TW200815283A - Carbon nanotube containing dispersions and conductive films - Google Patents

Carbon nanotube containing dispersions and conductive films Download PDF

Info

Publication number
TW200815283A
TW200815283A TW95136211A TW95136211A TW200815283A TW 200815283 A TW200815283 A TW 200815283A TW 95136211 A TW95136211 A TW 95136211A TW 95136211 A TW95136211 A TW 95136211A TW 200815283 A TW200815283 A TW 200815283A
Authority
TW
Taiwan
Prior art keywords
carbon
bei bei
carbon nanotube
group
dispersion
Prior art date
Application number
TW95136211A
Other languages
Chinese (zh)
Other versions
TWI340732B (en
Inventor
Chih-Ming Hu
Yung-Hsing Huang
Yi-Ling Chen
Hsiao-Chen Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW095136211A priority Critical patent/TWI340732B/en
Publication of TW200815283A publication Critical patent/TW200815283A/en
Application granted granted Critical
Publication of TWI340732B publication Critical patent/TWI340732B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A conductive film is provided, comprising a polymer film, a dispersing agent and carbon nanotubes dispersed in the polymer film by uses of the dispersing agent, wherein the dispersing agent comprises polystyrene-co-polyacrylic acid and derivatives thereof or layered materials. Carbon nanotube containing dispersions are also provided.

Description

200815283 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種導電薄膜,且特別關於一種含分散 奈米碳管之導電薄膜。 【先前技#?】 碳奈米管主要是經由石墨電極於直流電弧放電後沈積 _ 的碳黑中得到,碳奈米管可大體分為開口(單層管)和閉口 (多層管)等兩種,其管壁是藉由碳原子以六角網狀鍵結而 成如同一個石墨原子平面捲起來的圓筒,碳奈米管結構如 第1圖所示。 碳奈米管因其密閉的圓柱形石墨結構而具有許多優秀 的機械性質,侧面的基本組成是由六邊形碳環(石墨片)組 咸,但在管身彎曲和管端口封頂的半球帽形部位,含有一 些五邊形和七邊形的碳環結構。因為這些碳環結構之間的 • 共價鍵是自然界中最穩定的化學鍵,所以碳奈米管應該具 有非常好的力學性能,其強度接近於碳-碳鍵的強度。理論 計算和實驗研究顯示了單壁碳奈米管的揚氏模量和剪切模 量都與金剛石相當,強度是鋼的100倍,最大延伸率可達 20%,具有良好的韌性,而密度卻只有鋼的1/6,是一種新 型的超級纖維材料。 另外,碳奈米管同時還具有較好的柔性,而且碳奈米 管還有良好的可彎曲性,它不但可以被彎曲成很小的角 度,也可以被彎曲成極其微小的環狀結構,當彎曲應力去 0954-A21773TWF(N2);P54950019TW;Shawn Chang 5 200815283 . 除後,碳奈米管可以從很大的彎曲變形中完全恢復到原來 的狀態,即使受到了很大的外加應力也不會發生脆性斷裂。 再者,碳奈米管有優異的電導特性。半導體性之碳奈 米管隨著直徑的增加而帶隙變窄,在大直徑情況下帶隙為 零,呈現金屬的性質,這些特殊的電學性能將使碳奈米管 適用於奈米電子學。舉例來說,金屬性碳奈米管可以用作 奈米積體電路中的連接線,而半導體性碳奈米管則可以用 來製作奈米電子開關和其它奈米量子元件。 • 藉由碳奈米管本身之良好的力學性質與導電性,將其 與高分子材料混成後可製備出高強度、高韌性的奈米複合 材料,此一材料可以取代傳統碳纖補強複材應用於交通工 具、運動器材等產品,可以加強安全性並提升產品等級。 並藉由碳奈米管的導電特性可使高分子表面電阻與體電阻 降低,使其具備抗靜電與抗電磁波機能特性,可有效減低 雜訊干擾與電磁波危害。 然而,由於碳奈米管分散性等問題,碳奈米管之應用 ^ 常因其間之糾纏而不易分散於複合材料之中,進而影響了 當今碳奈米管之應用範圍。目前碳奈米管之分散方法主要 採用表面改質方式,即使用強酸系統或是氧化系統以破壞 碳奈米管表面之碳-碳雙鍵並形成官能基,或者將碳奈米管 打斷以降低其糾纏度並提升其分散性。然而如此之方式將 破壞其表面結構並影響了碳奈米管之特性,因而對於其機 能性表現造成不良影響。對於高分子複合材料而言,於相 同碳奈米管添加量情況下,其表面電阻明顯較高。 0954-A21773TWF(N2);P54950019TW-Shawn Chang 6 200815283 【發明内容】 因此,便需要一種較佳之分散方式及利用上述方式所 製備出之一分散物,藉以應用於製備如含分散之碳奈米管 之高分子複合材料之一複合材料薄膜,進而拓展相關應用 產品商業化可行性。 有鑑於此,本發明主要是利用具特定表面結構之層狀 材料及聚合材料以進行碳奈米管之分散,並藉由上述材料 均勻分散阻隔以降低碳奈米管糾纏度,而上述材料特定可 分散至不同極性的溶劑中,具高安定性與多選擇性等優 點。因而可應用於各類型之高分子材料系統,並藉由上述 分散液之作用以均勻地分散至高分子材料,並進而製備出 具低表面電阻之高分子薄膜。 因此,本發明提供了一種導電薄膜與碳奈米管分散 物,藉由增加導電薄膜與碳奈米管分散物中碳奈米管之分 散程度,以增進導電薄膜之導電程度與導電特性。 依據一實施例,本發明之一種導電薄膜包括:一高分 子薄膜;一分散劑;以及一碳奈米管,該碳奈米管經該分 散劑之作用而分散於該高分子薄膜中,其中該分散劑包括 聚苯乙烯/丙烯酸共聚物及其衍生物或層狀材料。 依據另一實施例,本發明之一種碳奈米管分散物,其 中該碳奈米管分散物係為經下列步驟後所得之產物,包 括: 混^—碳奈米管與一分散劑,以形成一第一混合液; 以及混合該第一混合液與一水性溶劑,以形成該碳奈米管 0954-A21773TWF(N2);P54950019TW;Shawn Chang 7 200815283 - 分散物,其中該分散劑包括聚苯乙烯/丙烯酸共聚物及其衍 生物或具陽離子之一層狀材料。 依據又一實施例,本發明之一種碳奈米管分散物其中 該碳奈米管分散物係為經下列步驟後所得之產物,包括: 混合一碳奈米管與一分散劑,以形成一第一混合液; 以及混合該第一混合液與一有機溶劑,以形成該碳奈米管 分散物,其中該分散劑包括聚苯乙烯/丙烯酸共聚物及其衍 生物或具有碳數大於12以上烷基之鏽鹽結構之一層狀材 •料。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉一較佳實施例,並配合所附圖示,作 詳細說明如下: 【實施方式】 碳奈米管分散物之製備 本發明所述之碳奈米管分散物,其主要包括碳奈米 # 管、分散劑以及溶劑,其中該溶劑係為水性溶劑或有機溶 劑。 本發明之碳奈米管分散物中所使用之碳奈米管多層可 為多層碳奈米管、雙層碳奈米管、單層碳奈米管或碳奈米 纖維。當採用如去離子水之水性溶劑時,上述分散劑可包 括聚苯乙烯/丙烯酸共聚物及其衍生物或包括具陽離子之 一層狀材料,而此具陽離子之層狀材料所具有之陽離子可 擇自由鈉離子、鉀離子、鈣離子、鋇離子與鎂離子所組成 族群中。上述帶陽離子之層狀材料可擇自由硅礬石 0954-A21773TWF(N2);P54950019TW;Shawn Chang 8 200815283 ^ (說他e)、絹雲母(sencite)、蛭石(vermiculite)、高嶺土 (kaolin)、皂土(sap_e)、雲母⑽⑻與滑石(他)所組成族 群中’而石i礬石可擇自由蒙脫土(m〇ntm〇rin〇nite)、蒙脫土 (montmodllonite)、富鋁蒙脫土(beidelnte)、矽鐵石 (nontronite)與水輝石(hect〇dte)所組成族群中。 有柢:/谷劑可為低極性或高極性之有機溶劑。當採用低 極性之有機溶劑時,例如為苯(benzene)、曱苯(t〇luene)、 二曱苯(xylene)、正戊烷(n_pentane)、正己烷(n_hexane)或正 瞻辛烷(n-octane)等有機溶劑時,上述分散劑則可包括聚苯乙 烯/丙烯酸共聚物及其衍生物或具有碳數大於12以上烷基 之鏽鹽結構之一層狀材料。此層狀材料之表面結構可帶有 碳數12以上之烷基以及氮陽離子、磷陽離子、硫陽離子或 氧陽離子,其中層狀材料可擇自由硅礬石(smectite)、絹雲 母(sericite)、蛭石(vermiculite)、高嶺土(ka〇lin)、皂土 (saponite)、雲母(mica)與滑石(talc)由所組成族群中。上述 石圭礬石係擇自由蒙脫土(montmoriii〇nite)、蒙脫土 _ (montmorillonite)、富鋁蒙脫土(beidellite)、矽鐵石 (nontronite)與水輝石(hectorite)所組成族群中。 而當採用南極性之有機溶劑時,例如為乙峻 (ethylether)、四氫吱喃(tetrhydrofuran)、丙酮(acetone)、曱 ' 乙酮(methyl ethyl ketone)、曱醇(methanol)、乙醇(ethanol)、 正丙醇(n-propanol)、異丙醇(I-propanol)、四氯化碳(carbon trtrachloride)、氯仿(chloroform)、二氯曱烧(methylene chloride)、醋酸乙酯(ethylacetate)、二甲基曱遍胺 0954-A21773TWF(N2);P54950019TW;Shawn Chang 9 200815283 - 胺 (N,N-dimethyl formamide)或二曱基乙酿月安 (N,N-dimethylacetamide)等有機溶劑時,上述分散劑可包括 聚苯乙烯/丙烯酸共聚物及其衍生物或具有碳數大於12以 上烷基之鏽鹽結構之一層狀材料,且此層狀材料之表面結 構可更帶有一羥基(OH)、一羧基(COOH)或一胺基(NHR2、 NH#、NH3)。上述層狀材料可擇自由石圭釁石(smectite)、絹 雲母(sericite)、蛭石(vermiculite)、高嶺土(kaolin)、皂土 (saPomte)、雲母(mica)與滑石(talc)由所組成族群中。上述 石圭礬石係擇自由蒙脫土(m〇ntm〇rill〇nite)、蒙脫土 (montmorillonite)、富鋁蒙脫土(beidellite)、矽鐵石 (nontronite)與水輝石(hectorite)所組成族群中。 上述之碳奈米管分散物係為經下列步驟後所得之產 物: 提供既定重量之一分散劑,例如為結構為聚苯乙烯/丙 烯酸之一共聚物及其衍生物或一層狀材料。接著將分散劑 瞻與既定重量之溶劑稱重後置於如燒杯之一容器中,於室溫 下混合一既定時間,以均勻分散上述分散劑與溶劑。接著 再加入既定重量之碳奈米管,於室溫下混合一既定時間, 進而得到一碳奈米管分散物。或者,亦可同時於一容器中 加入上述分散劑、溶劑與碳奈米管並混合之,進而得到一 碳奈米管分散物。上述分散劑、溶劑與碳奈米管之混合可 採用攪拌混合、超音波混合或研磨混合等方式所達成,所 製備出之碳奈米管分散物中之碳奈米管之重量百分比範圍 約介於0.01〜50%,分散劑之重量百分比範圍為〇 〇1〜5〇%, 0954-A21773TWF(N2);P54950019TW;Shawn Chang 10 200815283 在此重量百分比皆以碳奈米管分散物之重量為基準。 為使本發明所述碳奈米管分散物及其製備方气更力 確,下文特舉出較佳實施例並詳述於準備例中直月 準備例1〜4為碳奈米管水性分散物之準備例,而準備例 為碳奈米管油性分散物之準備例。另外,下文中亦舉出準 備例8〜13作為比較之用,於此些準備例之分散物中僅單單 加入有碳奈米管或分散劑其中之一。 碳奈米管水性分散物的製備 準備例1 取美國Johnson was公司產製之丙烯酸樹脂[產品編號 為J678 ’為聚苯乙烯/丙稀酸共聚物 (polystyrene-co-polyacrylic acid)] 1.0 克、二甲胺乙醇 (N,N-dimethyl ethanol amine,DMEA) 0.4g 與去離子水 49.0 克稱重後置於燒杯,於室溫與3〇Orpm之轉速下機械式攪拌 6小時以均勻分散上述材料,接著加入韓國CNT公司產製 之碳奈米管(MWNT)l.O克並於室溫、3〇〇rpm之轉速下機 械式攪拌4小時,進而得到一碳奈米管水性分散物,在此 碳奈米管之含量為1.96wt%(重量百分比)。 準備例2 取美國Johnson was公司產製之丙烯酸樹脂[產品編號 為J678 ,為聚苯乙烯/丙烯酸共聚物 (polystyrene-co-polyacrylic acid)] 1.0 克、二曱胺乙醇 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 • (N,N_dimethyl ethanol amine, DMEA) 0.4g、去離子水 49.0 克以及韓國CNT公司產製之碳奈米管(MWNT)l.O克稱重 後置於300ml玻璃樣品瓶中,再加入2min #乙錯珠170.0克 後將瓶口密封,利用球磨機於轉速2〇〇rpm下珠磨24小時, 於除去纪錯珠後進而得到一碳奈米管水性分散物,其中碳 奈米管之含量為L96wt%(重量百分比)。 準備例3 ® 取美國Southern Clay公司產製之層狀黏土(產品名稱 為cloisite Na’其片層表面具有鈉離子)1〇克與去離子水 49.0克於稱重後置於燒杯内,於室溫與3〇〇rpm之轉速下 機械式攪拌6小時以均勻分散上述材料。接著再加入韓國 CNT公司產製之碳奈米管(MWNT)1〇克並於室溫、轉速 3 OOrpm下機械式授拌4小時後,進而得到一碳奈米管水性 分散物,其中碳奈米管含量為L96wt%(重量百分比)。第2 圖頒示了上述碳奈米管水性分散液(右侧)以及未添加有上 述層狀材料之一對照水性分散液(左側)之分散情形。 準備例4 取美國Southern Clay公司產製之層狀黏土(d〇isite Na,片層表面具有鈉離子)l.〇g、去離子水49 〇g與韓國 公司產製之碳奈米管(MWNT)l.Og於稱重後置於;3〇〇ml玻 璃樣品瓶中,再加入2mm釔鍅珠17〇.〇g後將瓶口密封, 接著利用球磨機於轉速200rpm下珠磨上述材料24hrs後, 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 - 進而得到^ 一碳奈米管水性分散物’其中石炭奈米管固含量為 1.96wt% 〇 碳奈米管油性分散物的製備 準備例5 取美國Johnson was公司產製之丙烯酸樹脂[產品編號 為 J678 ’為聚苯乙稀/丙稀酸共聚物 (polystyrene-co-polyacrylic acid)]l.〇 克、二曱基曱驢胺 (N,N-dimethyl formamide,DMF)49.0 克與韓國 CNT 公司產 製之碳奈米管(MWNT)l.O克稱重後置於3〇〇ml玻璃樣品瓶 中’再加入2mm I乙錯珠170·0克後將瓶口密封,利用球磨 機於轉速200rpm下珠磨上述材料24小時,於除去紀錯珠 後可得到一碳奈米管油性分散物,其中碳奈米管含量為 1.96%(重量百分比)。 準備例6 取美國Southern Clay公司產製之層狀黏土 [產品名稱 為cloisite 30B,其片層表面經曱基二乙烯醇氫化牛油脂銨 鹽(methyl dihydroyethyl hydrogenated tallow ammonium)改 質]!·〇 克與二曱基曱醢胺(N,N-dimethyl formamide, DMF)49.0克稱重後置於燒杯内,於室溫、3〇〇rpni之轉速 下機械式攪拌6小時以均勻分散上述材料。接著再加入韓 國CNT公司產製之碳奈米管(MwNT)1.0克並·於室溫與 300rpm之轉速下機械地攪拌24小時,進而得到一碳奈米 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 管油性分散液,其中碳奈米管含量為1.96wt%(重量百分 比)。第3圖顯示了上述碳奈米管油性分散液(右側)以及未 添加有上述層狀材料之一對照油性分散液(左侧)之分散情 形0 準備例7[Technical Field] The present invention relates to an electroconductive film, and more particularly to an electroconductive film containing a dispersed carbon nanotube. [Previous technology #?] Carbon nanotubes are mainly obtained by depositing _ carbon black after DC arc discharge through graphite electrodes. Carbon nanotubes can be roughly divided into openings (single layer tubes) and closed ports (multilayer tubes). The tube wall is a cylinder which is formed by a hexagonal network of carbon atoms and is rolled up like a plane of graphite atoms. The carbon nanotube structure is as shown in Fig. 1. Carbon nanotubes have many excellent mechanical properties due to their closed cylindrical graphite structure. The basic composition of the sides is a hexagonal carbon ring (graphite sheet) group, but the hemispherical cap is sealed in the tube body and the tube port is capped. The shaped part contains some pentagon and heptagonal carbon ring structures. Because the covalent bond between these carbocyclic structures is the most stable chemical bond in nature, carbon nanotubes should have very good mechanical properties with strengths close to those of carbon-carbon bonds. Theoretical calculations and experimental studies have shown that the Young's modulus and shear modulus of single-walled carbon nanotubes are comparable to those of diamond, the strength is 100 times that of steel, the maximum elongation is up to 20%, and it has good toughness and density. But only 1/6 of steel is a new type of super fiber material. In addition, the carbon nanotubes also have good flexibility, and the carbon nanotubes have good flexibility, which can be bent not only at a small angle, but also bent into a very small ring structure. When the bending stress goes to 0954-A21773TWF(N2); P54950019TW; Shawn Chang 5 200815283. After the removal, the carbon nanotube can completely recover from the large bending deformation to the original state, even if it is subjected to a large applied stress. A brittle fracture will occur. Furthermore, carbon nanotubes have excellent electrical conductivity properties. The semiconducting carbon nanotubes have a narrower band gap as the diameter increases, and the band gap is zero in the case of large diameters, presenting metal properties. These special electrical properties will make the carbon nanotubes suitable for nanoelectronics. . For example, metallic carbon nanotubes can be used as a connection in a nano-integrated circuit, while semiconducting carbon nanotubes can be used to make nanoelectronic switches and other nano-quantum elements. • By combining the good mechanical properties and electrical conductivity of the carbon nanotubes with high molecular materials, high strength and high toughness nanocomposites can be prepared. This material can replace traditional carbon fiber reinforced composite materials. For vehicles, sports equipment and other products, it can enhance safety and enhance product quality. By virtue of the conductive properties of the carbon nanotubes, the surface resistance and bulk resistance of the polymer can be lowered, so that it has antistatic and anti-electromagnetic properties, which can effectively reduce noise interference and electromagnetic wave damage. However, due to problems such as the dispersibility of carbon nanotubes, the application of carbon nanotubes is often difficult to disperse in composite materials due to the entanglement between them, which affects the application range of carbon nanotubes today. At present, the dispersion method of the carbon nanotubes mainly adopts a surface modification method, that is, using a strong acid system or an oxidation system to destroy carbon-carbon double bonds on the surface of the carbon nanotubes and form functional groups, or to interrupt the carbon nanotubes. Reduce its entanglement and increase its dispersion. However, such a method will destroy its surface structure and affect the characteristics of the carbon nanotubes, thus adversely affecting its functional performance. For polymer composites, the surface resistance is significantly higher in the case of the same amount of carbon nanotubes. 0954-A21773TWF(N2); P54950019TW-Shawn Chang 6 200815283 SUMMARY OF THE INVENTION Therefore, there is a need for a preferred dispersion method and a dispersion prepared by the above method, whereby it can be applied to the preparation of a carbon nanotube containing dispersion. A composite film of a polymer composite material, thereby expanding the commercial feasibility of related application products. In view of the above, the present invention mainly utilizes a layered material having a specific surface structure and a polymeric material to perform dispersion of the carbon nanotubes, and uniformly disperses the barrier by the above materials to reduce the entanglement of the carbon nanotubes, and the above material specific It can be dispersed into solvents of different polarities with high stability and multiple selectivity. Therefore, it can be applied to various types of polymer material systems, and is uniformly dispersed to a polymer material by the action of the above dispersion liquid, thereby producing a polymer film having a low surface resistance. Accordingly, the present invention provides a conductive film and carbon nanotube dispersion which enhances the conductivity and electrical conductivity of the conductive film by increasing the degree of dispersion of the carbon nanotubes in the conductive film and the carbon nanotube dispersion. According to an embodiment, an electroconductive film of the present invention comprises: a polymer film; a dispersing agent; and a carbon nanotube, wherein the carbon nanotube is dispersed in the polymer film by the action of the dispersing agent, wherein The dispersant includes polystyrene/acrylic acid copolymers and derivatives or layered materials thereof. According to another embodiment, a carbon nanotube dispersion of the present invention, wherein the carbon nanotube dispersion is a product obtained by the following steps, comprising: mixing a carbon nanotube and a dispersing agent, Forming a first mixed liquid; and mixing the first mixed liquid with an aqueous solvent to form the carbon nanotubes 0954-A21773TWF(N2); P54950019TW; Shawn Chang 7 200815283 - dispersion, wherein the dispersing agent comprises polyphenylene Ethylene/acrylic acid copolymer and its derivatives or a layered material having a cation. According to still another embodiment, a carbon nanotube dispersion of the present invention, wherein the carbon nanotube dispersion is a product obtained by the following steps, comprising: mixing a carbon nanotube with a dispersant to form a a first mixed liquid; and mixing the first mixed liquid with an organic solvent to form the carbon nanotube dispersion, wherein the dispersant comprises a polystyrene/acrylic acid copolymer and a derivative thereof or has a carbon number of more than 12 or more A layered material of a rust salt structure of an alkyl group. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The preparation of the carbon nanotube tube of the present invention mainly comprises a carbon nanotube tube, a dispersing agent and a solvent, wherein the solvent is an aqueous solvent or an organic solvent. The carbon nanotube tube used in the carbon nanotube dispersion of the present invention may be a multilayer carbon nanotube, a double carbon nanotube, a single carbon nanotube or a carbon nanofiber. When an aqueous solvent such as deionized water is used, the above dispersant may include a polystyrene/acrylic acid copolymer and a derivative thereof or a layered material having a cation, and the cationic layered material may have a cation Choose from the group consisting of sodium, potassium, calcium, strontium and magnesium. The cation-containing layered material may be selected from the group consisting of silicon vermiculite 0954-A21773TWF (N2); P54950019TW; Shawn Chang 8 200815283 ^ (said he e), sericite, vermiculite, kaolin, Bentonite (sap_e), mica (10) (8) and talc (he) in the group of 'sand stone i stone can choose free montmorillonite (m〇ntm〇rin〇nite), montmorillonite (montmodllonite), aluminum-rich montmorillonite Soil (beidelnte), nontronite and hect〇dte. There are 柢: / gluten can be low polarity or high polarity organic solvent. When a low polarity organic solvent is used, for example, benzene, t〇luene, xylene, n-pentane, n-hexane or n-octane (n) In the case of an organic solvent such as -octane, the above dispersing agent may include a polystyrene/acrylic acid copolymer and a derivative thereof or a layered material having a rust salt structure having an alkyl group having a carbon number of more than 12 or more. The surface structure of the layered material may have an alkyl group having a carbon number of 12 or more and a nitrogen cation, a phosphorus cation, a sulfur cation or an oxygen cation, wherein the layered material may be selected from smectite, sericite, Vermiculite, ka〇lin, saponite, mica and talc are composed of ethnic groups. The above-mentioned Shigui meteorites are selected from the group consisting of montmoriii〇nite, montmorillonite, beidelite, nontronite and hectorite. When an organic solvent of a southern polarity is used, for example, ethylether, tetrhydrofuran, acetone, methyl ethyl ketone, methanol, ethanol ), n-propanol, I-propanol, carbon trtrachloride, chloroform, methylene chloride, ethylacetate, Dimethyl hydrazine amine 0854-A21773TWF (N2); P54950019TW; Shawn Chang 9 200815283 - An organic solvent such as N, N-dimethyl formamide or N, N-dimethylacetamide The dispersing agent may include a polystyrene/acrylic acid copolymer and a derivative thereof or a layered material having a rust salt structure having an alkyl group having a carbon number of more than 12 or more, and the surface structure of the layered material may further have a hydroxyl group (OH). , a monocarboxy group (COOH) or an amine group (NHR2, NH#, NH3). The above layered material may be selected from the group consisting of smectite, sericite, vermiculite, kaolin, saPomte, mica and talc. In the ethnic group. The above-mentioned stone genus is composed of m〇ntm〇rill〇nite, montmorillonite, beidelite, nontronite and hectorite. In the ethnic group. The carbon nanotube dispersion described above is a product obtained by the following steps: Providing a dispersant of a predetermined weight, for example, a copolymer of a structure of polystyrene/acrylic acid and a derivative thereof or a layered material. Next, the dispersing agent is weighed to a predetermined weight of the solvent and placed in a container such as a beaker, and mixed at room temperature for a predetermined period of time to uniformly disperse the above dispersing agent and solvent. Then, a carbon nanotube of a predetermined weight is added and mixed at room temperature for a predetermined period of time to obtain a carbon nanotube dispersion. Alternatively, the above dispersant, solvent and carbon nanotubes may be simultaneously added to a container and mixed to obtain a carbon nanotube dispersion. The above dispersing agent, the solvent and the carbon nanotube tube can be mixed by means of stirring mixing, ultrasonic mixing or grinding mixing, and the weight percentage range of the carbon nanotubes in the prepared carbon nanotube dispersion is about 0.01 to 50%, the weight percentage of the dispersing agent is 〇〇1~5〇%, 0954-A21773TWF(N2); P54950019TW; Shawn Chang 10 200815283 where the weight percentage is based on the weight of the carbon nanotube dispersion . In order to make the carbon nanotube dispersion of the present invention and the preparation thereof more precise, the preferred embodiments are hereinafter described and detailed in the preparation example. Straight-month preparation examples 1 to 4 are carbon nanotube dispersion dispersion. Preparation examples of the materials, and preparation examples are preparation examples of carbon nanotube oily dispersions. Further, in the following, Preparation Examples 8 to 13 are also used for comparison, and only one of the carbon nanotubes or the dispersing agent is added to the dispersion of the preparation examples. Preparation Example of Aqueous Carbon Nanotube Dispersion Example 1 An acrylic resin manufactured by Johnson Was, USA [product number J678 'polystyrene-co-polyacrylic acid] 1.0 g, 0.4 g of N, N-dimethyl ethanol amine (DMEA) and 49.0 g of deionized water were weighed and placed in a beaker, and mechanically stirred at room temperature and 3 rpm for 6 hours to uniformly disperse the above materials. Then, it was added to 10 g of carbon nanotubes (MWNT) manufactured by Korea CNT Co., Ltd. and mechanically stirred at room temperature and 3 rpm for 4 hours to obtain an aqueous carbon nanotube dispersion, in which carbon The content of the nanotubes was 1.96 wt% (% by weight). Preparation Example 2 Take the acrylic resin produced by Johnson was Company of the United States [product number J678, polystyrene-co-polyacrylic acid] 1.0 g, diammonium ethanol 0854-A21773TWF (N2); P54950019TW; Shawn Chang 200815283 • (N, N_dimethyl ethanol amine, DMEA) 0.4g, 49.0g of deionized water, and 10g of carbon nanotubes (MWNT) manufactured by Korea CNT Co., Ltd. are weighed and placed in a 300ml glass vial. After adding 2min #2 wrong beads 170.0g, the bottle mouth was sealed and bead milled at a rotation speed of 2 rpm for 24 hours using a ball mill to obtain an aqueous dispersion of carbon nanotubes, in which carbon nanometer was obtained. The content of the tube was L96 wt% (% by weight). Preparation Example 3 ® Take the layered clay produced by Southern Clay Company of the United States (product name is colisite Na', the surface of which has sodium ion) 1 gram and deionized water 49.0 g after weighing and placed in a beaker, in the room The mixture was mechanically stirred at a temperature of 3 rpm for 6 hours to uniformly disperse the above materials. Then, it was added to a carbon nanotube (MWNT) manufactured by Korea CNT Co., Ltd., and was mechanically mixed at room temperature and 3 rpm for 4 hours to obtain an aqueous dispersion of carbon nanotubes. The rice tube content is L96 wt% (% by weight). Fig. 2 shows the dispersion of the above aqueous carbon nanotube dispersion (right side) and the control aqueous dispersion (left side) to which one of the above layered materials is not added. Preparation Example 4 A layered clay (d〇isite Na, having sodium ions on the surface of the sheet) l.〇g, deionized water 49 〇g and a carbon nanotube produced by a Korean company (MWNT) l.Og after weighing, placed in a 3 〇〇 ml glass sample bottle, and then added 2 mm 钇鍅 beads 17 〇. 〇g, the bottle mouth is sealed, and then the ball is ground at a speed of 200 rpm for 24 hrs after the above materials are used. , 0954-A21773TWF(N2); P54950019TW; Shawn Chang 200815283 - Further obtaining an aqueous dispersion of carbon nanotubes, wherein the carbonaceous nanotubes have a solid content of 1.96 wt%, preparation preparation of oily dispersion of carbon nanotubes Take the acrylic resin produced by Johnson was Company of the United States [product number J678 'is polystyrene-co-polyacrylic acid] l. gram, dimethyl decylamine (N, N-dimethyl formamide (DMF) 49.0 g and 1000 g of carbon nanotubes (MWNT) manufactured by Korea CNT Co., Ltd. were weighed and placed in a 3 〇〇ml glass vial. Add 2 mm I B wrong beads 170·0 g. After sealing the bottle mouth, the above materials were bead-milled at a rotation speed of 200 rpm for 24 hours using a ball mill. After a bead is obtained an oily dispersion of carbon nanotubes, wherein the carbon nanotube content of 1.96% (by weight). Preparation Example 6 Take the layered clay produced by Southern Clay Company of the United States [product name is colisite 30B, the surface of the sheet is modified by methyl dihydroyethyl hydrogenated tallow ammonium]! After weighing with 49.0 g of N, N-dimethyl formamide (DMF), it was placed in a beaker, and mechanically stirred at room temperature and 3 rpm for 6 hours to uniformly disperse the above materials. Then, 1.0 g of carbon nanotubes (MwNT) manufactured by Korea CNT Co., Ltd. was added and mechanically stirred at room temperature and 300 rpm for 24 hours to obtain a carbon nano 0954-A21773TWF (N2); P54950019TW; Shawn Chang 200815283 Pipe oily dispersion in which the carbon nanotube content is 1.96 wt% (% by weight). Fig. 3 is a view showing the dispersion of the above carbon nanotube oily dispersion (on the right side) and the control oily dispersion (left side) to which one of the above layered materials is not added.

取美國Southern Clay公司產製之層狀黏土 [產品名稱 為cloisite 30B,其片層表面經曱基二乙烯醇氫化牛油脂銨 鹽(methyl dihydroyethyl hydrogenated tallow ammonium)改 夤]1·〇 克、一曱基甲醯胺(N5N-dimethyl formamide, DMF)49.0克與韓网CNT公司產製之碳奈米管(MWNT)l.O 克於稱重後置於300ml玻璃樣品瓶中,再加入2mm釔鍅珠 170.0克後將瓶口密封,利用球磨機於2〇〇rpm之轉速下珠 磨24小時,於除去釔鍅珠後得到一碳奈米管油性分散液, 其中碳奈米管含量為1.96wt%(重量百分比 比較用碳奈米管水性分散物的製備 準備例8 ^ 取知國CNT公司產製之碳奈米管⑽·丁》力克以 去離子水49.0克稱重後置於3⑻如玻璃樣品瓶中,於室 下、30〇TPm之轉速下機械地擅 較用碳奈米管水性分散物4小^進而製備出一 ㈣其巾♦奈米管固含量為2wt。/ 準備例9 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 取韓國CNT公司產製之碳奈米管(MWNT)1〇克以及 去離子水49.0克稱重後置於300ml玻璃樣品瓶中,再加入 2mm釔鍅珠170 0克後將瓶口密封,利用球磨機於轉速 200rpm下珠磨24小時,於去除釔鍅珠後可得到比較用碳 奈米管水性分散物,其中碳奈米管固含量為2wt%。 準備例10 取美國Southern Clay公司產製之層狀黏土(ci〇isite Na,片層表面具有鈉離子)1〇克以及去離子水49.0克稱重 後置於300ml玻璃樣品瓶中,於室溫下、300rpm之轉速下 機械式搜摔4小時’進而得到一比較用碳奈米管水性分散 物’其中碳奈米管固含量為〇wt%。 準備例11 取美國Southern Clay公司產製之層狀黏土(cloisite Na,片層表面帶有鈉離子)ι·〇克以及去離子水49.0克稱重 後置於300ml玻璃樣品瓶中,再加入2mm紀錯珠170.0克 後將瓶口密封,利用球磨機於轉速200rpm下珠磨24hrs, 於去除釔锆珠後可得到比較用碳奈米管水性分散物,其中 碳奈米管固含量為0wt%。 比較用碳奈米管油性分散物的製備 準備例12 取美國Southern Clay公司產製之層狀黏土 [產品名稱為 0954-A21773TWF(N2);P54950019TW;Shawn Chang 15 200815283 cloisite 30B,其片層表面經曱基二乙烯醇氫化牛油脂銨鹽 (methyl dihydroyethyl hydrogenated tallow ammonium)改 質]1.0 克以及二曱基曱醯胺(N,N-dimethyl formamide, DMF)49.0克稱重後置於3〇〇ml玻璃樣品瓶中,再加入2mm 紀錯珠170.0克後將瓶口密封,利用球磨機於轉速2〇〇rpln 下珠磨24小時,於除去釔鍅珠可得到一比較用碳奈米管油 性分散物,其中碳奈米管固含量為0wt%。Take the layered clay produced by Southern Clay Company of the United States [product name is colisite 30B, the surface of the sheet is modified by methyl dihydroyethyl hydrogenated tallow ammonium]1·〇克,一曱49.0 g of N5N-dimethyl formamide (DMF) and 10 g of carbon nanotubes (MWNT) manufactured by Hannet CNT Co., Ltd. were weighed and placed in a 300 ml glass sample vial, then 2 mm beaded 170.0 After the gram, the bottle mouth is sealed, and the ball mill is ball-milled at a speed of 2 rpm for 24 hours by using a ball mill to obtain a carbon nanotube oily dispersion after removing the bismuth beads, wherein the carbon nanotube content is 1.96 wt% (weight Preparation of Percentage Comparison with Carbon Nanotube Aqueous Dispersion Preparation Example 8 ^ Carbon Nanotube (10)·Ding from Zhiguo CNT Co., Ltd. was weighed in 49.0 g of deionized water and placed in a 3 (8) glass sample vial. Under the room temperature, 30 〇 TPm speed, mechanically use the carbon nanotubes aqueous dispersion 4 small ^ and then prepare a (four) towel ♦ nano tube solid content of 2wt. / Preparation 9 0954-A21773TWF ( N2); P54950019TW; Shawn Chang 200815283 The carbon nanotube tube (MWNT) 1 gram and deionized water 49.0 g were weighed and placed in a 300 ml glass sample bottle, and then 2 mm 钇鍅 bead 170 0 g was added, the bottle mouth was sealed, and the ball mill was used at a rotation speed of 200 rpm. After grinding for 24 hours, the aqueous dispersion of comparative carbon nanotubes can be obtained after removing the beads, wherein the carbon nanotubes have a solid content of 2% by weight. Preparation Example 10 A layered clay produced by Southern Clay Corporation of the United States (ci〇) Isite Na, the surface of the sheet has sodium ion) 1 gram and 49.0 grams of deionized water, weighed and placed in a 300ml glass sample bottle, mechanically searched for 4 hours at room temperature, 300rpm, and then a comparison The carbon nanotube tube aqueous dispersion 'in which the carbon nanotubes have a solid content of 〇wt%. Preparation Example 11 Take the layered clay (colisite Na, the surface of the sheet with sodium ions) produced by Southern Clay, USA ι·〇 49.0 g of deionized water was weighed and placed in a 300 ml glass sample vial. After adding 170.0 g of 2 mm error beads, the bottle mouth was sealed and bead-milled at a rotation speed of 200 rpm for 24 hrs using a ball mill to obtain cerium-zirconium beads. Compare the aqueous dispersion of carbon nanotubes, The carbon nanotubes have a solid content of 0 wt%. Preparation of Comparative Carbon Nanotube Oily Dispersion Preparation Example 12 A layered clay produced by Southern Clay Corporation of the United States [product name is 0954-A21773TWF (N2); P54950019TW; Shawn Chang 15 200815283 cloisite 30B, whose surface is modified with methyl dihydroyethyl hydrogenated tallow ammonium] 1.0 g and N, N-dimethyl formamide (DMF) 49.0 g was weighed and placed in a 3 〇〇ml glass sample vial. After adding 170.0 g of 2 mm eclipsed beads, the bottle mouth was sealed and ball milled at a speed of 2 〇〇rpln for 24 hours to remove the beads. A comparative carbon nanotube oily dispersion was obtained in which the carbon nanotubes had a solid content of 0% by weight.

準備例13 取韓國CNT公司產製之碳奈米管(MWNT)l.O克以及 一曱基曱醯胺(N,N-dimethyl formamide,DMF)49.0 克稱 重後置於300ml玻璃樣品瓶中,再加入2mm紀錯珠i70.0g 後將瓶口密封,利用球磨機於轉速2〇〇rpm下珠磨24小時, 並於除去釔锆珠後得到比較用碳奈米管油性分散物,其中 碳奈米管固含量為2wt%。 導電薄膜之製備 本發明所述之導電薄膜,其主要包括高分子薄膜、分散劑 以及碳奈米管等成分,其中之碳奈米管經過分散劑之作用 而均勻分散於该鬲分子薄膜中,因而使得導電薄 ;阻—一程度。另外,經量測 薄膜上數個不同量測點所得到之表面電阻值可發現此些表 面電阻量測值間之差異可低於2 〇χ1〇η之間[以表面電阻量 測平均值Αχ10η為基準,誤差值為(Α土2 〇)χ1〇η],其表現出 〇954-A21773TWF(N2);P54950019TW;Shawn Chang 16 200815283 阻值分佈情形。本發明之導電 t 刀比範圍約佔0.01〜5()%,分散气之曹心: 比範圍約佔0·01〜5〇0/,L、、 刀成4之重置百分 之導電薄膜之重量為°基準迷耗圍6以未乾魅除去溶劑之前 ^發明之導電相係為經下列步驟後所得 將上述碳奈米f與物. 碳奈米管分散物。接著、、θ^77献1射,以得到— 子溶液,以得到上述碳奈米管分散物與一高分 形成-導電薄m αΓ材料。接著乾燥上述複合材料,以 心成¥电溥胰。於乾燥 述複合材料㈣於—㈣之W,可先行將上 呈中,關纽人料树絲狀之一模 利¥ •之形成。上述碳奈米管分散物可採用 等高分子材料之一高;i=°xy)與…樹脂一 :使本發明所述導電薄膜:及其製備方式更加明 文特舉出較佳實施例並詳述於實施例丨〜8卜另外,下文 中亦舉出比較例1〜6以茲比較。 實施例 取準備例1中所製備出夕# * 克與台灣高冠公司產製之水性::米官水性分散物18.2 B-36,聚氨醋樹脂含量為35,〇^、風酉旨樹脂(產品編號為 内,於室溫及300rpm之轉速下播5〇.0克稱重後置於燒杯 疋下故械式攪拌6小時以均勻分 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 . 散上述材料,並得到一碳奈米管/水性聚氨酯複合材料。接 著將上述複合材料注入特定形狀模具當中,經過6CTC/4小 時、8CTC/4小時與100QC/8小時之乾燥過程施行後,其内 溶劑可完全揮發並得到一碳奈米管/聚氨酯導電薄膜。在 此,聚氨酯膜中碳奈米管之添加量為2.Owt%(重量百分比)。 實施例2-4 重複實施例1之步驟,分別採用相同重量之準備例2〜 ® 準備例4所製備出之碳奈米管水性分散物以取代準備例1 中所採用之碳奈米管水性分散物,進而分別形成數個碳奈 米管/聚氨酯導電薄膜。 實施例5 取準備例5中製備出之碳奈米管油性分散液16.3克與 台灣永捷高分子公司所產製之溶劑型聚氨酯樹脂(產品編 號為AT568N,聚氨酯樹脂含量31.2wt%)50.0克稱重後置 於燒杯,於室溫與300rpm之轉速下機械式攪拌6小時,進 而得到一溶劑型碳奈米管/聚氨酯複合材料,接著將上述複 合材料注入特定形狀模具當中,經過80QC/4小時、100QC/4 小時與120^/12小時乾燥過程將溶劑完全揮發,即可製備 出一碳奈米管/聚氨酯導電薄膜,其内之碳奈米管添加量為 2.0wt%(重量百分比)。 實施例6 0954-A21773TWF(N2);P54950019TW;Shawn Chang 18 200815283 据Φ重複實施例5之步驟’採用相同重量之準備例6中所製 米管油性分散物以取代準備例5中所採用之碳 散物,進而分別製備以1奈米管/聚氨酉旨 實施例7 台中製備出之碳奈米管祕性分散液14柳與 19 Owt%)^司所產製之聚亞隨胺樹脂(固含量 下機村: 後置於燒杯,於室溫、撕Pm之轉速 6小時以均句分散上述材料,進而得到一碳 亞醯胺複合材料,再將此複合材料以塗佈方式塗 佈=鐵鼠龍離型紙上(濕膜厚度約1.0mm),經過120。〇2 寸乾燥過表將溶姻揮發’再經過15〇qC/0.5小時、 200 C/0’5 小時、25〇γ/〇·5 小時、300°C/0.5 小時與 350qC/0.5 J日寸進行閉裱與交聯反應,進而得到出一碳奈米管/聚亞醯 月女V電溥膜(乾膜厚度約〇〇5mm),其内碳奈米管添加量為 3.0wt% (重量百分比)。 實施例8 重複實施例7之步驟,採用準備例6所製備出之碳奈米 管油性分散物取代準備例7中所採用之碳奈米管油性分散 物,進而得到一碳奈米管/聚亞醯胺導電薄膜,其内碳奈米 管添加量為3.0wt% (重量百分比)。 0954-A21773TWF(N2);P54950019TW;Shawn Chang 19 200815283 胃 比較例 取準備例8中製備出之 Μ克與台灣高冠公司產製之奈米管水性分散物 為B-36,含量35.〇wt%)50〇克稱重後二二脂(產品編號 及3〇〇rpm之轉速下機械式_ 6小時以^不内’於室溫 料’進而得到-碳奈㈣/水性聚氨§旨複人㈣分散上述材 述複合材餘人特定形狀模具#巾,經過_接著將上 80°C/4小時與100。〇78小時之一 C/4小時、 揮發後’進而得出-碳奈米管物旨導;;似 米管之添加量為2wt%(重量百分比)。 、、,、内奴奈 比較例2 取準備例9中製備出之比較用碳奈米 18.2克與台灣高冠公司產製之水性 刀政物 达D Μ人旦,m 试脂(產品編號 為B-36, 3i35.0wt%)50.0克稱重後置於燒杯内,於室加 及300rpm之轉速下機械式攪拌6小時以均勻分散上2 料’進而得到-碳奈米管/水性聚氨g旨複合材料。^著=上 述複合材料注入特定形狀模具當中,經過6〇。匸/4】护 蒙/4小時與HKrns小時之—乾燥過程將其内溶劑^全 揮發後,進而得出一碳奈米管/聚氨酯導電薄膜,其内之碳 奈米管之添加量為2wt%(重量百分比)。 比較例 取準備例H)中製備出之比較用碳奈米管水性分散物 0954-A21773TWF(N2);P54950019TW;Shawn Chang 20 200815283 18.2克與台灣高冠公司產製之水性聚氨酯樹脂(產品編號 為B-36,含量35.0wt%)50.0克稱重後置於燒杯内,於室溫 及3OOrpm之轉速下機械式擾拌6小時以均勻分散上述材 料,進而得到一水性聚氨酯複合材料。接著將上述複合材 料注入特定形狀模具當中,經過60QC/4小時、80°C/4小時 與10CTC/8小時之一乾燥過程將其内溶劑完全揮發後,進 而得出一聚氨酯薄膜,其内碳奈米管之添加量為〇wt%。 比較例4 取準備例11中製備出之比較用碳奈米管水性分散物 18 · 2克與台灣高冠公司產製之水性聚氨酯樹脂(產品編號 為B-36,含量35.0wt%)50.0克稱重後置於燒杯内,於室溫 及300rpm之轉速下機械式攪拌6小時以均勻分散上述材 料,進而得到一水性聚氨酯複合材料。接著將上述複合材 料注入特定形狀模具當中,經過60°C/4小時、80°C/4小時 與100T/8小時之一乾燥過程將其内溶劑完全揮發後,進 而得出一聚氨酯薄膜,其内碳奈米管之添加量為0wt°/〇。 比較例5 取準備例12中製備出之碳奈米管油性分散液16.3克與 台灣永捷高分子公司所產製之油性聚氨酯樹脂(產品編號 為AT568N,含量31.2wt%)50.0克稱重後置於燒杯,於室 溫及300rpm之轉速下機械式攪拌6小時以均勻分散上述材 料,進而製備出一油性聚氨酯複合材料,再將上述複合材 0954-A21773TWF(N2);P54950019TW;Shawn Chang 21 200815283Preparation Example 13 10 g of carbon nanotubes (MWNT) manufactured by Korea CNT Co., Ltd. and 49.0 g of N, N-dimethyl formamide (DMF) were weighed and placed in a 300 ml glass sample vial. After adding 2mm of the 2mm error beads i70.0g, the bottle mouth was sealed, bead milled at a rotation speed of 2 rpm for 24 hours using a ball mill, and the oily dispersion of the comparative carbon nanotubes was obtained after removing the cerium-zirconium beads, wherein the carbon nano-carbon The tube solid content was 2% by weight. The conductive film of the present invention mainly comprises a polymer film, a dispersing agent and a carbon nanotube, wherein the carbon nanotube is uniformly dispersed in the bismuth molecular film by the action of a dispersing agent. Thus making the conductivity thin; resistance - a degree. In addition, by measuring the surface resistance values obtained by several different measuring points on the film, it can be found that the difference between the measured values of the surface resistance can be less than 2 〇χ 1 〇 η [measured by the surface resistance measurement Αχ 10 η For the benchmark, the error value is (Α土2 〇)χ1〇η], which shows the distribution of resistance values of 〇954-A21773TWF(N2); P54950019TW; Shawn Chang 16 200815283. The conductive t-knife ratio of the present invention accounts for about 0.01~5()%, and the Caoxin of the dispersing gas: the ratio is about 0. 01~5〇0/, L, and the knife is 4% of the conductive film. The weight of the reference is 6° before the solvent is removed. The conductive phase of the invention is the carbon nanotube dispersion obtained by the following steps. Next, θ^77 is taken to obtain a solution to obtain the above carbon nanotube dispersion and a high-division-conducting thin m α Γ material. The composite material is then dried to make the pancreas. In the dry description of the composite material (4) in the (-) four, W can be first presented in the middle, and the formation of the filaments of the Guanyu human tree is formed. The carbon nanotube tube dispersion may be one of the high molecular materials; i=°xy) and the resin: the conductive film of the present invention: and the preparation method thereof are more specifically illustrated by the preferred embodiment and detailed In the examples 丨8-8, in addition, Comparative Examples 1 to 6 are also shown below for comparison. EXAMPLES The water prepared by Preparation #1 克 and Taiwan Gaoguan Co., Ltd. was prepared as follows:: Ammonium aqueous dispersion 18.2 B-36, polyurethane resin content of 35, 〇^, pneumatic resin (The product number is inside, and it is sown at room temperature and 300 rpm. 5 g is weighed and placed in a beaker and stirred for 6 hours to evenly divide 0954-A21773TWF (N2); P54950019TW; Shawn Chang 200815283. Dispersing the above materials and obtaining a carbon nanotube/waterborne polyurethane composite. The composite material is then injected into a mold of a specific shape and subjected to a drying process of 6 CTC/4 hours, 8 CTC/4 hours, and 100 QC/8 hours. The internal solvent can be completely volatilized and a carbon nanotube/polyurethane conductive film is obtained. Here, the carbon nanotubes are added in an amount of 2.Owt% (by weight) in the polyurethane film. Example 2-4 Example 1 is repeated In the procedure, the carbon nanotube aqueous dispersion prepared in Preparation Example 2 to Preparation Example 4 was used in the same manner to replace the aqueous carbon nanotube aqueous dispersion used in Preparation Example 1, and then several carbon naphthalenes were respectively formed. Rice tube / polyurethane conductive film. Example 5: 16.3 g of the carbon nanotube dispersion prepared in Preparation Example 5 and a solvent-based polyurethane resin (product number AT568N, polyurethane resin content 31.2 wt%) manufactured by Taiwan Yongjie Polymer Co., Ltd. 50.0 g The mixture was placed in a beaker and mechanically stirred at room temperature and 300 rpm for 6 hours to obtain a solvent-type carbon nanotube/polyurethane composite. The composite material was then injected into a mold of a specific shape and passed through 80QC/4 hours. The carbon nanotubes/polyurethane conductive film was prepared by completely volatilizing the solvent in a drying process of 100QC/4 hours and 120^/12 hours, and the amount of the carbon nanotubes added therein was 2.0 wt% (% by weight). Example 6 0954-A21773TWF(N2); P54950019TW; Shawn Chang 18 200815283 The procedure of Example 5 was repeated according to Φ', using the same weight of the rice pipe oily dispersion prepared in Preparation Example 6 instead of the carbon used in Preparation Example 5. The bulk material, and then the polyamidamine resin produced by the carbon nanotubes secret dispersion 14 and the 17 Owt%) prepared in the 7th tube of the 1 nm tube/polyammonium solution were separately prepared ( Solid content under machine village: after Place in a beaker, disperse the above materials at room temperature and tear the Pm for 6 hours to obtain the one-carbon sulfonamide composite material, and then apply the composite material to the coating method. Wet film thickness of about 1.0mm), after 120. 〇 2 inch dry over the table will volatilize the volatilization 'after 15 〇 qC / 0.5 hours, 200 C / 0 '5 hours, 25 〇 γ / 〇 · 5 hours, 300 ° C/0.5 hours and 350qC/0.5 J-day for blocking and cross-linking reaction, and then a carbon nanotube/polyaluminum V-electrode film (dry film thickness about mm5mm), the carbon inside The amount of the nanotubes added was 3.0 wt% (% by weight). Example 8 The procedure of Example 7 was repeated, and the carbon nanotube oily dispersion prepared in Preparation Example 6 was used instead of the carbon nanotube oil dispersion used in Preparation Example 7, thereby obtaining a carbon nanotube/polymer. A conductive film of a melamine having an internal carbon nanotube added in an amount of 3.0% by weight. 0954-A21773TWF(N2); P54950019TW; Shawn Chang 19 200815283 Stomach Comparative Example The aqueous dispersion of the nanotube prepared by Preparing Preparation Example 8 and Taiwan Gaoguan Co., Ltd. is B-36, content 35.〇wt %) 50 gram weighing after the second two grease (product number and 3 rpm rotation speed mechanical _ 6 hours to ^ not inside 'at room temperature material' and then - carbon naphthalene (four) / water-based polyurethane § Person (4) Disperse the above-mentioned material of the composite material for the remainder of the shape of the mold #巾, after _ then 80 ° C / 4 hours and 100. 〇 78 hours one C / 4 hours, after evaporation 'and then - carbon nanotubes Pipe-shaped guide;; the amount of rice-like tube added is 2wt% (% by weight).,,,, Neonu, Comparative Example 2 Take the comparative carbon nano- 18.2g prepared in Preparation Example 9 and Taiwan Gaoguan Company The water-based knife of the production system reaches D Μ人旦, m test grease (product number B-36, 3i35.0wt%) 50.0g is weighed and placed in a beaker, mechanically stirred at room temperature and 300rpm 6 hours to uniformly disperse the 2 materials' to obtain a carbon nanotube/water-based polyurethane composite material. ^=The above composite material is injected into a specific shape mold After 6 〇. 匸 / 4 护 蒙 / 4 hours and HKrns hours - drying process, the internal solvent ^ total volatilization, and then a carbon nanotube / polyurethane conductive film, the carbon nanotube inside The amount of addition is 2 wt% (% by weight). Comparative Example The comparative carbon nanotube aqueous dispersion prepared in Preparation Example H) is 0954-A21773TWF (N2); P54950019TW; Shawn Chang 20 200815283 18.2 g and Taiwan Gaoguan Company The produced waterborne polyurethane resin (product number B-36, content 35.0wt%) 50.0g was weighed and placed in a beaker, and mechanically spoiled at room temperature and 3OOrpm for 6 hours to uniformly disperse the above materials. An aqueous polyurethane composite is obtained. Then, the composite material is injected into a mold of a specific shape, and the solvent is completely volatilized after one of drying at 60 ° C / 4 hours, 80 ° C / 4 hours and 10 CTC / 8 hours, thereby obtaining a polyurethane film having carbon therein. The amount of the nanotubes added is 〇wt%. Comparative Example 4 The aqueous dispersion of comparative carbon nanotubes prepared in Preparation Example 11 was used to obtain 22.0 g of water-based polyurethane resin (product number B-36, content 35.0 wt%) manufactured by Taiwan Gaoguan Co., Ltd. After weighing, it was placed in a beaker, and mechanically stirred at room temperature and a rotation speed of 300 rpm for 6 hours to uniformly disperse the above materials, thereby obtaining an aqueous polyurethane composite material. Then, the composite material is injected into a mold of a specific shape, and the solvent is completely volatilized after drying at 60 ° C / 4 hours, 80 ° C / 4 hours and 100 T / 8 hours, thereby obtaining a polyurethane film. The amount of the inner carbon nanotubes added was 0 wt ° / 〇. Comparative Example 5 16.3 g of the carbon nanotube oil dispersion prepared in Preparation Example 12 and 50.0 g of oily polyurethane resin (product number: AT568N, content 31.2 wt%) produced by Taiwan Yongjie Polymer Co., Ltd. were weighed. The mixture was placed in a beaker and mechanically stirred at room temperature and 300 rpm for 6 hours to uniformly disperse the above materials, thereby preparing an oily polyurethane composite material, and then the above composite material 0954-A21773TWF(N2); P54950019TW; Shawn Chang 21 200815283

比較例6Comparative Example 6

最米管油性分散液14.99克 之聚亞醯胺樹脂(含量 杯’於室溫及300rpm之轉速 散上述材料,進而得到一碳 示米官/聚亞酿胺複合材料,再將此複合材料以塗佈方式塗 佈於鐵氣龍離型紙上(濕膜厚度約1〇mm),經過l2〇〇c/2 小時乾餘過程將溶劑揮發,再經過l5〇〇c/〇5小時、 200°C/0.5 小時、25〇。(3/〇.5 小時、300。0/0.5 小時與 350°C/0.5 小時進行閉環與交聯反應,進而製備出一碳奈米管/聚亞醯 胺導電薄膜(乾膜厚度約0.05mm),其中碳奈米管添加量為 3wt%(重量百分比)。 薄膜機械性質測試 薄膜機械性質之測試係採用Hung Ta產製之萬能拉力機 (型號為HT 2010)進行檢測,測試前需將得自各實施例與比 較實施例之薄膜裁切如第4圖所示之試片尺寸,測試速度 則為 50cm/ruin。 薄膜硬度性質測試 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 • 薄膜硬度性質測試係以Teclock shore A(型號為 GS-709-N)之測試儀器所測試得到。 表面電阻測試 表面電阻是以Static Solutions Inc.產製之電阻劑型號為 (OHM-STATR RT· 1000)進行檢測,所使用之電極長度為 8cm,電極距離8cm,量測電壓10V(低表面電阻,103〜108Ω/ει) 與100V(高表面電阻,106〜1012Ω/ο)。 表一〜表三則顯示了上述實施例與比較實施例中所製備 出之高分子薄膜之電性及物性表現,其中表一顯示了含碳 奈米管之水性聚氨酯薄膜的性質分析結果,表二顯示了含複奈 米管之油性聚氨酯薄膜的性質分析結果,而表三顯示了含碳奈 米管之油性聚亞醯胺薄膜的性質分析結果。另外,於表一〜 表三中亦同.時顯示了不含碳奈米管與分散劑之純高分子薄 膜之電性及物性表現以茲比較。 0954-Α21773TWF(N2);P54950019TW;Shawn Chang 23 200815283The most potable oily dispersion of 14.99 g of polyamidamide resin (content cup 'disperses the above materials at room temperature and 300 rpm, and then obtains a carbon-semiconductor/poly-branched amine composite material, and then coats the composite material The cloth is applied on the iron-air release paper (the wet film thickness is about 1〇mm), and the solvent is volatilized after l2〇〇c/2 hours of drying, and then passed through l5〇〇c/〇5 hours, 200°C. /0.5 hours, 25 〇. (3/〇.5 hours, 300.0/0.5 hours and 350 °C/0.5 hours for ring closure and cross-linking reaction to prepare a carbon nanotube/polyimine conductive film (The dry film thickness is about 0.05 mm), wherein the carbon nanotubes are added in an amount of 3% by weight. The mechanical properties of the film are tested by the Hung Ta universal tensile machine (Model HT 2010). For the test, the film obtained from each of the examples and the comparative examples was cut to have a test piece size as shown in Fig. 4, and the test speed was 50 cm/ruin. The film hardness property test was 0954-A21773TWF (N2); P54950019TW; Shawn Chang 200815283 • Film hardness test is based on Teclock shore A The test instrument (Model GS-709-N) was tested. The surface resistance test surface resistance was measured by the resistive agent model (OHM-STATR RT·1000) manufactured by Static Solutions Inc., and the electrode length used. 8cm, electrode distance 8cm, measuring voltage 10V (low surface resistance, 103~108Ω/ει) and 100V (high surface resistance, 106~1012Ω/ο). Table 1 to Table 3 show the above examples and comparative implementation The electrical and physical properties of the polymer film prepared in the examples, wherein Table 1 shows the analysis results of the properties of the water-containing polyurethane film containing carbon nanotubes, and Table 2 shows the properties of the oil-based polyurethane film containing the complex nanotubes. The results of the analysis, and Table 3 shows the results of the analysis of the properties of the oily polyamidamide film containing carbon nanotubes. In addition, in Tables 1 to 3, the carbon nanotubes and dispersants are not shown. The electrical and physical properties of pure polymer films are compared. 0954-Α21773TWF(N2); P54950019TW; Shawn Chang 23 200815283

表一 實施例/ 比較例 編號 奶欠液製 程 CNT (wt%) 層狀材料 (wt%) 抗張強度 (Kg/cm2) 模數 (Kg/cm2) 性 (%) 表面電阻平均值(〇/□) 表面電阻範圍(ΩΟ) 、純膜 、' ; 、 * ' ^ 1 ' k V :4 ,、,ΐθ ( 丨:;、 、二 Ύ : Ό、、:i?二 < ,'ΘΆ:; N-i 祀二孓 V,:…—匕-; 灌_ r'W' \ % 、: - 、' ,々、' ..5·、/ 1 -Γ'ρ Ύ '> ‘ 〆、 ,、 , 、、卜卜…' 、w 、' 、-一 ,· ‘ J 一。',1 .'.二,彡 : …U獨χΙΘ^七V : 比較例 機械 MWNT — 155.94 41.87 551.18 84 3.489χ105 1 勝 ⑵ 1.67χ106-2.18χ104 比較例 機械 — cloisiteNa 144.86 23.12 693.70 79 2.082xl09 3 餅 ⑵ 2.20x109-1.90x109 實施例 機械 MWNT cloisite Na 163.27 36.74 563.35 87 1.284xl05 3 搅拌 ⑵ ⑵ 3.95x105-4.79x104 實施例 賴 MWNT J678/DMEA 124.76 34.85 571.26 84 7.154xl04 1 麟 ⑵ ⑵ 1.23x104-3.84x104 比較例 球磨 MWNT — 190.74 33.64 642.78 87 1.916xl05 2 ⑵ 2.05x105-1.76x105 比車交例 球磨 — cloisiteNa 130.41 24.20 670.08 ΊΊ 3.920xl08 4 ⑵ 4.29x108-3.51x108 實施例 球磨 MWNT cloisiteNa 258.15 42.08 652.76 91 1.056xl04 4 魏 ⑵ ⑵ 1.11x104-9.59x103 實施例 球磨 MWNT J678/DMEA 193.20 34.00 642.52 84 1.720xl04 2 ⑵ (2) 1.85x104-1.56x104 0954-A21773TWF(N2);P54950019TW;Shawn Chang 24 200815283 表二 實施例/ 比較例 編5虎 綠液 製程 CNT (wt%) 層狀材料 (wt%) 抗張強度 (Kg/cm2) 模數 (Kg/cm2) :性 (%) 表面電阻平均值(〇/□) 表面電阻範圍(Ω/口) 純膜: 、,:π; 二':^ ^〜< ' 、> i ' - ? ν·‘ 一 ’、 乞、 \ :、 %二:.:Ή \T/> /::¾¾ 、'乂乂 I ^ <'、 Λ。、《 fill 、气„ -丨 ::£'ί 1鑛丨 :f “Ί; 卜':…'w ' s … , V 1Λ - > V 1.320x10^ :…、 Π —Γ…、:二、、ϋν '、',、、 、:1·69χ 丨 1〇1ο-1.21χ1010 4 比車交例 球磨 MWNT — 498.34 55.75 576.18 87 2.318x1ο7 6 綠 ⑵ 4.15χ107-1.25χ107 比較例 球磨 一 cloisite 30B 429.68 53.43 581.10 86 4.176χ109 5 錄 —一 (2) 4.76χ109-3.63χ109 實施例 球磨 MWNT cloisite 30B 446.26 57.23 565.35 89 4.666χ105 6 綠 ⑵ ⑵ 5.69χ105-3.95χ105 實施例 球磨 MWNT J678 553.26 60.69 547.24 86 5.584χ105 5 錄 ⑵ ⑵ 6·86χ105459χ105Table 1 Example / Comparative Example No. Milk Solution Process CNT (wt%) Layered Material (wt%) Tensile Strength (Kg/cm2) Modulus (Kg/cm2) Properties (%) Average Surface Resistance (〇/ □) Surface resistance range (ΩΟ), pure film, ' ; , * ' ^ 1 ' k V : 4 , , , ΐ θ ( 丨: ; , , Ύ : Ό , , : i? 二 < , 'ΘΆ: Ni 祀二孓V,:...—匕-; 灌_r'W' \ % ,: - , ' , 々, ' ..5·, / 1 -Γ'ρ Ύ '> ' 〆, ,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Sheng (2) 1.67χ106-2.18χ104 Comparative Example Machinery - cloisiteNa 144.86 23.12 693.70 79 2.082xl09 3 Pie (2) 2.20x109-1.90x109 Example Mechanical MWNT cloisite Na 163.27 36.74 563.35 87 1.284xl05 3 Stirring (2) (2) 3.95x105-4.79x104 Example MWNT J678/DMEA 124.76 34.85 571.26 84 7.154xl04 1 Lin (2) (2) 1.23x104-3.84x104 Comparative Example Ball Mill MWNT — 190.74 33.64 642.78 87 1.916xl05 2 (2) 2.05x105-1.76 X105 than car example ball mill - cloisiteNa 130.41 24.20 670.08 ΊΊ 3.920xl08 4 (2) 4.29x108-3.51x108 Example ball mill MWNT cloisiteNa 258.15 42.08 652.76 91 1.056xl04 4 Wei (2) (2) 1.11x104-9.59x103 Example ball mill MWNT J678/DMEA 193.20 34.00 642.52 84 1.720xl04 2 (2) (2) 1.85x104-1.56x104 0954-A21773TWF(N2); P54950019TW; Shawn Chang 24 200815283 Table 2 Example / Comparative Example 5 Tiger Green Liquid Process CNT (wt%) Layered Material (wt %) Tensile strength (Kg/cm2) Modulus (Kg/cm2): Sex (%) Surface resistance average (〇/□) Surface resistance range (Ω/□) Pure film: ,,:π; ^ ^~< ' , > i ' - ? ν·' a ', 乞, \ :, % 2:.:Ή \T/> /::3⁄43⁄4 , '乂乂I ^ <', Λ . , " fill , 气 „ -丨::£'ί 1 Mine: f "Ί; Bu ':...'w ' s ... , V 1Λ - > V 1.320x10^ :..., Π -Γ...,: 2 , ϋν ', ',,,,::1·69χ 丨1〇1ο-1.21χ1010 4 than the car example ball mill MWNT — 498.34 55.75 576.18 87 2.318x1ο7 6 green (2) 4.15χ107-1.25χ107 Comparative example ball mill a cliosite 30B 429.68 53.43 581.10 86 4.176χ109 5 Record—1(2) 4.76χ109-3.63χ109 Example Ball Milling MWNT cloisite 30B 446.26 57.23 565.35 89 4.666χ105 6 Green (2) (2) 5.69χ105-3.95χ105 Example Ball Milling MWNT J678 553.26 60.69 547.24 86 5.584χ105 5 Record (2) (2) 6·86χ105459χ105

表三 實施例編 號 対欠液 製程 CNT (wt%) 層狀材料 (wt%) 乾膜厚度 (mm) 表面電阻平均值(Ω/口) 表面電阻範圍(ΩΟ) Ά 二:<':ή 、、':./〇、、、〜: 維膜… Γ': D; 、、、,丨 夺 、'4 :> s 議‘ .s'二,/ 觀 1〆' : Ά 乂 V 界::v-v、 :,、W、ί 二 (>、、ι、'•Ήύ·、一 ' '、、、 i' V ' - ώ 1 ::八 - >妒 實施例 機械 MWNT cloisite 30B 0.05 1.811xl07 7 攪拌 (3) ⑶ 2.57χ107-1.62χ106 實施例 球磨 MWNT cloisite 30B 0.05 1·302χ104 8 綠 (3) (3) 1.52x104-L18x104 0954-A21773TWF(N2);P54950019TW;Shawn Chang 25 200815283 經比較上述表列中數據,相較於無添加碳奈米管之純 高分子薄膜,本發明所製備出之含碳奈米管之高分子薄膜 皆表現出較為低與均勻之表面電阻值之表現。另外,由於 本發明是藉由添加具特定結構分散劑並搭配攪拌、超音波 或是研磨等混合方式以製造出具有低碳奈米管糾纏度之一 分散液,並接著將此分散液均勻分散至高分子材料。如此 可較為簡單地製作出具低表面電阻之高分子薄膜,極適用 於防靜電與抗電磁波產品的製作,甚至是應用於半導體製 程之導電薄膜之應用。 再者,由於本發明係採用攪拌、超音波或是研磨等混 合方式將碳奈米管分散,不會有採用習知表面改質方式分 散碳奈米管所導致之機能性不良之表現。對於高分子複合 材料而言,於相同碳奈米管添加量情況下,本發明之表面 電阻表現可較為穩定與良好。 如此,本發明所提供之導電薄膜具有高安定性與多選 擇性等優點,可廣泛地採用各類型之高分子材料系統所製 備得到,且其可表現出低於107Ω/□之表面電阻。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 0954-A21773TWF(N2):P54950019TW;Shawn Chang 26 200815283 - 【圖式簡單說明】 第1圖為一示意圖,顯示了碳奈米管結構; 第2圖為一圖片,顯示了添加有層狀材料之碳奈米管 水性分散液與未添加有層狀材料之一水性分散液(左侧)内 之碳奈米管之分散情形; 第3圖為一圖片,顯示了添加有層狀材料之碳奈米管 油性分散液與未添加有層狀材料之一油性分散液(左側)内 ϋ 之碳奈米管之分散情形;以及 第4圖為一示意圖,顯示了測試薄膜機械性質之一試 片0 【主要元件符號說明】 無0Table 3 Example No. 対 Liquid Process CNT (wt%) Layered Material (wt%) Dry Film Thickness (mm) Surface Resistance Average (Ω/□) Surface Resistance Range (ΩΟ) Ά Two: <':ή ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ::vv, :,,W, ί 二(>,, ι, '•Ήύ·,一' ',,, i' V ' - ώ 1 ::八- >妒Example Mechanical MWNT cloisite 30B 0.05 1.811xl07 7 Stirring (3) (3) 2.57χ107-1.62χ106 Example Ball Milling MWNT cloisite 30B 0.05 1·302χ104 8 Green (3) (3) 1.52x104-L18x104 0954-A21773TWF(N2); P54950019TW; Shawn Chang 25 200815283 The data in the above table shows that the carbon nanotube-containing polymer film prepared by the present invention exhibits a relatively low and uniform surface resistance value compared to the pure polymer film without the added carbon nanotube. In addition, the present invention is one of the entanglement degrees of low carbon nanotubes by adding a specific structure dispersant and mixing with agitation, ultrasonic or grinding. Disperse the liquid, and then uniformly disperse the dispersion to the polymer material. This makes it easier to produce a polymer film with low surface resistance, which is extremely suitable for the production of antistatic and anti-electromagnetic wave products, and even for the conductive process of semiconductor processes. The application of the film. Furthermore, since the present invention uses a mixing method such as stirring, ultrasonic or grinding to disperse the carbon nanotubes, there is no malfunction due to the dispersion of the carbon nanotubes by the conventional surface modification method. For the polymer composite material, the surface resistance of the present invention can be relatively stable and good under the same amount of carbon nanotubes added. Thus, the conductive film provided by the invention has high stability and multiple selection. Advantages, etc., can be widely used in various types of polymer material systems, and can exhibit surface resistance of less than 107 Ω / □. Although the invention has been disclosed above in the preferred embodiment, it is not used The invention may be modified and modified in various ways without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is defined by the scope of the appended claims. 0954-A21773TWF(N2): P54950019TW; Shawn Chang 26 200815283 - [Simple description of the drawing] Figure 1 is a schematic diagram showing Carbon nanotube structure; Figure 2 is a picture showing the carbon nanotubes in the aqueous dispersion of the carbon nanotubes with the addition of the layered material and the aqueous dispersion (left side) without the addition of the layered material. Dispersion; Figure 3 is a picture showing the dispersion of the carbon nanotubes with the layered material and the carbon nanotubes without the addition of an oily dispersion (left side) of the layered material. Case; and Figure 4 is a schematic diagram showing one of the mechanical properties of the test film. 0 [Main component symbol description] No 0

0954-A21773TWF(N2);P54950019TW;Shawn Chang 270954-A21773TWF(N2); P54950019TW; Shawn Chang 27

Claims (1)

200815283 十、申請專利範圍: 1·一種導電薄膜,包括: 一鬲分子薄膜; 一分散劑;以及 =示米管’ t亥碳奈米管經該分散劑之作用而分散於該高 刀賴中’其中該分散劑包括聚笨乙稀/丙烯酸共聚物及立衍 生物或層狀材料。 〃200815283 X. Patent application scope: 1. A conductive film comprising: a monomolecular film; a dispersing agent; and = a meter tube, a carbon nanotube tube dispersed in the high knife by the action of the dispersing agent 'Where the dispersant comprises a polystyrene/acrylic acid copolymer and a vertical derivative or layered material. 〃 一 2 ·如中請專利範圍第1項所述之導電薄膜,其中該導電薄 膜係為經下列步驟後所得之產物,包括·· 、 將忒蚊奈米官與該分散劑溶於一溶劑中,得到一碳奈米管 分散物; '、 犯5 ϋ亥奴奈米管分散物與一高分子溶液,得到一複合材 料;以及 乾燥該複合材料,以形成該導電薄膜。 3·如申請專利範圍第i項所述之導電薄膜,其中碳奈米管 係擇自由多層碳奈料、雙層碳奈米管、單層碳奈米管與破奈 米纖維所組成族群中。 4·如申凊專利範圍第1項所述之導電薄臈,其中該導電薄 膜之表面電阻係低於107ω/口。 5·如申請專利範圍第1項所述之導電薄膜,其中該層狀材 料係擇自由硅礬石(smectite)、絹雲母(sericite)、蛭石 (vermiculite)、高嶺土(kaolin)、皂土(sap〇nite)、雲母㈣㈣與滑 石(talc)所組成族群中。 6.如申請專利範圍第5項所述之導電薄膜,其中該硅礬石 0954-A21773TWF(N2);P54950019TW;Shawn Chang 28 200815283 1 2擇自由蒙脫土(montmorillonite)、蒙脫土(montmorill〇nite)、 田銘篆脫土(beidellite)、矽鐵石(nontronite)與水輝石(hectorite) 所組成族群中。 7·如申清專利範圍第1項所述之導電薄膜,其中該高分子 洛液係擇自含聚氨酯(Polyurethane)、聚亞醯胺(p〇iyimide)、環 氧树月曰(epoxy)與壓克力樹脂(acry late)之溶液所組成族群中。 8·如申請專利範圍第1項所述之導電薄膜,其中該碳奈米 官重里百分比範圍為〇.〇1〜50%,以該導電高分子薄膜之重量 •為基準。 9.如申請專利範圍第1項所述之導電薄膜,其中該分散劑 重置百分比範圍為0·01〜50%,以該導電高分子薄膜之重量為 基準。 10·如申請專利範圍第2項所述之導電薄膜,其中該碳奈米 ί刀政物為一油性分散物或一水性分散物。 11·如申請專利範圍第10項所述之導電薄膜,其中該溶劑 _ 為一低極性溶劑擇自由苯(benzene)、曱苯(t〇iuene)、二曱苯 (xylene)、正戊烷(n-pentane)、正己烷(n-hexane)與正辛烷 (n-octane)所組成族群中。 12·如申請專利範圍第1〇項所述之導電薄膜,其中該溶劑 為一咼極性溶劑擇自由***(ethylether)、四氫吱喃 (tetrhydrofuran)、丙酮(acet〇ne)、曱乙酮(methyl ethyl ketone)、 曱醇(methanol)、乙醇(ethanol)、正丙醇(n-propanol)、異丙醇 (I-propanol)、四氯化碳(carb〇n trtrachloride)、氯仿 (chloroform)、二氯曱院(methylene chloride)、酷酸乙醋 0954-A21773TWF(N2);P54950〇19TW;Shawn Chang 29 200815283 (ethylacetate)、二甲基甲醯胺(N,N_dimethyi f〇rmamide)與二甲 基乙醯胺(Ν,Ν-dimethylacetamide)所組成族群中。 山如申請專利範圍第1〇項所述之導電薄膜,其中混合該 碳奈米管分韻與該高分子紐之方式為麟混合、超音波混 合或研磨混合。 14.-種碳奈米管分散物’其中該碳奈輕分散物係為經下 列步驟後所得之產物,包括·· ,合-,奈米管與-分散劑,以形成—第—混合液;以及 混合該第-混合液與一水性溶劑,以形成該碳奈米 冰㈣料—-物或帶 散物之重量為基準。 以》亥石反奈未官分 兮八鄕圍第14項所述之料較分散物,並中 5亥刀政μ之重置百分比範圍為〇〇1〜5〇%,以,、 物之重量為基準。 μ厌示米官分散 …17·如申請專利範圍帛14項所述之碳奈米 该碳奈米管係擇自由多層碳奈月- 米管與破奈米纖維所組成族群中:〜"^切、單層碳奈 18. 如申請專利範圍第14項所述之碳奈 該具陽離子之層狀材料所具陽離子係擇自中 _子、鋇離子與鎂離子所組成族群中。 _子、 19. 如申請專利_1δ項所述之资奈米管分散物,其中 〇954-A21773TWF(N2);P54950〇l9TW;Shawn Chang 30 200815283 该帶陽離子之層狀材料係擇自由娃蓉石(sniectite)、絹雲母 (sericite)、蛭石(術11^111加)、高嶺土(]^〇如)、皂土(5叩〇11治)、 雲母(mica)與滑石(talc)所組成族群中。 20·如申請專利範圍第19項所述之碳奈米管分散物,其申 該硅礬石係擇自由蒙脫土(m〇ntm〇rill〇niie)、蒙脫土 (獅_〇rili〇nite)、富鋁蒙脫土(beide皿e)、石夕鐵石⑽咖池^ 與水輝石(hectorite)所組成族群中。 22· —種碳奈米管分散物, 列步驟後所得之產物,包括: 21.如申請專利範圍第η項所述之碳奈米管分散物,直中 該碳奈米管、該分散劑與該水性溶劑係同時混合而成。〃 其中該碳奈米管分散物係為經下 混合-碳奈米管與-分散劑,以形成一第一混合液;以及 混合該第-混合液與-有機溶劑,以形成該碳夺 物’其中該分散劑包括聚笨乙浠/丙烯酸共聚物及其衍= 有碳數大於12以上烷基之鏽鹽結構之—層狀材料、勿或,、 23. 如申請專利範圍第22項所述之碳;米管分: 該碳奈米管之重量百分比範圍為:二: 散物之重量為基準。 邊奴不未官分 24. 如申請專職㈣22韻狀衫料 該分散劑之重量百分比範圍為物,其中 物之重量為基準。 5亥妷奈米管分散 25.如申請專利範圍第22項所述之碳奈米乾八j 該碳奈米管係擇自由多層碳奈米管、雙層碳太::散!’其中 米管與碳奈米雜肋成鱗巾。 ^、官、單層碳奈 0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 該層22項所述之碳奈米管分散物,其中 子、θ石舞陽離子構V有碳數12以上之炫基以及氮陽離 于夕兩離子、硫陽離子或氧陽離子。 (ve_hte)、高嶺土 (kaolm)、息土 (saponlte)、雲母_) 舁/月石(talc)所組成族群中。The conductive film according to claim 1, wherein the conductive film is a product obtained by the following steps, comprising: dissolving the mosquito and the dispersing agent in a solvent; Obtaining a carbon nanotube dispersion; ', making a 5 ϋ Heinun tube dispersion and a polymer solution to obtain a composite material; and drying the composite material to form the conductive film. 3. The conductive film according to item i of the patent application, wherein the carbon nanotubes are selected from the group consisting of a plurality of layers of carbonitrides, double-layered carbon nanotubes, single-layer carbon nanotubes and broken nanofibers. . 4. The conductive thin crucible according to claim 1, wherein the conductive film has a surface resistance of less than 107 ω/□. 5. The electroconductive film according to claim 1, wherein the layered material is selected from the group consisting of smectite, sericite, vermiculite, kaolin, bentonite ( Sap〇nite), mica (four) (four) and talc (talc) are composed of ethnic groups. 6. The electroconductive film according to claim 5, wherein the silicon vermiculite 0954-A21773TWF (N2); P54950019TW; Shawn Chang 28 200815283 1 2 is selected from montmorillonite and montmorillite. Nite), Tian Minglu (beidellite), nontronite (hectorite) and hectorite. 7. The conductive film according to claim 1, wherein the polymer liquid is selected from the group consisting of polyurethane (polyurethane), polydecylamine (p〇iyimide), epoxy epoxide (epoxy) and A group of acry late solutions. 8. The conductive film according to claim 1, wherein the percentage of the carbon nanotubes is in the range of 1 to 50%, based on the weight of the conductive polymer film. 9. The electroconductive film according to claim 1, wherein the dispersant has a reset percentage ranging from 0. 01 to 50% based on the weight of the conductive polymer film. 10. The electroconductive film of claim 2, wherein the carbon nanoelement is an oily dispersion or an aqueous dispersion. 11. The electroconductive film according to claim 10, wherein the solvent is a low polarity solvent selected from the group consisting of benzene, t〇iuene, xylene, and n-pentane. N-pentane), n-hexane and n-octane group. 12. The electroconductive film according to claim 1, wherein the solvent is a polar solvent selected from the group consisting of ethylether, tetrhydrofuran, acetoxime, and acetophenone ( Methyl ethyl ketone), methanol, ethanol, n-propanol, I-propanol, carb〇n trtrachloride, chloroform, Methylene chloride, ethyl vinegar 0954-A21773TWF (N2); P54950 〇 19TW; Shawn Chang 29 200815283 (ethylacetate), dimethylformamide (N, N_dimethyi f〇rmamide) and dimethyl In the group consisting of acetamidine (dimethyl- acetacetamide). The conductive film according to the first aspect of the invention, wherein the mixing of the carbon nanotubes with the polymer is mixed by lining, ultrasonic mixing or grinding. 14.-Carbon nanotube dispersion> wherein the carbon light dispersion is a product obtained by the following steps, including ··, -, a nanotube and a dispersant to form a first-mixture And mixing the first mixture with an aqueous solvent to form the weight of the carbon nano-(four) material or the bulk material. The content of the material mentioned in the 14th item of the hexagram is not more than the content of the material, and the percentage of the reset of the 5th knives is 〇〇1~5〇%, to, the weight of the object As the benchmark. μ 厌 米 米 官 ... ... 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 Cut, single-layer carbon nanoene 18. The carbon-based cation-like layered material described in claim 14 has a cation system selected from the group consisting of neutron, strontium and magnesium ions. _子, 19. as claimed in the patent _1δ item of the nanotube tube dispersion, of which 〇954-A21773TWF (N2); P54950〇l9TW; Shawn Chang 30 200815283 The cation layered material is selected Stone (sniectite), sericite (sericite), vermiculite (surgery 11^111 plus), kaolin (]^〇), bentonite (5叩〇11 rule), mica (mica) and talc (talc) In the ethnic group. 20. The carbon nanotube dispersion according to claim 19, wherein the silicon vermiculite is selected from the group consisting of free montmorillonite (m〇ntm〇rill〇niie) and montmorillonite (lion_〇rili〇) Nite), rich aluminum montmorillonite (beide dish e), stone stone (10) café pool ^ and hectorite group. 22. The carbon nanotube dispersion, the product obtained after the step, comprising: 21. The carbon nanotube dispersion as described in claim n, the carbon nanotube, the dispersant It is mixed with the aqueous solvent system at the same time. Wherein the carbon nanotube dispersion is a downmixed-carbon nanotube and a dispersant to form a first mixture; and the first mixture and the organic solvent are mixed to form the carbonaceous material Wherein the dispersant comprises a polystyrene/acrylic acid copolymer and a derivative thereof having a rust salt structure having an alkyl group having a carbon number of more than 12 or more, a layered material, or a material, as in claim 22 Carbon; meter tube: The weight percentage of the carbon nanotubes is: 2: The weight of the bulk is the basis. If you apply for a full-time (4) 22 rhythm dress material, the weight percentage of the dispersant is the object, and the weight of the substance is the basis. 5 妷 妷 妷 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25. ' The rice tube and the carbon nano-ribbed are scaled. ^,官,单层碳奈0954-A21773TWF(N2);P54950019TW;Shawn Chang 200815283 The carbon nanotube tube dispersion described in the 22nd layer, wherein the sub-, θ stone dance cationic structure V has a carbon number of 12 or more The base and nitrogen are separated from the ionic ion, sulfur cation or oxygen cation. (ve_hte), kaolin (kaolm), saponlte, mica _) 舁 / moon stone (talc) composed of ethnic groups. 姑土21如中料利範圍第27項所述之碳奈米管分散物,其中 μ石土恭石係擇自由蒙脫土(m_觸而⑽、蒙脫土 (montmonlbnite)、*|g 蒙脫土(beidelHte)、销石(_腿邮 與水輝石(hectorite)所組成族群中。 ^ 29·如中請專利範圍第22項所述之碳奈米管分散物,其中 該有機溶劑為一低極性有機溶劑擇自由苯(benzene)、曱苯 (toluene)、二曱笨(xylene)、正戊烷(n_pemane)、正己烷㈣⑶騰) 與正辛烷(n-octane)所組成族群中。 30·如申请專利範圍第26項所述之碳奈米管分散物,其中 该層狀材料之表面結構更帶有一經基(〇H)、一羧基(c〇〇H)或 一胺基(NHR2、NH2R、NHJ。 31·如申請專利範圍第30項所述之碳奈米管分散物,其中 該有機溶劑為一高極性溶劑擇自由***(ethylether)、四氫呋喃 (tetrhydrofuran)、丙酮(acetone)、曱乙酮(methyl ethyl ketone)、 曱醇(me1;hanol)、乙醇(ethanol)、正丙醇(n_propanol)、異丙醇 (I-propanol)、四氯化碳(carbon trtrachloride)、氯仿 (chloroform)、二氯甲烧(methylene chloride)、醋酸乙酯 0954-A21773TWF(N2);P54950019TW;Shawn Chang 32 混合而成 200815283 (ethylacetate)、二曱基甲酸胺(Ν,Ν-dimethyl formamide)與 基乙醯胺(N,N_dimetliylacetamide)所組成族群中。 32.如申請專利範圍第22項所述之碳太 該碳奈米管、該分散劑與該有機溶劑係同刀政物’ 二甲 其中Gutu 21 is a carbon nanotube dispersion as described in item 27 of the material range, in which the μ stone soil is selected from the free montmorillonite (m_touch (10), montmorillon (montmonlbnite), *|g Bei 土 土 bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei bei ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ A low-polar organic solvent is selected from the group consisting of benzene, toluene, xylene, n-pemane, n-hexane (tetra), and n-octane. 30. The carbon nanotube dispersion according to claim 26, wherein the surface structure of the layered material further has a radical (〇H), a carboxyl group (c〇〇H) or an amine group. (NHR2, NH2R, NHJ. 31. The carbon nanotube dispersion according to claim 30, wherein the organic solvent is a highly polar solvent selected from the group consisting of ethylether, tetrahydrofuran, and acetone. ), methyl ethyl ketone, sterol (me1; hanol), ethanol, n-propanol, isopropanol (I-propan) Ol), carbon trtrachloride, chloroform, methylene chloride, ethyl acetate 0854-A21773TWF (N2); P54950019TW; Shawn Chang 32 mixed 200815283 (ethylacetate), two a group consisting of hydrazine-dimethyl formamide and N,N-dimetliylacetamide. 32. The carbon too much carbon nanotube according to claim 22 of the patent application, the dispersant With the organic solvent, the knife is the same as the government. 0954-A21773TWF(N2);P54950019TW;Shawn Chang0954-A21773TWF(N2); P54950019TW; Shawn Chang
TW095136211A 2006-09-29 2006-09-29 Carbon nanotube containing dispersions and conductive films TWI340732B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095136211A TWI340732B (en) 2006-09-29 2006-09-29 Carbon nanotube containing dispersions and conductive films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095136211A TWI340732B (en) 2006-09-29 2006-09-29 Carbon nanotube containing dispersions and conductive films

Publications (2)

Publication Number Publication Date
TW200815283A true TW200815283A (en) 2008-04-01
TWI340732B TWI340732B (en) 2011-04-21

Family

ID=44768797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095136211A TWI340732B (en) 2006-09-29 2006-09-29 Carbon nanotube containing dispersions and conductive films

Country Status (1)

Country Link
TW (1) TWI340732B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115271B2 (en) 2011-09-14 2015-08-25 Industrial Technology Research Institute Carbon nanotube powders and methods for manufacturing the same and composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115271B2 (en) 2011-09-14 2015-08-25 Industrial Technology Research Institute Carbon nanotube powders and methods for manufacturing the same and composite materials

Also Published As

Publication number Publication date
TWI340732B (en) 2011-04-21

Similar Documents

Publication Publication Date Title
Wu et al. Highly conductive nanocomposites with three‐dimensional, compactly interconnected graphene networks via a self‐assembly process
Yang et al. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites
Qian et al. One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: Preparation and its enhancement on the thermal and mechanical properties of polyurea
Layek et al. Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly (vinylidene fluoride) composites
Tang et al. Three dimensional graphene aerogels and their electrically conductive composites
Laird et al. Structure and morphology control in crystalline polymer–carbon nanotube nanocomposites
Liu et al. Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes
Bora et al. Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity
Steurer et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide
Huang et al. Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly (vinylidene fluoride)
Hussein et al. Fabrication of EPYR/GNP/MWCNT carbon-based composite materials for promoted epoxy coating performance
Yang et al. A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites
Ghanem et al. Hydrophobically modified graphene oxide as a barrier and antibacterial agent for polystyrene packaging
US10590296B2 (en) Piezoresistive ink, methods and uses thereof
Hussein et al. The Role of Mixed Graphene/Carbon Nanotubes on the Coating Performance of G/CNTs/Epoxy Resin Nanocomposites.
EP3397702A1 (en) Piezoresistive ink, methods and uses thereof
Hou et al. Nanodiamond decorated graphene oxide and the reinforcement to epoxy
Mishra et al. Effect of modifiers on morphology and thermal properties of novel thermoplastic polyurethane‐peptized laponite nanocomposite
JP2015079724A (en) Conductive paste
Choe et al. Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly (vinyl chloride)
Dhamodharan et al. Water dispersible magnetite graphene oxide anchored sulfonic acid hybrid for mechanical enhancement of waterborne epoxy nanocomposites
Nawaz et al. The effect of graphene nanosheets on the mechanical properties of polyvinylchloride
Zhu et al. Nacre-like composite films with a conductive interconnected network consisting of graphene oxide, polyvinyl alcohol and single-walled carbon nanotubes
Marinho et al. Ceramic nanoparticles and carbon nanotubes reinforced thermoplastic materials for piezocapacitive sensing applications
Salim et al. Hybrid nanocomposites based on graphene with cellulose nanocrystals/nanofibrils: from preparation to applications