TW200811503A - An imaging optical lens - Google Patents

An imaging optical lens Download PDF

Info

Publication number
TW200811503A
TW200811503A TW95130680A TW95130680A TW200811503A TW 200811503 A TW200811503 A TW 200811503A TW 95130680 A TW95130680 A TW 95130680A TW 95130680 A TW95130680 A TW 95130680A TW 200811503 A TW200811503 A TW 200811503A
Authority
TW
Taiwan
Prior art keywords
lens
optical system
focal length
imaging according
front surface
Prior art date
Application number
TW95130680A
Other languages
Chinese (zh)
Other versions
TWI296725B (en
Inventor
Hsiang-Chi Tang
Chun-Shan Chen
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to TW95130680A priority Critical patent/TWI296725B/en
Publication of TW200811503A publication Critical patent/TW200811503A/en
Application granted granted Critical
Publication of TWI296725B publication Critical patent/TWI296725B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

An imaging optical lens assembly comprises four lenses with refractive power, wherein from the object side to the image side mounted orderly a first lens with positive refractive power wherein the front surface is convex, the rear surface is concave, and the at least one surface is aspherical. A second lens with negative refractive power wherein the curvature radius of the front surface is R3 fitting in with -0.02 [1/mm] < 1/R3 < 0.22 [1/mm], and the rear surface of the second lens is concave, and the Abbe Number of the second lens V2 fits in with V2 < 40, the front and rear surfaces of the second lens are aspherical. A third lens with positive refractive power wherein the front surface is concave, the rear surface is convex, and front and rear surfaces are aspherical. A fourth lens wherein the front surface is convex, the rear surface is concave, the front and rear surfaces of the fourth lens are aspherical, and at least one inflection point is formed on the rear surface of the fourth lens. The focal length of fourth lens is f4 and the focal length of whole optical system is f, both of the focal length of fourth lens and the system focal length fits in with f/f4 < 0.1. An aperture is mounted between the object side of whole optical system and the second lens to control the brightness of the optical system. Thereby, by the arrangement of the lens, the size of the lens assembly can be reduced, and can obtain higher resolution.

Description

200811503 \ 八、發明說明: 【發明所屬之技術領域】 本毛明係-光學系統,特別是指—種應用於照相手機的小型 化攝像用光學系統。 【先前技術】 取近幾年來’ Pi|著手機相機的興起,小型化攝影鏡頭的需求 _ 日漸提冋’而一般攝影鏡頭的感光元件不外乎是CMOS或CCD兩 種,由於半導體製程技術的進步,使得感光元件的晝素面積縮小, 小型化攝影鏡祕漸往高畫素戦發展,因此,對絲品質的要 求也日益增加。 習見的高解像力手機鏡頭,多採用前置光圈且為四枚式的透 鏡組,其中’制的第-鏡片及第二鏡片常以二枚玻璃球面鏡互 • 相黏合而成為Doublet ’用以消除色差’但此方法有其缺點: 其一 ’過多的玻璃球面鏡配置使得系統自由度不足,造成光 學糸統全長不易縮短; 其二,玻璃鏡片黏合的製程不易,造成製造上的困難。 【發明内容】 為提升光學系統的成像品質,並有效縮短鏡組體積,本發明 提供一種由四枚透鏡構成之全新的光學系統,其要旨如下: 200811503200811503 \ VIII. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an optical system for miniaturization of a camera phone. [Prior Art] In recent years, 'Pi|The rise of mobile phone cameras, the demand for miniaturized photographic lenses _ increasingly 冋' and the photographic elements of general photographic lenses are nothing more than CMOS or CCD, due to semiconductor process technology Advancement has led to a reduction in the area of the pixel of the photosensitive element, and the development of miniaturized photographic mirrors has gradually advanced to high-definition. Therefore, the requirements for the quality of the silk are increasing. The high-resolution mobile phone lens that I have seen uses a front aperture and a four-piece lens group. The 'first lens and the second lens are often bonded to each other by two glass spherical mirrors to become a Doublet' to eliminate chromatic aberration. 'But this method has its shortcomings: Its 'excessive glass spherical mirror configuration makes the system freely insufficient, which makes the optical system's full length difficult to shorten; Second, the glass lens bonding process is not easy, resulting in manufacturing difficulties. SUMMARY OF THE INVENTION In order to improve the imaging quality of an optical system and effectively reduce the volume of the lens group, the present invention provides a completely new optical system composed of four lenses, the gist thereof being as follows: 200811503

-種攝像肖光學祕,由讀具騎力的鏡 侧至像側依序為: 攝成’由物 具正屈折力的第-透鏡,其前表面為凸面,後表 且鏡片上設置有非球面; ’ ’滿足-0. 02 面,該第二 、後表面皆- The camera is optically secret, from the mirror side to the image side of the reading force: in the first lens of the positive refractive power of the object, the front surface is convex, the rear surface and the lens are provided with non- Spherical; ' 'satisfy-0. 02 face, the second and rear surfaces are

具負屈折力的第二透鏡,其前表面曲率半徑為防 [1/mm] &lt; 1/R3 &lt; 〇·22 [Ι/mm]的關係,其後表面為凹 透鏡的色散係數(Abbe Number)V2 &lt; 40,且其前表面 設置有非球面; 具正屈折力的第三透鏡,其前表面為凹面,後表面為凸面, 且其前表面、後表面皆設置有非球面; 再者為第四透鏡,其前表面為凸面,後表面為凹面,該第四 透鏡的焦距為f4,整體光學系統的焦距為f,兩者滿足f/f4 &lt; 〇 i 的關係,其前表面、後表面皆設置有非球面,且後表面設置有反 曲點; 另設置一光圈’位於光學系統的物體侧與第二透鏡之間,用 於控制光學系統的亮度。 在本發明攝像用光學系統中,系統的屈折力主要由具正屈折力 第一透鏡提供,而具負屈折力的第二透鏡其功能為平衡及修正系統 所產生的各項像差’第二透鏡的色散係數(Abbe number)為V2, 其滿足下記關係: V2 &lt; 40 。 7 200811503 前述關係可以有效修正系統產生的色差,再者,使第二透鏡的 色散係數(Abbe number) V2滿足下記關係: V2 &lt; 25 則可更進步修正系統產生的色差,提高攝像用光學系統的解 像力。 此外’本發明攝像用光學系統的第一透鏡採用塑釈才質,並在 • 鏡片上設置有非球面,如此使得第一透鏡在提供屈折力的同時,更 月a正本身所產生的像差。而為有效修正系統產生的像散,使第一 透鏡前表面曲率半徑R1需滿足下記關係式: R1 &lt; 2· 〇 [咖]。 ,苐-透鏡具有強大的正麟力’且細置於接近物側處,這使 得第-透鏡的曲率半徑以及鏡片的大小皆變得很小,以傳統玻璃研 •磨的方f將難以製造出上述的鏡片,因此,第一透鏡鏡片採用塑膠 材質,糟由射出成型的方式製作,可以用較低廉的成本生產高精密 度的鏡片;攝像用光學系統的鏡面上設置非球面,非球面可以容易 製作成球面以外的形狀,獲得較多的控制變數,用以消減像差,進 而縮減鏡片使用的數目。 藉由第it鏡提供光學系統主要的屈折力,並將光圈置於接近 物侧處’將使得攝像用光學系統的出射瞳(驗㈣⑴遠離 200811503 面’因此’光線將以接近垂直人射的方式人射在感光树上,此 為像側的Telecentric特性,此外,在第四透鏡的後表面非球面上 設置有反曲點,將有效壓制離軸視場的光線人射感光元件上的角 度,恤咖响特性對於時下固態電子感光元件的感統力是極 為重要的贿㈣子感光碰贼絲献提高,減少***產 暗角的可能柹。 •、本發簡絲祕巾,具正騎力的第-透鏡,其折射率 為,具負屈折力的第二透鏡,其折射率為N2,兩者滿足下記關 係: N1 &gt; 1.54 N2 &lt; 1.65。 前述關係可使攝像用光學系統獲得有效的屈折力,更進一步來 看,第-透鏡折射率N1及第二透鏡折射率N2,需滿足下記關係. • N1 &lt; 1.6〇 ’、· N2 &gt; 1.59 …若第-透鏡晴鱗高於上述之上限值,辭容雜到適合的 光學塑膠材f與光料統匹配,而若第二透鏡的折鱗小於上述之 下限值,則其對像差的修正將較為困難。 ^具正屈折力的第三透鏡,其作用如同一場鏡(Field Lens), u、使出射瞳(Exit pUpii)更加遠離成像面,而使其折射率N3滿 200811503 足下記關係式:1. 54 &lt; N3 &lt; 1. 6時’則第三透鏡將具有適切的屈 折力。 在第三透鏡後加入第四透鏡,其焦距為f4,整體光學系統焦 距為f,使二者滿足下記關係式: f/f4 &lt; 0· ;1 〇 若第四透鏡屈折力為正,其作用為分配第三透鏡的正屈折 力,在負第二透鏡之後置入此兩片正透鏡,其功能為抑制各種像 差的產生,使光學系統獲得更高的解像办; 若第四透鏡屈折力為負,則其與第三透鏡形成一正、一負的The second lens with negative refractive power has a curvature radius of the front surface of [1/mm] &lt; 1/R3 &lt; 〇·22 [Ι/mm], and the rear surface is the dispersion coefficient of the concave lens (Abbe Number V2 &lt; 40, and its front surface is provided with an aspherical surface; a third lens having a positive refractive power, the front surface is a concave surface, the rear surface is a convex surface, and the front surface and the rear surface are all provided with an aspheric surface; In the fourth lens, the front surface is a convex surface, the rear surface is a concave surface, the focal length of the fourth lens is f4, and the focal length of the overall optical system is f, and both satisfy the relationship of f/f4 &lt; 〇i, the front surface thereof, The rear surface is provided with an aspherical surface, and the rear surface is provided with an inflection point; and an aperture is disposed between the object side of the optical system and the second lens for controlling the brightness of the optical system. In the optical system for imaging of the present invention, the refractive power of the system is mainly provided by the first lens having a positive refractive power, and the second lens having a negative refractive power functions to balance and correct various aberrations generated by the system. The lens's dispersion coefficient (Abbe number) is V2, which satisfies the following relationship: V2 &lt; 40 . 7 200811503 The foregoing relationship can effectively correct the chromatic aberration generated by the system. Furthermore, the dispersion coefficient (Abbe number) V2 of the second lens satisfies the following relationship: V2 &lt; 25 can further improve the chromatic aberration generated by the correction system, and improve the optical system for imaging. The resolution. In addition, the first lens of the optical system for imaging of the present invention adopts plastic molding, and an aspherical surface is disposed on the lens, so that the first lens provides the refractive power and the aberration generated by the moon a itself. . In order to effectively correct the astigmatism generated by the system, the curvature radius R1 of the front surface of the first lens needs to satisfy the following relationship: R1 &lt; 2· 〇 [Caf]. The 苐-lens has a strong positive force' and is placed close to the object side, which makes the radius of curvature of the first lens and the size of the lens small, and it is difficult to manufacture with the traditional glass grinding and grinding method. The above lens is used. Therefore, the first lens lens is made of a plastic material, and the defect is produced by injection molding, and a high-precision lens can be produced at a relatively low cost; the aspherical surface is provided on the mirror surface of the optical system for imaging, and the aspheric surface can be It is easy to make a shape other than the spherical surface, and obtains more control variables to reduce the aberration and reduce the number of lenses used. Providing the main refractive power of the optical system by the first mirror and placing the aperture close to the object side will make the exiting 瞳 of the optical system for imaging (test (4) (1) away from the face of 200811503' so the light will approach the vertical human shot The person is shot on the photosensitive tree, which is the Telecentric characteristic of the image side. In addition, an inflection point is provided on the aspheric surface of the rear surface of the fourth lens, which will effectively suppress the angle of the light from the off-axis field of view on the photosensitive element. The characteristics of the shirt and the coffee are extremely important for the sense of the solid-state electronic photosensitive element. The bribe (4) is sensitive to the thief, and the possibility of reducing the vignetting of the system is reduced. • The hairline of the hair is a perfect riding force. The first lens has a refractive index of a second lens having a negative refractive power and a refractive index of N2, which satisfies the following relationship: N1 &gt; 1.54 N2 &lt; 1.65. The foregoing relationship enables the optical system for imaging to be effective Further, the refractive index N1 of the first lens and the refractive index N2 of the second lens need to satisfy the following relationship: • N1 &lt; 1.6〇', · N2 &gt; 1.59 ... if the first lens is higher than the scale The above upper limit The vocabulary is mixed with the suitable optical plastic material f to match the light material, and if the folding scale of the second lens is less than the above lower limit, the correction of the aberration will be more difficult. The three lens acts as a field Lens, u, making the exit pUpii farther away from the imaging surface, and making its refractive index N3 full of 200811503. The following relationship: 1. 54 &lt; N3 &lt; 1. At 6 o'clock, the third lens will have a suitable refractive power. After the third lens, the fourth lens is added, the focal length is f4, and the focal length of the overall optical system is f, so that the two satisfy the following relationship: f/f4 &lt; 0 · 1 〇 If the fourth lens has a positive refractive power, it acts to distribute the positive refractive power of the third lens, and the two positive lenses are placed after the negative second lens, the function of which is to suppress the generation of various aberrations. The optical system obtains a higher resolution; if the fourth lens has a negative refractive power, it forms a positive and negative relationship with the third lens.

Telephoto結構,此優點為可以縮短光學系統的後焦距,降低攝像 用光學系統的高度。前述第四透鏡滿足下記關係式則更為理想: f/f4 &lt; -1.0〇 本电明控制弟二透鏡前表面曲率半徑R3滿足下記關係式: —〇·〇2 [1/mm] &lt; 1/R3 &lt; 〇·22 [Ι/mm]。 使1/R3大於上述之下限值,將有利於軸外像差的修正,若使 第二透鏡前表面為凸面,此時1/R3 &gt; 〇,則對像差的修正將更為 理想’但若1/R3高於上述之上限值,則負第二透鏡的屈折力將過 大,使得光學系統的長度過長。 隨著照相手機輕薄短小的趨勢,鏡頭的體積也越來越小,即 200811503 '使财發明_四#透鏡組成的光m其全長Η仍m 記關係式:H&lt;6.1[rara]。 而滿下 再者’滿足下記關係式則更為理想:Η〈 5. 〇 [咖]。 3用光學,魏中,第—透鏡焦距為fl,第二透鏡焦距為f2, 正體先予系統焦距為f,滿足下記關係式: 0-8 &lt; f/fi &lt; ΐ β • 〇·5 &lt; |i7f2| &lt; 〇·8。 提南第-透鏡的屈折力,可以有效驗光學系統的長度,但若 糾折力太大,將使得系統產生過大的高階像差,而具負ς斤力的 弟-透鏡,負屈折力來自於呈凹面的後表面,其功用為修正系統產 生的像差’但若其負屈折力太大,將使得光學系統的長度過長,而 這將會和攝像用光學系統小型化的峨目違背。藉由上述關係式所 _ =義的範圍’可使本發明在光學鏡頭的體積和像差的修正中取得平 μ攝像用光學系統中,第二透鏡的中心厚度CT2,第三透鏡與 第叫鏡之間的鏡間距T34,滿足下記關係式: CT2 &lt; 0· 5 [_] Τ34 &lt; 0. 2 [mm] 〇 此關係式可以有效修正系統的像差,並且對降低光學系統 度有顯著的功效。 ^ 200811503 再者,滿足下記關係式則更為理想·· CT2 &lt; 〇· 4 [mm]。 攝像用光學系統中,包含有一紅外線濾除濾光片(IR⑶士 Filter)置於第四透鏡之後,其不影響系統的焦距。 本發明攝像用光學系統中,光學系絲八 糸、、先王長為H,整體光學*** 焦距為f,使二者滿足下記關係式: [mm] &lt; H-f &lt;1.2 [mm]; 維持良好的解像力。 則攝像用光學系統可以在小型化的前提下 【實施方式】 實施例之像差曲線請參 本發明第一實施例請參閱第丨圖,第〜 閱第2圖。The Telephoto structure has the advantage of shortening the back focus of the optical system and reducing the height of the optical system for imaging. It is more desirable that the fourth lens satisfies the following relationship: f/f4 &lt; -1.0 〇本电明 Controls the front surface curvature radius R3 of the second lens to satisfy the following relationship: —〇·〇2 [1/mm] &lt; 1/R3 &lt; 〇·22 [Ι/mm]. Making 1/R3 larger than the above lower limit will be beneficial to the correction of the off-axis aberration. If the front surface of the second lens is convex, then 1/R3 &gt; 〇 will correct the aberration. 'But if 1/R3 is above the above upper limit, the refractive power of the negative second lens will be too large, making the length of the optical system too long. With the trend of thin and light camera phones, the volume of the lens is getting smaller and smaller, that is, 200811503 'The light of the invention of the invention _ four # lens's full length Η is still m relationship: H &lt; 6.1 [rara]. It is more ideal to satisfy the following relationship: Η < 5. 〇 [Caf]. 3 with optics, Weizhong, the first lens focal length is fl, the second lens focal length is f2, the positive body first system focal length is f, satisfy the following relationship: 0-8 &lt; f / fi &lt; ΐ β • 〇 · 5 &lt; |i7f2| &lt; 〇·8. The flexural force of the Tylenol-lens can effectively check the length of the optical system. However, if the bending force is too large, the system will produce excessively high-order aberrations, while the negative-refractive force will result from the negative-refractive force. On the concave rear surface, its function is to correct the aberration generated by the system'. However, if the negative refractive power is too large, the length of the optical system will be too long, which will be contrary to the miniaturization of the optical system for imaging. . According to the range of the above relationship _ = meaning, the present invention can obtain the center thickness CT2 of the second lens, the third lens and the first call in the optical system for flat μ imaging in the correction of the volume and aberration of the optical lens. The mirror spacing T34 between the mirrors satisfies the following relationship: CT2 &lt; 0· 5 [_] Τ34 &lt; 0. 2 [mm] This relationship can effectively correct the aberration of the system and reduce the optical system. Significant effect. ^ 200811503 Furthermore, it is more ideal to satisfy the following relationship. CT2 &lt; 〇· 4 [mm]. The optical system for imaging includes an infrared filter (IR(3) Filter) placed after the fourth lens, which does not affect the focal length of the system. In the optical system for imaging of the present invention, the optical ray bark, the first king length is H, and the focal length of the overall optical system is f, so that the two satisfy the following relationship: [mm] &lt; Hf &lt; 1.2 [mm]; The resolution. The imaging optical system can be miniaturized. [Embodiment] The aberration curve of the embodiment is referred to the first embodiment of the present invention, and the second embodiment is referred to.

,由四枚具屈折 力的丨傅取,田物侧至像侧依序為·, taken by four entangled entanglements, from the side of the field to the side of the image.

一、别表面(1 1 )為凸面First, the surface (1 1 ) is convex

後表面(3 2)為凸面; 其确表面(21)為凹面, 其前表面(31)為凹面, ⑤ 200811503 • 再者為具正屈折力的第四透鏡(4 0 ),其前表面(4 1 )為 凸面,後表面(4 2)為凹面; 另設置一光圈(5 〇),位於第一透鏡(1〇)之前,用於控制 光學系統的亮度; 另包含有一紅外線濾除濾光片(6 〇Mir Cut Filtei〇,置 於第四透鏡(4 0)之後,其不影響系統的焦距; » 一成像面(7 〇),位於紅外線濾除濾光片(6 〇 )之後; 攝像用光學系統中,第二透鏡的色散係數(Abbe Number) V2二26· 6 ; 前述第一透鏡(1 〇 )、第二透鏡(2 〇 )、第三透鏡(3 〇 ) • 及第四透鏡(40)採用塑膠材質,藉由射出成型的方式製作鏡片, 並於第一透鏡(1 0 )、第二透鏡(2 〇 )、第三透鏡(3 〇 )及第 四透鏡(4 0 )的各鏡面上設置非球面,另外於第四透鏡(4〇) 的後表面(4 2)非球面上設置有反曲點,非球面曲線的方程式表 示如下: X(Y)二(Y2/R)/(l+ sqrt (卜(l+k)*(Y/R)2))+A4*Y4+A6*Y6+··· 其中: X.·鏡片的截面距離 ⑤ 200811503 Y ··非球面曲線上的點距離光軸的高度 k:錐面係數 A4、Ae、……:4階、6階、……的非球面係數。 攝像用光學系統中,第一透鏡的折射率ΝΜ·543,第二透鏡 的折射率Ν2=1· 606,而第三透鏡的折射率Ν3=1 530。 ⑩ 第一透鏡的焦距為fl,第二透鏡的焦距為f2,第四透鏡的焦 距為f4 ’整體光學系統焦距為f,其關係為:π、丨| =0. 79、f/f4=〇. 〇4。 第一透鏡前表面曲率半徑R1=1.75798 [mm],第二透鏡前表面 曲率半徑為 R3,則 1/R3-0· 01 [l/mm]。 ⑩ 攝像用光學系統中,光學系統全長Η=4· 95 [mm],第二透鏡的 中心厚度CT2二0.429 [mm],第三透鏡與第四透鏡之間的鏡間距 Τ34=0·〇7 [mm]。 攝像用光學系統中,光學系統全長為Η,整體光學系統焦距為 f,其關係為· H-f=l· 1 [nun]。 第一實施例詳細的結構數據如同表一所示,其非球面數據如同 14 200811503 表二所示’其中,曲料徑、厚度及焦距的單位為腿。 本發明第二實施例請參閱第3圖,第二實施例之像差曲線請參 閱弟4圖。第二實施例的主要構造為:一攝像用光學系統,同樣由 四枚具屈折力的鏡片所構成,由物側至像侧依序為: 具正屈折力的第-透鏡(i 〇),騎表面(1 i )為凸面,後 表面(12)為凹面; 具負屈折力的第二透鏡(2 0 ),其前表面(21)為凸面, 後表面(2 2)為凹面; 具正屈折力的弟二透鏡(3 0 ),其前表面(31)為凹面, 後表面(3 2)為凸面,; 再者為具負屈折力的第四透鏡(4 0 ),其前表面(4 1 )為 凸面,後表面(4 2)為凹面; 另設置一光圈(5 0 ),位於第一透鏡(1〇)之前,用於控制 光學系統的亮度; 另包含有一紅外線濾除濾光片(6 0) (IR Cut Filter),置 於第四透鏡(4 0)之後,其不影響系統的焦距; 一成像面(7 〇),位於紅外線濾除濾光片(6 0)之後; 第二實施例攝像用光學系統中,第二透鏡的色散係數(Abbe Number) V2=23. 4 ; 第一透鏡(1 〇 )、第二透鏡(2 0 )、第三透鏡(3 0 )及第 15 ⑤ 200811503 四透鏡(4 0 )才木用塑膠材質,藉由射出成型的方式製作鏡片,並 於第透鏡(1 〇 )、第二透鏡(2 〇 )、第三透鏡(3 〇 )及第四 透鏡(40)的各鏡面上設置非球面,另外於第四透鏡的 後表面(4 2 )非球社^置有反曲點,非球面曲線的方程式表示 如同第一實施例的型式; 第-實施例攝像用光學***中,第—透鏡的折射率 N1=L 543 ’第二透鏡的折射# N2=l 632,而第三透鏡的折射率 N3=1.543。 第二實施例之第-透鏡的焦距為n,第二透鏡的焦距為f2, 第四透鏡的焦距為Μ,整體光學系統焦距為f,其關係為: f/fl=l·50、| f/f2 | =〇·84、f/f4=-1· 39。 第二實施例第一透鏡前表面曲率半徑RW. 19134 [mm],第二 透鏡前表面曲率半徑為R3,則1/R3=〇. 〇63 π/麵]。 第二實施例攝像用光學系統中,光學系統全長Η&lt;16 [職], 第二透鏡的中心厚度CT2=0. 35 [麵],第三透鏡與第四透鏡之間的 鏡間距Τ34=0· 05 [醜]。 攝像用光學系統中’光學系統全長為Η,整體光學系統焦距為 f,其關係為·· H-f=〇· 744[mm]。 16 ⑤ 200811503 第二實施例詳細的結構數據如同表三所示,其非球面數據如同 表四所示’其中’鱗半徑、厚度及焦距的單位為刪。 本發明第二實施例請參閱第5圖,第三實施例之像差曲線請參 閱第6圖。第三實施例社要構造為:—攝侧光學祕,同樣由 四枚具屈折力的鏡片所構成,由物側至像側依序為: 具正屈折力的第一透鏡(1〇),其前表面(1丄)為凸面,後 表面(12)為凹面; 具負屈折力的第二透鏡(2 〇 ),其前表面(2 1 )為凸面, 後表面(2 2)為凹面; 具正屈折力的第三透鏡(3 〇 ),其前表面(3 i )為凹面, 後表面(3 2)為凸面; 再者為具負屈折力的第四透鏡(4 〇 ),其前表面(4 1 )為 凸面,後表面(4 2)為凹面; 另設置一光圈(5 0),位於第一透鏡(1 〇 )之前,用於控制 光學系統的亮度; 另包含有一紅外線濾除濾光片(6 〇) (IR Cut Filter),置 於第四透鏡(4 0)之後,其不影響系統的焦距; 一成像面(7 0 ),位於紅外線濾除濾光片(6 〇 )之後; 第三實施例攝像用光學系統中,第二透鏡的色散係數(Abbe Number) V2=23. 4 ; 17 (¾) 200811503 第一透鏡(10)、第二透鏡(20)、第三透鏡(30)及第 四透鏡(4 0 )_娜材質,藉由射出成型 於第一透鏡⑴ 处鏡(4 0)的各鏡面上設置非球面’另外於第四透鏡(4 〇)的 後絲(4 2 )非球面上設置有反曲點,非球面曲線的方程式表示 如同弟一實施例的型式; 第三實施例攝㈣光學K中,第-透鏡的折射率 MW.543 ’第二透鏡的折射率N2气微,而第三透鏡的折射率 Ν3=1·543。 第三實施例第-透鏡的焦距為fl,第二透鏡的焦距為f2,第 四透鏡的焦距為f4,整體光學系統焦距為f,其關係為: • f/f&gt;l.W、|f/i2h〇.79、f/f4=、1〇3。 第三實施娜-透鏡前表面曲率半徑R1=12誦[腿],第二 透鏡前表面曲率半徑為R3,則1/R3吲· 15 。 第二實施例攝像縣學系統巾m统全長Η=4 56 [麵], 第二透鏡的中心厚度CT2=0. 35 [mm],第三透鏡與第四透鏡之間的 鏡間距 Τ34=0·07 [mm]。 18 200811503 第三實施例攝像用光學系統令,光學系統全長為Η,整體光風 系統焦距為f,其關係為:H-g顺咖]。 先予 表二Γ,:1 詳細的結構數據如同表五所示’其非球面數據如同 〇、不’,、’曲率半徑、厚度及焦距的單位為麵。 门 先仃34 H至表六所示域侧光學祕實施例的不 同數值變化表,麸太癸日a々加成h j的不 …、卷月。個貝鉍例的數值變化皆屬實驗所得, (使用不賊值’铜結構的產品仍應屬於本發明的輯範嘴 七為各個實施例對應本發明相關方程式的數值資料。 綜上所述,本發明為-攝像用光學系統,藉此透鏡結構、排 财式鋪配置可以有效縮小鏡組體積,更朗時獲得 解像力;所財㈣之『具有錢之可_性』應已毋庸置疑,、 除此之外’在本案實施例所揭露出的特徵技術,於申請之前並 冒見於諸刊物’絲曾被公·用,不但具有如上所述功效增進 之事只,更具有不可輕忽的附加功效,是故,本發明的『新賴性』The rear surface (32) is a convex surface; the surface (21) is a concave surface, and the front surface (31) is a concave surface, 5 200811503 • Further, a fourth lens (40) having a positive refractive power, the front surface thereof ( 4 1 ) is convex, the back surface (42) is concave; another aperture (5 〇) is placed before the first lens (1〇) to control the brightness of the optical system; another infrared filter is included Sheet (6 〇Mir Cut Filtei〇, placed after the fourth lens (40), does not affect the focal length of the system; » an imaging surface (7 〇) behind the infrared filter (6 〇); In the optical system, the second lens has an Abbe Number V2 26.6; the first lens (1 〇), the second lens (2 〇), the third lens (3 〇), and the fourth lens. (40) using a plastic material, the lens is formed by injection molding, and is applied to the first lens (10), the second lens (2 〇), the third lens (3 〇), and the fourth lens (40). An aspherical surface is provided on each mirror surface, and an inflection point is provided on the aspheric surface of the rear surface (42) of the fourth lens (4 2) The equation for the aspheric curve is expressed as follows: X(Y) two (Y2/R)/(l+ sqrt (b(l+k)*(Y/R)2)))+A4*Y4+A6*Y6+··· : X.·The cross-sectional distance of the lens is 5 200811503 Y · The height of the point on the aspheric curve from the optical axis k: the aspherical coefficient of the taper coefficients A4, Ae, ...: 4th order, 6th order, .... In the optical system, the refractive index 第一·543 of the first lens, the refractive index 第二2=1·606 of the second lens, and the refractive index Ν3=1 530 of the third lens. 10 The focal length of the first lens is fl, the second The focal length of the lens is f2, the focal length of the fourth lens is f4 'the focal length of the overall optical system is f, and the relationship is: π, 丨| =0. 79, f/f4 = 〇. 〇 4. The radius of curvature of the front surface of the first lens R1=1.75798 [mm], the radius of curvature of the front surface of the second lens is R3, then 1/R3-0· 01 [l/mm]. 10 In the optical system for imaging, the total length of the optical system is 4=4·95 [mm], The center thickness CT2 of the second lens is two 0.429 [mm], and the mirror pitch between the third lens and the fourth lens is =034=0·〇7 [mm]. In the optical system for imaging, the total length of the optical system is Η, the overall optical system The focal length is f, and the relationship is Hf=l·1 [nun] The detailed structural data of the first embodiment is shown in Table 1. The aspherical data is as shown in Table 2 of 2008, 2008, 503, where the unit of the meandering diameter, thickness and focal length is the leg. For the second embodiment of the invention, please refer to FIG. 3, and the aberration curve of the second embodiment is shown in FIG. The main structure of the second embodiment is: an optical system for imaging, which is also composed of four lenses having refractive power, and the object side to the image side are sequentially: a first lens (i 〇) having a positive refractive power, The riding surface (1 i ) is convex, the rear surface (12) is concave; the second lens (20 ) having negative refractive power, the front surface (21) is convex, and the rear surface (22) is concave; The second lens (30) of the refractive power, the front surface (31) is a concave surface, the rear surface (32) is a convex surface, and the fourth lens (40) having a negative refractive power, the front surface thereof ( 4 1 ) is convex, the rear surface (42) is concave; another aperture (50) is placed before the first lens (1〇) to control the brightness of the optical system; another infrared filter is included Piece (60) (IR Cut Filter), placed after the fourth lens (40), which does not affect the focal length of the system; an imaging surface (7 〇), located after the infrared filter (60); In the optical system for imaging of the second embodiment, the second lens has an chromatic dispersion coefficient (Abbe Number) V2 = 23.4; the first lens (1 〇) and the second lens ( 2 0 ), the third lens (30) and the 15th 5th 200811503 four lens (40) are made of plastic material, and the lens is produced by injection molding, and is applied to the first lens (1 〇) and the second lens ( 2 〇), the third lens (3 〇) and the fourth lens (40) are provided with aspheric surfaces on the mirror surfaces, and the rear surface of the fourth lens (4 2 ) is provided with an inflection point, an aspheric surface The equation of the curve represents the pattern as in the first embodiment; in the optical system for imaging of the first embodiment, the refractive index of the first lens N1 = L 543 'the refraction of the second lens # N2 = l 632, and the refraction of the third lens The rate is N3=1.543. In the second embodiment, the focal length of the first lens is n, the focal length of the second lens is f2, the focal length of the fourth lens is Μ, and the focal length of the overall optical system is f, and the relationship is: f/fl=l·50, |f /f2 | =〇·84, f/f4=-1· 39. In the second embodiment, the radius of curvature of the front surface of the first lens is RW. 19134 [mm], and the radius of curvature of the front surface of the second lens is R3, then 1/R3 = 〇. 〇 63 π / face]. In the optical system for imaging of the second embodiment, the optical system has a total length of Η &lt;16, and the center thickness of the second lens is CT2 = 0.35 [face], and the mirror pitch between the third lens and the fourth lens Τ 34 = 0 · 05 [ugly]. In the optical system for imaging, the total length of the optical system is Η, and the focal length of the entire optical system is f, and the relationship is H·f=〇·744 [mm]. 16 5 200811503 The detailed structural data of the second embodiment is shown in Table 3. The aspherical data is as shown in Table 4. The unit of scale radius, thickness and focal length shown in Table 4 is deleted. Referring to Figure 5 for a second embodiment of the present invention, reference is made to Figure 6 for the aberration curve of the third embodiment. The third embodiment is constructed as follows: the optical side of the camera is also composed of four lenses with refractive power, and the object side to the image side are sequentially: a first lens having a positive refractive power (1〇), The front surface (1丄) is a convex surface, the rear surface (12) is a concave surface; the second lens (2 〇) having a negative refractive power, the front surface (2 1 ) is a convex surface, and the rear surface (2 2) is a concave surface; a third lens (3 〇) having a positive refractive power, the front surface (3 i ) being a concave surface, the rear surface (32) being a convex surface, and further a fourth lens (4 〇) having a negative refractive power, preceded by The surface (4 1 ) is convex and the rear surface (42) is concave; an aperture (50) is provided, which is located before the first lens (1 〇) for controlling the brightness of the optical system; Filter (6 〇) (IR Cut Filter), placed after the fourth lens (40), it does not affect the focal length of the system; an imaging surface (70), located in the infrared filter (6 〇) After that; in the optical system for imaging of the third embodiment, the second lens has an chromatic dispersion coefficient (Abbe Number) V2=23. 4; 17 (3⁄4) 200811503 10), the second lens (20), the third lens (30), and the fourth lens (40) are made of aspherical surfaces by injection molding on the mirror surfaces of the mirror (40) formed at the first lens (1) 'An inflection point is additionally provided on the aspherical surface of the back wire (4 2 ) of the fourth lens (4 〇), and the equation of the aspherical curve represents a pattern like that of the first embodiment; in the third embodiment, (4) optical K, The refractive index of the first lens MW.543 'the refractive index N2 of the second lens is slightly micro, while the refractive index of the third lens is =13=1·543. In the third embodiment, the focal length of the first lens is fl, the focal length of the second lens is f2, the focal length of the fourth lens is f4, and the focal length of the overall optical system is f, and the relationship is: • f/f &gt; lW, |f/i2h 〇.79, f/f4=, 1〇3. In the third embodiment, the radius of curvature of the front surface of the lens is R1 = 12 诵 [leg], and the radius of curvature of the front surface of the second lens is R3, then 1/R3 吲 · 15 . In the second embodiment, the total length of the camera system is 4=4 56 [face], the center thickness of the second lens is CT2=0.35 [mm], and the mirror spacing between the third lens and the fourth lens Τ34=0 · 07 [mm]. 18 200811503 In the optical system for imaging of the third embodiment, the optical system has a full length of Η, and the focal length of the overall glare system is f, and the relationship is: H-g. First, Table 2:1 The detailed structural data is as shown in Table 5. 'The aspherical data is like 〇, 不', and the unit of curvature radius, thickness and focal length is the surface. The first 仃 34 H to the different numerical value change table of the field side optical embodiment shown in Table 6, the bran is a day, the addition of h j is not ..., the month. The numerical changes of the shellfish cases are all experimentally obtained. (The products using the non-thiege value 'copper structure should still belong to the series of the invention. The numerical data of the respective equations corresponding to the relevant equations of the present invention. In summary, The invention is an optical system for imaging, whereby the lens structure and the arranging arrangement can effectively reduce the volume of the lens group, and obtain the resolution power even more; the financial (4) "have the money" can be undoubted, In addition, 'the characteristic technology exposed in the embodiment of this case, before the application and the escaping of the publications' has been used publicly, not only has the above-mentioned effects, but also has the additional effect that cannot be neglected. Therefore, the "new dependence" of the present invention

乂及進步)±』都已4合專利法規,爰依法提出發明專利之申請, 祈請惠予審查並早日賜准翻,實感德便。 D 200811503 【圖式簡單說明】 第1圖 第一實施例光學系統示意圖。 第2圖 第一實施例之像差曲線圖。 第3圖 第二實施例光學系統示意圖。 第4圖 第二實施例之像差曲線圖。 第5圖 第三實施例光學系統示意圖。 第6圖 第三實施例之像差曲線圖。乂 进步 进步 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± D 200811503 [Simplified description of the drawings] Fig. 1 Schematic diagram of the optical system of the first embodiment. Fig. 2 is a diagram showing aberrations of the first embodiment. Fig. 3 is a schematic view of the optical system of the second embodiment. Fig. 4 is a diagram showing aberrations of the second embodiment. Fig. 5 is a schematic view of the optical system of the third embodiment. Fig. 6 is a diagram showing the aberration of the third embodiment.

【表】 表一第一實施例結構數據。 表二第一實施例非球面數據。 表三第二實施例結構數據。 表四第二實施例非球面數據。 表五第三實施例結構數據。 表六第三實施例非球面數據。 表七本發明相關方程式的數值資料。 【主要元件符號說明】 ο 1± Γ\ 鏡 透 - 第 後表面(12) 第二透鏡(2 0) 後表面(2 2) 第三透鏡(3 0) 後表面(3 2) 前表面(11) 前表面(21) 前表面(31) 20 ⑤ 200811503 第四透鏡(4 0) 前表面(41) 後表面(4 2) 光圈(5 0 ) 紅外線濾除濾光片(IR Cut Filter) ( 6 0 ) 成像面(7 0) 第二透鏡的色散係數(Abbe number) V2 第一透鏡前表面曲率半徑R1 第二透鏡前表面曲率半徑R3 第一透鏡焦距fl 第二透鏡焦距f2 第四透鏡焦距f4 整體光學系統焦距ί 第一透鏡的折射率Ν1 第二透鏡的折射率Ν2 第三透鏡的折射率Ν3 光學系統全長Η 第二透鏡的中心厚度CT2 第三透鏡與第四透鏡之間的鏡間距Τ34 21[Table] Table 1 shows the structure data of the first embodiment. Table 2 shows the aspherical data of the first embodiment. Table 3 Structure data of the second embodiment. Table 4 shows the aspherical data of the second embodiment. Table 5 shows the structural data of the third embodiment. Table 6. Third embodiment aspherical data. Table 7 Numerical data of the equations of the invention. [Main component symbol description] ο 1± Γ\ Mirror through - Rear surface (12) Second lens (2 0) Rear surface (2 2) Third lens (3 0) Rear surface (3 2) Front surface (11 Front surface (21) Front surface (31) 20 5 200811503 Fourth lens (4 0) Front surface (41) Rear surface (4 2) Aperture (5 0 ) IR Cut Filter ( 6 0) imaging plane (7 0) chromatic dispersion coefficient of the second lens V2 first lens front surface curvature radius R1 second lens front surface curvature radius R3 first lens focal length fl second lens focal length f2 fourth lens focal length f4 Integral optical system focal length ί First lens refractive index Ν1 Second lens refractive index Ν2 Third lens refractive index Ν3 Optical system full length Η Second lens center thickness CT2 Mirror spacing between third lens and fourth lens Τ34 twenty one

Claims (1)

200811503 九、申請專利範圍: 1· 一攝像用光學系統,由四牧具屈折力的鏡片所構成,由物侧至 像側依序為: 一具正屈折力的第一透鏡,其前表面為凸面,後表面為凹面, 且鏡片上設置有非球面; 一具負屈折力的第二透鏡,其前表面曲率半徑為R3,滿足__0 02 [1/mm] &lt; 1/R3 &lt; 0.22 [Ι/mm]的關係,其後表面為凹面,該第 —透鏡的色散係數V2 &lt; 40,且第二透鏡前表面、後表面皆設置 有非球面; 一具正屈折力的第三透鏡,其前表面為凹面,後表面為凸面,且 第三透鏡前表面、後表面皆設置有非球面;200811503 IX. Patent application scope: 1. An optical system for imaging, consisting of four lenses with refractive power, from the object side to the image side: a first lens with positive refractive power, the front surface of which is Convex surface, the back surface is concave, and the lens is provided with an aspherical surface; a second lens with negative refractive power has a radius of curvature of the front surface of R3, which satisfies __0 02 [1/mm] &lt; 1/R3 &lt; 0.22 [Ι/mm] relationship, the rear surface is a concave surface, the dispersion coefficient of the first lens is V2 &lt; 40, and the front surface and the rear surface of the second lens are all provided with an aspheric surface; a third lens having a positive refractive power The front surface is a concave surface, the rear surface is a convex surface, and the front surface and the rear surface of the third lens are all provided with an aspheric surface; 一第四透鏡,其前表 面為凸面,後表面為凹面,該第四透鏡的焦距為f4,整體光學 糸統的焦距為f,兩者滿足f/f4 &lt; 〇· 1的關係,其前表面、後 表面皆設置有非球面,且第四透鏡的後表面設置有反曲點;以及 一光圈,位於光學系統的物體侧與第二透鏡之間,用於控制光學 系統的亮度。 200811503 2. 如申請專利範圍第1項所述之攝像用光學系統,其中,該第一透 鏡的材質為塑膠,且其前表面、後表面皆設置有非球面。 3. 如申請專利範圍第2項所述之攝像用光學系統,其中,紅外線濾 除濾光片置於該第四透鏡之後。 4. 如申請專利範圍第1項所述之攝像用光學系統,其中,該第二透 鏡的折射率為N2,第二透鏡的色散係數為V2,滿足下記關係式: N2 &lt; 1.65 及 V2 &lt; 25 。 5.如申請專利範圍第4項所述之攝像用光學系統,其中,該第二透 鏡的折射率為N2,滿足下記關係式: N2 &gt; 1·59。 6.如申請專利範圍第4項所述之攝像用光學系統,其中,該第一透 鏡的折射率為Ν1,滿足下記關係式: m &gt; 1. 54。 7.如申請專利範圍第6項所述之攝像用光學系統,其中,該第一透 鏡的折射率為N1,第三透鏡的折射率為N3,滿足下記關係式: 23 200811503 Nl &lt; 1.6 及 1.54 &lt; N3 &lt; 1.6。 8. 如申請專利範圍第2項所述之攝像用光學系統,其中,該光圈置 於第一透鏡之前。 9. 如申請專利範圍第8項所述之攝像用光學系統,其中,該第二透 鏡前表面為凸面。 I 10. 如申請專利範圍第9項所述之攝像用光學系統,其中,該第四 透鏡具負屈折力。 11. 如申請專利範圍第10項所述之攝像用光學系統,其中,整體光 學系的焦距為f,第四透鏡的焦距為Μ,兩者滿足下記關係式: f/f4 &lt; -L0 〇 12. 如申請專利範圍第11項所述之攝像用光學系統,其中,該第一 透鏡的前表面曲率半徑為R1,滿足下記關係式: R1 &lt; 2·0 [mm] 〇 13. 如申請專利範圍第1項所述之攝像用光學系統,其中,該光學 系統之被攝物成像於電子感光元件,且光學系統全長為Η,滿足 下記關係式: 24 ⑤ 200811503 Η &lt; 6· 1 [mm] 〇 14·如申請專利範圍第13項所述之攝像用光學系統,其中,整體光 學系統的焦距為f,第一透鏡的焦距為fl,第二透鏡的焦距為 f2,滿足下記關係式: 〇·8 &lt; f/Π &lt; 1.6 及 〇· 5 &lt; | f/f2 | &lt; 〇· 8。 !5·如申請專利範圍第14項所述之攝像用光學系統,其中,光學系 統全長為Η,第二透鏡的中心厚度為CT2,第三透鏡與第四透鏡 之間的鏡間距為Τ34,滿足下記關係式: Η &lt; 5· 0 [腿]、 CT2 &lt; 0.5 [刪]及 Τ34 &lt; 0· 2 [刪]。 16·如申請專利範圍第15項所述之攝像用光學系統,其中,光學系 統全長為Η,整體光學系統的焦距為f,兩者滿足下記關係式: 〇· 7 [mm]〈 H-f &lt; 1· 2 [mm]。 Π·如申請專利範圍第16項所述之攝像用光學系統,其中,該第二 透鏡的中心厚度為CT2,滿足下記關係式: CT2 &lt; 〇. 4 [mm] ° 25a fourth lens having a convex surface on the front surface and a concave surface on the rear surface, the focal length of the fourth lens being f4, and the focal length of the entire optical system being f, both satisfying the relationship of f/f4 &lt; 〇·1, before The surface and the rear surface are both provided with an aspherical surface, and the rear surface of the fourth lens is provided with an inflection point; and an aperture is disposed between the object side of the optical system and the second lens for controlling the brightness of the optical system. The optical system for imaging according to the first aspect of the invention, wherein the first lens is made of plastic, and the front surface and the rear surface are provided with an aspherical surface. 3. The optical system for imaging according to claim 2, wherein the infrared filter is placed after the fourth lens. 4. The optical system for imaging according to claim 1, wherein the refractive index of the second lens is N2, and the dispersion coefficient of the second lens is V2, which satisfies the following relationship: N2 &lt; 1.65 and V2 &lt; 25 . 5. The optical system for imaging according to claim 4, wherein the second lens has a refractive index of N2 and satisfies the following relationship: N2 &gt; 6. The optical system for imaging according to claim 4, wherein the first lens has a refractive index of Ν1 and satisfies the following relationship: m &gt; 1. 54. 7. The optical system for imaging according to claim 6, wherein the refractive index of the first lens is N1, and the refractive index of the third lens is N3, which satisfies the following relationship: 23 200811503 Nl &lt; 1.6 and 1.54 &lt; N3 &lt; 1.6. 8. The optical system for imaging according to claim 2, wherein the aperture is placed before the first lens. 9. The optical system for imaging according to claim 8, wherein the front surface of the second lens is a convex surface. The optical system for imaging according to claim 9, wherein the fourth lens has a negative refractive power. 11. The optical system for imaging according to claim 10, wherein the focal length of the entire optical system is f, and the focal length of the fourth lens is Μ, and both satisfy the following relationship: f/f4 &lt; -L0 〇 12. The optical system for imaging according to claim 11, wherein the radius of curvature of the front surface of the first lens is R1, which satisfies the following relationship: R1 &lt; 2·0 [mm] 〇 13. The optical system for imaging according to the first aspect of the invention, wherein the object of the optical system is imaged on the electronic photosensitive element, and the total length of the optical system is Η, which satisfies the following relationship: 24 5 200811503 Η &lt; 6· 1 [ The optical system for imaging according to claim 13, wherein the focal length of the entire optical system is f, the focal length of the first lens is fl, and the focal length of the second lens is f2, which satisfies the following relationship : 〇·8 &lt; f/Π &lt; 1.6 and 〇· 5 &lt; | f/f2 | &lt; 〇· 8. The optical system for imaging according to claim 14, wherein the optical system has a full length of Η, the center thickness of the second lens is CT2, and the mirror pitch between the third lens and the fourth lens is Τ34. Satisfy the following relationship: Η &lt; 5· 0 [leg], CT2 &lt; 0.5 [delete] and Τ34 &lt; 0· 2 [delete]. The optical system for imaging according to claim 15, wherein the optical system has a full length of Η, and the focal length of the entire optical system is f, and both satisfy the following relationship: 〇· 7 [mm] < Hf &lt; 1· 2 [mm]. The optical system for imaging according to claim 16, wherein the center thickness of the second lens is CT2, which satisfies the following relationship: CT2 &lt; [. 4 [mm] ° 25
TW95130680A 2006-08-21 2006-08-21 An imaging optical lens TWI296725B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130680A TWI296725B (en) 2006-08-21 2006-08-21 An imaging optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130680A TWI296725B (en) 2006-08-21 2006-08-21 An imaging optical lens

Publications (2)

Publication Number Publication Date
TW200811503A true TW200811503A (en) 2008-03-01
TWI296725B TWI296725B (en) 2008-05-11

Family

ID=44767730

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130680A TWI296725B (en) 2006-08-21 2006-08-21 An imaging optical lens

Country Status (1)

Country Link
TW (1) TWI296725B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384254B (en) * 2008-10-16 2013-02-01 Largan Precision Co Ltd Optical lens system for taking image
TWI386702B (en) * 2008-10-24 2013-02-21 Hon Hai Prec Ind Co Ltd Imaging lens
CN103091817A (en) * 2011-11-07 2013-05-08 大立光电股份有限公司 Image capturing system
TWI403781B (en) * 2010-04-23 2013-08-01 Largan Precision Co Ltd Photographing optical lens assembly
TWI410693B (en) * 2010-11-19 2013-10-01 Largan Precision Co Ltd Image pick-up optical lens assembly
TWI468773B (en) * 2010-08-20 2015-01-11 Largan Precision Co Ltd Optical image-capturing lens assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407140B (en) * 2009-12-24 2013-09-01 Largan Precision Co Ltd Photographing lens assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384254B (en) * 2008-10-16 2013-02-01 Largan Precision Co Ltd Optical lens system for taking image
TWI386702B (en) * 2008-10-24 2013-02-21 Hon Hai Prec Ind Co Ltd Imaging lens
TWI403781B (en) * 2010-04-23 2013-08-01 Largan Precision Co Ltd Photographing optical lens assembly
TWI468773B (en) * 2010-08-20 2015-01-11 Largan Precision Co Ltd Optical image-capturing lens assembly
TWI410693B (en) * 2010-11-19 2013-10-01 Largan Precision Co Ltd Image pick-up optical lens assembly
CN103091817A (en) * 2011-11-07 2013-05-08 大立光电股份有限公司 Image capturing system
CN103091817B (en) * 2011-11-07 2015-04-15 大立光电股份有限公司 Image capturing system

Also Published As

Publication number Publication date
TWI296725B (en) 2008-05-11

Similar Documents

Publication Publication Date Title
TWI379102B (en) Optical lens system for taking image
TWI395992B (en) Four-piece optical lens system for taking image
TWI388878B (en) Optical lens system for taking image
TWI351530B (en) Inverse telephoto with correction lenses
TWI382199B (en) Optical lens system for taking image
TWI404972B (en) Optical lens system for taking image
TWI435135B (en) Optical lens system
TWI401485B (en) Imaging optical lens assembly
TWI395990B (en) Optical lens system for taking image
TWI384254B (en) Optical lens system for taking image
TWI394979B (en) Photographing optical lens assembly
TWI361903B (en) Optical lens system for taking image
TWI401467B (en) Image-capturing lens assembly
TWI354820B (en) Optical lens system for taking image
TWI320106B (en) Image lens assembly
TWI361913B (en) Optical lens system for taking image
TW201106040A (en) Imaging lens system
TW200813470A (en) Optical lens assembly for taking image
TW201115180A (en) Photographing optical lens assembly
TW201111829A (en) Imaging lens assembly
TW201133023A (en) Photographing optical system
TWI321664B (en) Optical lens assembly for taking image
TW201038966A (en) Photographing lens assembly
TW200842428A (en) Optical lens system for taking image
TW201215910A (en) Optical imaging lens system