TW200815277A - Method for making nano-scaled mould having micro-holes - Google Patents

Method for making nano-scaled mould having micro-holes Download PDF

Info

Publication number
TW200815277A
TW200815277A TW95135260A TW95135260A TW200815277A TW 200815277 A TW200815277 A TW 200815277A TW 95135260 A TW95135260 A TW 95135260A TW 95135260 A TW95135260 A TW 95135260A TW 200815277 A TW200815277 A TW 200815277A
Authority
TW
Taiwan
Prior art keywords
nano
protective layer
carbon nanotube
substrate
scale
Prior art date
Application number
TW95135260A
Other languages
Chinese (zh)
Other versions
TWI317346B (en
Inventor
Peng-Cheng Song
Ding Wang
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95135260A priority Critical patent/TWI317346B/en
Publication of TW200815277A publication Critical patent/TW200815277A/en
Application granted granted Critical
Publication of TWI317346B publication Critical patent/TWI317346B/en

Links

Abstract

A method for making a nano-scaled mould having a plurality of micro-holes includes the steps of: providing a plurality of carbon nanotubes; forming a protective layer on at least one end of the carbon nanotubes; injecting a melted macromolecule material solution into the carbon nanotubes and solidifying the macromolecule material; removing the protective layer and forming a composite structure having carbon nanotubes and the macromolecule material; and removing the carbon nanotubes to form a nano-scaled mould having micro-holes.

Description

200815277 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種微孔模具的製造方法,尤其涉及一種 奈米級微孔模具的製造方法。 【先前技術】 隨著量子物理與量子化學的完善以及世界奈米技術的 研究與進步,構造物質的基本模組可達到單個原子的水 平,原子可以按照一定的路徑組裝成奈米級的材料,這種 類型的製造稱爲奈米製造。目前模具製造向大型與超精微 加工兩方面發展:在大型加工方面,例如製造汽車、飛機 用大型整體壁板的扁擠壓模具,已經形成比較成熟的製造 工藝,而在超精微加工方面,奈米産品需求成幾何級上升, 如何應用先進的奈米製造技術於模具製造,使得超精微加 工形成產業化並與全球模具先進技術同步係模具行業的發 展趨勢。 理論上’奈米技術可廣泛應用於加工方面。目前已經 長:出基於奈米組裝的奈米加工方式,以實現奈米產品自動 化、産業化。這種加工方式設想按照産品的形狀進行分子 排列,從而實現無模生産方式。然而,該方法實際上並不 可行,因爲目前對分子的排列採用的主要係掃描隧道顯微 鏡(Scanning Tunnelling Microscopy, STM)或原子力顯微 鏡(Atomic Force Microscopy,AFM),其操作精細,成本 太高,難以實現大規模製造奈米產品。 有鑒於此,提供一種適用於大規模製造奈米産品的奈 200815277 米級微孔模具的製造方法實為必要。 【發明内容】 以下,將以若干實施例說明一種適用於大規模製 造奈米産品的奈米級微孔模具的製造方法。 一種奈米級微孔模具的製造方法,其包括以下步 驟:提供複數奈米碳管;在所述複數奈米碳管至少一 末端形成一保護層;向所述形成有保護層的奈米碳管 中注入基體溶液或熔融液,並使其固化;除去保護 層,形成奈米碳管與基體的複合結構;以及去除奈米 碳管,形成奈米級微孔模具。 該複數奈米碳管爲採用化學氣相沈積法、電漿辅 助化學氣相沈積法或電漿輔助熱絲化學氣相沈積法 制得的奈米碳管陣列。 該奈米碳管陣列形成於一襯底上。 該保護層的形成進一步包括以下步驟:提供一形 成有壓敏膠層的承載基底;將形成有壓敏膠層的一面 壓在奈米碳管陣列遠離襯底的末端形成一保護層,而 奈米碳管陣列的襯底本身作爲另一保護層。 該保護層的形成進一步包括以下步驟··提供一形 成有壓敏膠層的承載基底;將形成有壓敏膠層的一面 壓在奈米碳管陣列遠離襯底的末端形成一保護層;將 襯底揭去;提供另一形成有壓敏膠層的承載基底,並 將該另一壓敏膠層壓在奈米碳管陣列揭去襯底的一 端形成另一保護層。 7 200815277 該承載基底爲一聚s旨片。 該保護層的厚度爲0. 05毫米。 在向所述形成有保護層的奈米碳管中注入基體 溶液或熔融液前,進一步包括一預先抽真空的步驟。 所述保護層的去除方法包括以下步驟:揭去承載 基底,用二曱苯、乙酸乙脂或石油醚溶解去除壓敏膠。 所述奈米碳管可採用強酸性或強氧化性的溶劑 腐蝕去除,形成奈米級微孔模具。 所述奈米碳管的去除進一步包括以下步驟:採用 質量百分比濃度比爲3:1的濃硫酸與濃硝酸的混合溶 液,在環境溫度60攝氏度時回流於上述奈米碳管與 基體的複合結構約30分鐘至2小時,利用強酸溶劑 的腐姓作用去除奈米碳管。 該基體材料爲聚四氟乙烯、矽橡膠、聚酯、聚氯 乙烯、聚乙烯醇、聚乙烯、聚丙烯、環氧樹脂、聚碳 酸酯、聚曱醛或聚縮醛。 相較於先前技術,所述的奈米級微孔模具的製造 方法制程簡單,操作容易,成本低,易於大規模實際 應用。 【實施方式】 下面將結合附圖對本發明作進一步的詳細說明。 請參閱圖1,本發明實施例奈米級微孔模具10的 製造方法主要包括以下幾個步驟: (一)提供複數奈米碳管14。 8 200815277 本實施例中複數奈米碳管14可選擇爲多壁或單壁 奈米碳管陣列,其可採用化學氣相沈積法、電漿輔助 化學氣相沈積法或電漿輔助熱絲化學氣相沈積法制 得,因而,複數奈米碳管14通常形成於襯底12上, 且該襯底12可輕易揭掉,而不影響奈米碳管的陣列 性。 本實施例奈米碳管陣列生長方法包括:首先在一 矽襯底12表面塗覆一約5奈米厚度的金屬鐵催化劑 層;在300°C溫度下在空氣中進行熱處理;然後在 700°C溫度下,在矽襯底12上化學氣相沈積生長奈米 碳管陣列,該陣列中奈米碳管14的直徑範圍爲1〜100 奈米。 (二)在所述奈米碳管14至少一末端形成一保護 層16 〇 首先在一承載基底162上均勻塗抹一層壓敏膠 164 ;然後將壓敏膠164壓在遠離矽襯底12的複數奈 米碳管14末端,即形成一端覆蓋有保護層16(包括承 載基底162與壓敏膠164)的奈米碳管14,此時,矽 襯底12本身可作爲奈米碳管14的另一保護層。另, 本實施例中也可在奈米碳管14兩端均形成保護層 16,具體地,可進一步將矽襯底12揭掉之後,再重 復上述步驟,使矽襯底12揭掉後露出的奈米碳管14 的末端也覆蓋保護層16,該保護層16同樣包括壓敏 膠164與承載基底162,從而形成兩末端分別覆蓋保 9 200815277 護層16的奈米碳管14。本實施例中,上述承裁其义 162可採用聚酯片,壓敏膠164可採用由推肩幸& 所生産的YM881型壓敏膠。另,本實施例中保 厚度優選爲0.05毫米。 θ (三)在所述形成有保護層16的複數奈米$炭$ ΐ4 間注入基體18溶液或熔融液,並使其固化。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a microporous mold, and more particularly to a method of manufacturing a nano-scale microporous mold. [Prior Art] With the improvement of quantum physics and quantum chemistry and the research and advancement of nanotechnology in the world, the basic modules of structural materials can reach the level of individual atoms, and atoms can be assembled into nanoscale materials according to certain paths. This type of manufacturing is called nanofabrication. At present, mold manufacturing is developing in both large and ultra-fine processing: in large-scale processing, for example, flat extrusion dies for manufacturing large-sized integral siding for automobiles and aircraft, a relatively mature manufacturing process has been formed, and in the field of ultra-fine processing, The demand for rice products has risen geometrically. How to apply advanced nano-manufacturing technology to mold manufacturing, making ultra-fine processing industrialized and synchronizing with the global advanced technology of molds is the development trend of the mold industry. In theory, nanotechnology can be widely used in processing. At present, it has been developed: a nano-processing method based on nano-assembly to realize the automation and industrialization of nano products. This type of processing envisages molecular alignment according to the shape of the product, thereby achieving a mode-free production method. However, this method is not practical in practice, because the current array of molecules is mainly Scanning Tunnelling Microscopy (STM) or Atomic Force Microscopy (AFM), which is delicate in operation, costly and difficult. Achieve large-scale manufacturing of nano products. In view of this, it is necessary to provide a method for manufacturing a nanometer 200815277 meter-scale microporous mold suitable for mass production of nano products. SUMMARY OF THE INVENTION Hereinafter, a method of manufacturing a nano-scale microporous mold suitable for mass production of a nano product will be described in several embodiments. A method for manufacturing a nano-scale microporous mold, comprising the steps of: providing a plurality of carbon nanotubes; forming a protective layer on at least one end of the plurality of carbon nanotubes; and forming the nanocarbon forming the protective layer The base solution or the melt is injected into the tube and solidified; the protective layer is removed to form a composite structure of the carbon nanotube and the substrate; and the carbon nanotube is removed to form a nano-scale microporous mold. The plurality of carbon nanotubes are carbon nanotube arrays obtained by chemical vapor deposition, plasma assisted chemical vapor deposition or plasma assisted hot wire chemical vapor deposition. The carbon nanotube array is formed on a substrate. The forming of the protective layer further comprises the steps of: providing a carrier substrate formed with a pressure sensitive adhesive layer; pressing a side on which the pressure sensitive adhesive layer is formed to form a protective layer on the end of the carbon nanotube array away from the substrate, and The substrate of the carbon nanotube array itself acts as another protective layer. The forming of the protective layer further comprises the steps of: providing a carrier substrate formed with a pressure sensitive adhesive layer; pressing a side on which the pressure sensitive adhesive layer is formed to form a protective layer on the end of the carbon nanotube array away from the substrate; The substrate is removed; another carrier substrate formed with a pressure sensitive adhesive layer is provided, and the other pressure sensitive adhesive is laminated on the end of the carbon nanotube array to remove the substrate to form another protective layer. 7 200815277 The carrier substrate is a poly singer. 05毫米。 The thickness of the protective layer is 0.05 mm. A step of pre-vacuuming is further included before injecting the matrix solution or melt into the carbon nanotube in which the protective layer is formed. The method for removing the protective layer comprises the steps of: removing the carrier substrate, and dissolving the pressure sensitive adhesive with diphenylbenzene, ethyl acetate or petroleum ether. The carbon nanotubes can be removed by solvent etching with strong acidity or strong oxidizing property to form a nano-scale microporous mold. The removal of the carbon nanotube further includes the following steps: using a mixed solution of concentrated sulfuric acid and concentrated nitric acid in a mass ratio of 3:1, and refluxing the composite structure of the above carbon nanotube and the substrate at an ambient temperature of 60 degrees Celsius The carbon nanotubes are removed by the action of a strong acid solvent for about 30 minutes to 2 hours. The base material is polytetrafluoroethylene, ruthenium rubber, polyester, polyvinyl chloride, polyvinyl alcohol, polyethylene, polypropylene, epoxy resin, polycarbonate, polyacetal or polyacetal. Compared with the prior art, the manufacturing method of the nano-scale micro-hole mold is simple in process, easy to operate, low in cost, and easy to be applied on a large scale. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, the manufacturing method of the nano-scale micro-hole mold 10 of the embodiment of the present invention mainly comprises the following steps: (1) providing a plurality of carbon nanotubes 14. 8 200815277 In this embodiment, the plurality of carbon nanotubes 14 may be selected as a multi-wall or single-walled carbon nanotube array, which may be subjected to chemical vapor deposition, plasma-assisted chemical vapor deposition or plasma-assisted hot filament chemistry. The vapor deposition method is used, and thus, the plurality of carbon nanotubes 14 are usually formed on the substrate 12, and the substrate 12 can be easily removed without affecting the array of the carbon nanotubes. The carbon nanotube array growth method of the present embodiment comprises: first coating a surface of a ruthenium substrate 12 with a metal iron catalyst layer having a thickness of about 5 nm; heat treatment at 300 ° C in air; then at 700 ° At a temperature of C, a carbon nanotube array is grown by chemical vapor deposition on the tantalum substrate 12, and the diameter of the carbon nanotube 14 in the array ranges from 1 to 100 nm. (2) forming a protective layer 16 on at least one end of the carbon nanotube tube 14, first uniformly applying a layer of the pressure sensitive adhesive 164 on a carrier substrate 162; and then pressing the pressure sensitive adhesive 164 against the plurality of the substrate 12 The end of the carbon nanotube 14 is formed with a carbon nanotube 14 covered at one end with a protective layer 16 (including the carrier substrate 162 and the pressure sensitive adhesive 164). At this time, the ruthenium substrate 12 itself can serve as another carbon nanotube 14 A protective layer. In addition, in this embodiment, the protective layer 16 may be formed on both ends of the carbon nanotube tube 14. Specifically, after the ruthenium substrate 12 is further removed, the above steps are repeated to expose the ruthenium substrate 12 to be exposed. The end of the carbon nanotube 14 is also covered with a protective layer 16, which also includes a pressure sensitive adhesive 164 and a carrier substrate 162, thereby forming a carbon nanotube 14 having two ends respectively covering the cover layer of the 200812277. In the present embodiment, the above-mentioned contracting 162 can be a polyester sheet, and the pressure-sensitive adhesive 164 can be a YM881 type pressure-sensitive adhesive produced by Pushing. Further, the thickness in the present embodiment is preferably 0.05 mm. θ (3) The substrate 18 solution or melt is injected between the plurality of nanometers of the protective layer 16 and the melt is solidified.

將經過步驟(二)處理的奈米碳管14浸入其體U 溶液或熔融液中,或將基體溶液或基體炫融液^主入一 端形成有保護層16的奈米破管14中,然後將其在真 空下固化或凝固24小時,獲得注有基體;18的^米^炭 管14。其中,基體18選擇爲能耐強酸腐蝕的^子 化合物,具體可選自聚四氟乙烯、矽橡膠、聚酯、聚 氯乙烯、聚乙烯醇、聚乙烯、聚丙烯、環氧樹脂、聚 碳酸酯、聚甲醛、聚縮醛等高分子材料。本實=例二 優選爲聚四氟乙稀。 另,本實施例步驟(三)可進一步包括一預先抽 真空的步驟,可通過預先將該形成有保護層16的複 數奈米碳管14做抽真空處理約3〇分鐘,以排出複數 奈米碳管14間的空氣’有利於基體18溶液或溶融液 注入0 (四)除去保護層16。 保護層16中的承載基底162可直接揭去,壓敏膠 164可以溶解去除,如採用二曱苯、乙酸乙脂或石油 趟溶解。另’本實施例中以生長奈米碳管u的矽櫬 200815277 底12作爲的保護層可直接揭去。此時,露出基體is 的第一表面182與與其相對的第二表面184,而且原 ‘來被保護層1δ所覆蓋的奈米碳管Η的兩末端也露 、出,並分別伸出基體18的兩表面182、184。因而, 除去保護層16後所形成的係兩末端露出基體18表面 的奈米碳管14與基體18的複合結構。 (五)腐蝕去掉上述複合結構中的奈米碳管Η。 _ 本實施例採用強酸性或強氧化性的溶劑腐蝕去除 上述複合結構中的奈米碳管14。優選地,本實施例採 用質量百分比濃度比爲3:丨的濃硫酸與濃硝酸的混合 溶液’在環境溫度攝氏度時回流於上述奈米碳管 14與基體18的複合結構約3〇分鐘至2小時,利用強 酸溶劑的腐蝕作用去除複合結構中的奈米碳管14。腐 姓掉奈米碳管以後,具有耐強酸腐蝕的基體18留下 來形成一奈米級微孔模具10。 Φ 請參閱圖2,本發明實施例製造的奈米級微孔模具 10’包括一基體18,該基體18爲一薄膜,其進一步 包括一第一表面182及與第一表面182相對的第二表 面184。該基體18内分佈有複數相互平行排布的奈米 級的通孔186。該複數通孔186基本垂直於基體18的 第一表面182及第二表面184,且沿第一表面182向 第二表面184延伸貫穿整個基體18。本實施例中,該 通孔186的孔洞半徑爲1〇〜i〇Q奈米,通孔186之間 的間距爲20〜200奈米,該奈米級微孔模具10的厚度 11 200815277 爲〇·卜1毫米。 請參閱圖3,爲本實施例製造的奈米級微孔模具 * 1〇的應用示意圖。本實施例的奈米級微孔模具10可 >用於製造其他材料的奈米級陣列。 首先,在上述奈米級微孔模具10中填充一待形成 奈米級陣列的材料,本實施例以金爲例。 其次’去除上述奈米級微孔模具10,即形成該材 料的奈米級的陣列2 Q。 • 本實施例中,該奈米級微孔模具10爲高分子材 料’可通過化學腐蝕、高溫煆燒等方法去除該奈米級 微孔模具10,形成奈米級的金陣列20。 另’本實施例奈米級微孔模具1〇還可應用于壓印 技術’在材料表面形成奈米級的表面凸起結構。 相較于先前技術,本實施例奈米級微孔模具的製 造方法由於使用了奈米碳管陣列來作爲母板,奈米碳 _ 官的面定向性得到了保留,並且通過控制奈米碳管催 化劑的排列’可以得到不同排列規則的孔洞,達到精 確控制孔/同位置的目的,提南了模具的有序性與可控 制性。 綜上所述,本發明確已符合發明專利之要件,遂 依去提出專利申請。惟,以上所述者僅為本發明之較 佳實施例,自不能以此限制本案之申請專利範圍。舉 凡热悉本案技藝之人士援依本發明之精神所作之等 效修飾或變化,皆應涵蓋於以下申請專利範圍内。 12 200815277 【圖式簡單說明】 圖1係本發明實施例奈米級微孔模具的製造方法 的流程不意圖。 圖2係本發明實施例奈米級微孔模具的結構示意 圖。 圖3係本發明實施例奈米級微孔模具的應用示意 圖。 【主要元件符號說明】 奈米級微孔模具 10 襯底 12 奈米碳管 14 保護層 16 承載基底 162 壓敏膠 164 基體 18 第一表面 182 第二表面 184 通孔 186 陣列 20 13The carbon nanotube 14 treated in the step (2) is immersed in the body U solution or the melt, or the matrix solution or the matrix smelting liquid is introduced into the nano tube 14 having the protective layer 16 at one end, and then It was solidified or solidified under vacuum for 24 hours to obtain a carbon nanotube 14 impregnated with a substrate; Wherein, the substrate 18 is selected as a compound capable of resisting strong acid corrosion, and specifically selected from the group consisting of polytetrafluoroethylene, ruthenium rubber, polyester, polyvinyl chloride, polyvinyl alcohol, polyethylene, polypropylene, epoxy resin, and polycarbonate. , polymer materials such as polyoxymethylene and polyacetal. The present example 2 is preferably polytetrafluoroethylene. In addition, step (3) of the embodiment may further include a pre-vacuum step, which may be performed by vacuuming the plurality of carbon nanotubes 14 formed with the protective layer 16 for about 3 minutes to discharge a plurality of nanometers. The air between the carbon tubes 14 facilitates the injection of the substrate 18 solution or the molten solution into the 0 (4) removal of the protective layer 16. The carrier substrate 162 in the protective layer 16 can be directly removed, and the pressure sensitive adhesive 164 can be dissolved and removed, such as by dissolving with diphenylbenzene, ethyl acetate or petroleum hydrazine. In the present embodiment, the protective layer of 矽榇200815277 bottom 12 of the growth carbon nanotube u can be directly removed. At this time, the first surface 182 of the substrate is exposed and the second surface 184 opposite thereto, and both ends of the carbon nanotubes covered by the protective layer 1δ are also exposed and protruded from the substrate 18, respectively. Both surfaces 182, 184. Therefore, the composite structure of the carbon nanotube 14 and the substrate 18 on the surface of the substrate 18 exposed at both ends of the protective layer 16 is removed. (5) Corrosion removes the carbon nanotubes in the above composite structure. _ This embodiment uses a solvent which is strongly acidic or strongly oxidizing to remove the carbon nanotubes 14 in the above composite structure. Preferably, in this embodiment, a mixed solution of concentrated sulfuric acid and concentrated nitric acid having a mass percentage ratio of 3: 丨 is refluxed at a temperature of Celsius at a temperature of about 3 minutes to 2 in a composite structure of the above carbon nanotube 14 and the substrate 18. In hours, the carbon nanotubes 14 in the composite structure are removed by the corrosive action of a strong acid solvent. After the corrosion of the carbon nanotubes, the substrate 18 having strong acid corrosion resistance is left to form a nanometer-scale microporous mold 10. Φ Referring to FIG. 2, a nano-scale micro-hole mold 10' manufactured in accordance with an embodiment of the present invention includes a substrate 18, which is a film, further comprising a first surface 182 and a second surface opposite the first surface 182. Surface 184. A plurality of nano-sized through holes 186 arranged in parallel with each other are disposed in the base 18. The plurality of through holes 186 are substantially perpendicular to the first surface 182 and the second surface 184 of the base 18 and extend along the first surface 182 toward the second surface 184 throughout the base 18. In this embodiment, the through hole 186 has a hole radius of 1 〇 to i 〇 Q nanometer, and the distance between the through holes 186 is 20 to 200 nm, and the thickness of the nanometer-sized microporous die 10 is 11 200815277. · Bu 1 mm. Please refer to FIG. 3 , which is a schematic diagram of the application of the nano-scale micro-hole mold * 1 制造 manufactured in the present embodiment. The nano-scale micro-hole mold 10 of the present embodiment can be used to manufacture nano-scale arrays of other materials. First, the above-mentioned nano-scale micropore mold 10 is filled with a material to be formed into a nano-scale array. This embodiment is exemplified by gold. Next, the above-described nano-scale microporous mold 10 is removed, i.e., a nano-sized array 2 Q of the material is formed. In the present embodiment, the nano-scale micro-hole mold 10 is a polymer material. The nano-scale micro-hole mold 10 can be removed by chemical etching, high-temperature calcination or the like to form a nano-scale gold array 20. In the present embodiment, the nano-scale micro-hole mold 1 can also be applied to an imprint technique to form a nano-scale surface convex structure on the surface of the material. Compared with the prior art, the manufacturing method of the nano-scale micro-hole mold of the present embodiment uses a carbon nanotube array as a mother board, and the orientation of the surface of the nano-carbon is retained, and the nano-carbon is controlled by The arrangement of the tube catalysts can obtain holes with different arrangement rules, and the purpose of accurately controlling the holes/coordinate positions can be achieved, and the order and controllability of the mold can be improved. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the scope of the following claims. 12 200815277 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic flow chart showing a method of manufacturing a nano-scale microporous mold according to an embodiment of the present invention. Fig. 2 is a schematic view showing the structure of a nano-scale microporous mold according to an embodiment of the present invention. Fig. 3 is a schematic view showing the application of a nano-scale microporous mold according to an embodiment of the present invention. [Main component symbol description] Nano-scale micro-hole mold 10 Substrate 12 Carbon nanotube 14 Protective layer 16 Carrier substrate 162 Pressure-sensitive adhesive 164 Substrate 18 First surface 182 Second surface 184 Through hole 186 Array 20 13

Claims (1)

200815277 十、申請專利範圍 L 一種奈米級微孔模具的製造方法,其包括以下步 驟: 提供複數奈米碳管; 在所述複數奈米碳管至少一末端形成一保護層; 向所述形成有保護層的奈米碳管中注入基體溶 液或熔融液,並使其固化; 除去保護層,形成奈米碳管與基體的複合結構; 以及 去除奈米碳管,形成奈米級微孔模具。 2. 如申請專利範圍第1項所述的奈米級微孔模具的 製造方法,其特徵在於,該複數奈米碳管爲採用化 學氣相沈積法、電漿辅助化學氣相沈積法或電漿輔 助熱絲化學氣相沈積法制得的奈米碳管陣列。 3. 如申請專利範圍第2項所述的奈米級微孔模具的 製造方法,其中,該奈米碳管陣列形成於一概底上。 4. 如申請專利範圍第3項所述的奈米級微孔模具的 製造方法,其中,該保護層的形成進一步包括以下 步驟:提供一形成有壓敏膠層的承載基底;將形成 有壓敏膠層的一面壓在奈米碳管陣列遠離襯底的末 端形成一保護層,而奈米碳管陣列的概底本身作爲 另一保護層。 5. 如申請專利範圍第3項所述的奈米級微孔模具的 製造方法,其中,該保護層的形成進一步包括以下 14 200815277 步驟··提供—形成錢輯層的承載基底·,將形成 有壓敏膠層的-面壓在奈米碳管陣列遠離襯底的末 端形成-保護層;將襯底揭去;提供另一形成有壓 敏膠層的承載基底,並將該另—壓敏膠層壓在夺米 碳管陣列揭去襯底的一端形成另—保護層。 6. 如申:專利範圍第4或5項所述的奈米級微孔模 八的衣造方法,其中,該承载基底爲一聚酉旨片。200815277 X. Patent Application L. A method for manufacturing a nano-scale microporous mold, comprising the steps of: providing a plurality of carbon nanotubes; forming a protective layer on at least one end of the plurality of carbon nanotubes; Injecting a base solution or a molten solution into a protective carbon nanotube; curing the layer; removing the protective layer to form a composite structure of the carbon nanotube and the substrate; and removing the carbon nanotube to form a nano-scale microporous mold . 2. The method for producing a nano-scale microporous mold according to claim 1, wherein the plurality of carbon nanotubes are chemical vapor deposition, plasma-assisted chemical vapor deposition or electricity. A carbon nanotube array prepared by slurry assisted hot wire chemical vapor deposition. 3. The method for producing a nano-scale microporous mold according to the second aspect of the invention, wherein the carbon nanotube array is formed on a single bottom. 4. The method of manufacturing a nano-scale micro-hole mold according to claim 3, wherein the forming of the protective layer further comprises the steps of: providing a carrier substrate formed with a pressure-sensitive adhesive layer; One side of the gel layer is pressed to form a protective layer on the end of the carbon nanotube array away from the substrate, and the bottom of the carbon nanotube array itself serves as another protective layer. 5. The method of manufacturing a nano-scale micro-hole mold according to claim 3, wherein the formation of the protective layer further comprises the following 14 200815277 steps providing a carrier substrate for forming a layer of money, which will form a pressure-sensitive adhesive layer-face pressure is formed on the end of the carbon nanotube array away from the substrate - a protective layer; the substrate is removed; another carrier substrate formed with a pressure-sensitive adhesive layer is provided, and the other is pressed The adhesive is laminated on the end of the carbon nanotube array to remove the substrate to form an additional protective layer. 6. The method of fabricating a nano-scale microporous mold according to the fourth or fifth aspect of the invention, wherein the carrier substrate is a polycrystalline film. 7. 如申請專利範圍第!項所述的奈米級微孔模具的 衣化方法’其中’該保護層的厚度爲〇· 毫米。 8. 如申請專利_第1項所述的奈米級微孔模直的 =法其其中’在向所述形成有保護層的綱 S中庄入基齡液姐崎前,進 抽真空的步驟。 ^ 9·如申請專利範圍第4岑R 呈的制、生古’項所述的奈米級微孔模 ”的=料’其巾,料讀層的去除方法包括 以下步驟:揭去承載基底, 石油醚溶解去除壓敏膠。- 本 ^乙月曰〆 制★方‘專::圍第、1項所述的奈米級微孔模具的 ί化、’所述奈米♦管可採用強酸性或強 乳化性的浴劑腐钱去除, 1如中請專·1() $卡、、及微孔核具 的製造方法,巧,所=所述的奈米級微孔模具 括以下步驟:管的去除進一步包 酸與濃確酸的混合溶液77 /辰度比爲3:1的浪硫 在每境溫度60攝氏度時回 15 2008152777. If you apply for a patent scope! The method of coating the nano-scale microporous mold described in the section wherein the thickness of the protective layer is 〇·mm. 8. The method according to claim 1, wherein the step of vacuuming is performed in the form of a nano-scale micro-hole straightening method, wherein the vacuum is applied to the base-age liquid before the formation of the protective layer S. . ^ 9 · The method of removing the material reading layer of the nano-scale microporous mold described in the fourth paragraph of the patent application, the method of the invention, includes the following steps: removing the carrier substrate , petroleum ether dissolves and removes pressure-sensitive adhesive. - This ^ ^ 曰〆 ★ 方 方 方 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 围 围 围 围 围 围 围 围 围 围 奈 奈Strong acid or strong emulsifying bath remover, 1 such as the special 1 () $ card, and the manufacturing method of microporous tools, smart, the nano-microporous mold described below Step: removal of the tube further mixed with acid and concentrated acid 77 / Chen ratio of 3:1 wave of sulfur at each temperature of 60 degrees Celsius back 15 200815277 黍 流於上述奈米碳管與基體的複合結構約30分鐘至2 小時,利用強酸溶劑的腐蝕作用去除奈米碳管。 12.如申請專利範圍第1項所述的奈米級微孔模具的 製造方法,其中,該基體材料爲聚四氟乙烯、矽橡 膠、聚酯、聚氯乙烯、聚乙烯醇、聚乙烯、聚丙烯、 環氧樹脂、聚碳酸酯、聚曱醛或聚縮醛。 16黍 Flowing on the composite structure of the above carbon nanotubes and the substrate for about 30 minutes to 2 hours, and removing the carbon nanotubes by the corrosive action of a strong acid solvent. 12. The method for producing a nano-scale microporous mold according to claim 1, wherein the base material is polytetrafluoroethylene, ruthenium rubber, polyester, polyvinyl chloride, polyvinyl alcohol, polyethylene, Polypropylene, epoxy, polycarbonate, polyacetal or polyacetal. 16
TW95135260A 2006-09-22 2006-09-22 Method for making nano-scaled mould having micro-holes TWI317346B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95135260A TWI317346B (en) 2006-09-22 2006-09-22 Method for making nano-scaled mould having micro-holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95135260A TWI317346B (en) 2006-09-22 2006-09-22 Method for making nano-scaled mould having micro-holes

Publications (2)

Publication Number Publication Date
TW200815277A true TW200815277A (en) 2008-04-01
TWI317346B TWI317346B (en) 2009-11-21

Family

ID=44768795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95135260A TWI317346B (en) 2006-09-22 2006-09-22 Method for making nano-scaled mould having micro-holes

Country Status (1)

Country Link
TW (1) TWI317346B (en)

Also Published As

Publication number Publication date
TWI317346B (en) 2009-11-21

Similar Documents

Publication Publication Date Title
Chen et al. Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications
Guo et al. Stacking of 2D materials
JP5032454B2 (en) Method for producing carbon nanotube composite material
Dai et al. Aligned nanotubes
Zhao et al. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes
Meng et al. Polymer composites of boron nitride nanotubes and nanosheets
Ko et al. Combing and bending of carbon nanotube arrays with confined microfluidic flow on patterned surfaces
JP5254819B2 (en) Carbon nanotube composite material and manufacturing method thereof
Zhou et al. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes
Zhang et al. Recent progress in the preparation of horizontally ordered carbon nanotube assemblies from solution
Yin et al. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach
KR100798398B1 (en) Nano material based conductive resist, a method of manufacturing the same and an electrode pattern forming method using the nano material based conductive resist
CN1767123A (en) Method or arranging nanotube and method for preparing field emission device using the same
Gao et al. Recent progress in the transfer of graphene films and nanostructures
Lei et al. Large-scale ordered carbon nanotube arrays initiated from highly ordered catalyst arrays on silicon substrates
Lee et al. Fabrication of 70 nm narrow metal nanowire structure on flexible PET film by nanoimprint lithography
TW200815277A (en) Method for making nano-scaled mould having micro-holes
KR20140010649A (en) The fabrication method of thin film pattern using soft lithography and the thin film pattern thereby
TWI300017B (en) Nano-scaled mould having micro-holes
Peng et al. The synthesis of a copper/multi-walled carbon nanotube hybrid nanowire in a microfluidic reactor
CN101148246B (en) Method for manufacturing nanometer level microporous mould
KR100563855B1 (en) Nano-patterned structure
CN101148245B (en) Nanometer level microporous mould
JP7026120B2 (en) Damaching template for nanoelement printing made without chemical mechanical flattening
Peña-Consuegra et al. Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors