TW200815293A - Multifunctional filtration and water purification systems - Google Patents

Multifunctional filtration and water purification systems Download PDF

Info

Publication number
TW200815293A
TW200815293A TW96128481A TW96128481A TW200815293A TW 200815293 A TW200815293 A TW 200815293A TW 96128481 A TW96128481 A TW 96128481A TW 96128481 A TW96128481 A TW 96128481A TW 200815293 A TW200815293 A TW 200815293A
Authority
TW
Taiwan
Prior art keywords
electrode
water
purification system
water purification
electrodes
Prior art date
Application number
TW96128481A
Other languages
Chinese (zh)
Inventor
Qinbai Fan
Jeremy R Chervinko
Renxuan Liu
Original Assignee
Quos Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/515,544 external-priority patent/US20080029395A1/en
Priority claimed from US11/724,534 external-priority patent/US20080035548A1/en
Application filed by Quos Inc filed Critical Quos Inc
Publication of TW200815293A publication Critical patent/TW200815293A/en

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A water purification system having a porous anode electrode (21) and a porous cathode electrode (20), each of which is made of graphite, at least one metal oxide, and an ion-exchange, cross-linked, polarizable polymer, and optionally comprises microchannels. Disposed between the electrodes is a non-electron conductive, fluid permeable separator element (22), whereby wastewater is able to flow from one electrode to the other electrode. The electrodes and separator may be disposed within a housing (23) having a wastewater inlet opening (24), and exhaust waste outlet opening (26) and a purified water outlet opening (25). In this way, components of the system are easily replaced should the need arise.

Description

200815293 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於水淨化之裝置。更特定言之,本 發明係關於一種用於水淨化之多功能裝置,該裝^具有離 子交換功能、碳吸附功能、電化學離子吸附與解吸附功能 以及微過濾功能。該裝置能夠在單個電池中移除廢水流中 之離子化有機化合物及非離子化有機化合物、無機離子、 微粒及細菌以便產生飲用水。具有聚合物黏合劑之以碳為 主的多孔電極充當雜質過濾、器以移除諸如灰塵、砂粒及高 分子量化合物之微粒物質,充當電極以濃縮並移除離子物 質,且充當吸附劑以移除廢水流中之有機材料及 【先前技術】 已知之水淨化方法包括蒎餾法、 法、…、超過㈣反、:父換法、碳吸附 Μ…·. 慮去反滲透&、電去離子法 (electrodeionization)、電交本雜工、i ^ 租人# 離子法、料線㈣法及其 、、“。然而’此等方法中之每一者均有缺 移除某些揮發性有機物且 曰^田法無法 法中,使水滲過珠狀球體樹二:里::。:;子交換方 生並更換樹脂材料。此外,此法繁地再 氣…二::"吸附方法可移除溶解之有機物及 長且谷量高;但在此方法期間歸 生細小之碳顆粒。作為一種高成本方法,微孔膜、母= 之無機物、敎二:顆粒及微生物;但其無法移除溶解 戈膠體。超過遽器為堅固、纖薄、選擇性 I23423.doc 200815293 可透的膜’其留住包括膠體、微生物及熱原之大多數超過 特定大小的巨分子;但其將無法移除溶解之有機物。反滲 透法是最為經濟之用於移除所有污染物中之9〇0/〇至99〇/〇的 方法。反滲透膜能夠濾除所有顆粒、細菌及有機物;但流 動速率及生產力較低。作為Liang等人之美國專利 6,824,662 B2的標的物,電去離子法是電滲析法與離子交 換法之組合,此組合產生了一種在藉由電流不斷再生離子 交換樹脂的同時有效地將水去離子化的方法;但此方法需 要預淨化以移除粉末及衣塵材料。紫外線輻射無法移除離 子化無機物。 圖1為展示一以碳氣凝膠電極進行之電容去離子方法的 圖式。在此方法中,將鹽水引入電池中,負電極(陽極}11 吸附陽離子13而正電極(陰極)12吸附陰離子14。在使該電 充甩日守,獲得純水,且在使該電池放電時,移除濃縮之 鹽水。為達成此結果,視鹽水之濃度及活性碳之活性而定 針對不同時間週期使用電壓為!·2 VSG V的脈衝電功率。 電極,表面區域愈可達,便可儲存愈多離子。此方法之主 題在於,電吸附能力(除鹽)隨循環壽命而降低。大部 刀此力&失可II由週期性地反轉電極極化得以恢復。然 而,活性碳與氣凝膠之間的界面變小,從而減小實際的; 7==積°最終’碳顆粒將不再相互接觸且㈣出。此 質。 去離子去要求侵蝕性預過濾且無法移除非離子物 han等人之美國專利6,3()9,532 βι教示—種用於電容去 123423.doc 200815293 離子及電化學淨化及電極 雷姊h 再生之電可再生電化學電池。該 電池包括兩個端板(該電池 4 端柘夕問, <母一端上有一端板)及在兩個 極隔開的複數個大致相同之雙面中間電 電解質進入-二,塗有碳凝膠(碳氣凝膠则基板。當 體上平Γ的二I電解質流過一由電極形成、與電極大 篮上十仃的連續蜿蜒蛇形 ^ ^ 。精由使電池極化,離子被 移除出電解質且被保持在 電雙芦Φ ^ ^ ^ 人、私往之石厌虱减膠表面上的 中。使電池電再生以解吸附先前移除之離子。然 於電極板之間的蜿蜒蛇形流道配 域限於電極表面。 电往之有用£ 需要—種能夠自含有微粒材料、益 子有機物質及/或細菌之水中子及非離 濾設備。 囷μ中私除物質的改良之水過 【發明内容】 本發明之-目標為提供—種用於廢水淨化之方法及裝 置,其解決用於廢水淨化之已知方法及系統的各種缺點。、 在一實例中,本發明提供一種用於廢水淨化之裝置’复 在單個電池過程中移除離子化有機材料及非離子化有機材 料、無機離子、微粒及細菌。 本發明揭示—種包含—以碳為主之多功能多孔複合電極 的用於水淨化之裝置,該以碳為主之多功能多孔複合電極 包含作為黏合劑之樹脂(例如,離子交換樹脂)、作為活性 吸附劑之碳黑及/或石墨以及作為吸附促進劑之金屬氧化 物。可藉由混合金屬氧化物、碳及/或石墨粉末、聚合物 123423.doc 200815293 樹脂及諸如碳酸氫銨之起泡劑來模製以碳為主之多孔板。 出於穩定性目的將樹脂交聯,且所得電極板之孔隙率以體 積计大於約5〇%,舉例而言,約50%至約80%。 在另-態樣巾,提供供水淨化時㈣的電極,該等電極 充當電場供應器、離子夺拖始+匕 雕千又換树月曰保持器及膠體 器。在操作中,正電極吸附陰離子 / 々雕丁 甸員電極吸附陽離 〇 人在另樣令’提供—種用於水淨化之裝置,該裝置包 夕孔陽極电極、一多孔陰極電極及一置於該陽極電極 與該陰極電極之間的不導電之流體可滲透之隔片元 等電極中之每-者包含石墨、至少—金屬氧化物及一料 父換、交聯、可極化聚合物。電極及隔片元件較佳置於一 :有-廢水入口開口及一淨化水出口開口的不導電外殼 ’且可用於單個電池組態中或與額外電池電池串聯之組 態中:本發明之裝置充當過濾器、有機物與細菌吸附劑且 亦充當淡化系統。該裝置亦可用以濃縮來自稀水溶液之可 溶鹽;本發明之水淨化系統的-應用為海水淡化 (desalination) ° 一在另-態樣中,提供—種水淨化系、統,其包含—具有— ^一平均孔直徑之多孔第一電極及一具有-第二平均孔直 徑,多孔第二電極’該等電極中之每一者包含具有一大於 =第一平均孔直徑或該第二平均孔直徑之平均直徑的微通 道0 極電 在另一態樣中,提供—種水淨化系統,其包含-陽 123423.doc 200815293 極及一陰極電極,該等 聚合物。 中之母-者包含石墨及至少 :另-態樣中’提供一種供水淨化系統中使用之電極 其包含微通道。 〜樣中提供—種供水淨化系統中使用之電極: 八匕含石墨及至少一聚合物。 人在另一嶋,提供-種移除水中之雜質的方法,其, 二以下步驟:向本文中所描述之水淨化系統之該極施加零 =使該等電極與水接觸’藉此由㈣f極中之 水中之雜質;及自該等電極收集水。 牙、 【實施方式】 方tr明提供詩水淨化之方法以統。本文中所描述之 …糸統錢淨化大多數需要淨化的水流,此 括(但不限於)工業廢水、氣 ;,L ^ 士山 u A田與油田廢水及煤礦廢水,且 t文中所描述之方法及系統十分適合用來淡化鹽水。本文 Γ述之方法及系統亦可用於淨化飲用水(例如,移: 物 之諸如納、鎂、每、鋅及/或錯陽離子及/或氣化 物、硫酸鹽及/或演化物陰離子的離子)及/或淨化工· 級口亥系統可併入有電化學去離子特徵、微過渡特徵: 吸附特徵及離子交換特徵以移除 κ 菌及…“. 夕除有機材枓、無機材料、細 =體顆粒。該系統可包括對已過渡之材料及 的自動淨化以期改良之效率及長期使用通常f 密、能量效率高且其製造及操作的成本效率高。 緊 用於水淨化之系統及方法 ’ 123423.doc -10. 200815293 在-實例中’本發明提供—種包含至少兩個以碳為主之 :孔電極(亦即’一多孔陽極電極及_多孔陰極電極)的水 淨化系統,其中在該兩個電極之間具有一不導電之流體可 滲透之隔片以防止在該等電極之間的過量電流。多孔電極 包含:-以碳為主之材料(例如’石墨)(出於導電性目 的);至少-氧化物(例如’金屬氧化物或半金屬氧化物), 其可增加電極對水的吸附;及至少—樹脂(例如,離子交 換、交聯、可極化聚合物),其將電極之組份黏合在一起 且可提供離子交換位點以用於黏合水流中之離子化合物。 在-些實施例中’電極亦包含來自第14族一個、兩個或兩 個以上的元素(例如’碳黑)、碳纖維及/或二氧切。以碳 :主之多孔電極過渡掉過大而無法通過孔隙的微粒物質, 電化學濃縮並隔絕諸如無機(例如,金屬)離子及離子化有 機化=物的離子物質,且吸附水流中之非離子化有機材料 及、’、田囷。電極之離子交換聚合物組份亦可黏合水 =合物。多孔電極可視情況包含一或多個皮膚狀聚合 黏口劑層,其可有助於過濾細小顆粒。 、在一些實施例中’電極含有穿過電極之微通道,該等微 ,逼在該等微通道之向電極表面之末端處或在通道内部由 又w合物之.薄層膜所覆蓋。在一實施例中,電極包含前 表面及後表面,微通道包含位於前電極表面及後電極表面 上之開π ’且電極包含—覆蓋位於電極之前表面及後表面 =之,通道開π的薄層聚合膜。該等薄層聚合膜可充當微 過;慮益’其阻止大於.微通道之微粒物質流人電極中。 123423.doc 200815293 本發明之水淨化系統可包括一不導電外毅,該外殼具 有:至少一入口,其用以將待淨化之水流引入該外殼中; 及一出口,淨化水經由該出口流出該外殼❶水流自入口經 由多孔電極及隔片流至出口”卜殼亦可包括至少—廢物出 口,過大而無法通過電極之孔隙的冑粒材料可經由該至少 一廢物出口流出。 在-些實施例中’水淨化系統包含複數個單元電池,其 每-者如本文中所描述含有_對多孔陽極電極及多孔陰極 電極,其中在該兩個電極之間具有—不導電之透水隔片。 該等單元電池可經串聯配置以使待淨化之水流依序通過該 等電池,隨著水流行進通過電池系列而產生純度遞增之 水。該水淨化系統之人口可位於第―電極之±游處,水流 在第-單元電池中穿過該入口 ’且淨化水的出口可位於最 後-個電極的下游處,水流在最後一個單元電池中穿過該 出口。水流經由水淨化系統之至少一單元電池(亦即,至 少一對多孔電極及在該等電極之間的隔片)自入口移至出 口處。在-實施例中’水流流過水m統之所有單元電 池。在各種實施例中,水淨化系統包括2個、3個、_、5 個、6個、7個、8個、9個、1〇個或10個以上的單元電、也。 在一些實施例中,水淨化系統包括2個至4個單元電池j 在-些實施例中’在水入口處未施加有壓力的情況下操 作如本文中所描述之水淨化系統。在其 / ’、 黑她例中,在水 入口處施加有壓力的情況下操作該水淨化系統。在此與 施例中’在每平方对約1石旁至約4〇石旁的壓力 、 卜、或在每平 123423.doc -12- 200815293200815293 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a device for water purification. More specifically, the present invention relates to a multifunctional apparatus for water purification, which has an ion exchange function, a carbon adsorption function, an electrochemical ion adsorption and desorption function, and a microfiltration function. The device is capable of removing ionized organic compounds and non-ionized organic compounds, inorganic ions, particulates and bacteria in the wastewater stream in a single cell to produce potable water. A carbon-based porous electrode with a polymer binder acts as an impurity filter to remove particulate matter such as dust, grit, and high molecular weight compounds, acts as an electrode to concentrate and remove ionic species, and acts as an adsorbent to remove Organic materials in wastewater streams and [prior art] Known water purification methods include retort method, method, ..., over (four) inverse,: parent exchange method, carbon adsorption Μ...·. Considering reverse osmosis & Electrodeionization, electric crossbody, i ^ renter # ion method, feed line (four) method and its, ". However, each of these methods is lacking in removing certain volatile organic compounds and ^Tianfa can't be used in law, so that water seeps through the beaded sphere tree 2: Li::::; sub-exchange square and replace the resin material. In addition, this method is re-gas... 2::" adsorption method can be moved In addition to dissolved organic matter and long and high grain content; however, small carbon particles are returned during this process. As a high cost method, microporous membrane, mother = inorganic, bismuth: granules and microorganisms; but it cannot be removed Dissolve the goose colloid. Solid, slim, selective I23423.doc 200815293 A permeable membrane that retains most of the macromolecules, including colloids, microorganisms and pyrogens, over a certain size; however, it will not remove dissolved organic matter. Reverse osmosis is The most economical method for removing 9〇0/〇 to 99〇/〇 of all pollutants. Reverse osmosis membranes can filter out all particles, bacteria and organic matter; but flow rate and productivity are low. As Liang et al. The subject matter of U.S. Patent No. 6,824,662 B2, which is a combination of electrodialysis and ion exchange, which produces a method for effectively deionizing water while continuously regenerating the ion exchange resin by current; However, this method requires pre-purification to remove powder and dusting materials. Ultraviolet radiation cannot remove ionized inorganic substances. Figure 1 is a diagram showing a capacitive deionization method using a carbon aerogel electrode. The brine is introduced into the battery, the negative electrode (anode} 11 adsorbs the cation 13 and the positive electrode (cathode) 12 adsorbs the anion 14. When the electric charge is kept, the pure water is obtained, and When the battery is discharged, the concentrated brine is removed. To achieve this result, depending on the concentration of the brine and the activity of the activated carbon, the pulsed electric power of the voltage of .2 VSG V is used for different time periods. The electrode, the higher the surface area, The more ions can be stored. The subject of this method is that the electrosorption capacity (desalting) decreases with cycle life. The majority of the force & loss II is restored by periodically reversing the electrode polarization. The interface between activated carbon and aerogel becomes smaller, thus reducing the actual; 7 == product ° final 'carbon particles will no longer contact each other and (four) out. This quality. Deionization requires aggressive pre-filtration and can not U.S. Patent No. 6,3() 9,532 βι teaches the removal of non-ionics han et al., an electrically renewable electrochemical cell for use in capacitors to 123423.doc 200815293 ion and electrochemical purification and electrode thunder h regeneration. The battery includes two end plates (the end of the battery 4, < one end plate on the female end) and a plurality of substantially identical double-sided intermediate electro-electrolyte inlets at two poles - two, coated with carbon Gel (carbon aerogel is the substrate. When the body is flat, the two I electrolyte flows through a continuous python shape formed by the electrode and ten 仃 on the large basket of the electrode. The electrolyte is removed and held in the surface of the electric double-reed Φ ^ ^ ^ human, private stone anodic rubber-reducing surface. The battery is electrically regenerated to desorb the previously removed ions. The python-shaped flow channel is limited to the surface of the electrode. It is useful for the need of a kind of ionic and non-separating device capable of self-containing particulate material, organic matter and/or bacteria. MODIFIED WATER PERFORMANCE [SUMMARY OF THE INVENTION] It is an object of the present invention to provide a method and apparatus for wastewater purification that addresses various shortcomings of known methods and systems for wastewater purification. In one example, the present invention Providing a device for wastewater purification The ionized organic material and the non-ionized organic material, the inorganic ions, the microparticles and the bacteria are removed during the battery process. The invention discloses a device for water purification comprising a carbon-based multifunctional porous composite electrode, The carbon-based multifunctional porous composite electrode comprises a resin as a binder (for example, an ion exchange resin), carbon black and/or graphite as an active adsorbent, and a metal oxide as an adsorption promoter. It can be oxidized by a mixed metal. , carbon and/or graphite powder, polymer 123423.doc 200815293 resin and a foaming agent such as ammonium bicarbonate to mold a carbon-based porous plate. The resin is crosslinked for stability purposes, and the resulting electrode plate The porosity is greater than about 5% by volume, for example, from about 50% to about 80%. In the other-formed sample, the electrodes are provided for water purification (4), and the electrodes serve as an electric field supply, and the ions are dragged. The first + 匕 千 又 又 又 又 又 又 又 又 又 又 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 a device, the device comprising a cathode electrode, a porous cathode electrode, and a non-conductive fluid permeable spacer between the anode electrode and the cathode electrode, each of which comprises graphite, At least - a metal oxide and a parent exchange, cross-linking, polarizable polymer. The electrode and spacer element are preferably placed in a: non-conductive outer casing having a - waste water inlet opening and a purified water outlet opening and can be used In a single battery configuration or in a configuration in series with an additional battery cell: the device of the invention acts as a filter, organic and bacterial adsorbent and also acts as a desalination system. The device can also be used to concentrate soluble salts from dilute aqueous solutions; The invention of the water purification system - the application is desalination ° - In another aspect, a water purification system is provided, which comprises - a porous first electrode having an average pore diameter and a a second average pore diameter, the porous second electrode 'each of the electrodes comprising a microchannel having a greater than = first average pore diameter or an average diameter of the second average pore diameter Aspect, there is provided - kind of a water purification system comprising - 123423.doc 200815293 anode electrode and a cathode electrode, these polymers. The mother of the middle contains graphite and at least: another state provides an electrode for use in a water purification system which comprises a microchannel. The electrode used in the water purification system is provided in the sample: the barium contains graphite and at least one polymer. At another step, a person provides a method of removing impurities from water, the second step of: applying zero to the pole of the water purification system described herein = contacting the electrodes with water 'by virtue of (d) f Impurities in the water in the pole; and collecting water from the electrodes. Tooth, [Embodiment] Fang Truming provides a method for purifying poetry water. As described in this article, all of the water needs to be purified, including (but not limited to) industrial wastewater, gas; L ^ Shishan u A field and oil field wastewater and coal mine wastewater, and described in the text The method and system are well suited for desalinating saline. The methods and systems described herein can also be used to purify drinking water (eg, ions such as sodium, magnesium, zinc, and/or cations and/or vapors, sulfates, and/or evolution anions). And / or purification workers · grade mouth system can be incorporated with electrochemical deionization characteristics, micro-transition characteristics: adsorption characteristics and ion exchange characteristics to remove κ bacteria and ... ". eve removal of organic materials 无机, inorganic materials, fine = Body granules. The system can include automatic purification of transitioned materials and improved efficiency and long-term use, generally high density, high energy efficiency, and cost-effective manufacturing and operation. System and method for water purification. 123423.doc -10. 200815293 In the example - the invention provides a water purification system comprising at least two carbon-based: pore electrodes (ie, 'a porous anode electrode and a porous cathode electrode), wherein There is a non-conductive fluid permeable septum between the two electrodes to prevent excessive current flow between the electrodes. The porous electrode comprises: - a carbon-based material (eg 'graphite) (for conduction) Sexual purpose); a small-oxide (such as a 'metal oxide or semi-metal oxide) that increases the adsorption of water by the electrode; and at least - a resin (eg, ion exchange, cross-linking, polarizable polymer) that will electrode The components are bonded together and an ion exchange site can be provided for bonding the ionic compound in the water stream. In some embodiments the 'electrode also contains one, two or more elements from Group 14, such as 'carbon Black), carbon fiber and/or dioxotomy. Carbon: the main porous electrode transitions away from particulate matter that is too large to pass through the pores, electrochemically concentrates and isolates such as inorganic (eg, metal) ions and ionized organic compounds. The ionic substance, and the non-ionized organic material in the adsorbed water stream, and the ion exchange polymer component of the electrode may also adhere to the water = compound. The porous electrode may optionally contain one or more skin-like polymeric binders. a layer of a layer that can help filter fine particles. In some embodiments, the 'electrode contains microchannels that pass through the electrode, either at the end of the electrode surface of the microchannels or at The inside of the track is covered by a thin film. In one embodiment, the electrode comprises a front surface and a back surface, and the microchannel comprises an opening π' on the surface of the front electrode and the surface of the back electrode and the electrode comprises - covering A thin layer of polymeric film located on the front and back surfaces of the electrode, the channel is opened by π. The thin layer of polymeric film acts as a micro-pass; it takes advantage of the fact that it blocks the flow of particulate matter larger than the microchannel into the human electrode. 123423.doc 200815293 The water purification system of the present invention may comprise a non-conducting outer casing, the outer casing having: at least one inlet for introducing a water stream to be purified into the outer casing; and an outlet through which the purified water flows out of the outer casing The inlet from the inlet to the outlet via the porous electrode and the septum may also include at least a waste outlet through which the particulate material that is too large to pass through the pores of the electrode may flow out. In some embodiments, the 'water purification system comprises a plurality of unit cells, each of which contains a pair of porous anode electrodes and a porous cathode electrode as described herein, wherein there is a non-conductive water permeable between the two electrodes bead. The unit cells can be configured in series to sequentially pass the water stream to be purified through the batteries, and produce water of increasing purity as the water is introduced into the battery series. The population of the water purification system can be located at the ± electrode of the first electrode, the water flow passes through the inlet in the first unit cell and the outlet of the purified water can be located downstream of the last electrode, the water flow in the last unit cell Pass through the exit. The water stream moves from the inlet to the outlet via at least one unit cell of the water purification system (i.e., at least one pair of porous electrodes and a separator between the electrodes). In the embodiment, the water stream flows through all of the unit cells of the water system. In various embodiments, the water purification system includes two, three, _, five, six, seven, eight, nine, one, or more than ten units of electricity. In some embodiments, the water purification system includes two to four unit cells j. In some embodiments, a water purification system as described herein is operated without application of pressure at the water inlet. In its /', black example, the water purification system is operated with pressure applied to the water inlet. Here and in the example 'in the range of about 1 stone per square to about 4 〇 stone pressure, Bu, or in every flat 123423.doc -12- 200815293

p約1碎至約3㈣的壓力下、或在每平方对約1碎至約2〇 磅的壓力下、或在每平方吋約5磅至約3〇磅壓力下、或在 每平方对約㈣至約叫㈣力下、或在每平方十約5碎至 、勺10碎的壓力下、或在每平方忖約1〇碎至約15碎的壓力 下,操作該水淨化系統。在其他實施例中,在每平方吋約 W的屋力下、或在每平方十約75剌M力下、或在每平 方寸約10碎的壓力下、或在每平方叶約12 5碎的壓力下、 或在每平方十約的壓力下、或在每平方叶約30碎的廢 力下、或在每平方料料㈣力下,操作該水淨化系 統0 在-些實施例中,本發明提供—種用於水淨化之方法, 該方法包括如上文所描述將待淨化之水流引人—水淨化系 統中。該水淨化系統可包括一具有一入口、一出口及一流 動之K机的外设。水流自入口經由至少一單元電池流至出 口,該至少—單元電池可包括—多孔陽極電極、-不導電 之流體可滲透之隔片及一降 ^ ^極電極。母一多孔電極可含有 來自第14族之一個、兩個或兩個以上的元素(例如,脫層 土) 7 K匕物(例如,金屬氧化物或半金屬氧化物: 及至少一聚合物(例如,且 > ,、有離子父換基團之交聯聚合p from about 1 to about 3 (four), or from about 1 to about 2 pounds per square inch, or from about 5 pounds to about 3 pounds per square inch, or about every square inch. (d) operating the water purification system at a pressure of about (4) force, or at a pressure of about 5 breaks per square inch, 10 breaks per spoon, or about 1 to 6 crushed per square inch. In other embodiments, at a house force of about W per square inch, or at a force of about 75 剌M per square inch, or at a pressure of about 10 dicules per square inch, or about 12 5 pieces per square leaf. Operating the water purification system under pressure, or at a pressure of about ten angstroms per square centimeter, or about 30 pulsing force per square leaf, or at a force per square of material (four), in some embodiments, The present invention provides a method for water purification comprising introducing a water stream to be purified into a water purification system as described above. The water purification system can include a peripheral having an inlet, an outlet, and a K-machine. The water stream flows from the inlet to the outlet via at least one unit cell, and the at least unit cell may include a porous anode electrode, a non-conductive fluid permeable septum, and a lowering electrode. The parent-porous electrode may contain one, two or more elements from Group 14, (eg, delaminated soil) 7 K oxime (eg, metal oxide or semi-metal oxide: and at least one polymer) (for example, and >, cross-linking polymerization with ion-parent groups

物)。水流經由電極及隖U 一 ^片自阮極流至陰極,或經由電極 及隔片自陰極流至陽極。 過大而無法通過電極之孔隙的掘 粒物質可經由廢物出口流 1出外设。當水流流過水淨化系錢 時,水流中之離子組份、 有機組份及/或細菌組份被留名 電極上,且經由出口流出 出糸統之水所含的此等組份之量病 123423.doc -13- 200815293 經由入口進入之水流所含的此等組份之量相比得以減少。 在一些實施例中,經由串聯配置之複數個單元電池來淨化 水,以使水依序流過該等單元電池且流出每一單元電池之 水流所含的離子污染物、有機污染物及/或細菌污染較物 之量與流出該系列中之前一單元電池的水流所含的離子污 染物、有機污染物及/或細菌污染物之量相比第一減少。 圖2中示意性展示根據本發明之一實施例之單個電池配()). The water flows from the anode to the cathode via the electrode and the 隖U, or from the cathode to the anode via the electrode and the separator. Excavated material that is too large to pass through the pores of the electrode can exit the peripheral via the waste outlet. When water flows through the water purification system, the ionic, organic, and/or bacterial components of the water stream are retained on the electrode, and the amount of such components contained in the water flowing out of the system via the outlet is Disease 123423.doc -13- 200815293 The amount of such components contained in the water stream entering through the inlet is reduced. In some embodiments, the water is purified via a plurality of unit cells arranged in series such that water sequentially flows through the unit cells and ionic contaminants, organic contaminants, and/or ions contained in the water flowing out of each unit cell The amount of bacterial contamination is firstly reduced compared to the amount of ionic, organic, and/or bacterial contaminants contained in the water flowing from the previous unit cell in the series. A single battery configuration in accordance with an embodiment of the present invention is schematically illustrated in FIG.

置中的水淨化系統之一實例。該系統包含一多孔陰極電極 20、一多孔陽極電極21及一不導電之流體可滲透之隔片元 件22,隔片元件22置於該陽極電極與該陰極電極之間以防 止短路。根據本發明之一實施例的流體可滲透之隔片元件 22為具有至少約60%之開放區域從而使流過之水流能夠得 以淨化的有孔隔片(例如,有孔聚乙烯或聚乙烯網)。根據 本發明之一實施例,電極及隔片元件係置於一不導電(例 如,塑膠)外殼23内,該外殼23具備:一入口開口 24,其 用於將待淨化之水流引入電池中進行處理;一廢物出口開 口 26’可經由該廢物出口開口移除自水流中分離出來的微 粒;及一淨化水出口開口25,可經由該淨化水出口開口25 移除淨化水。因此,在圖2所示之實施例中,經由置於外 殼23之底部附近的入口開口24將待淨化之水流弓丨入外殼中 =而=水流中被陽極電極2G過濾掉的顆粒及其他固體^質 能夠落在外殼之底部上以便經由廢物出口開口 26將其移 除。此配置之好處之-為,萬—產生移除電極以進行更換 的需要,便可容易地移除電極以進行更換。雖然圖2中描 123423.doc -14- 200815293 •、 、、、θ之水淨化系統的實施例展示水自陽極流至陰極,但在其 他實施例中,水流動可能為自陰極至陽極。 圖3為根據本發明之一實施例之水淨化系統之一實例的 不意圖,該水淨化系統包含複數個單元電池(亦即,至少 兩個單元電池,每一單元電池包含一對多孔電極,其中在 該等電極之間具有一隔片22),該複數個單元電池置於一 不‘電外设3 0内且經配置以使待淨化之水流依序流過該等 • 電池。水流經由置於外殼3〇之底部附近的入口開口 24被引 入第一單元電池中、在該單元電池内升高且被迫流過第一 電極對。廢水内的微粒落在外殼之底部上以經由廢物出口 開口 26將其移除。現大體不含微粒之水流一旦升高至該第 單元電池之頂部便通過電池間流體開口 3丨進入下一單元 電池中以進行進一步處理。隨著通過每一單元電池而逐步 蜒传更為淨化的水流最終作為大體上純淨之水通過淨化水 出口開口 25。 • 圖4展示根據本發明之再一實施例之水淨化系統的示意 圖,該水淨化系統具有兩個級來製造飲用水。在此實施例 • 中,待淨化之水流經由外殼之頂部上的入口開口24被引入 且濾過兩級單元電池,在此過程中變為飲用水。 • 圖6A展示根據本發明之另—實施例之水淨化系統的示意 圖。待淨化之水經由在設備之頂部上的入口開口進入水淨 化系統中且流過在設備之底部上的槽62以與集電器624接 觸。串聯配置多個電極’其中不導電之透水間隔物618將 多個電極相互隔開。端電極連接至正電源(614)及負電源 123423.doc -15- 200815293 / )°水流過底部槽62、流人在電極系列之上游且鱼電極 糸列平行的開放區域中、流人集電器624中、流過電 =、流人第二集電器⑽中、流人在電極系列之下游且與 包極系列平行的開放區域中、流過在設備之頂部上的槽 616且最後經由在水淨化系統之底部上的出口開口⑵流出 該設:。如圖_描繪,該設備之電流在電極系列内:終 為怪定的’但電壓及水電阻自人口處至出σ處有所增加。An example of a centralized water purification system. The system includes a porous cathode electrode 20, a porous anode electrode 21, and a non-conductive fluid permeable spacer element 22 with a spacer element 22 disposed between the anode electrode and the cathode electrode to prevent shorting. The fluid permeable septum element 22 in accordance with an embodiment of the present invention is a perforated septum having at least about 60% open area to enable the flow of water to flow therethrough (eg, a perforated polyethylene or polyethylene mesh) ). In accordance with an embodiment of the present invention, the electrode and spacer element are disposed within a non-conductive (e.g., plastic) housing 23 having an inlet opening 24 for introducing a stream of water to be purified into the battery. Processing; a waste outlet opening 26' can remove particulates separated from the water flow via the waste outlet opening; and a purified water outlet opening 25 through which purified water can be removed. Thus, in the embodiment shown in Figure 2, the water to be purified is bowed into the outer casing via an inlet opening 24 placed near the bottom of the outer casing 23 = and = particles and other solids filtered by the anode electrode 2G in the water stream The mass can fall on the bottom of the outer casing for removal via the waste outlet opening 26. The benefit of this configuration is that, in order to create a replacement electrode for replacement, the electrode can be easily removed for replacement. Although the embodiment of the water purification system of Fig. 2, 123423.doc -14-200815293, , , , , θ shows that water flows from the anode to the cathode, in other embodiments, the water flow may be from the cathode to the anode. 3 is a schematic diagram of an example of a water purification system including a plurality of unit cells (ie, at least two unit cells, each unit cell including a pair of porous electrodes, in accordance with an embodiment of the present invention. There is a spacer 22) between the electrodes, and the plurality of unit cells are placed in a non-electrical peripheral 30 and configured to cause the water to be purified to flow through the batteries in sequence. The water stream is introduced into the first unit cell via an inlet opening 24 placed near the bottom of the outer casing 3, rises within the unit cell and is forced to flow through the first electrode pair. Particles within the wastewater fall on the bottom of the outer casing to be removed via the waste outlet opening 26. Once the substantially particulate-free water stream has risen to the top of the first unit cell, it enters the next unit cell through the inter-cell fluid port 3 for further processing. As more water is progressively passed through each unit cell, it eventually passes through the purified water outlet opening 25 as substantially pure water. • Figure 4 shows a schematic of a water purification system having two stages for producing potable water in accordance with yet another embodiment of the present invention. In this embodiment, the water stream to be purified is introduced through the inlet opening 24 on the top of the outer casing and filtered through the two-stage unit cell, during which time it becomes potable water. • Figure 6A shows a schematic view of a water purification system in accordance with another embodiment of the present invention. The water to be purified enters the water purification system via an inlet opening on the top of the apparatus and flows through a slot 62 on the bottom of the apparatus to contact the current collector 624. A plurality of electrodes are disposed in series, wherein the non-conductive water permeable spacer 618 separates the plurality of electrodes from each other. The terminal electrode is connected to the positive power source (614) and the negative power source 123423.doc -15-200815293 / ). The water flows through the bottom slot 62, and the flow person is in the open area upstream of the electrode series and the fish electrode array is parallel, and the current collector 624, flowing through the electric current, flowing in the second current collector (10), flowing in the open area downstream of the electrode series and parallel to the series of the poles, flowing through the slot 616 on the top of the device and finally passing through the water The outlet opening (2) on the bottom of the purification system flows out of the setting:. As shown in Figure _, the current of the device is in the electrode series: it is a strange one's, but the voltage and water resistance increase from the population to the σ.

可在入口槽62附近截獲微粒物質且藉由經一接近該入口 槽之廢物出口 66排出而移除微粒物質。如圖6α所描繪,可 ,切斷電流之情況下藉由空氣或水經由沖洗開口 6二經由 多孔電極自頂而下地進行沖洗,且可視情況藉由致動閥 610(例如,電磁閥)來控制沖洗。 如圖7所示之實例中所描繪,若水淨化系統中之水流在 閥/入口埠704處處於5 psi之壓力,則水壓在通過電極7〇〇 時可下降。若關閉水入口及出口閥710且打開排放閥 7〇6(例如,電磁閥),則雜質可能歸因於設備内部之壓力而 被釋放。釋放雜質之另一種可能方式為藉由經由閥7⑽自 設備頂部向設備底部(或自設備底部向設備頂部)抽氣或抽 水來釋放。 该系統可藉由在約i psi至約4〇 psi之壓力下自7〇8至入口 704之反沖洗而得以再生。反沖洗可使用加壓之空氣、乾 淨的水、經過濾之鹽濃度比濃縮之廢物低的鹽水或設備之 内邠壓力。在如圖7所示意性展示之在壓力下操作的設備 中’移除濃縮之雜質需要經由廢物出口頻繁地釋放廢物。 123423.doc •16- 200815293 可使用水來稀釋並移除濃縮之廢物。 圖8描繪根據本發明之另一實施例的水淨化系統。待淨 化之水經由一位於端板81〇之底部上的水入口埠8〇〇進入電 極堆宜中且•過可視情況存在之集電器板·。接著,當 在帶有相反電荷之電極上施加電壓時,如本文中所述,在 動it過t極系統内之電極8Q4時,水得以淨化。淨化 水^由另―視情況存在之石墨集電器板8G2流出該系統且Particulate matter can be intercepted near the inlet trough 62 and particulate matter removed by being discharged through a waste outlet 66 proximate the inlet trough. As depicted in FIG. 6α, the current can be flushed from top to bottom via the porous electrode via the flushing opening 6 by air or water, and optionally by actuating the valve 610 (eg, a solenoid valve). Control flushing. As depicted in the example shown in Figure 7, if the water flow in the water purification system is at a pressure of 5 psi at the valve/inlet port 704, the water pressure can drop as it passes through the electrode 7〇〇. If the water inlet and outlet valves 710 are closed and the discharge valve 7〇6 (e.g., a solenoid valve) is opened, the impurities may be released due to the pressure inside the apparatus. Another possible way to release the impurities is by pumping or pumping water from the top of the device to the bottom of the device (or from the bottom of the device to the top of the device) via valve 7 (10). The system can be regenerated by backwashing from 7〇8 to inlet 704 at a pressure of from about i psi to about 4 psi. Backflushing can use pressurized air, clean water, brine with a filtered salt concentration lower than the concentrated waste, or internal helium pressure of the equipment. The removal of concentrated impurities in a device operating under pressure as schematically illustrated in Figure 7 requires frequent release of waste via the waste outlet. 123423.doc •16- 200815293 Water can be used to dilute and remove concentrated waste. Figure 8 depicts a water purification system in accordance with another embodiment of the present invention. The water to be purified enters the electrode stack via a water inlet 埠8 on the bottom of the end plate 81〇 and • the collector plate that exists over the visible condition. Next, when a voltage is applied across the oppositely charged electrode, as described herein, the water is purified as it moves through the electrode 8Q4 in the t-pole system. Purification of water ^ from the other - as the case exists, the graphite collector board 8G2 flows out of the system and

被㈣至在另—端板812上的水出口物6以進行收集或再 〃襄T在冲洗期間於需要時使用該水出口埠,其中將流 月且(例如水)抽至水出口蜂8〇6中且自人口璋綱抽出以沖 掉電極堆豐中累積的鹽。該系統可含有與水人π埠800位 於同一:板810上的額外入口埠_,其用以沖洗累積之微 ;>> 、月兄存在之鳊板8 10及端板8 12(由(例如)聚碳酸酯或 其他可射出成型之塑膠製成)可用以向電極堆疊總成提供 夾持力(以防止(例如)在操作期間漏水或損壞)且可使用一 或夕個連# 8 14將其夾持在—起。在—些實施例中,淨化 糸統之電極包含_或多個導電桿(圖8中未圖示),其係定向 成垂直於電極堆疊^穿過電極堆疊以允許恰當之電極板上 具有導電性。兮望@ 该寺彳干可由(例如)石墨製成且可視情況定位 電極堆疊外而非電極堆疊内。 自動化系統 圖9描身本發明之另—實施例,其中圖8中所描述之水淨 一系統_破併人—自動化連續水處理裝置中。水淨化由 -淨化週期開始,其中當將來自93〇之如功率施加至電極 123423.doc 200815293 940之末端上時,由果922導引來自收集容器%6之水通過 _疊總成_。視情況存在之在淨化期間可關閉致動 态閥91 8及致動器閥934(例如,電磁閥)以允許引導流出電 極堆疊之出口埠904的淨化水通過致動器閥916且經由管線 950進入收集容器中以進行再循環或直接經由管線⑽在 9 1 6處對其進行收集。 - ,可在淨化期間使用鹽沖洗週期來移除累積在電極堆疊内 _ ㈣。在鹽沖洗週期之—實例中,釋放(例如,藉由關閉 泵)由泵922在入口埠上提供之正壓且自堆疊移除93〇所供 應之電壓。可打開可選的第二泵92〇以自收集容器似中 (或可視情況自單獨水源中)抽回水且引導水通過電極堆疊 之出口埠904。接著,進入出口埠904之水經由入口埠9〇2 自電極堆疊940衝出累積之鹽。致動器閥934(例如,電磁 閥)可存在且經組態以將在鹽沖洗週期期間流出入口埠卯2 之鹽引導至排出廢物容器924中,接著可經由物6料進 φ 行取樣。 ^ 可在淨化_使用微粒沖洗週期來移除累積在電極堆疊 • 之入口端上的固體微粒。在微粒沖洗週期之一實例中,可 L文(例如,籍由關閉泵)由泵922在入口埠9〇2上提供之正 自堆豎上移除93〇所供應之電壓。可關閉致動器閥91 $ 且可打開一泵(可視情況為在鹽沖洗週期期間使用的泵92〇) 以自收集容H中抽回水且弓丨導水通過_打開之致動器閥 9—18且引導至電極總成9〇〇之第二入口埠906。接著,進入 弟一入口埠906之水經由原始入口埠自電極總成9〇〇衝出累 123423.doc -18 · 200815293 積之微粒(例如,累積 a 粒)。在鹽沖洗週期期間使J:二與電極堆疊之間的微 934可存在且經組態以將在微粒二= 兄存在的電磁閱 口埠之微粒引導至一 # 間流出原始入 ♦主排出廢物容器924中。 在本發明之-些實施例中 分鐘與約100分鐘之n 匕功之持續時間在約i 刀知之間、或在約5分鐘與約 在約5分鐘與約45分 刀、,里之間、或 間、或在-分鐘與約15分鐘 鐘之間、或在約⑽鐘與約 約20分鐘之間。 ,·里之間、或在約!〇分鐘與 在本發明之一些實施例中,卷 —A、隹大 田入口埠上之水壓增加至預 準時,終止淨化週期。當入口埠上之壓力達到每平方 、或每平方对約2〇石旁、或每平方忖約㈣、或每 +方忖約每平方相叫、或每平^約辦、 或每平方吋約50磅時,可終止淨化週期。 在本發明之一些實施例中,當出口埠上之水電阻 (elect·! resistance)減小至預定位準時,終止淨化週期。 在-些實施例中’當水電阻減小至^ k〇—以下、或約2 kohm以下、或約5 kohm以下、或約i〇 k〇hm以下、或約2〇 kohm以下、或約 50 kohm lv πτ 又J U K〇tlm以下、或約100 kohm以下、或約 200 kohm以下、或約500 k〇hm以下、或約i M〇hm以下、 或約2 Mohm以下、或約5 Mohm以下、或約1 〇 Mohm以 下、或約15 Mohm以下、或約2〇 M〇hm以下、或約5〇 Mohm以下時,終止淨化週期。 -19· 123423.doc 200815293 在本發明之一些實施例中,當出口埠上之水導電率增加 至預定位準時,終止淨化週期。在一些實施例中,當導電 率增加至約850 uS以上、或約875 uS以上、或約9〇〇心以 上、或約925 uS以上、或約950 uS以上、或約975 uS以 上、或約1 000 uS以上時,終止淨化週期。 在本發明之-些實施例中,鹽沖洗週期及微粒沖洗週期 之持續時間獨立地在約5秒鐘與約12〇秒鐘之間、或約5秒The water outlet 6 is (4) to the other end plate 812 for collection or re-tanning. The water outlet port is used as needed during the flushing period, wherein the flow month and (eg water) are pumped to the water outlet bee 8 〇6 and extracted from the population to wash away the salt accumulated in the electrode heap. The system may contain the same inlet 水 水 水 : : : 板 , , , , , , , , , 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板 板(for example, polycarbonate or other injection moldable plastic) can be used to provide a clamping force to the electrode stack assembly (to prevent, for example, water leakage or damage during operation) and can be used with one or one eve. 14 Hold it in. In some embodiments, the electrode of the purge system comprises - or a plurality of conductive rods (not shown in Figure 8) oriented perpendicular to the electrode stack through the electrode stack to allow for proper conductivity on the electrode plate. Sex. Lookout @ The temple can be made of, for example, graphite and can be positioned outside the electrode stack rather than in the electrode stack. Automated System Figure 9 depicts another embodiment of the present invention in which the water purification system described in Figure 8 is in a destructive-automatic continuous water treatment unit. The water purification is initiated by a --purification cycle in which water from the collection vessel %6 is directed by the fruit 922 as it passes over the end of the electrode 123423.doc 200815293 940. Optionally, the dynamic valve 91 8 and the actuator valve 934 (eg, a solenoid valve) may be closed during purge to allow the purified water that is directed out of the outlet port 904 of the outflow electrode stack to pass through the actuator valve 916 and via the line 950. Enter the collection vessel for recycling or collect it directly at line 196 via line (10). - , can be removed during the purification using a salt rinse cycle to accumulate in the electrode stack _ (d). In the salt rinse cycle - in the example, the positive pressure is provided by pump 922 on the inlet port (e.g., by shutting down the pump) and the voltage supplied by 93 turns is removed from the stack. An optional second pump 92 can be opened to draw water back from the collection container (or optionally from a separate water source) and direct water through the outlet stack 904 of the electrode stack. Next, the water entering the outlet port 904 rushes out of the accumulated salt from the electrode stack 940 via the inlet port 〇9〇2. An actuator valve 934 (e.g., a solenoid valve) may be present and configured to direct the salt exiting the inlet port 2 during the salt wash cycle into the discharge waste container 924, which may then be sampled via the material 6 into the φ line. ^ The solid particles that accumulate on the inlet end of the electrode stack can be removed during the purification_particle cleaning cycle. In one example of a particle flush cycle, the voltage supplied by the pump 922 on the inlet port 9〇2 is removed from the stack by the pump 922 (e.g., by turning off the pump). The actuator valve 91 $ can be closed and a pump (which can be used as the pump 92 在 during the salt wash cycle) can be opened to withdraw water from the collection volume H and to guide the water through the actuator valve 9 18 and guided to the second inlet 埠 906 of the electrode assembly 9〇〇. Next, the water entering the entrance of the younger brother 906 rushes out from the electrode assembly 9 through the original inlet 123123423.doc -18 · 200815293 particles (for example, accumulate a). The micro-934 between the J:2 and the electrode stack may be present during the salt wash cycle and configured to direct the particles of the electromagnetic readout that are present in the particle two to the original discharge into the main discharge waste In container 924. In some embodiments of the invention, the duration of minutes and about 100 minutes of n work is between about 5 minutes, or about 5 minutes and about 5 minutes and about 45 minutes, Or between, or between -minute and about 15 minutes, or between about (10) and about 20 minutes. Between, during, or after about 〇 minutes and in some embodiments of the invention, the water pressure on the inlet of the roll-A, the field is increased to a predetermined level, and the purification cycle is terminated. When the pressure on the entrance 达到 reaches about 2 〇 stone per square, or about 2 〇 stone, or about 4 square feet per square metre, or every + square 忖 about every square, or every square, or every square At 50 pounds, the purge cycle can be terminated. In some embodiments of the invention, the purge cycle is terminated when the water resistance (elect·! resistance) on the outlet is reduced to a predetermined level. In some embodiments, 'when the water resistance is reduced to below ^ k〇 - below, or below about 2 kohm, or below about 5 kohm, or below about i〇k〇hm, or below about 2 kohm, or about 50 Kohm lv πτ and JUK〇tlm or less, or about 100 kohm or less, or about 200 kohm or less, or about 500 k〇hm or less, or about i M〇hm or less, or about 2 Mohm or less, or about 5 Mohm or less, or The purge cycle is terminated when it is below about 1 ohm Mohm, or below about 15 Mohm, or below about 2 〇M hm, or below about 5 Torr. -19·123423.doc 200815293 In some embodiments of the invention, the purge cycle is terminated when the conductivity of the water on the outlet raft increases to a predetermined level. In some embodiments, when the conductivity is increased to above about 850 uS, or above about 875 uS, or above about 9 〇〇, or above about 925 uS, or above about 950 uS, or above about 975 uS, or about When the temperature is above 1 000 uS, the purification cycle is terminated. In some embodiments of the invention, the duration of the salt wash cycle and the particle wash cycle is independently between about 5 seconds and about 12 seconds, or about 5 seconds.

鐘與約6〇秒鐘之間、或約5秒鐘與約30秒鐘之間、或約5秒 鐘與約15秒鐘之間。 :本發明之一些實施例中,鹽沖洗週期與微粒沖洗週期 同日守發生。在其他實施例中,鹽沖洗與微粒沖洗獨立地發 生。在此等實施例中之一些實施例中,微粒沖洗週期約每 =鐘發生—次、或約每3G分鐘發生-次、或約每45分鐘 '或約每6G分鐘發生—次、或約每叫鐘發生一 二人、或約每120分鐘發生一次。 在本發明之一此壤^ 及/或微”洗;;/中,使用氣體來進行鹽沖洗週期 行鹽沖洗_及==—些實施射,使料化水來進 純水來進行洗週期。在其他實施例中,使用不 冼週期及微粒沖洗週期。 中,使用純水來進科趟、“ 纟丹他貝加例 者,且使用不站 …中洗週期及微粒沖洗週期中之一 另一者。#、、、水來進行鹽沖洗《及微粒沖洗週期中之 f 在一此會a 7丨丄 期之溶劑係相;的。二’用於鹽沖洗週期與微粒沖洗週 微粒冲洗週_之、々其他實施例中’用於料洗週期與 ,μ係不同的。在-些實施例中,使用無 123423.doc -20- 200815293 機溶劑來進行鹽沖洗週 粒沖洗週期令之-者^ 者在一些貫施例令,使用含無機溶劑之者或兩 洗週期及微粒沖洗週期中之 來進行鹽沖 中,使用有機溶劑來進行賴沖3 Λ 在一些實施例 —者或兩者。在m;;r粒沖洗週期中之 ^ 二焉知例中,使用合古德b 進行鹽沖洗週期及微粒沖洗戈2之溶液來 實施例中之一些實施例中,無^=者或兩者。在此等 實施例中之1他中:、、〆;、、、親水性的。在此等 明夕 例中,有機溶劑為疏水性的。… 二π實施例中,在鹽沖洗週期及微粒沖洗週期中Γ 2兩者中使用的溶劑被間歇性地改為不同之溶劑。 期Γ本發明之一些實施例中,在鹽沖洗及/或微粒物 期期間移除所施加之電麗。在其他實施例中,在進 洗及/或微粒沖洗週期之前使 止在鹽沖洗及/或微粒沖洗2電昼所路以防 尤柯J期間的殘餘電壓。在一此 =中’在鹽沖洗及/或微粒沖洗週期期間反轉所施: 用==施例中’對淨化週期期間產生之壓力的釋放可 =出糸統内之濃縮鹽。在未將鹽自電極堆疊中充分沖 2況下’可使堆疊短路以除去堆疊上的任何殘餘電 ^後使用空氣進行沖洗週期以移除剩餘之鹽。為防止 在淨化週期期間潛在之不當短路(及由此造成之氯氣的產 生)冒麼縮迫使電極合在一起,可使用一較厚且較精細之 塑膠網來分隔總成堆疊中之電極。此外,可藉由首先對組 件個別地進行密封且技牮脸甘β p i 接者將其始、封在一起作為已裝配之電 123423.doc 200815293 池來改良對堆疊之密封。 防止在施加電壓時系統中存在空氣可防止高電流密度區 域。在一貫施例’藉由在水已開始流出出口埠之後施加電 壓來避免高電流密度。在一些實施例中,藉由在鹽沖洗週 期期間使用液體而非氣體來避免高電流密度。減少系統内 之空氣量亦可縮短洗淨週期持續時間且減少廢水與淨化水 的混合。 在一些實施例中,在微粒沖洗週期 1附近之致動器閥(例如,電磁閥)(諸如圖9中之916),同 日守打開位於第二入口埠附近之致動器閥(諸如圖9中之 Y 8) ’從而允許流過第二人σ蟑(906)且經由人口槔(9〇2) ",L出在一些貫施例中,在鹽沖洗週期期間,關閉位於第 二入口痒附近的致動器閥’同時打開位於出口埠附近的致 ,從而允許流過出口淳(9。4)且經由入口流 施例中,在組合之鹽沖洗與微粒沖洗期間, 打開位於第二入口埠附近 折夕“ 早附近之致動為閱(918)及位於出口埠 近之致動器閥(916),從而允許流 口埠(904Λ,f + 、弟一入口埠(906)及出 早(〇4)經由入口埠(9〇2)流出。 在本發明之一些實施例中,將單個果用於淨周 於鹽沖洗週期及微粒沖洗週期。在此:…用 施例中,兮y 只也例中之一此實 _早個泵被用以在淨化週 -μ 至出口且以相反方向用於鹽沖洗週期二=自入口抽 其他實施例中,將罝^ @ u粒冲洗週期。在 妁τ,將早個泵用於淨化週 粒沖洗週期且將第 功及…中洗週期或微 將弟-果用於鹽沖洗週期或微粒沖洗週期中 123423.doc •22· 200815293 之另一者。 裝置可含有一或多個取樣埠(例如,連接至圖9中之管線 942)以收集水用於分析測試(諸如導電率、離子濃度等\、, 可將一或多個閥(例如,圖9中之針閥928)連接至—或多個 旁路管線(諸如圖9中之944)以控制操作壓力。在一些 例中,該裝置包括-或多個流量計及/或一或多個壓= (例如,圖9之914)。 口 、< / “知例中’該裝置受電子控制電池的控制以調整 淨化及沖洗週期之持續時間及頻率。電子控制電池可 一用以操作一或多個泵之24伏 $ 重福i周如呌蛀抑 寸曰冤/原,及/或一開/關 -或可使用4通道繼電器來接通並斷開通向 3夕7、閥及/或一或多個電極堆疊的電路。 可ί有二:例中’供應給電極堆疊内之不同電極之電壓 =:4;舉例而言’-電極組(諸如-電極對)上之 -t mm) h ίΛ ^ 隹唛内之另一電極組(諸如另 J極對)上的電壓可為4,8 v。在一些 電極之電壓隨著潘彳μ#、 Τ 仏應、七 k功進行而增加。在一此與 供應給電極之電壓隨著一1中’ 加。在一此管開出口埠之水的導電率增加而增 "口在些貫施例中 之水的電阻減小而择力了%極之電壓隨著離開出口埠 目等於陽極電極之數 二貝知例令,陰極電極之數 電極)。在其他實施,°’四個陰極電極及四個陽極 之數目。在直他杏浐η @極電極之數目大於陽極電極 之數目。 和電極之數目大於陰極電極 123423.doc -23 - 200815293 電極 提供顆粒過濾、離子物皙、、曲 菌移除的•極可A H私除,及有機材料與細 _〜 為以碳為主之多孔結構。根據各圖式中所 件為例,電極可為多孔平面結構(亦即,板)且隔片元 如)有孔之板'然而’亦可使用電極及隔片元件之 可::組態(日諸如管狀或卷式結構),該等組態在電極與 土之間提供所要之關係、’且將瞭解,該等組態亦被 的為在本文中所主張之本發明的範嘴内。 在本U之-些實施例中,對於電極存在三個基本要 性之=率、導電率及機械強度。因Λ,電極可出於導電 、:目的而為以碳為主之多孔結構(視情況為石墨),且可 視t月況包含用於辦力雷 如,料〜加電極對水之吸附的至少-氧化物(例 士為孟屬錢物)及用於將電極之組份黏合在—起且用於 :電極提供機械強度的聚合物(例如,離子交換、交聯、 上::聚合物)。離子交換聚合物組份亦可在電極之表面 M、可進行離子交換之基團㈣於黏合水流中之離子組 π。根據本發明之一會絲加 ^貝靶例,可添加來自第14族之一個、 =或兩個以上的元素(❹,碳黑,以便提高電極之導 :°在此等實施射之—些實施例中,所添加之元素 τ :約5%至約3〇%、約5%至約2〇%或約驗約跳之重量 百分比。在一歧實施例中, 一、 Τ電極可包含碳纖維,碳纖維可 ::電極及/或二氧化矽之機械強度,此可增加粉末混合 勾性及電極可濕性。在添加了碳纖維之實施例中,通常 从約5%至約3〇%之重量百分比包括此組份。在添加了二氧 123423.doc -24- 200815293 化矽之實施例中,通常以小於約5%之重量百分比包括此 組份。在一些實施例中,可向電極添加會增加導電率且/ 或有助於使微生物失去活性的諸如銀或金之其他金屬或半 金屬。 在一些實施例中,本發明之電極包含脫層石墨。脫層石 1 墨係對諸如硫酸氫石墨之具有相對較大顆粒直徑的石墨層 ,夾化合物(薄片)進行非常快速之加熱(或閃速加熱)而得到 的產物。層夾物質的汽化迫使石墨層分離,從而產生類似 ® 手風琴之形狀,其中視體積通常為原始石墨薄片的數百 倍。根據本發明之一實施例,如本文中所描述之多孔電極 包含呈大小不足約50 μπι之顆粒形式的脫層石墨。在一些 貝Μ例中,脫層石墨可具有約5〇〇 m2/g至約8q〇 m2/g之表 面積。在一些實施例中,脫層石墨可具有約7〇〇 m2/g之表 面積。 在本發明之一些實施例中,電極内之平均孔徑為小於工 • μηΐ、或小於0.75 、或小於〇·6 μιη、或小於〇·5 '或 大於0·05 μιη、或大於0.1 μπι、或大於〇15 μιη、或大於〇2 μηι、或大於 0.25 μιη。 在本發明之一些貫施例中,電極内之平均孔面積為大於 . 10 m2/g、或大於12爪2/§、或大於14 m2/g、或小於3〇 m2/g、或小於28 m2/g、或小於25 m2/g。 在一實施例中,使用與hncvhjcu溶液(例如,1:9 HN〇3:H2S〇4V/v)混合之石墨粉末(例如,Suped〇rGra_e C〇rporati〇n(Chicag〇))來實現石墨之脫層。舉例而言,可 123423.doc -25- 200815293 將80 g石墨粉末與hnc^hjO4溶液混合,且接著在9⑽。c 至1000°C之爐中將其加熱3分鐘。 ,導電的吸附劑顆粒可在顆粒纟面上具有反應十生基團,此 等基團與(例如)-或多個交聯劑反應以將此等吸附劑顆粒 黏合至電極結構中。舉例而言,以碳為主之材料(例如, 脱層石墨)可在其表面上具有c = 0基團及C-OH基團。c=〇 基團及CM)H基團可用於與聚合物黏合散聯,此可增加 電極之機械強度且減少水中之碳侵飯。交聯亦截獲電極中 的含有碳黑之細小碳黑顆粒,此減少了碳黑侵蝕。 在本發明之一些實施例中,電極包含至少一樹脂,其亦 可用以將電極之組份黏合成内聚結構。在一些實施例中, 樹脂具有離子交換組份,該離子交換組份在電極上提供離 子父換位點。根據本發明之一實施例,離子交換組份係交 聯之可極化聚合物。對可極化聚合物之交聯可避免聚合物 +解於正在淨化之水流中。合適在本文中所描述之電極中 使用的聚合物可包括可交聯聚合物且可包括離子交換位 點,例如,包含-NH2基團…〇H基團…c=〇基團及/或_ COOH基團的聚合物。在一些實施例中,樹脂為陽離子交 換樹脂。在一些實施例中,樹脂為陰離子交換樹脂。在一 些貝細> 例中,樹脂為單獨之陽離子交換樹脂與單獨之陰離 子交換樹脂的混合物。在一些實施例中,樹脂含有陽離子 父換樹脂及陰離子交換樹脂。合適之離子交換、可極化聚 合物包括(但不限於):聚胺酯、聚丙烯酸、磺化聚笨乙 烯、聚(乙烯醇)(PVA)、聚(乙烯乙烯醇)(PEVA)、交聯酚系 123423.doc •26- 200815293 樹脂、聚乙烯亞胺(PEI)及其組合。合適之可極化聚合物交 聯士彳包括乙一駿、諸如丙_之酮類、諸如甲駿及戊二酸之 醛類、亞甲基胺、胺類、亞胺類、醯胺類及其組合。在一 些實施例中,樹脂具有約15,000至約50,000之平均分子 里。在一些實施例中,樹脂具有約30,000之平均分子量。 “ 在本發明之一些實施例中,電極具有一薄聚合膜或層。 - 在一些實施例中,薄膜為塗覆至一或多個電極上的醋酸纖 維素。在一些實施例中,薄膜或層為PEVA、PEI或聚醯 胺。諸如醋酸纖維素之薄膜可有助於鹽吸附。在一些實施 例中,薄膜或層係在PEVA、PEI或聚醯胺膜上的醋酸纖維 素膜。在一些實施例中,薄膜或層之厚度在約25 A至約 175 A之間、或厚度在約5〇 A至約15〇 A之間、或厚度在約 75 A至約125 A之間、或厚度為約1〇〇 A。在一些實施例 中,水淨化系統包含具有不同膜或層的不同電極。舉例而 言,水淨化系統可包含一含有PEVA膜之電極及一含有在 _ PEVA膜之上的醋酸纖維素膜之相鄰電極。在一實施例 中,水淨化系統含有:一位於水入口埠附近之電極,其含 有PEVA膜;一在第一電極之下游處的相鄰電極,其含有 醋酸纖維素膜且視情況在醋酸纖維素膜與電極層之間含有 / —PEVA層;及更下游處的兩個電極,其含有PEVA膜。 本發明之電極可具有親水特性且如先前所指示可出於增 加水吸附之目的而視情況在電極中具有至少一氧化物。^ (該等)氧化物可有助於電極之親水性。可使用任何在水中Λ 穩定的氧化物。在-些實施例中,氧化物包含半金屬(例 123423.doc -27- 200815293 ::’:氧化矽)。在-些實施例中,氧化物為金屬氧化 物。在—些實施例中’氧化物之大小在編至約〇5 μπ^的耗圍内。合適之金屬氧化物的實例包 及其混合物。 2^3 將瞭解?見正被處理之水流的組合物而定,諸如焦油 (oil㈣及向有機物質之雜質可能會聚集於電極上。如本 文中所描述’可藉由對電極進行週期性反沖洗或沖洗來移 除该寻雜質。為增強此方法’除了親水性以外,本發明之 電極亦可擁有疏水特性。在水性介質中,離子被水包圍。 ‘水11:料有助於排出纟,由此排出離子雜質。根據本發 月之K她例,可藉由恰當地選擇可極化聚合物及交聯劑 來控制電極之親水性與疏水性之間的平衡。舉例而言,聚 (乙稀醇)(PVA)比聚(乙烯乙埽醇KPEVA)具有較少之_ch2· 土團在PEVA中’彳乙基提供疏水性。諸如甲酸之特定 又聯Μ比戊一醛及乙二醛具有較少之碳原子。一般而言, 隨著碳原子/偶_基團之數目增加,疏水性增加且親:性 下降。已發現’在交聯之前,聚合物中存在之每個(例如) 經基或其他親水性基團巾具有一⑴個至五⑺個_cH2_基團 ,勺水&物可在電極之親水性與疏水性之間提供所要之平 衡i在—些實施例中,電極含有約2〇%至約5〇%之疏水性 含量。在-些實施例中,親水性大於約6〇%且疏水性小於 約40%。根據本發明之一較佳實施例,電極具備高達約 50%之疏水性。在一些實施例中,電極在聚合物中包含至 少一疏水性基團,例如,至少一 c_c基團、ch_ch基團或 123423,doc -28- 200815293 CH2-CH2基團。 圖5描繪一些實施例,其中如本文中所描述之多孔電極 (諸如52)包含微通道50。在一些實施例中,微通道具有大 於電極中之孔隙之平均直徑的平均直徑。在一些實施例 中,微通道具有一平均直徑,該平均直徑大於電極中之孔 * 隙的平均直徑,但小於待淨化之廢物或水中所載有之微粒 , 的平均直徑。微通道在朝向電極表面之每一末端處及/或 在微通道内部可由透水聚合膜54所覆蓋。在一些實施例 中,微通道塗層可限於朝向電極表面之每一末端處的區域 且係在製造期間形成。在一些實施例中,微通道可由一在 形成微通道之後塗覆的單獨之薄膜或層所覆蓋。微通道可 藉由提供對額外孔隙、離子交換位點及吸附劑之更佳接達 來增加水滲透率及電極上可用於離子吸附之表面積,而膜 可防止微粒進入或通過微通道。在一些實施例中,微通道 具有比電極孔隙大的直徑。可能需要提供具有足夠大之直 •.徑以允許水滲透率增加而不會降低離子吸附的微通道。在 些a %例中’微通道具有約〇1匪至約!醜之直徑。 • 2 —些實施二列中,微通道具有約〇·5麵至約! mm之直 位在些實施例中,微通道被隔開約2 mm至約1〇 mm。 在二κ ;^例中,锨通道被隔開約5 mm。在一些實施例 中’微通道包含約〇.3⑽至約Q2em之直徑,其中微通道 之門的距離為約〇 5 cm。在一些實施例中,薄膜之厚度為 約1 0 A至約2 0 A、十后ώ: & 或导度為約20 Α至約150 A、或厚度為 約50 A至約125 A、或厚度為約i⑻A。 123423.doc -29· 200815293 在一些實施例中,雷 、 兒極叮為美國專利第5,942,347號中所 描述的隔片板,該專刹 — 、 寻利之内各出於所有目的以全文引用之 方式併入本文中。 在^些實施例中,‘士 + 1 本文中所描述之電極包含一應用於 電極邊緣的密封件(例如, 以水為主之丙烯酸橡膠(及以盆 他液體為主之聚胺舻、取山& 〆、 、 -日、ΛΚ妷S文酯或聚矽氧)。密封件可防 止電極總成之側面發生、、电 士々 生汽漏及/或防止在水淨化系統受壓The clock is between about 6 seconds, or between about 5 seconds and about 30 seconds, or between about 5 seconds and about 15 seconds. In some embodiments of the invention, the salt wash cycle and the particle wash cycle occur on the same day. In other embodiments, salt rinsing occurs independently of particle rinsing. In some of these embodiments, the particle wash cycle occurs approximately every second, or about every 3G minutes, or about every 45 minutes or about every 6 minutes, or about every minute. One or two people are called, or every 120 minutes. In one of the inventions, the soil and/or the micro-wash;;/, the gas is used for the salt rinsing cycle, and the salt rinsing _ and == - some of the shots are carried out, so that the water is poured into the pure water for the washing cycle. In other embodiments, the use of a non-period cycle and a microparticle rinse cycle. In the use of pure water to enter the sputum, "the dandan Talbe addition, and the use of no station ... one of the wash cycle and the particle wash cycle The other. #,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The second is used for the salt rinse cycle and the particle rinse cycle. The particle rinse cycle is different from the μ system in the other embodiments. In some embodiments, the use of a solvent without a 123423.doc -20-200815293 solvent for the salt rinse cycle is performed in some embodiments, using an inorganic solvent or two wash cycles and In the particle rinse cycle, a salt wash is used, and an organic solvent is used to carry out the bleed 3 Λ in some embodiments - either or both. In the m;;r granule rinsing cycle, in the example of the granule rinsing cycle, the salt rinse cycle and the granule rinsing solution of the granule 2 are used in the embodiment of the embodiment, in the embodiment, none or both . In one of these embodiments, he is: , 〆;,,, hydrophilic. In these examples, the organic solvent is hydrophobic. In the two π embodiment, the solvent used in both the salt rinse cycle and the particle rinse cycle was intermittently changed to a different solvent. In some embodiments of the invention, the applied galvanic is removed during the salt rinse and/or particulate phase. In other embodiments, the salt rinsing and/or particulate rinsing is performed prior to the wash and/or particulate rinse cycle to prevent residual voltage during the Eucalyptus J. In this case, the medium is reversed during the salt rinse and/or the particle wash cycle: the release of the pressure generated during the purge cycle by == in the example can be = the concentrated salt in the system. The stack can be shorted to remove any residual electricity on the stack without fully flushing the salt from the electrode stack and then flushed with air to remove the remaining salt. To prevent potential improper short circuits (and the resulting chlorine gas) during the purge cycle from forcing the electrodes together, a thicker and finer plastic mesh can be used to separate the electrodes in the stack. In addition, the sealing of the stack can be improved by first sealing the components individually and by technique, starting and sealing them together as an assembled battery. Preventing the presence of air in the system when voltage is applied prevents high current density areas. In the usual application, high current density is avoided by applying a voltage after the water has begun to flow out of the outlet. In some embodiments, high current densities are avoided by using a liquid rather than a gas during the salt rinse cycle. Reducing the amount of air in the system also reduces the duration of the wash cycle and reduces the mixing of wastewater and purified water. In some embodiments, an actuator valve (eg, a solenoid valve) (such as 916 in FIG. 9) near the particle flush cycle 1 simultaneously opens an actuator valve located near the second inlet port (such as FIG. 9). Y 8) 'and thus allow to flow through the second person σ 蟑 (906) and via the population 槔 (9 〇 2) ", L out in some examples, during the salt rinsing cycle, close at the second entrance The actuator valve near the itching simultaneously opens to the vicinity of the outlet weir, allowing flow through the outlet weir (9. 4) and via the inlet flow regime, during the combined salt rinse and particulate flush, the opening is in the second Near the entrance 折 “ 早 早 早 早 早 早 早 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Early (〇4) flows out through the inlet port (9〇2). In some embodiments of the invention, a single fruit is used for the net week in the salt rinse cycle and the particle rinse cycle. Here: ...in the example, y is only one of the examples. This is the first pump used to clean the week-μ to the exit and use it in the opposite direction. In the salt rinse cycle 2 = from the inlet pumping other embodiments, the 罝 ^ @ u grain rinse cycle. In 妁τ, an early pump is used to purify the weekly grain rinse cycle and the first work and the middle wash cycle or micro The other is used in the salt wash cycle or the particle wash cycle. The device may contain one or more sample cartridges (eg, connected to line 942 in Figure 9) for collection of water. For analytical testing (such as conductivity, ion concentration, etc.), one or more valves (eg, needle valve 928 in Figure 9) can be connected to - or multiple bypass lines (such as 944 in Figure 9). The operating pressure is controlled. In some instances, the device includes - or a plurality of flow meters and/or one or more pressures = (e.g., 914 of Figure 9). Port, < / "in the case of the case" the device is electronically Control battery control to adjust the duration and frequency of the purge and rinse cycles. The electronically controlled battery can be used to operate one or more pumps at 24 volts, weight, and time, and/or open /Off - or use a 4-channel relay to turn on and off the gateway to the 3rd, 7th, and/or one or more The circuit of the pole stack. There are two: in the example, the voltage supplied to the different electrodes in the electrode stack =: 4; for example, -- mm on the electrode group (such as - electrode pair) h ίΛ ^ 隹The voltage on the other electrode group in the crucible (such as the other J pole pair) can be 4,8 v. The voltage at some electrodes increases with the progress of Pan Wei μ, Τ 、, and 七 k. The voltage supplied to the electrode is increased by one. In this case, the conductivity of the water at the outlet of the tube increases and increases. The electric resistance of the water in the embodiment is reduced and the % is selected. The voltage is equal to the number of anode electrodes, the number of electrodes of the cathode electrode, as it leaves the exit. In other implementations, the number of four cathode electrodes and four anodes is °'. The number of electrodes in the straight apricot η @ pole is greater than the number of anode electrodes. The number of electrodes and the number of electrodes is larger than that of the cathode electrode 123423.doc -23 - 200815293 The electrode provides particle filtration, ionic enthalpy, and the removal of Aspergillus • The AH is free, and the organic material and fine _~ are carbon-based porous structure. For example, in the drawings, the electrode may be a porous planar structure (ie, a plate) and the spacer element such as a perforated plate 'however' may also use electrodes and spacer elements:: configuration ( Such configurations, such as tubular or rolled structures, provide the desired relationship between the electrodes and the soil, and it will be appreciated that such configurations are also within the scope of the invention as claimed herein. In some of the embodiments of the present invention, there are three basic properties of the electrode, electrical conductivity, and mechanical strength. Because of the enthalpy, the electrode can be made of a carbon-based porous structure (as the case may be graphite) for the purpose of conduction, and can be used for the operation of the force, such as the addition of the electrode to the water. - an oxide (used by Monica) and a polymer used to bond the components of the electrode and used for: the electrode provides mechanical strength (for example, ion exchange, cross-linking, upper:: polymer) . The ion exchange polymer component may also be on the surface of the electrode M, an ion exchangeable group (d), and an ion group π in the binder water stream. According to one of the embodiments of the present invention, one or more than two elements from the 14th group (❹, carbon black may be added to increase the conductivity of the electrode: ° In an embodiment, the added element τ is from about 5% to about 3%, from about 5% to about 2%, or about the weight percent of the approximate hop. In a differential embodiment, the ruthenium electrode may comprise carbon fiber. The carbon fiber can be: mechanical strength of the electrode and/or cerium oxide, which can increase the powder mixing property and the electrode wettability. In the embodiment in which the carbon fiber is added, usually from about 5% to about 3% by weight. The percentage includes this component. In embodiments in which dioxane 123423.doc -24-200815293 is added, the component is typically included in a weight percentage of less than about 5%. In some embodiments, the electrode may be added to the electrode. Other metals or semi-metals such as silver or gold that increase conductivity and/or contribute to inactivation of microorganisms. In some embodiments, the electrode of the present invention comprises delaminated graphite. The delaminated stone 1 ink pair such as hydrogen sulfate Graphite layer of graphite with relatively large particle diameter, sandwiched The product obtained by very rapid heating (or flash heating). The vaporization of the layered material forces the graphite layer to separate, resulting in a shape similar to the ® accordion, where the apparent volume is typically hundreds of times the original graphite flakes. According to an embodiment of the invention, the porous electrode as described herein comprises delaminated graphite in the form of particles having a size of less than about 50 μm. In some shellfish examples, the delaminated graphite may have a thickness of about 5 〇〇 m 2 / g to a surface area of about 8q〇m2/g. In some embodiments, the delaminated graphite may have a surface area of about 7 〇〇 m 2 /g. In some embodiments of the invention, the average pore size within the electrode is less than Ϊ́ηΐ, or less than 0.75, or less than 〇·6 μιη, or less than 〇·5 ' or greater than 0·05 μιη, or greater than 0.1 μπι, or greater than 〇15 μιη, or greater than 〇2 μηι, or greater than 0.25 μηη. In some embodiments of the invention, the average pore area in the electrode is greater than .10 m2/g, or greater than 12 jaws 2/§, or greater than 14 m2/g, or less than 3〇m2/g, or less than 28 m2/ g, or less than 25 m2/g. In an embodiment In the graphite powder delamination (for example, Suped〇rGra_e C〇rporati〇n (Chicag〇)) mixed with a hncvhjcu solution (for example, 1:9 HN〇3:H2S〇4V/v) is used to achieve delamination of graphite. For this purpose, 123423.doc -25- 200815293 80 g of graphite powder is mixed with the hnc^hjO4 solution, and then heated in a furnace of 9 (10) c to 1000 ° C for 3 minutes. The conductive adsorbent particles can be The particles have reactive xenogenic groups on the surface which react with, for example, or a plurality of crosslinking agents to bond the adsorbent particles to the electrode structure. For example, a carbon-based material (eg, delaminated graphite) may have a c=0 group and a C-OH group on its surface. The c=〇 group and the CM)H group can be used to bond to the polymer, which increases the mechanical strength of the electrode and reduces carbon intrusion in the water. Crosslinking also intercepts fine carbon black particles containing carbon black in the electrode, which reduces carbon black attack. In some embodiments of the invention, the electrode comprises at least one resin which may also be used to bond the components of the electrode to a cohesive structure. In some embodiments, the resin has an ion exchange component that provides an ion parent transposition on the electrode. According to an embodiment of the invention, the ion exchange component is a crosslinkable polarizable polymer. Crosslinking of the polarizable polymer prevents the polymer + from being dissolved in the water stream being purified. Polymers suitable for use in the electrodes described herein may include crosslinkable polymers and may include ion exchange sites, for example, including -NH2 groups...〇H groups...c=〇 groups and/or _ A polymer of COOH groups. In some embodiments, the resin is a cationic exchange resin. In some embodiments, the resin is an anion exchange resin. In some of the shells>, the resin is a mixture of a separate cation exchange resin and a separate anion exchange resin. In some embodiments, the resin contains a cationic parent resin and an anion exchange resin. Suitable ion exchange, polarizable polymers include, but are not limited to: polyurethane, polyacrylic acid, sulfonated polystyrene, poly(vinyl alcohol) (PVA), poly(ethylene vinyl alcohol) (PEVA), crosslinked phenol Department 123423.doc •26- 200815293 Resin, polyethyleneimine (PEI) and combinations thereof. Suitable polarizable polymer cross-linking gemstones include Ethyl, such as ketones, aldehydes such as methyl and glutaric acid, methylene amines, amines, imines, guanamines and the like combination. In some embodiments, the resin has an average molecular weight of from about 15,000 to about 50,000. In some embodiments, the resin has an average molecular weight of about 30,000. "In some embodiments of the invention, the electrode has a thin polymeric film or layer. - In some embodiments, the film is cellulose acetate coated onto one or more electrodes. In some embodiments, the film or The layer is PEVA, PEI or polyamine. A film such as cellulose acetate can aid in salt adsorption. In some embodiments, the film or layer is a cellulose acetate film on a PEVA, PEI or polyamide film. In some embodiments, the film or layer has a thickness between about 25 A and about 175 A, or a thickness between about 5 AA to about 15 A, or a thickness between about 75 A and about 125 A, or The thickness is about 1 A. In some embodiments, the water purification system comprises different electrodes having different films or layers. For example, the water purification system can comprise an electrode comprising a PEVA film and a film contained in the _PEVA film. An adjacent electrode of the cellulose acetate film. In one embodiment, the water purification system comprises: an electrode located near the water inlet port, comprising a PEVA film; an adjacent electrode at a downstream of the first electrode, Contains cellulose acetate film and optionally in cellulose acetate film Between the electrode layers, there is a /PEVA layer; and two electrodes further downstream, which contain a PEVA film. The electrode of the present invention may have hydrophilic properties and may be optionally present for the purpose of increasing water adsorption as indicated previously. There is at least one oxide in the oxide. The oxide can contribute to the hydrophilicity of the electrode. Any oxide which is stable in water can be used. In some embodiments, the oxide comprises a semimetal (Example 123423. Doc -27-200815293: '': yttrium oxide). In some embodiments, the oxide is a metal oxide. In some embodiments, the size of the oxide is in the range of about μ5 μπ^. Examples of suitable metal oxides and mixtures thereof. 2^3 It will be understood that depending on the composition of the water stream being treated, such as tar (oil) and impurities to organic substances may accumulate on the electrodes. The electrode described herein can be removed by periodic backwashing or rinsing of the electrode. To enhance the process, in addition to hydrophilicity, the electrode of the present invention can also possess hydrophobic properties. In an aqueous medium, ions are Surrounded by water. Water 11: The material helps to discharge the enthalpy, thereby discharging the ionic impurities. According to the example of this month, the hydrophilicity and hydrophobicity of the electrode can be controlled by appropriately selecting the polarizable polymer and the crosslinking agent. For example, poly(ethylene glycol) (PVA) has less _ch2 than poly(ethylene ethoxylate KPEVA). The earthy group provides hydrophobicity in PEVA. In addition, the hydrazine has less carbon atoms than glutaraldehyde and glyoxal. In general, as the number of carbon atoms/even groups increases, the hydrophobicity increases and the affinity decreases. It has been found that 'crosslinking' Previously, each of the polymers present in the polymer, for example, had one (1) to five (7) _cH2_ groups via a base or other hydrophilic group, and the water and the scoop could be hydrophilic and hydrophobic at the electrode. Providing the desired balance i In some embodiments, the electrode contains a hydrophobic content of from about 2% to about 5%. In some embodiments, the hydrophilicity is greater than about 6% and the hydrophobicity is less than about 40%. According to a preferred embodiment of the invention, the electrode has a hydrophobicity of up to about 50%. In some embodiments, the electrode comprises at least one hydrophobic group in the polymer, for example, at least one c-c group, a ch_ch group, or a 123423, doc -28-200815293 CH2-CH2 group. Figure 5 depicts some embodiments in which a porous electrode (such as 52) as described herein comprises a microchannel 50. In some embodiments, the microchannels have an average diameter that is greater than the average diameter of the pores in the electrode. In some embodiments, the microchannels have an average diameter that is greater than the average diameter of the pores in the electrode but less than the average diameter of the particles or particles contained in the water to be purified. The microchannels may be covered by a water permeable polymeric film 54 at each end toward the electrode surface and/or inside the microchannel. In some embodiments, the microchannel coating can be limited to areas toward each end of the electrode surface and formed during fabrication. In some embodiments, the microchannels may be covered by a separate film or layer that is applied after forming the microchannels. Microchannels can increase water permeability and surface area available for ion adsorption on the electrode by providing better access to additional pores, ion exchange sites, and adsorbents, while the membrane prevents particles from entering or passing through the microchannel. In some embodiments, the microchannel has a larger diameter than the electrode pores. It may be desirable to provide microchannels that have a sufficiently large straight diameter to allow for increased water permeability without reducing ion adsorption. In some a% cases, the microchannel has about 匪1匪 to about! The diameter of the ugly. • 2 – In the implementation of the second column, the microchannel has about 〇·5 faces to about! Straight mm In some embodiments, the microchannels are spaced apart by about 2 mm to about 1 mm. In the case of two κ; ^, the sputum channels are separated by about 5 mm. In some embodiments the 'microchannel comprises a diameter of from about 0.3 (10) to about Q2em, wherein the distance of the gate of the microchannel is about 〇 5 cm. In some embodiments, the film has a thickness of from about 10 A to about 20 A, a ten ώ: & or a conductivity of from about 20 Α to about 150 Å, or a thickness of from about 50 Å to about 125 Å, or The thickness is about i(8)A. 123423.doc -29-200815293 In some embodiments, Ray and Phillips are the spacers described in U.S. Patent No. 5,942,347, the disclosure of which is incorporated herein by reference in its entirety for all purposes. Incorporated herein. In some embodiments, the electrode described herein contains a seal applied to the edge of the electrode (for example, a water-based acrylic rubber (and a polyamine oxime based on a potting liquid). Mountain & 〆, -, ΛΚ妷, ΛΚ妷 文 或 or poly 矽 。. Seals prevent the side of the electrode assembly from occurring, the electrician leaks steam and / or prevent pressure on the water purification system

時發生邊緣降級、斷裂 I 辦衣及水旁流,以及在堆疊電極時提供 額外之剛度。密封株介π > 亦可有助於在操作期間將壓力分布至 电極之邊緣而非雷搞 :♦十 才之有效區域。可藉由對電極邊緣進行 /文k來完成密封件之庫 a 叮每士 、 應用在一些貫施例中,電極之部分 可k有一或多種不導兩 %材科(例如,聚四氟乙烯)以提供電 、、、巴緣。在一此音故Αϊ rk - 严 二貝施例中,應用於電極邊緣的密封劑可足夠 眚浐η 且f之電極上發生電短路。圖10展示一 如,^ f &含—或多個相鄰之墊片1〇4(例 不^個ΛΚ碎L塾片)以有助於密封電極表面之 4电極堆豐之相鄰層(例如,流體可滲透之隔 月’堵如網)。在一此管 神 在電極堆晶φ ^ 1 ’片可為足夠厚以避免 隹-中之電極上發生電短路。在本發明之 例中,電極堆Α 二只% 分支〜f ,之板及/或層在電極堆疊之中心處受到充 止過度之*一 ^ 曰和立接觸)以在#作期間防 <力知害水淨化系統。 電極製造 、而。,可精由將氧化物(例如,金屬氡化物)及碳或 123423.doc -30- 200815293 脫^墨釦末與聚合物樹脂(含交聯劑之聚合物溶液)及諸 如碳酸氫錢或碳酸氫納之起泡劑混合,且在大氣壓力及室 或〇 ’里下模製(例如,澆鑄)混合物來製造本發明之電 極。所使用之碳酸氫銨或其他起泡劑的量視可透水電極之 所要孔隙率而定。通常,電極視導電率與機械強度之所要 平衡而定含有約40%至約80%之孔隙率。已發現,於室溫 或高溫(例如,2〇〇。〇下模製之包含約50 wt%至60 wt%之Edge degradation, fracture I, and water bypass occur, as well as providing additional stiffness when stacking electrodes. The sealing strain π > can also help to distribute the pressure to the edge of the electrode during operation rather than the Ray: ♦ effective area. The reservoir of the seal can be completed by the edge of the electrode / a k, the application is in some embodiments, the part of the electrode can be one or more non-conductive materials (for example, Teflon) ) to provide electricity, and, and the margins. In this case, the sealant applied to the edge of the electrode may be sufficiently 眚浐η and an electrical short circuit occurs on the electrode of f. Figure 10 shows, for example, ^ f & containing - or a plurality of adjacent spacers 1 〇 4 (for example, not smashing L 塾 )) to help seal the adjacent electrode surface of the electrode The layer (for example, the fluid permeable month is blocked). In this case, the φ ^ 1 ' piece in the electrode stack can be thick enough to avoid an electrical short on the electrode in the 隹-. In the example of the present invention, the electrode stack has two % branches ~f, and the plates and/or layers are overcharged at the center of the electrode stack to prevent excessive <RTIgt; Know the water purification system. Electrode manufacturing, and. , can be refined by the oxide (for example, metal telluride) and carbon or 123423.doc -30- 200815293 de-inking with polymer resin (polymer solution containing cross-linking agent) and such as hydrogen carbonate money or carbonic acid The hydrogen halide foaming agent is mixed and the mixture of the present invention is molded (e.g., cast) at atmospheric pressure and in a chamber or crucible to produce the electrode of the present invention. The amount of ammonium bicarbonate or other blowing agent used will depend on the desired porosity of the water permeable electrode. Typically, the electrode will have a porosity of from about 40% to about 80%, depending on the balance of electrical conductivity and mechanical strength. It has been found to contain about 50 wt% to 60 wt% at room temperature or elevated temperature (for example, 2 Torr.

=㈣末、約5wt%DGwt%之碳黑、約7_%之聚合物樹 脂及高達約丨〇 w t %之碳酸氫銨的混合物製造出合適之電 極。可在蒸發溶劑之後對聚合物進行交聯。 在-實.施例中,在約贼至約9Gt之熱水浴中處理如上 文所述製造之電極以移除溶劑殘餘物及交聯催化劑。 在-些實施例中,在製造期間將微通道引人本發明之電 極中。在-實施例中’允許在室溫下對經洗鑄之包含脫層 石墨、金屬氧化物、聚合黏合劑(例士。,ρΕνΑ、勵或 PE!)及/或其他材料(諸如碳黑、二氧化石夕及/或碳纖維則 極薄片進行乾燥。在薄片完全乾燥之前,用(例如)針或雷 射鑽將用以產生微通道之小孔引入至薄片之整個厚度中。 液體聚合物(例如,PEVA)覆蓋針孔之在電極薄片之=表面 及後表面上的末端,且接.著進行乾燥以形成覆蓋每—微通 道之末端的薄透水膜。 集電器 ^ 肌戌隹電極内或 與黾極之邊緣接觸的集電器。該集電哭 衆电^經设叶以將液體均 123423.doc 31 200815293 勻地分布至相鄰電極之表面以 丨又仕电極介面上產生恆定之 壓力’從而導致改良之過據。在—些實施例中,藉由一或 多個層(例如,流體可滲透之 + λ _ κ隔片、聚矽氧泡沫墊片或兩 者)將集電器與電極分離。如圖1〇中所示,集電器⑽可位 於電極堆疊之-末端上以使得液體在分布至電極堆疊之一 或多個電極之前被引導通過集電器。 圖11Α展示本發明之—實施例中之集電器的前視圖。一 平坦表面1112可允許相鄰電極與該表面内之凹穴的適當密 封w可使用一璋1114作為入口,在其中可將液體引導至集 電益之凹穴巾且將其均勾地遞送至電極表面。埠11 14附近 之指狀物U06可允許進人集f器之水的均勾分布且亦可在 高麼操作期間支樓埠周圍之區域。凹坑u_鄰近和〇4 及埠⑴4為以徹底中斷電流且有助於防止在相鄰板上出現 高壓區域。平行脈1110亦可有助於將流入之水均勻分布在 整個凹穴上。可使用一額外之埠11〇4來沖洗累積在電極表 面上的微粒。集電器可包含諸如(例如)不銹鋼、鎳或鈦之 金屬絲網或薄片。在一些實施例中’集電器可由石墨構成 以防止腐蝕。圖11B展示本發明之一實施例,其中圖uA 中之上游集電器Π 02位於電極堆疊之一末端上且一下游集 電器1120位於該電極堆疊之相反末端上。下游集電器η 被展不為具有一視情況存在之出口埠1118。在一些實施例 中,集電器含有多個入口埠及/或出口埠(諸如圖UB中所 示之與111 8成對角的額外出口埠)。 流體可滲透之隔片 123423.doc -32- 200815293 如本文中所描述之水淨化系統可含有—置於多孔陽極電 極與多孔陰極電極之間的不導電之流體可渗透之隔片。該 隔片可有助於在&備操作期間維持流動均句性(允許液體 在過濾器之間重新分布且均衡壓力)且防止電短路。流體 可渗透之隔片可向電極堆疊提供結構性支撐。在-實_ 中,流體可滲透之隔片元件為諸如市售之有孔塑膠薄片的 非電子導_’例如,有孔聚乙浠、聚丙稀、塑膠網、 玻&纖維紙、其他非電子導電纖維紙、織物、透水陰離子 導電膜或透水陽離子導電膜(諸如聚醯胺、聚乙烯醇或聚 乙稀亞胺)’其具有約娜至請%、約观至⑽%或約 60%之開放區域以使得待淨化之水流能夠流過。在—些實 施例中(如圖1G所示),流體可滲透之隔片102可經定向:緊 鄰電極⑽、集電器100及/或塾片1〇4(例如,聚石夕氧泡沐塾 片)。墊片(例如,聚石夕氯洎泱執y、介 k /虱忍沭墊片)亦可有助於在過濾操作 期間防止靜電堆積。 外殼 本文中所描述之水淨化系統可含有一外殼,該外殼具 有.-人口埠’待淨化之水經由該人口埠被引人水淨化系 統中,及-出口埠’淨化水經由該出口埠流出系統。 外殼可包含諸如塑膠玻璃(plexiglass)、聚碳酸酿或聚胺 _之可射出成型的不導電材料♦些實施例中,外殼係 塗有不導電材料之導電材料。外殼可含有:一入口埠,其 用於將待淨化之水流m统中以進行處理;及—淨化: 出口埠’可經由該出口埠移除淨化水。在-些實施例中, 123423.doc -33- 200815293= (d) At the end, a mixture of about 5 wt% DG wt% carbon black, about 7-% polymer resin, and up to about 丨〇 w t % ammonium bicarbonate produces a suitable electrode. The polymer can be crosslinked after evaporation of the solvent. In the embodiment, the electrode fabricated as described above is treated in a hot water bath of about thief to about 9 Gt to remove solvent residues and cross-linking catalyst. In some embodiments, the microchannels are introduced into the electrodes of the present invention during manufacture. In the examples - 'allowing for the inclusion of delaminated graphite, metal oxides, polymeric binders (eg, ρΕνΑ, excitation or PE!) and/or other materials (such as carbon black, at room temperature) The thin sheets of the dioxide and/or carbon fibers are dried. The pores used to create the microchannels are introduced into the entire thickness of the sheet by, for example, a needle or a laser drill before the sheet is completely dried. For example, PEVA) covers the ends of the pinholes on the surface and back surfaces of the electrode sheets, and is dried to form a thin, water permeable film covering the ends of each of the microchannels. Current collectors ^ In the tendon electrodes or a collector that is in contact with the edge of the bungee. The collector is crying and the leaf is set to uniformly distribute the liquid 123423.doc 31 200815293 to the surface of the adjacent electrode to generate a constant pressure on the electrode interface. 'This leads to improved evidence. In some embodiments, the current collector is made up of one or more layers (for example, a fluid permeable + λ _ κ spacer, a polyoxygenated foam gasket or both) Electrode separation, as shown in Figure 1〇, current collector It may be located on the end of the electrode stack such that the liquid is directed through the current collector before being distributed to one or more of the electrode stacks. Figure 11A shows a front view of a current collector in an embodiment of the invention. A flat surface 1112 A suitable seal w that allows adjacent electrodes to be recessed into the surface can be used as an inlet in which the liquid can be directed to the collecting pocket and delivered to the electrode surface. The finger U06 near 11 14 can allow the water to be collected in the collector and can also be used in the area around the branch during the high operation. The pit u_adjacent and 〇4 and 埠(1)4 are completely Interrupt current and help prevent high voltage areas from appearing on adjacent plates. Parallel veins 1110 can also help distribute the influent water evenly throughout the pocket. An additional 埠11〇4 can be used to flush the accumulated electrode. Particles on the surface. The current collector may comprise a wire mesh or sheet such as, for example, stainless steel, nickel or titanium. In some embodiments the 'current collector may be constructed of graphite to prevent corrosion. Figure 11B shows an embodiment of the invention, The upstream collector Π 02 in the middle figure uA is located at one end of the electrode stack and a downstream current collector 1120 is located at the opposite end of the electrode stack. The downstream current collector η is not shown to have an exit 埠 1118 that exists as appropriate. In some embodiments, the current collector contains a plurality of inlet ports and/or outlet ports (such as the additional outlet ports diagonal to 111 8 as shown in Figure UB). Fluid permeable septum 123423.doc -32- 200815293 A water purification system as described herein can comprise a non-conductive fluid permeable septum disposed between a porous anode electrode and a porous cathode electrode. The separator can help maintain flow during & Uniformity (allowing liquid to redistribute between filters and equalizing pressure) and preventing electrical shorts. The fluid permeable septum provides structural support to the electrode stack. In the actual, the fluid permeable septum element is a non-electron guide such as a commercially available perforated plastic sheet. For example, perforated polyethylene, polypropylene, plastic mesh, glass & fiber paper, other non- Electronically conductive fiber paper, fabric, water-permeable anion conductive film or water-permeable cationic conductive film (such as polyamine, polyvinyl alcohol or polyethyleneimine) having a ratio of about 5% to about 5%, or about 60% or about 60% The open area is such that the water stream to be purified can flow. In some embodiments (as shown in FIG. 1G), the fluid permeable septum 102 can be oriented: in close proximity to the electrode (10), the current collector 100, and/or the septum 1〇4 (eg, polyglycooxygen). sheet). Gaskets (for example, polystones, y, k / 虱 沭 )) can also help prevent static buildup during filtration operations. The outer casing of the water purification system described herein may comprise a casing having a population of - the water to be purified being introduced into the water purification system via the population, and - the outlet - purifying water flowing out through the outlet system. The outer casing may comprise an ejectable non-conductive material such as plexiglass, polycarbonate or polyamine. In some embodiments, the outer casing is coated with a non-conductive material. The outer casing may contain: an inlet port for treating the water stream to be purified for processing; and - purifying: the outlet port' may remove purified water via the port. In some embodiments, 123423.doc -33- 200815293

外/v又亦含有一廢物出口開口,可經由該廢物出口開口移除 自水4中分離之微粒。在一些實施例中,入口開口及可選 之廢物出口位於水流所流過之第一多孔電極的上游處,且 ’爭化水出口開口位於水流所流過之最後一個電極的下游 處。在一些實施例中,入口開口位於外殼之底部附近以利 ;、由外冗又之底部上的排放出口移除水流中過大而無法通 ^電極之孔隙的微粒及其他固體物質。在一些實施例中, 平化水出口位於外殼之頂部上,在水流所流過之最後一個 電極的下游處。在一些實施例中,外·殼亦含有一位於第一 電極之上游處的第二入口埠(見圖8之8〇8)以引入在微粒沖 洗處理期間所使用的水流。 在一些實施例中,外殼包含由一電池堆疊所分離之端板 (例如,塑膠端板)(見圖8之810及812)。外殼可含有在該等 鳊板之間的間隔物(見圖8之816)以在標準操作期間防止經 由電極堆疊之邊緣發生洩漏。在一些實施例中,外殼包含 壓縮電池堆疊之構件(例如,如圖8中所描繪之連桿8⑷。 圖12展示本發明之另一變體,其中可藉由墊片12〇2將電 極1204固持於外殼i 2G8中的適當位置且可藉由聚胺醋或另 -絕緣體在其頂部邊緣及底部邊緣對其進行密封。 :本:明之一些實施例中,水淨化系統中與廢水 :的一些材料或全部材料為非金屬物質以減少或消除腐 以下實例意欲說明本發明但不限制本發明。 實例1 123423.doc -34· 200815293 製造脫層石墨 藉由將濃硫酸與石墨粉末混合來製造脫層石墨。在烘箱 中在600°C至1000°C下加熱該混合物。所得之脫層石墨在 石墨顆粒上包括C = 〇鍵及c-〇H鍵,該等鍵與聚(乙烯乙烯 醇)及戊二醛交聯。所得石墨粉末在多孔板中為穩定的且 不會在廢水處理過程期間被沖掉。 實例2 製造多孔石墨電極 將9公克脫層石墨粉末與1〇公克水及1〇公克1〇之聚 (乙烯%)混合以形成第一混合物。將丨〇公克水與2公克 wt%之水中戊二醛及〇·5 ml2HC1(35加%)混合以形成第二 混合物。將兩種混合物充分混合在一起且澆鑄所得混合物 以製成1/16’’厚之薄片,接著在l〇〇°C下對該薄片進行熱處 理。水自板上沸騰會產生氣泡以使板為多孔的。由於戊二 醛以不可逆方式與聚(乙烯醇),因此所得交聯聚合物完全 不可办,即使在熱水中亦完全不可溶。在一些實驗中,使 用PEVA作為黏合劑來增加電極強度。用於PEVA之溶劑是 體積比為1 ·· 1的1 _丙醇與水。 厂、根據此m例製造之電極與其他電極材料之間的 表面電阻之比較。 表1·表面電阻比較 #料 表面電阻(Ω) 鋼 0.098 石墨 0,120 專片 95 123423.doc 35 - 200815293 實例3 藉由使用不同起泡劑來改變電極孔隙率 使用不同之起泡劑來製造兩個以石墨為主之多孔電極。 將8 a克脫層$墨、#末及j公克起泡劑(碳酉吏氯錢或碳酸氯 納)與10公克水及10公克10 wt%之聚乙烯醇混合以形成第 一混合物。將10公克水與2公克50wt%之戊二駿及151111之 :C1(35 wt%)混合以形成第二混合物。將兩種混合物充分 此合在-起且澆鑄所得混合物以製成厚度為"“之薄片。 在室溫下固化薄片。由於戊二駿以不可逆方式與聚乙稀醇 黏合’因此所得交聯聚合物不可溶,即使在熱水中亦完全 不可溶。 如貝例2所述製造在使用起泡劑或不使用起泡劑的情況 下製造之電極且在未施加水壓之系統中對其進行測試。在 不使用起泡劑的情況下製造之電極具有低水滲透率(<1 ml/min),且在使用起泡劑的情況下製造之電極在滲透率 方面表現出很大改良(>2〇 mi/min)。然而,在使用起泡劑 的情況下製造之電極的拉伸強度下降了大約2〇〇/。。 實例4 最佳化以多孔石墨為主之電極組合物 使用矩陣最優化方法如實例2中所述製造十四個具有不 同組合物之以多孔石墨為主的電極。此等電極之組合物展 示於表2中。 123423.doc -36- 200815293 表2·電極組合物 實驗 脫層 電極 (g) 碳黑 XC- 72R (g) 碳纖維 Panex 30(g) 二氧 化矽 (g) PEI (%) PEYA(%) PEVA/PEI 溶液(g) 1:1 DI 水/1- 丙醇 (ml) SO%之 水中戊 二醛(ml) 35%之 HCI(ml) 1 10 2 6 0 10 15 20 5 0 75 2 14 3 1 0 5 ~ 40 5 〇 7s 3 13 5 0 0 5 30 30 5 \J · / 0 75 4 13 3 0 0 5 40 20 5 0 75 5 20 4 12 0 10 24 60 6 1 6 10 2 6 0 10 10 30 3 〇 s 7 20 1 4 12 0 10 24 60 6 1 8 13 — 3 0 10 20 45 5 T 9 14 4 0 10 20 15 5 1 π 7ς 10 10 2 6 ^ 0 10 20 15 5 v* / D Π 7S 11 14 3 9 1 0 10 30 23 7 12 14 3 9 1 0 10 30 23 7 i · 1 0<; 13 24 4 8 0 10 30 60 7 1 14 24 4 8 0 5 9.5 30 60 7 1.25The outer/v also contains a waste outlet opening through which the particles separated from the water 4 can be removed. In some embodiments, the inlet opening and the optional waste outlet are located upstream of the first porous electrode through which the water stream flows, and the "contenting water outlet opening is located downstream of the last electrode through which the water stream flows. In some embodiments, the inlet opening is located near the bottom of the outer casing; and the particulates and other solid materials in the water stream that are too large to pass through the pores of the electrode are removed from the exhaust outlet on the outer redundant bottom. In some embodiments, the flattening water outlet is located on top of the outer casing downstream of the last electrode through which the water stream flows. In some embodiments, the outer casing also contains a second inlet port (8-8 of Figure 8) located upstream of the first electrode to introduce the water stream used during the particle washing process. In some embodiments, the outer casing includes end plates (e.g., plastic end plates) separated by a stack of cells (see 810 and 812 of Figure 8). The outer casing may contain spacers between the jaws (see 816 of Figure 8) to prevent leakage through the edges of the electrode stack during standard operation. In some embodiments, the outer casing comprises a member that compresses the stack of cells (eg, link 8 (4) as depicted in Figure 8. Figure 12 shows another variation of the invention in which electrode 1204 can be accessed by spacer 12"2 It is held in place in the housing i 2G8 and can be sealed at its top and bottom edges by polyurethane or another insulator. This: In some embodiments, some of the water purification systems and wastewater: The material or all materials are non-metallic materials to reduce or eliminate rot. The following examples are intended to illustrate the invention but not to limit the invention. Example 1 123423.doc -34· 200815293 Manufacture of delaminated graphite by mixing concentrated sulfuric acid with graphite powder Layer graphite. The mixture is heated in an oven at 600 ° C to 1000 ° C. The resulting delaminated graphite includes C = 〇 and c-〇H bonds on the graphite particles, the bonds with poly(ethylene vinyl alcohol) And glutaraldehyde cross-linking. The obtained graphite powder is stable in the porous plate and is not washed away during the wastewater treatment process. Example 2 Production of porous graphite electrode 9 g of delaminated graphite powder with 1 g of water and 1 〇 Gram 1 The poly(ethylene %) is mixed to form a first mixture. The gram water is mixed with 2 g of wt% water glutaraldehyde and 〇 5 ml 2 HC1 (35 g%) to form a second mixture. The resulting mixture is mixed together and cast to form a 1/16" thick sheet, which is then heat treated at 1 ° C. The boiling of water from the sheet creates bubbles to make the sheet porous. The dialdehyde is irreversibly combined with poly(vinyl alcohol), so the resulting crosslinked polymer is completely unworkable and completely insoluble even in hot water. In some experiments, PEVA was used as a binder to increase the electrode strength. The solvent is 1 -propanol and water in a volume ratio of 1 ··1. The surface resistance of the electrode and other electrode materials manufactured according to the m example is shown in Table 1. Table 1. Surface resistance comparison #Material surface resistance ( Ω) Steel 0.098 Graphite 0,120 Special Film 95 123423.doc 35 - 200815293 Example 3 Changing the Porosity of the Electrode by Using Different Foaming Agents Different foaming agents were used to make two graphite-based porous electrodes. Gram layer $ , #末和j克克泡剂 (carbon 酉吏 钱 或 or 碳酸 碳酸 )) mixed with 10 grams of water and 10 grams of 10 wt% of polyvinyl alcohol to form a first mixture. 10 grams of water and 2 grams of 50% by weight And 151111: C1 (35 wt%) are mixed to form a second mixture. The two mixtures are fully combined and the resulting mixture is cast to form a sheet of thickness "at room temperature." Curing the sheet. Since the glutarylene is irreversibly bonded to the polyethylene glycol, the resulting crosslinked polymer is insoluble, and is completely insoluble even in hot water. An electrode fabricated using a foaming agent or no foaming agent was fabricated as described in Example 2 and tested in a system where no water pressure was applied. The electrode fabricated without using a foaming agent has a low water permeability (<1 ml/min), and the electrode manufactured using the foaming agent exhibits a great improvement in permeability (> 2〇mi/min). However, the tensile strength of the electrode fabricated using the foaming agent was reduced by about 2 Å/. . Example 4 Optimization of Porous Graphite-Based Electrode Composition Fourteen porous graphite-based electrodes having different compositions were fabricated as described in Example 2 using a matrix optimization method. The compositions of these electrodes are shown in Table 2. 123423.doc -36- 200815293 Table 2. Electrode Composition Experimental Delamination Electrode (g) Carbon Black XC- 72R (g) Carbon Fiber Panex 30 (g) Germanium Oxide (g) PEI (%) PEYA (%) PEVA/ PEI solution (g) 1:1 DI water / 1-propanol (ml) SO2 in water glutaraldehyde (ml) 35% HCI (ml) 1 10 2 6 0 10 15 20 5 0 75 2 14 3 1 0 5 ~ 40 5 〇7s 3 13 5 0 0 5 30 30 5 \J · / 0 75 4 13 3 0 0 5 40 20 5 0 75 5 20 4 12 0 10 24 60 6 1 6 10 2 6 0 10 10 30 3 〇s 7 20 1 4 12 0 10 24 60 6 1 8 13 — 3 0 10 20 45 5 T 9 14 4 0 10 20 15 5 1 π 7ς 10 10 2 6 ^ 0 10 20 15 5 v* / D Π 7S 11 14 3 9 1 0 10 30 23 7 12 14 3 9 1 0 10 30 23 7 i · 1 0<; 13 24 4 8 0 10 30 60 7 1 14 24 4 8 0 5 9.5 30 60 7 1.25

吾等在重力驅動設備中對電極自鹽水中移除鹽之能力進 行測試。在過濾之後移除了 25%至3〇%之鹽。所選電極之 結果展不於表3中。 表3·所選電極組合物之除鹽We tested the ability of the electrode to remove salt from brine in a gravity driven device. 25% to 3% by weight of salt was removed after filtration. The results for the selected electrodes are not shown in Table 3. Table 3. Desalting of Selected Electrode Compositions

實例5 使用不同黏合劑濃度來改變電極孔隙率 作為PEVA黏合齊1濃度之函數來分析電極之㈣率。使 用〇5%山、7,5%及1()%之黏合劑濃度來製備電極。電極含有 1〇/“反黑及10%碳纖維。使肖βετ⑻刪赠、E_tt及 >去來’則忒孔隙率以便經由吸附及解吸附等溫線來 心4如I體吸取、微孔體積⑽方法)、孔隙率及孔徑分 123423.doc -37- 200815293 布之電極特性。結果展示於表4中。當黏合劑之量增加 時,電極之孔隙率降低。 表4.孔隙率分析 組合物 5%黏合劑 7.5%黏合劑 10%黏合劑 總侵入體積(ml/g) 1.8393 1.3900 1.0715 總孔面積(m2/g) 14.107 23.931 23.714 中等孔直徑(體積)(μιη) 1,9805 0.6881 0.5488 中等孔直徑(面積)(μιη) 0.1116 0.0669 0,0555 平均孔直徑(4ν/Α)(μπι) 0.5215 0.2323 0.1807 25 psia壓力下的容積密度(g/ml) 0.5326 0.5368 0.6528 視(骨架)密度(g/ml) 1.7390 1.7127 1.7468 孔隙率(%) 76.1814 71.5888 65.1779 表面電阻(Ω/cm) 32 25 22 實例6 過濾硝酸鐵 吾等對過濾器電極自1 Μ硝酸鐵溶液中移除離子之能力 進行測試。使用具有含7.5% PEVA、62.5%脫層石墨、10% 碳黑及20%碳纖維之組合物的電極藉由重力驅動設備來過 濾50 mL之0.01 Μ硝酸鐵溶液及0.01 Μ硝酸鉛溶液。該溶 液在過濾前視覺上呈嫩黃色,且經過濾之溶液的顏色為淡 黃色,此指示已藉由過濾而移除鐵離子。如表5中所示, 每公克電極過濾、掉7.7 mg鐵且每公克電極過濾、掉1 5.4 mg 錯。 表5.過濾研究 預過濾、 過濾 離子mg/g電極 鐵(mg/L) 609 55 7.7 錯(mg/L) 2250 110 15.4 硝'酸鹽(mg/L)N〇3 4090 350 49 123423.doc • 38· 200815293 實例7 在壓力下進行過濾 吾等亦使用具有一含7.5% PEVA、62.5%脫層石墨、10% 碳黑及20%碳纖維之組合物的電極對圖6A中示意性描繪之 三級壓力驅動設備進行測試。在變化之壓力條件下操作該 設備。流動速率相對於僅受重力之情況下的流動速率而言 有所增加。如表6及圖13中所示,流動速率作為壓力之函 數而增加。 表6.不同壓力下之水流動速率 壓力0寸水) 20 40 60 80 Too 120 140 160 流動速率(ml/min/cm2) 0.50 0.62 0.83 1.31 1.70 2,47 3.80 4.25— 圖14展示在20吋之壓力下隨時間變化的排出液導電 率。電極面積為大約12 cm2。 具有微通道的以石墨為主之多孔電極 在製造期間將微通道引入以石墨為主之多孔電極中以增 加水滲透率及離子吸附。藉由將脫層石㈣末與碳黑、金 屬氧化物及(視情況)碳纖維及/或二氧化矽混合來製備電 極。接著,添加諸如PEVA、PVA及/或PEI之—或多種黏合 劑。將漿料充分混合。向裝料添加交聯劑且將直充分、、曰 合。將軸堯鑄至0.75 mm之厚纟。將所洗禱之薄片在: =?乾燥約5分鐘至約3。分鐘以在電極中保留6〇%至 =之進谷劑,接著使用直徑約為〇·3職且隔開約5随之針 行穿孔。當微料之每-末端朝向電極之表面時, 123423.doc -39- 200815293 :口黏合劑在微通道之每一末端上形成薄透水膜(見圖W。 =通道増力口 了所*方向中的水輸送轄射度,且增加了多孔 私極中可用於離子吸附之總表面積。微通道形成用於離子 、之飽和區,由此減少了水難以進入之‘‘死區”。 實例9Example 5 Using Different Adhesive Concentrations to Change Electrode Porosity The (four) rate of the electrode was analyzed as a function of PEVA adhesion. The electrode was prepared using a binder concentration of 5% mountain, 7, 5%, and 1 (%). The electrode contains 1 〇 / "anti-black and 10% carbon fiber. Let Xiao βετ (8) be deleted, E_tt and > go to 'the porosity 以便 to absorb the core 4 such as I through the adsorption and desorption isotherms, micropore volume (10) Method), Porosity and Pore Size 123423.doc -37- 200815293 The electrode characteristics of the cloth. The results are shown in Table 4. When the amount of the binder increases, the porosity of the electrode decreases. Table 4. Porosity analysis composition 5% binder 7.5% binder 10% binder total intrusion volume (ml/g) 1.8393 1.3900 1.0715 total pore area (m2/g) 14.107 23.931 23.714 medium pore diameter (volume) (μιη) 1,9805 0.6881 0.5488 medium pore Diameter (area) (μιη) 0.1116 0.0669 0,0555 Mean pore diameter (4ν/Α)(μπι) 0.5215 0.2323 0.1807 25 Bulk density under psia pressure (g/ml) 0.5326 0.5368 0.6528 Dependent (skeleton) density (g/ml) ) 1.7390 1.7127 1.7468 Porosity (%) 76.1814 71.5888 65.1779 Surface resistance (Ω/cm) 32 25 22 Example 6 Filtration of ferric nitrate The ability of the filter electrode to remove ions from a 1 Μ ferric nitrate solution was tested. Contains 7.5% PEVA, 62.5% delaminated graphite, 10 The electrode of the composition of carbon black and 20% carbon fiber is filtered by gravity to filter 50 mL of 0.01 Μ ferric nitrate solution and 0.01 Μ lead nitrate solution. The solution is visually yellow and filtered before filtration. The color is pale yellow, which indicates that the iron ions have been removed by filtration. As shown in Table 5, 7.7 mg of iron per gram of electrode is filtered and filtered and 1 5.4 mg is lost per gram of electrode. Table 5. Filtration Study pre-filtration, filter ion mg / g electrode iron (mg / L) 609 55 7.7 error (mg / L) 2250 110 15.4 nitrate 'acid salt (mg / L) N 〇 3 4090 350 49 123423.doc • 38· 200815293 Example 7 Filtration under Pressure We also used an electrode with a composition of 7.5% PEVA, 62.5% delaminated graphite, 10% carbon black and 20% carbon fiber to the three-stage pressure driven device schematically depicted in Figure 6A. The test was performed. The equipment was operated under varying pressure conditions. The flow rate was increased relative to the flow rate only under gravity. As shown in Table 6 and Figure 13, the flow rate increased as a function of pressure. Table 6. Water flow rate pressure at different pressures 0 inch Water) 20 40 60 80 Too 120 140 160 Flow rate (ml/min/cm2) 0.50 0.62 0.83 1.31 1.70 2,47 3.80 4.25— Figure 14 shows the conductivity of the effluent over time at a pressure of 20 Torr. The electrode area is approximately 12 cm2. Graphite-based porous electrodes with microchannels Microchannels are introduced into graphite-based porous electrodes during manufacturing to increase water permeability and ion adsorption. The electrode is prepared by mixing the end of the delaminated stone (four) with carbon black, a metal oxide and, optionally, carbon fiber and/or cerium oxide. Next, one or more binders such as PEVA, PVA and/or PEI are added. The slurry was thoroughly mixed. A crosslinking agent is added to the charge and will be sufficiently straightened and kneaded. Cast the shaft to a thickness of 0.75 mm. The washed pray is dried in: =? for about 5 minutes to about 3. Minutes to retain 6% to _ of the graining agent in the electrode, followed by a diameter of about 〇·3 and separated by about 5 followed by perforation. When each end of the micro-material is toward the surface of the electrode, 123423.doc -39- 200815293: the port adhesive forms a thin water-permeable film on each end of the microchannel (see Figure W. = channel is in the direction of * The water transport modulates the radiance and increases the total surface area available for ion adsorption in the porous private pole. The microchannels form a saturation region for ions, thereby reducing the ''dead zone' where water is difficult to enter. Example 9

本=中所描述之裝配方法係用以製造圖8中所說明之密 、于,—电極堆豐。在如圖9所示之自動化連續測試裝置中 :武該堆疊:其中以1%之水中Naci(模擬的廢水)作為待淨 之液體。藉由自取樣槔處收集樣本來分析產物水之 =果(圖:、5?:,在反沖洗(沖洗)之前鹽含量最初減 二。U 5分鐘時間間隔進行反沖洗展示出該系統係穩 定的且能夠移除可預計量之鹽。 在自動化連續測試裝置中測試所描述之另一密封 =疊:其中以3%之水中咖(模擬的海水)作為待淨化之 液體。糟由自取樣埠處收集樣本來分析產物水之導電率。 結果(圖16)展示,在反沖洗(沖 . 4〇%。 、f无)之刖鹽含置最初減少 本文中引用之所有公開索 s h開案專利案及專利申請案出於所 有目的以全文引用之方式併入本 、 Π P ^ ^ χζ , Ψ该引用的程度就如 同已特疋地及個別地將每一個 請案以引用的方式併入一般。開案、專利案或專利申 雖然已出於理解的清晰性目的藉由說明 地描述了前述之本發明,鈇 、 田口手、、、田 U然而熟習此項技術者將顯而易 123423.doc -40- 200815293 見’在不偏離本發明之精神及範疇的前提下可實賤特定之 改變及修改。因此,不應將此描述理解為限制本發明之範 嘴’本發明之範疇由隨附申請專利範圍來描述。 【圖式簡單說明】 圖1描繪一習知之電容去離子方法。 圖2為展示根據本發明之一實施例的用於廢水處理之單 個電池艙的示意圖。The assembly method described in this = is used to fabricate the dense, and - electrode stacks illustrated in Figure 8. In the automated continuous test apparatus shown in Fig. 9, the stacking: in which 1% of water Naci (simulated wastewater) is used as the liquid to be purified. The product water was analyzed by collecting samples from the sampling raft (Fig.: 5::, the salt content was initially reduced by two before the backwashing (rinsing). U 5 minute interval backwashing showed that the system was stable. And can remove the predictable amount of salt. Test another seal described in the automated continuous test device = stack: 3% of the water (simulated seawater) as the liquid to be purified. Samples were collected to analyze the conductivity of the product water. The results (Fig. 16) show that in the backwash (rushing. 4〇%., f none), the salt inclusions initially reduce all the patents cited in this publication. The case and the patent application are hereby incorporated by reference in their entirety for all purposes, Π P ^ ^ χζ , Ψ 引用 引用 的 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用 引用The opening of the case, the patent case or the patent application, although the invention has been described illustratively for the sake of clarity of understanding, 鈇, 田口手,, 田田, however, those skilled in the art will be apparently 123423. Doc -40- 200815293 See 'In no The specific changes and modifications may be made without departing from the spirit and scope of the invention. Therefore, the description should not be construed as limiting the scope of the invention. The scope of the invention is described by the scope of the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS A conventional capacitive deionization process is depicted in Figure 1. Figure 2 is a schematic diagram showing a single battery compartment for wastewater treatment in accordance with one embodiment of the present invention.

圖3為展示根據本發明之一實施例的用於廢水處理之多 個電池艙的示意圖。 夕 圖4為展示根據本發明之一實施例之兩級水淨化系統的 不意圖。 圖5示意性描繪如實例8中所描述之多孔電極中的微 道〇Fig. 3 is a schematic view showing a plurality of battery compartments for wastewater treatment according to an embodiment of the present invention. 4 is a schematic diagram showing a two-stage water purification system in accordance with an embodiment of the present invention. Figure 5 schematically depicts microchannels in a porous electrode as described in Example 8.

圖6A為根據本發 圖6B示意性描繪如 偶的電壓變化。 明之一實施例之水淨化系統的示意圖。 圖6 A所描繪之系統中所示之串聯電極 圖7示意性描繪_氽逸几么^ ^ _ 尺序·化糸統,在该水淨化中使用電磁 閥排出來自.水流之微粒雜質。 圖8為根據本發明之-實施例之水淨化系統的示意圖。 :為含有圖8所示之水淨化系統之自動化水淨化裝置的 不忍圖。 圖10例示根據本發明之一 圖11Α描繪根據本發明之 意性描繪圖11Α之集電界, Κ知例的電極堆疊。 一實施例的集電器。圖11Β示 其位於一電極堆疊之每一端 123423.doc -41 - 200815293 上 圖12不意性描縿一在如本文中所描述之水淨化設備之外 殼中之電極的總成。 圖1 3展不在墨力驅動式水過濾設備中作為水壓之函數的 水滲透率。 圖14展不在壓力驅動式水過濾設備中過濾硝酸鐵時作為 時間之函數的水導電率。 述之作為操作時間之函數的百 圖1 5展不如實例9中所描 分比除鹽。 操作時間之函數的百 圖16展示如實例9中所描述之作為 分比除鹽。 【主要元件符號說明】 11 負電極 12 正電極 13 陽離子 14 陰離子 20 多孔陰極電極 21 多孔陽極電極 22 流體可滲透之隔片 23 外殼 24 入口開U 25 淨化水出口開〇 26 廢物出口開口 30 外殼 123423.doc •42- 200815293Fig. 6A is a diagram showing the voltage variation as exemplified in accordance with the present invention Fig. 6B. A schematic diagram of a water purification system of one embodiment. The series electrode shown in the system depicted in Figure 6A is schematically depicted in Figure 7 using a solenoid valve to discharge particulate impurities from the water stream. Figure 8 is a schematic illustration of a water purification system in accordance with an embodiment of the present invention. : It is an unbearable picture of an automatic water purification device containing the water purification system shown in Fig. 8. Figure 10 illustrates an electrode stack in accordance with the present invention, which is depicted in accordance with the present invention, in accordance with the present invention. A current collector of an embodiment. Figure 11 shows that it is located at each end of an electrode stack. 123423.doc -41 - 200815293. Figure 12 is not intended to depict an assembly of electrodes in the outer casing of a water purification apparatus as described herein. Figure 1 shows the water permeability as a function of water pressure in an ink-driven water filtration unit. Figure 14 shows the water conductivity as a function of time when ferric nitrate is not filtered in a pressure driven water filtration unit. The graphs shown as a function of the operating time are not as de-salted as described in Example 9. Figure 16 of a function of operating time is shown as a fractional desalination as described in Example 9. [Main component symbol description] 11 Negative electrode 12 Positive electrode 13 Cation 14 Anion 20 Porous cathode electrode 21 Porous anode electrode 22 Fluid permeable septum 23 Housing 24 Inlet U 25 Purified water outlet opening 26 Waste outlet opening 30 Housing 123423 .doc •42- 200815293

31 電池間流體開口 50 微通道 52 多孔電極 54 透水聚合膜 60 入口開口 62 底部槽/入口槽 66 廢物出口 68 負電源 100 集電器 102 流體可滲透之隔片 104 墊片 106 電極 610 致動閥 612 沖洗開口 614 正電源 616 槽 618 透水間隔物 620 第二集電器 622 出口開口 624 集電器 700 電極 704 閥/入口埠;入口 706 排放閥 708 閥 •43 - 123423.doc 200815293 710 水入口及出口閥 800 水入口埠 802 集電器板 804 電極 806 水出口埠 808 入口埠 810 端板 812 端板 、 814 連桿 816 間隔物 900 水淨化系統/電極堆 902 入口埠 904 出口埠 906 第二入口埠 914 壓力計 916 致動器閥 918 致動器閥 920 第二泵 922 泵 924 排出廢物容器 926 收集容器 928 針閥 934 致動器閥/電磁閥 936 埠 .44· 123423.doc 20081529331 Inter-cell fluid opening 50 Microchannel 52 Porous electrode 54 Water permeable polymeric membrane 60 Inlet opening 62 Bottom trough/inlet trough 66 Waste outlet 68 Negative power supply 100 Current collector 102 Fluid permeable septum 104 Gasket 106 Electrode 610 Actuated valve 612 Flushing opening 614 Positive power source 616 Slot 618 Permeable spacer 620 Second current collector 622 Outlet opening 624 Current collector 700 Electrode 704 Valve/port 埠; Inlet 706 Drain valve 708 Valve • 43 - 123423.doc 200815293 710 Water inlet and outlet valve 800 Water inlet 埠 802 collector board 804 electrode 806 water outlet 808 inlet 埠 810 end plate 812 end plate, 814 connecting rod 816 spacer 900 water purification system / electrode stack 902 inlet 埠 outlet 埠 906 second inlet 埠 174 pressure gauge 916 Actuator Valve 918 Actuator Valve 920 Second Pump 922 Pump 924 Discharge Waste Container 926 Collection Container 928 Needle Valve 934 Actuator Valve / Solenoid Valve 936 埠.44· 123423.doc 200815293

940 944 950 952 1102 1104 1106 1108 1112 1114 1118 1120 1202 1204 1208 電極/電極堆疊 旁路管線 管線 管線 集電器 埠 指狀物 凹坑 平行脈 表面 淳 出口埠 集電器 墊片 電極 外殼 123423.doc940 944 950 952 1102 1104 1106 1108 1112 1114 1118 1120 1202 1204 1208 Electrode/electrode stack Bypass line Pipeline Collector 埠 Fingers Pit Parallel vein Surface 淳 Exit 埠 Current collector Gasket Electrode Housing 123423.doc

Claims (1)

200815293 十、申請專利範圍: 1. 一種水淨化系統,其包含: 一具有一第一平均孔直徑之多孔第一電極及一具有一 第二平均孔直徑之多孔第二電極,該等電極中之每一者 包含具有一大於該第一平均孔直徑或該第i平均孔直徑 ^ 之平均直徑的微通道。 :2.如請求項1之水淨化系統,其令該等電極包含前表面及 • 後表面,其中該等微通道包含位於該前電極表面及該後 電極表面上之開口,且其中該等電極中之每一者包含一 薄層臈’該薄層膜覆蓋位於該電極之該前表面及該後表 面上之該等微通道開口。 ,3.如請求項2之水淨化系、统,其中該薄層膜之厚度在約% A至約150 A之間。 4·女,月求項2之水淨化系統,其中該薄層膜係選自由聚(乙 稀乙烯醇)、聚乙締亞胺、聚醯胺、醋酸纖維素及其組合 藝 所組成之群。 ’、 5. 如請求項1之水淨化***,其中該等電極中之每一者進 一步包含石墨。 6. 如喷求項i之水淨化系統,其中該等電極中之每一杳進 一步包含至少一聚合物。 7. 一種水淨化系統,其包含: 陽極電極及一陰極電極,該等電極中之每一者包含 石墨及至少一聚合物。 胃求項6或7之水淨化系統,其中該至少一聚合物為, 123423-961204.doc 200815293 包含離子父換基團之交聯之可極化聚合物。 9·如請求項8之水淨化系統,其中該至少-聚合物包含一 選自由聚胺醋、聚丙烯酸、績化聚 :):烯—其組合所 !請求項…之水淨化系統,其進一步包含—置於該電 極之間的不導電之流體可渗透之隔片元件。 U.如請求項1或7之水淨化系統,其中該等電極中之每—去 包含一氧化物之顆粒。 其中§亥氧化物為一金屬氧化 其中該金屬氧化物在水中儀 其中該金屬氧化物包含一選 12·如請求項π之水淨化系統 物。 13·如請求項12之水淨北系統 穩定的。 14·如請求項13之水淨化系 自由ήο2 ' Al2〇3及其混合物所組成之群的金屬氧化物 15. 如請求項6或7之水淨化系統,其中該聚合物經交聯。 16. 如請求項!5之水淨化系統,其中該聚合物與一選自由 二酸、甲搭、戊二搭、亞甲基胺及其組合所組成之群 交聯劑交聯。 :求項5或7之水淨化系統,其中該石墨為脫層石墨。 β求項17之水淨化系統,其中該脫層石墨包含脫層 墨顆粒,違等顆粒具有直徑小於約75 μπι之-粒徑。 19.如請求項10之水淨化系統,其中該電極以及該隔片元 係置於一包含一入r? 開口及一出口開口之不導電外 123423-961204.doc 200815293 内,其中該水淨化系統經調適以使得_待淨化之水流自 該入口經由該隔片及該電極而流至該出口。 20.如請求項⑷之水淨化系統,其中該等電極為大體上親 水性的。 • Μ請求項2〇之水淨化系統’其中該等電極之該聚合物在 . 母一親水基團中包含一個至五個-CH2•基團。 .22·如請求項1或7之水淨化系統,其中該等電極中之每一者 φ 包含一鄰近於該等電極令之-者之-表面的集電器。 23. 如請求項1〇之水淨化系統,其中該不導電之流體可滲透 之隔片70件係一有孔塑膠薄片,其包含至少約4〇%至約 80%之一開放區域。 24. 如請求項!或7之水淨化系統,其中該等電極中之至少一 者進一步包含碳黑。 25·如請求項…之水淨化系統’其中該等電極包含—以體 積计為該等電極之至少約5〇%至約8〇%的孔隙率。 • 26.如請求項丨或7之水淨化系統,其中該等電極包含與該等 電極之至少一邊緣接觸的密封劑。 ,27·如•求項26之水淨化系統,其中該密封劑包含丙烯酸橡 膠。 28. 如請求項丨或7之水淨化系統’其進一步包含一置於該電 極之間的墊片元件。 ^ 29. 如請求項28之水淨化系統,其中該墊片元件包含聚矽氧 泡沐。 30· —種供一水淨化系統中使用的電極,其包含微通道。 123423-96l204.doc 200815293 31·如請求項30之電極,其中該電極包含前表面及後表面, 其中該等微通道包含位於該前電極表面及該後電極表面 上之開口且其中该電極包含一薄層膜,該薄層膜覆蓋 位於該電極之該前表面及該後表面上之該等微通道開 口。 32.如請求項31之電極,其中該薄層膜之厚度在約5〇 Α至約 • 150人之間。 、 • 33.如請求項31之電極,其中該薄層膜係選自由聚(乙烯乙烯 醇)、聚乙烯亞胺、聚醯胺、醋酸纖維素及其組合所組成 之群。 34·如睛求項30之電極,其進一步包含石墨。 35. 如請求項30之電極,其進一步包含至少一聚合物。 36. —種供一水淨化系統中使用的電極,其包含石墨及至少 一聚合物。 37·如請求項36之電極,其中該至少一聚合物為一包含離子 • 交換基團之交聯之可極化聚合物。 38·如請求項37之電極,其中該至少一聚合物包含一選自由 a 聚胺酯、聚丙烯酸、磺化聚苯乙烯、聚(乙烯醇)、聚(乙 • 稀乙烯醇)、聚乙烯亞胺及其組合所組成之群的聚合物。 39·如请求項30或36之電極,其進一步包含一氧化物。 40·如請求項39之電極,其中該氧化物為一金屬氧化物。 41·如請求項40之電極,其中該金屬氧化物在水中係穩定 的0 42·如請求項41之電極,其中該金屬氧化物包含一選自由 123423-961204.doc 200815293 Τι〇2、Alz〇3及其混合物所組成之群的金屬氧化物。 43. 如請求項35或36之電極,其中該聚合物經交聯。 44. 如請求項43之電極,其中該聚合物與_選自由乙二搭、 甲醛、戊二醛、亞甲基胺及其組合所組成之群的交聯劑 交聯。 45. 如請求項34或36之電極,其中該石墨為脫層石墨。 46. 士靖求項45之電極,其中該脫層石墨包含脫層石墨顆 粒’該等顆粒具有直徑小於約50 μηι之一粒徑。 47. 如請求項3〇或36之電極’其巾該電極為大體上親 的。 48. 如請求項3〇或36之電極;其中該電極包含至少一疏水性 基團。 49. 如請求項30或36之電極,其進一步包含大體上均勾分布 在該電極上的碳黑。 50·如明求項30或36之電極,其中該電極包含一以體積計為 至少約50%至約8〇%的孔隙率。 51. 如喷求項3G或36之電極,其中該電極包含與該電極之至 少一邊緣接觸的密封劑。 52. 如請求項51之雷榀,甘士 #〜 /、中5亥欲封劑包含丙稀酸橡膠。 53. 如:求項30或36之電極,其中一集電器係附接至該電極 之一表面或嵌埋於該電極内。 54. 一種移除水中之雜質的方法,其包含以下步驟: 該=電塵至請求項_中所描述之該水淨化系統之 123423-961204.doc 200815293 除之-者移 陈4水中之雜質;及 自該等電極收集該水。 55.=移除水中之雜f的方法,其包含以下步驟: 二水in系統’該水淨化系統包含…外殼、在 之陽極電極及—陰極電極、在該外殼上 弟一水入口埠及一水出口埠; 中在一前向方向中將一第一水流引入該第一水入口埠 等::電壓至該陽極電極及該陰極電極,藉此,由該 °之者移除該第一水流中之雜質,· 自該陽極電極及該陰極電極移除該電壓; 在該水出口埠收集該第一水流;及 肖方向中將—第二水流引人該水淨化系統中, 猎此’自該等電極中之一者移除由 除的該等雜質。 η中之者移 56.如呀求項55之方法’其進一步包含以下步驟: 在刖向方向中將—第三水流引人該水淨化系統之一 弟一水入口蜂中,益/ 早甲猎此,自該等電極中之一者上銘昤g 積在該等電極中之一者上的微粒。累 57·如請求項55或56之古、1 #丄 Z’/、中在引入該第一水流之後引 入4弟二水流。 58·如請求項55或56之古、i 朴丄 / ,/、中在引入該第—水流之後引 入該第三水流。 123423-961204.doc 200815293 59. 如請求項55或56之方法,其中該第—水流在該入口埠處 之壓力為每平方吋約1磅至約20磅。 60. 如請求項55或56之方法,其中引入該第一水流持續約5 分鐘至約30分鐘。 如請求項55或56之方法,其中引入該第二水流持續約5 秒鐘至約30秒鐘。 62.如請求項55或56之方法,其中引入該第三水流持續約5 秒鐘至約30秒鐘。 63·如清求項55或56之方法,其中同時引入該第二水流與該 第三水流。 64. 如请求項55或56之方法,其中獨立地引入該第二水流與 該第三水流。 65. 如請求項55或56之方法,其中使用一泵來引入該等水 流。 66. 如請求項55或56之方法,其中將自該水出口埠所收集之 §亥第一水流再循環至該水入口埠中。 123423-961204.doc200815293 X. Patent Application Range: 1. A water purification system comprising: a porous first electrode having a first average pore diameter and a porous second electrode having a second average pore diameter, wherein the electrodes Each of the microchannels having a larger diameter than the first average pore diameter or the ith average pore diameter ^. The water purification system of claim 1, wherein the electrodes comprise a front surface and a rear surface, wherein the microchannels comprise openings on the front electrode surface and the rear electrode surface, and wherein the electrodes Each of the layers includes a thin layer of film that covers the microchannel openings on the front surface and the back surface of the electrode. 3. The water purification system of claim 2, wherein the thickness of the thin film is between about % A and about 150 A. 4. The water purification system of the female, the monthly solution 2, wherein the thin film is selected from the group consisting of poly(ethylene vinyl alcohol), polyethylenimine, polyamine, cellulose acetate and combinations thereof. . 5. The water purification system of claim 1, wherein each of the electrodes further comprises graphite. 6. The water purification system of claim 1, wherein each of the electrodes further comprises at least one polymer. 7. A water purification system comprising: an anode electrode and a cathode electrode, each of the electrodes comprising graphite and at least one polymer. A water purification system according to claim 6 or 7, wherein the at least one polymer is 123423-961204.doc 200815293 a crosslinkable polarizable polymer comprising an ion parent group. 9. The water purification system of claim 8, wherein the at least-polymer comprises a water purification system selected from the group consisting of polyamine vinegar, polyacrylic acid, polyacrylic acid:): a combination thereof, a request item, and the like A spacer element that is permeable to a non-conductive fluid disposed between the electrodes. U. The water purification system of claim 1 or 7, wherein each of the electrodes comprises particles of an oxide. Wherein the oxide is a metal oxide wherein the metal oxide is in a water meter wherein the metal oxide comprises a water purification system as claimed in claim π. 13. The water net north system of claim 12 is stable. 14. A water purification system according to claim 13 which is a metal oxide of the group consisting of the mixture of ήο2 'Al2〇3 and a mixture thereof. The water purification system of claim 6 or 7, wherein the polymer is crosslinked. 16. As requested! A water purification system according to 5, wherein the polymer is crosslinked with a group of crosslinking agents selected from the group consisting of diacids, methacrylate, pentane, methyleneamine, and combinations thereof. The water purification system of claim 5 or 7, wherein the graphite is delaminated graphite. The water purification system of claim 17, wherein the delaminated graphite comprises delaminated ink particles, the virgin particles having a diameter of less than about 75 μm. 19. The water purification system of claim 10, wherein the electrode and the spacer are disposed in a non-conducting outer region 123423-961204.doc 200815293 comprising an inlet r? opening and an outlet opening, wherein the water purification system Adapted such that the water to be purified flows from the inlet to the outlet via the septum and the electrode. 20. The water purification system of claim (4), wherein the electrodes are substantially hydrophilic. • The water purification system of claim 2 wherein the polymer of the electrodes comprises one to five -CH2 groups in the parent-hydrophilic group. The water purification system of claim 1 or 7, wherein each of the electrodes φ comprises a current collector adjacent to the surface of the electrode. 23. The water purification system of claim 1, wherein the non-conductive fluid permeable septum 70 is a perforated plastic sheet comprising at least about 4% to about 80% of an open area. 24. The water purification system of claim 1 or 7, wherein at least one of the electrodes further comprises carbon black. 25. The water purification system of claim 3 wherein the electrodes comprise - at least about 5% to about 8% porosity by volume of the electrodes. • 26. The water purification system of claim 7 or 7, wherein the electrodes comprise a sealant in contact with at least one edge of the electrodes. 27. The water purification system of claim 26, wherein the sealant comprises an acrylic rubber. 28. The water purification system of claim 7 or 7 further comprising a spacer element disposed between the electrodes. ^ 29. The water purification system of claim 28, wherein the spacer element comprises a polyoxygen bubble. 30. An electrode for use in a water purification system comprising a microchannel. The electrode of claim 30, wherein the electrode comprises a front surface and a back surface, wherein the microchannels comprise openings on the front electrode surface and the rear electrode surface and wherein the electrode comprises a a thin film covering the microchannel openings on the front surface and the back surface of the electrode. 32. The electrode of claim 31, wherein the thickness of the thin film is between about 5 Α and about 150. 33. The electrode of claim 31, wherein the thin film is selected from the group consisting of poly(ethylene vinyl alcohol), polyethyleneimine, polyamine, cellulose acetate, and combinations thereof. 34. The electrode of claim 30, further comprising graphite. 35. The electrode of claim 30, further comprising at least one polymer. 36. An electrode for use in a water purification system comprising graphite and at least one polymer. 37. The electrode of claim 36, wherein the at least one polymer is a crosslinked polarizable polymer comprising an ion exchange group. 38. The electrode of claim 37, wherein the at least one polymer comprises one selected from the group consisting of a polyurethane, polyacrylic acid, sulfonated polystyrene, poly(vinyl alcohol), poly(ethylene divinyl alcohol), polyethyleneimine And a combination of polymers of the group. 39. The electrode of claim 30 or 36, further comprising an oxide. 40. The electrode of claim 39, wherein the oxide is a metal oxide. 41. The electrode of claim 40, wherein the metal oxide is stable in water. The electrode of claim 41, wherein the metal oxide comprises one selected from the group consisting of 123423-961204.doc 200815293 Τι〇2, Alz〇 a metal oxide of a group consisting of 3 and its mixture. 43. The electrode of claim 35 or 36, wherein the polymer is crosslinked. 44. The electrode of claim 43, wherein the polymer is crosslinked with a crosslinking agent selected from the group consisting of ethylene bis, formaldehyde, glutaraldehyde, methylene amine, and combinations thereof. 45. The electrode of claim 34 or 36, wherein the graphite is delaminated graphite. 46. The electrode of Shijing 45, wherein the delaminated graphite comprises delaminated graphite particles. The particles have a particle size of less than about 50 μηη diameter. 47. The electrode of claim 3 or 36 is substantially intimate with the electrode. 48. The electrode of claim 3 or 36; wherein the electrode comprises at least one hydrophobic group. 49. The electrode of claim 30 or 36, further comprising carbon black substantially uniformly distributed on the electrode. 50. The electrode of claim 30 or 36, wherein the electrode comprises a porosity of at least about 50% to about 8% by volume. 51. The electrode of claim 3G or 36, wherein the electrode comprises a sealant in contact with at least one edge of the electrode. 52. In the case of the Thunder of claim 51, Gans #〜 /, 中中海封封剂 includes acrylic rubber. 53. The electrode of claim 30 or 36, wherein a current collector is attached to or embedded in a surface of the electrode. 54. A method of removing impurities in water, comprising the steps of: = electric dust to the water purification system described in claim _123423-961204.doc 200815293, except that the impurities in the water are removed; And collecting the water from the electrodes. 55. A method for removing impurities in water, comprising the steps of: "two water in system", the water purification system comprises: an outer casing, an anode electrode and a cathode electrode, a water inlet port on the outer casing, and a a water outlet port; a first water stream is introduced into the first water port, etc. in a forward direction: a voltage to the anode electrode and the cathode electrode, whereby the first water stream is removed by the person Impurities, removing the voltage from the anode electrode and the cathode electrode; collecting the first water stream at the water outlet; and introducing the second water stream into the water purification system in the direction of the One of the electrodes removes the impurities removed by the ions. The method of η shifts 56. The method of claim 55, which further comprises the following steps: in the direction of the 将 - the third water flow leads to one of the water purification systems, one of the water inlet bees, benefit / early A Hunting, from one of the electrodes, a particle that accumulates on one of the electrodes. Tired 57. If the request is 55 or 56, 1 #丄 Z'/, the middle 2 stream is introduced after the introduction of the first stream. 58. If the request No. 55 or 56 is ancient, i 丄 丄 / , /, the third water flow is introduced after the introduction of the first water flow. The method of claim 55 or 56, wherein the pressure of the first water stream at the inlet port is from about 1 pound to about 20 pounds per square inch. 60. The method of claim 55 or 56, wherein the first water stream is introduced for from about 5 minutes to about 30 minutes. The method of claim 55 or 56, wherein the second water stream is introduced for from about 5 seconds to about 30 seconds. 62. The method of claim 55 or 56, wherein the third water stream is introduced for from about 5 seconds to about 30 seconds. The method of claim 55 or 56, wherein the second water stream and the third water stream are simultaneously introduced. 64. The method of claim 55 or 56, wherein the second water stream and the third water stream are independently introduced. 65. The method of claim 55 or 56, wherein a pump is used to introduce the water streams. 66. The method of claim 55 or 56, wherein the first water stream collected from the water outlet port is recycled to the water inlet port. 123423-961204.doc
TW96128481A 2006-09-05 2007-08-02 Multifunctional filtration and water purification systems TW200815293A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/515,544 US20080029395A1 (en) 2006-08-01 2006-09-05 Multi-functional filtration and ultra-pure water generator
US11/724,534 US20080035548A1 (en) 2006-08-01 2007-03-14 Multi-functional filtration and ultra-pure water generator

Publications (1)

Publication Number Publication Date
TW200815293A true TW200815293A (en) 2008-04-01

Family

ID=44768801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128481A TW200815293A (en) 2006-09-05 2007-08-02 Multifunctional filtration and water purification systems

Country Status (1)

Country Link
TW (1) TW200815293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723868A (en) * 2012-12-28 2014-04-16 肖英 Water purifier
TWI500109B (en) * 2008-04-30 2015-09-11 Axcelis Tech Inc Gas bearing electrostatic chuck

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500109B (en) * 2008-04-30 2015-09-11 Axcelis Tech Inc Gas bearing electrostatic chuck
CN103723868A (en) * 2012-12-28 2014-04-16 肖英 Water purifier
CN103723869A (en) * 2012-12-28 2014-04-16 肖英 Water purifier for shower
CN103723868B (en) * 2012-12-28 2015-07-15 肖英 Water purifier
CN103723869B (en) * 2012-12-28 2015-09-30 肖英 Water cleaner for shower

Similar Documents

Publication Publication Date Title
US20080073288A1 (en) Multifunctional filtration and water purification systems
US20080035548A1 (en) Multi-functional filtration and ultra-pure water generator
US20080029395A1 (en) Multi-functional filtration and ultra-pure water generator
WO2009065023A1 (en) Multifunctional filtration and water purification systems
KR101513446B1 (en) Ion exchange membrane used for flow-electrode capacitive deionization device and flow-electrode capacitive deionization device including the same
US20090045074A1 (en) Apparatus and method for removal of ions from a porous electrode that is part of a deionization system
US20130056366A1 (en) Apparatus and method for removal of ions from a porous electrode that is part of a deionization system
KR101528777B1 (en) Bipolar ion exchange sheet for recovering valuables, method of manufacturing the same and apparatus for recovering valuables
WO2013078285A1 (en) Method of building massively parallel ion concentration polarization separation device
US20140202880A1 (en) Segmented electrodes for water desalination
US8143471B2 (en) Electrochemical capacitive concentration and deactivation of actinide nuclear materials
CN111819157A (en) Deionization device and method for at least partially deionizing feed liquid having dissolved electrolyte, and apparatus using said device
TW200815293A (en) Multifunctional filtration and water purification systems
NL2012138C2 (en) Apparatus for removal of ions from water and method of producing the same.
EP2810922A1 (en) Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor
EP3365284B1 (en) Electrode for capacitive deionization
KR20150007070A (en) Capacitive deionization unit cell and preparation method thereof
JP2002336865A (en) Desalting apparatus and desalting method
CN115028242B (en) Electrochemical component, device and method for realizing particle confinement
US12030018B2 (en) System and method for electrically conductive membrane separation
CN220537619U (en) Electrochemical auxiliary ion exchange water treatment device
CN113401988B (en) Separation device and water treatment equipment thereof
US20220250954A1 (en) System and method for using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization
JP2024527632A (en) Systems and methods for conductive membrane separation - Patents.com
WO2023061711A1 (en) Electrochemically assisted ion exchange water treatment device having parallely arranged electrochemical cell and reverse osmosis unit