be variously modified. The above-described embodiment is constructed such that the R, G, and B display portions 6r, 6g, and 6r can be independently driven. However, the present invention is not limited thereto, and for example, a predetermined output terminal of the electric 15th driving circuit 20 can be scanned. Commonly connected to predetermined input terminals of the scanning electrodes 17b, 17g, and 17r. In this case, the same voltage is applied to each of the scanning electrodes 17b, 17g, and 17r of the ruler and the q B display portions 6r, 6g, and 6r. However, by adjusting the voltage applied to the data electrode so that the voltage applied to the liquid crystal layer of the display portion which is not subjected to the re-writing process is approximately 〇V, 20 is obtained in the same manner as in the first and second embodiments described above. Effect. The above embodiment is described by taking a liquid crystal display element of a matrix type as an example, but the present invention is not limited thereto. For example, it can also be applied to a segmentation method using a static type in which only a voltage is applied to a segment to be displayed in a standing manner or a dynamic (multiplexed) type in which a display segment is driven in series with a timing, and the like. Liquid crystal display element. The liquid crystal display element 1 of the above embodiment has the photo sensor 26 and the timer 27, but the present invention is not limited thereto. For example, the liquid crystal display element 1 can prevent the burning of the pixels only by having a timer, so that the same effect as the above-described embodiment ** 5 can be obtained. Industrial Applicability The present invention is applicable to a display element capable of performing reprocessing of a display unit. [Brief Description of the Drawings] 10 Fig. 1 is a view showing a schematic configuration of a liquid crystal display element 1 as a display element formed in the first embodiment of the present invention. Fig. 2 is a schematic view showing a cross-sectional structure of a liquid crystal display element 1 as a display element constituting one embodiment of the present invention. Fig. 3 (a) and (b) show an example of driving waveforms of the liquid crystal display element 1 which is a display of one of the embodiments of the present invention. Fig. 4 is a view showing an example of voltage-reflectance characteristics of a liquid crystal composition of a liquid crystal display element 1 as a display element of an embodiment of the present invention. Fig. 5 is a view showing an embodiment of the present invention. A flow chart of the image processing method of the 20 display liquid crystal display elements 1 . Fig. 6 (a) - (d) schematically shows the display unit 6 in the reprocessing process using the image processing method of the display element constructed as one embodiment of the present invention. Fig. 7 is a view showing an embodiment of a driving method capable of maintaining a high-speed scanning speed in the image processing method of the display element 39 200816133 constructed in an embodiment of the present invention. Fig. 8 is a view showing an embodiment of a driving method capable of maintaining a high-speed scanning speed in the image processing method of the display element t constituted by an embodiment of the present invention. Fig. 9 is a view showing an embodiment of a driving method capable of maintaining a high-speed scanning speed in an image processing method of a display element constructed in an embodiment of the present invention. Fig. 10 is a view showing an evaluation method of burning in the display field in the image processing method of the display element 10 constituted by an embodiment of the present invention. Fig. 11 is a view showing an evaluation method of burning in the display field in the image processing method of the display element constituted by one embodiment of the present invention. Fig. 2 is a schematic diagram showing the cross-sectional structure of a liquid crystal display element of a conventional full color display. 15 (a) and (b) schematically show a cross-sectional structure of a liquid crystal layer which is one of conventional liquid crystal display elements. Fig. 14 is a view showing an example of a reflection spectrum of a conventional liquid crystal display element in a parallel spiral state. [Description of main component symbols] l···Liquid crystal display element la...Circuit block lb···Display drive block 3b, 43b" ·Use liquid crystal layer 3r, 43r."R liquid crystal layer 6b, 46b" .B Display unit 6g, 46g ".G display unit 6r, 46r " R display unit 3g, 43g "*G liquid crystal layer 7b, 7g, 7r···upper substrate 40 200816133 9b, 9g, 9r··· ... adjuster 47, 49... substrate 25... sensing unit 15... visible light absorbing layer 26... photo sensor 17r, 17g, 17b... scanning electrode 27... timer 19r, 19g, 19b... data electrode 28... power supply unit 20... Scan electrode driving circuit 29...display control circuit 21...data electrode driving circuit 30···image data memory 18b, 18g, 18r··· sealing material 31...liquid crystal layer 22...boosting unit 33, 33b, 33s··· Liquid crystal molecules 23... display element driving voltage generating portion 41... pulse wave voltage source 41

Claims (1)

200816133 十、申請專利範圍·· 1· 一種顯示元件,具有·· 弟1顯示部,係具有複數第1像素者; 第2顯示部,係與前述第1顯示部積層,且具有對靡 前述第1像素而配置之複數第2像素者;及 顯示控制部,係可進行控制,以對前述第丨顯示邱一 面掃描複數像素,一面開始進行將已寫入之影像資料予200816133 X. Patent application scope: 1. A display device having a display portion having a plurality of first pixels, and a second display portion being laminated with the first display portion and having the same And a plurality of second pixels arranged in one pixel; and a display control unit that controls to scan the plurality of pixels on the first display side to start writing the image data to be written 以再寫入的再寫入處理後,對前述第2顯示部開始前述再 寫入處理。 10 2·如申請專利範圍第1項之顯示元件,其中前述顯示护^制部 可進行控制,使大約相同波形之電壓脈波,順序施加於 前述複數第1像素或第2像素,並對前述第丨或第2顯示邛 進行前述再寫入處理。 3·如申請專利範圍第1或2項之顯示元件,更具有第3顯示 15 部’該第3顯示部與分別表示反射光之狀態、透過光之狀 馨 態或前述狀態之中間狀態並反射相互不同色之光的前述 弟1及弟2顯不部一同積層’並具有對應前述複數第1及第 2像素而配置之第3像素’又,該第3顯示部表示反射光之 狀態、透過光之狀態或前述狀態之中間狀態,並反射與 " 20 在前述第1及第2顯示部反射之光不同色的光。 , 4·如申請專利範圍第3項之顯示元件,其中前述顯示控制部 控制前述第1至第3顯示部之中可反射最接近顯示影像之 色調之顏色的一個顯示部,以與其他顯示部呈獨立之時 序開始前述再寫入處理。 42 200816133 5. 如申請專利範圍第1或2項之顯示元件,其中更具有測知 部,其係測知前述再寫入處理之開始時期者。 6. 如申請專利範圍第5項之顯示元件,其中前述測知部具有 計測部,其係用以計測可避免前述像素之燒烙之時間間 5 隔者。 7. 如申請專利範圍第5項之顯示元件,其中前述測知部具有 光測出部,其係測出外部環境之照度者。 8. 如申請專利範圍第7項之顯示元件,其中前述顯示控制部 可進行控制,當前述光測出部所測出之前述照度比預定 10 值低時,開始前述第1顯示部的前述再寫入處理。 9. 如申請專利範圍第3項之顯示元件,其中前述第1至第3顯 示部具有記憶性。 10. 如申請專利範圍第3項之顯示元件,其中前述第1至第3 顯示部具有對向配置的一對基板、及密封在前述基板間 15 並形成膽固醇相的液晶。 11. 如申請專利範圍第10項之顯示元件,其中前述顯示控制 部在前述再寫入處理執行復置處理與及寫入處理,該復 置處理係使前述像素之已顯示狀態暫時成為不同之顯示 狀態,而該寫入處理係將影像資料寫入前述像素,以於 20 前述復置處理後成為與前述已顯示狀態相同的顯示狀 態。 12. 如申請專利範圍第1項之顯示元件,其中前述複數第1及 第2像素分別為分段型顯示方式的顯示段。 13. —種電子終端機器,係用以顯示影像者,其特徵在於: 43 200816133 具有申請專利範圍第1或2項之電子紙。 14. 一種顯示系統,係用以顯示影像者,其特徵在於: 具有申請專利範圍第13項之電子終端機器。 15. —種顯示元件之影像處理方法,係驅動第1顯示部及第2 5 顯示部並顯示影像者,該第1顯示部具有複數第1像素 者,而該第2顯示部係與前述第1顯示部積層,且具有對 應前述複數第1像素而配置之複數第2像素者,其特徵在 於該顯示元件之影像處理方法包含有: 進行控制,以對前述第1顯示部一面掃描複數像素, 10 一面開始進行將已寫入之影像資料予以再寫入的再寫入 處理後,對前述第2顯示部開始前述再寫入處理。 16. 如申請專利範圍第15項之顯示元件之影像處理方法,係 進行控制,使大約相同波形之電壓脈波順序施加於前述 複數第1像素或第2像素,並於前述第1或第2顯示部進行 15 前述再寫入處理。 17. 如申請專利範圍第15或16項之顯示元件之影像處理方 法,其中前述第1顯示部、前述第2顯示部、及與前述第1 及前述第2顯示部一同積層且具有複數第3像素的第3顯 示部,反射相互不同色之光,且控制前述第1至第3顯示 20 部之中可反射最接近顯示影像之色調之顏色的一個顯示 部,以與其他顯示部呈獨立之時序,開始前述再寫入處 理。 18. 如申請專利範圍第17項之顯示元件之影像處理方法,其 中以可避免前述像素之燒烙的時間間隔,開始前述再寫 44 200816133 入處理。 19.如申請專利範圍第18項之顯示元件之影像處理方法,其 中當外部環境之照度比預定值低時,開始前述第1顯示部 的前述再寫入處理。 5 20.如申請專利範圍第19項之顯示元件之影像處理方法,係 在前述再寫入處理執行復置處理與及寫入處理,該復置 處理係使前述像素之已顯示狀態暫時性地設成不同顯示 狀態,而該寫入處理係將影像資料寫入前述像素,以使 於前述復置處理後形成與前述已顯示狀態相同的顯示狀 10 態0 45After the rewriting process of rewriting, the second display unit starts the above rewriting process. The display device of claim 1, wherein the display protection portion is controllable so that voltage pulses of approximately the same waveform are sequentially applied to the plurality of first pixels or second pixels, and the foregoing The second or second display 邛 performs the aforementioned rewriting process. 3. The display element of claim 1 or 2, further having a third display 15 portion 'the third display portion and reflecting the state of reflected light, the state of transmitted light, or the intermediate state of the foregoing state and reflecting The first and second brothers of the different colors of light are stacked together and have a third pixel arranged to correspond to the plurality of first and second pixels. The third display portion indicates the state of the reflected light and the transmission. The light state or the intermediate state of the above state reflects light of a color different from that of the light reflected by the first and second display portions. 4. The display element of claim 3, wherein the display control unit controls one of the first to third display portions to reflect a color closest to a hue of the display image, and the other display portion The above rewriting process is started at an independent timing. 42 200816133 5. The display element according to claim 1 or 2, further comprising a detecting unit that detects the start time of the rewriting process. 6. The display element of claim 5, wherein the detecting unit has a measuring unit for measuring a time interval between the burning of the pixels. 7. The display element of claim 5, wherein the detecting unit has a light detecting portion that measures the illuminance of the external environment. 8. The display element according to claim 7, wherein the display control unit is controllable, and when the illuminance measured by the light detecting unit is lower than a predetermined value of 10, the foregoing display of the first display unit is started. Write processing. 9. The display element of claim 3, wherein the first to third display portions are memory. 10. The display element according to claim 3, wherein the first to third display portions have a pair of substrates disposed opposite to each other, and a liquid crystal sealed between the substrates 15 to form a cholesterol phase. 11. The display element of claim 10, wherein the display control unit performs a reset process and a write process in the rewrite process, the reset process temporarily making the displayed state of the pixel different. The display state is such that the image data is written into the pixels to be in the same display state as the displayed state after the above-described reset processing. 12. The display element of claim 1, wherein the plurality of first and second pixels are display segments of a segmented display mode, respectively. 13. An electronic terminal device for displaying images, characterized in that: 43 200816133 Electronic paper having the first or second patent application scope. 14. A display system for displaying an image, characterized by: an electronic terminal machine having a patent application scope. A video processing method for displaying a display device, wherein the first display unit and the second display unit are driven to display a video, wherein the first display unit has a plurality of first pixels, and the second display unit and the second a display unit layer having a plurality of second pixels arranged corresponding to the plurality of first pixels, wherein the image processing method of the display element includes: controlling to scan a plurality of pixels on the first display unit; When the rewriting process of rewriting the written image data is started, the second display unit starts the rewriting process. 16. The image processing method of a display element according to claim 15 of the present invention, wherein the voltage pulse wave of the same waveform is sequentially applied to the plurality of first pixels or second pixels, and the first or second pixel is The display unit performs the above-described rewrite processing. 17. The image processing method of the display element of claim 15 or 16, wherein the first display unit, the second display unit, and the first and second display units are stacked together and have a plurality of third The third display unit of the pixel reflects light of different colors, and controls one display unit that reflects the color of the color tone closest to the display image among the first to third display portions 20, and is independent of the other display portions. Timing, the aforementioned rewriting process is started. 18. The image processing method of a display element according to claim 17, wherein the rewriting is started by a time interval in which the burning of the pixels is avoided. 19. The image processing method of a display element according to claim 18, wherein when the illuminance of the external environment is lower than a predetermined value, the rewriting process of the first display unit is started. 5. The image processing method of the display element according to claim 19, wherein the rewriting process performs a reset process and a write process, the reset process temporarily setting the displayed state of the pixel Set to different display states, and the writing process writes the image data into the pixels, so that after the resetting process, the same display state as the previously displayed state is formed.
TW95136488A 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method TW200816133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95136488A TW200816133A (en) 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95136488A TW200816133A (en) 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method

Publications (1)

Publication Number Publication Date
TW200816133A true TW200816133A (en) 2008-04-01

Family

ID=44769032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136488A TW200816133A (en) 2006-09-29 2006-09-29 Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method

Country Status (1)

Country Link
TW (1) TW200816133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401647B (en) * 2009-10-16 2013-07-11 Ultrachip Inc Method for updating picture frame of e-paper apparatus
TWI483243B (en) * 2009-01-13 2015-05-01 Samsung Electronics Co Ltd Arbitration circuit to arbitrate conflict between read/write command and scan command and display driver integrated circuit having the same
TWI601038B (en) * 2012-02-02 2017-10-01 微軟技術授權有限責任公司 Low-latency touch-input device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483243B (en) * 2009-01-13 2015-05-01 Samsung Electronics Co Ltd Arbitration circuit to arbitrate conflict between read/write command and scan command and display driver integrated circuit having the same
TWI401647B (en) * 2009-10-16 2013-07-11 Ultrachip Inc Method for updating picture frame of e-paper apparatus
TWI601038B (en) * 2012-02-02 2017-10-01 微軟技術授權有限責任公司 Low-latency touch-input device

Similar Documents

Publication Publication Date Title
JP4633789B2 (en) Driving method of liquid crystal display element
JP4915418B2 (en) Display element, electronic paper including the same, electronic terminal device including the display element, display system including the display element, and image processing method for the display element
JP5245821B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
WO2008038358A1 (en) Display element and display element image rewrite method, electronic paper using the display element, and electronic terminal
JP5071388B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
JP5293606B2 (en) Liquid crystal display element, driving method thereof, and electronic paper using the same
JP5051233B2 (en) Display device and driving method thereof
WO2007110949A1 (en) Liquid crystal display element, electronic paper using the same, and image processing method
JP5223730B2 (en) Display device and driving method of cholesteric liquid crystal display panel
JP4258128B2 (en) Method for driving liquid crystal display element and liquid crystal display device
JP4985765B2 (en) Display device
JP4998560B2 (en) Liquid crystal display element and driving method thereof
TW200816133A (en) Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method
JP3714324B2 (en) Liquid crystal display device
US20090179844A1 (en) Display element, display system having the same, and image processing method
JP5620493B2 (en) Rapid migration of large area cholesteric displays
WO2010064309A1 (en) Display and display control program
KR20120049023A (en) Display device and driving method thereof
JP3818273B2 (en) Method for driving liquid crystal display element and liquid crystal display device
KR100892029B1 (en) Method for driving liquid crystal display element
TW200816131A (en) Display element, electronic paper using the same, electronic terminal device using the same, display system using the same, and display element image processing method
JP4924610B2 (en) Display element, electronic paper including the same, electronic terminal device including the display element, display system including the display element, and image processing method for the display element
TWI294602B (en) Display element, display system comprising the element and image processing method
JP3659964B2 (en) Liquid crystal display
JP2013068955A (en) Liquid crystal display element and driving method thereof, and electronic paper using the same