TW200540521A - Reflector and liquid crystal display device using the same - Google Patents

Reflector and liquid crystal display device using the same Download PDF

Info

Publication number
TW200540521A
TW200540521A TW094112161A TW94112161A TW200540521A TW 200540521 A TW200540521 A TW 200540521A TW 094112161 A TW094112161 A TW 094112161A TW 94112161 A TW94112161 A TW 94112161A TW 200540521 A TW200540521 A TW 200540521A
Authority
TW
Taiwan
Prior art keywords
reflector
display area
liquid crystal
angle
substrate
Prior art date
Application number
TW094112161A
Other languages
Chinese (zh)
Other versions
TWI266934B (en
Inventor
Katsumasa Yoshii
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of TW200540521A publication Critical patent/TW200540521A/en
Application granted granted Critical
Publication of TWI266934B publication Critical patent/TWI266934B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a reflector from which sufficiently large luminance can be obtained uniformly in a surface even when an area of a display surface is increased. Moreover, it provides a liquid crystal display device with improved visibility. The reflector 47 is characterized in that the reflecting characteristic of the reflector is changed according to a distance from the center part of the display area 47a of the surface 12a of the reflecting surface of the reflector 47, and intensity of reflected rays of light which are obtained when rays of light are made incident on the reflector 47 and they are reflected on the surface 12b of the reflecting surface are made uniform in the range of +- a prospective angle [theta] and the angle [theta] satisfies a relation shown by a next expression (1). Here, the expression (1) is [theta](degree)=tan<SP>-1</SP>(H/2L), where [theta] is the prospective angle, H is a size in the vertical direction of the display area and is equal to or larger than 2cm and is equal to or smaller than 30cm and L is a distance from the center of the display area to a visual point and is equal to or larger than 10cm and is equal to or smaller than 300cm.

Description

200540521 九、發明說明: 【發明所屬之技術領域】 本發明係關於反射體及使用該反射體的液晶顯示裝置。 【先前技術】 一般,在液晶顯示裝置的顯示方式中,有具備背光元件 的被稱作半透射型、透射型的方式,以及稱作反射型的方 式。反射型液晶顯示裝置係僅僅利用太陽光、照明光等外 界光而不利用背光來進行顯示的液晶顯示裝置,例如,其 多用在要求薄型、輕量化、低耗電的攜帶型資訊終端等。 此外’半透射型液晶顯示裝置在不能充分得到外界光的環 境下點亮背光,而在透射模式下工作,在充分得到外界光 的情況下’不點免背光元件,而以反射模式工作,其多用 在手機或者筆記型個人電腦(筆記型PC)等攜帶型電子設備 中。 半透射型或反射型液晶顯示裝置的顯示性能,被要求具 有在反射模式下可明亮地顯示的性能。 圖21係表示在液晶面板内部設置了反射板之現有的反射 型液晶顯示裝置的一例的側面剖面圖(例如,參照專利文 件1)。 咸反射型液晶顯示裝置’從光的入射方向來看,依次具 備·具有透光性相對基板101,液晶層11 〇,以及具有反光 性的元件基板1 〇 2,在元件基板1 〇 2上設有反射型散射帶, 該散射帶反射並散射透過相對基板1 〇 1的光q。散射帶由反 射板130構成,該反射板130由表面上具有凹凸i22a的高反 100597.doc 200540521 射率金屬膜122和在其下層的絕緣層128構成,在該反射板 13〇的顯示區域,形成有2個區域,分別係對與每個像素對 應的u卩刀(各像素對應部)具有指向性強的反射特性的區域 B、及具有擴散性強的反射特性的區域A,在各區域中形 成有平均傾角彼此不同的凹凸面。 忒反射板130係如此製作的··在玻璃或矽氧化膜上以喷 夕、法專开&gt; 成初期凹凸,之後以氫氟酸水溶液進行餘刻,在 上α卩形成A1膜。如圖22所示,高反射率金屬膜122的凸 部122c和凸部122(:的連接部(邊界部)122€具有曲面,凹部 122b和凹部12孔的連接部(邊界部)122(1也具有曲面。因 此,該高反射率金屬膜122的縱剖面的剖面曲線的傾角連 續,亦即,縱剖面的剖面曲線的一次微分係數連續。 [專利文件1]專利第3019058號公報。 【發明内容】 [發明所欲解決之問題] 在現有的具備反射板的液晶顯示裝置中,由於在反射板 130的顯示區域的各像素對應部均形成有具有相同形狀的 上述區域B和區域C,所以具有與將上述區域六的反射特性 (圖23的曲線(B)表示的特性)和區域B(圖23的曲線(A)表示 的特性)的反射特性(圖23的曲線(c)表示的特性)的合^相 同的反射特性’因此’顯示區域内的反射特性大致相同。 而且’上述反射特性⑷、⑻,相對於各入射光的正反射 角度顯示出高斯分佈型反射特性,此外,上述反射特性 ⑹相對於人射光的正反射方向顯示出高斯分佈型反 100597.doc 200540521 性,其結果,顯示區域内的反射特性也顯示出高斯分佈型 反射特性。 筆e型PC等攜帶型資訊終端般的電子設備的顯示部上組 裝有液晶顯示裝置的情況下,如圖24所示,一般從接近顯 示面的法線方向h的方向觀察的情況較多。圖24係使用在 主體205上備有由圖21所示的液晶顯示裝置構成的顯示部 200的攜帶型電子設備的狀態的說明圖。200540521 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a reflector and a liquid crystal display device using the reflector. [Prior Art] In general, in the display method of a liquid crystal display device, there are a method called a transflective type and a transmission type including a backlight element, and a method called a reflection type. A reflective liquid crystal display device is a liquid crystal display device that uses only external light such as sunlight and illumination light, and does not use a backlight. For example, it is mostly used in portable information terminals that require thinness, light weight, and low power consumption. In addition, the 'semi-transmissive liquid crystal display device lights up the backlight in an environment where external light cannot be obtained sufficiently, while operating in a transmission mode, and in the case where sufficient external light is obtained', it does not need to dispense with a backlight element, and operates in a reflective mode. It is often used in portable electronic devices such as mobile phones or notebook personal computers (notebook PCs). The display performance of a transflective or reflective liquid crystal display device is required to have a performance capable of displaying brightly in a reflection mode. Fig. 21 is a side sectional view showing an example of a conventional reflective liquid crystal display device in which a reflective plate is provided inside a liquid crystal panel (for example, refer to Patent Document 1). A salt-reflective liquid crystal display device is provided with a light-transmissive counter substrate 101, a liquid crystal layer 11 0, and a light-reflective element substrate 1 02 in order from the incident direction of light, and is provided on the element substrate 1 02 There is a reflection-type scattering band which reflects and scatters light q transmitted through the opposite substrate 101. The scattering band is constituted by a reflection plate 130 which is composed of a high-reflection 100597.doc 200540521 metal film 122 having an uneven surface i22a on the surface and an insulating layer 128 below it. In the display area of the reflection plate 130, Two regions are formed, respectively, an area B having a highly directional reflection characteristic for a u-blade (corresponding portion of each pixel) corresponding to each pixel, and an area A having a highly diffusive reflection characteristic. Concave and convex surfaces having different average inclination angles are formed in the surface. The 忒 reflective plate 130 is made in this way .... Initial embossment is formed on the glass or silicon oxide film by spraying and the method. After that, the film is etched with an aqueous solution of hydrofluoric acid to form an A1 film on α 卩. As shown in FIG. 22, the convex portion 122c and the convex portion 122 (: the connecting portion (boundary portion) of the high reflectivity metal film 122 (122) have a curved surface, and the concave portion 122b and the connecting portion (boundary portion) 122 of the concave portion 12 (1 It also has a curved surface. Therefore, the inclination angle of the cross-sectional curve of the longitudinal section of the high-reflectivity metal film 122 is continuous, that is, the first-order differential coefficient of the cross-sectional curve of the longitudinal section is continuous. [Patent Document 1] Patent No. 3019058. [Invention Contents [Problems to be Solved by the Invention] In a conventional liquid crystal display device including a reflection plate, since each pixel corresponding portion of the display area of the reflection plate 130 is formed with the above-mentioned area B and area C having the same shape, It has the reflection characteristics (characteristics indicated by curve (c) in FIG. 23) of the reflection characteristics (characteristics indicated by curve (B) in FIG. 23) and region B (characteristics indicated by curve (A) in FIG. 23). ), The same reflection characteristics' so 'the reflection characteristics in the display area are substantially the same.' The above reflection characteristics ⑷, ⑷ show Gaussian-type reflection characteristics with respect to the regular reflection angle of each incident light, In addition, the above-mentioned reflection characteristics 正 show a Gaussian-type inverse 100597.doc 200540521 with respect to the normal reflection direction of human light, and as a result, the reflection characteristics in the display area also show Gaussian-type reflection characteristics. Pen e-type PCs and other portable When a liquid crystal display device is incorporated in a display portion of an electronic device such as a digital information terminal, as shown in FIG. 24, it is often seen from a direction close to the normal direction h of the display surface. FIG. 24 is used in the main body 205 is an explanatory diagram of a state of a portable electronic device including a display unit 200 including a liquid crystal display device shown in FIG. 21.

然而,具有上述的高斯分佈型反射特性的現有液晶顯示 裝置’當顯示區域的尺寸變大時,在反射板面β,反射率 差會變大,導致產生亮度不均的問題。 例如,a)顯示區域的縱肖尺寸m(上下方向的尺寸⑷ cm左右的攜帶型尺寸的液晶顯示裝置的情況下,在觀察者 的視點。b和顯示區域中心之間的距離Liy〇 時,預定 角㊀為以度左右’队顯示區域的縱向尺寸則為^⑽左右 (對角線相當於1G英寸)的液晶顯示裝置的情況下,在觀察 者的視點。b和顯示區域的中心之間的距離⑽%⑽時, 預定角Θ為14度左右,係上述3)場合的大約3倍。 且b)场合,例如,3〇度的平行光線入射到反射板時〜 射角如下.入射到反射板的顯示區域上部的光&amp;的反射 為14度,入射到中央的光b的反射角為〇度,入射到下部 光c的發射角為·Η度,對應反射板的面内位置的不同産 反射率差(如圖25所示’對應受光角的不同反射率差別 大),導致産生亮度不均的問題。 本發明即係為了解決上述問題者,其目的之一在於,才 100597.doc 200540521 供一種反射體,即使顯示面變成大面積,該反射體也能夠 得到均勻、充分的亮度。 此外,本發明的目的之一在於,提供一種即使顯示區域 的面積增大,在面内仍然能夠得到均勻的亮度、可提高可 視性的液晶顯示裝置。 為了實現上述目的,本發明採用下述的結構。 本發明的反射體,係設置於液晶顯示裝置中,具有反射 面’其特徵在於:上述反射體的反射特性對應從反射面表 面的顯示區域中央部起的距離而改變,入射到上述反射體 的入射光在反射面表面所反射的反射光強度設定為在土預 定角的範圍内均勻,上述預定角滿足下述公式⑴的關係: e(^)=tan'1(H/2L) 公式⑴ 該公式中,Θ係預定角;Η係上述顯示區域的上下方向尺 寸’大於等於2 cm且小於等於30 cm ; L係從上述顯示區域 的中〜到視點的距離,大於等於cm且小於等於3〇〇 cm ° 而且,本發明的反射體中,反射面表面的顯示區域係指 與具備反射體的液晶顯示裝置的顯示區域對應的範圍。 此外’上述結構的本發明的反射體,其特徵在於,位於 較顯示區域中央部為上側的上部的反射特性,比起中央部 勺反射特f生係上升角被偏向高角度側,而位於較顯示區域 中央部為下側的下部的反射特性,比起中央部的反射特性 係上升角被偏向低角度側。或者,也可以顯示區域的中心 乍為基準位置,將上述反射面表面的任意位置x以從上述 100597.doc 200540521 顯示區域中心起的距離表示,且將較上述顯示區域的t心 為上側的位置设為(+),為下側的位置設為㈠時,上述反 射面表面的任意位置x的反射特性為將上述基準位置的反 射特性作為基準而僅偏移㊀(度Han·1 (x/L)的反射特性(該公 L表示從顯示區域的中心到視點的距離,㊀係預定 角)。 本發明中,反射特性的上升角係指··入射到反射體的入 射光在反射面表面反射的反射光強度(或者反射率)與受光 角之間的關係的圖+,低角度側的反射強度增加時的最小 的受光角。 此外,上述任一構成中的本發明的反射體,在基材上形 成的金屬膜或基材的表面上,以不規則的間距形成具有反 光性的多個凹部,上述凹部内表面具有為球面或者非球面 勺一刀的曲面’在鄰接的上述凹部邊界或鄰接的凹部之 間,縱剖面的剖面曲線的傾角不連續,上述金屬膜或基材 的表面成為反射面,上述多個凹部,對應從反射面表面的 顯示區域中央部起的距離,改變其深度、寬度(或者直 徑)、上述曲面的曲面半徑或上述曲面的傾角之中的任何 一個或一個以上。 或者,上述反射體中,在基材上形成的金屬膜或基材的 表面上’以不規則的間距形成具有反光性的多個凸部,上 述凸部内表面具有為球面或者非球面的一部分的曲面,在 鄰接的上述凸部邊界或鄰接的凸部之間,縱剖面的剖面曲 線的傾角不連續,上述金屬膜或基材的表面成為反射面, 100597.doc 200540521 上述多個凸部,對應從反射面表面的顯示區域中央部起的 距離,改變其高度、寬度(或者直徑)、上述曲面的曲面半 控或上述曲面的傾角之中的任何一個或一個以上。 本發明中,上述凹部或凸部曲面的傾角係指··曲面上的 任意點的切面和基材表面之間構成的角度的絕對值,或者 係取凹。卩内表面或凸部外表面的任意處的微小區間,例如 〇·5微米寬度的微小範圍時’該微小範圍内的斜面的相對 水平面(金屬反射膜表面)的角度。 此外,本發明的液晶顯示裝置的特徵在於,具有液晶單 元,該液晶單元係在夾著液晶層而相對的一對基板中,於 作為觀察側的一個基板的内表面側設置電極及定向膜,在 遠離觀察側的另一個基板的内表面側設置電極及定向膜; 該液晶顯示裝置在上述另一個基板與在其内表面側上設 置的定向膜之間或者上述另一個基板的外表面側,設置上 述任一項構成的反射體。 [技術效果] 如以上所詳述,根據本發明的反射體,即使係大面積, 也能夠在面内得到均勻、充分大的亮度。 此外,根據本發明的液晶顯示裝置,藉由將本發明的反 射體内置於液晶單元中或者設置在液晶軍元的外側,即使 顯示區域的面積增大,也可在面内得到均勻的亮度、提高 可視性。 【貫施方式】 以下’根據圖式對本發明的實施方式進行說明。為了易 100597.doc 10 200540521 ’對其進行了適當的 比率專有所不同。 調 於觀察附圖,在以下的所有附圖中 整’各構成要件的膜厚度和尺寸的 第1實施方式 圖1係核式地表不作為本於明的笛1每 勹个心明的弟1貫施方式的單純矩陣 式反射型液晶顯示裝置的部分剖面結構的圖。 在圖1中、亥反射型液晶顯示裳置i的結構係:將由央持 液晶層30而相對的透明玻璃等構成的^基板(遠離觀察側 的另一個基板)10和第2基板(在觀察側的基板)2〇,利用在 這些2片基板1〇、20的周緣部設置成環狀的封裝材料(未圖 示)粘接成一體。 在第1基板10的内表面側(液晶層30側),依次層疊形成 有本發明實施方式的反射體47、依所欲而形成的透明夾層 53、用於進行顏色顯示的濾色器13、用於將濾色器13導致 的凹凸平坦化的覆層膜(透明平坦化層)14、用於驅動液晶 層30的透明電極層(電極)15、用於控制構成液晶層3〇的液 晶分子的定向的定向膜16。此外,在第2基板2〇的内表面 側(液晶層30側)依次層疊形成有透明電極層(電極、覆 層膜24、定向膜26。 此外’夾持液晶層3 〇的透明電極層1 5和透明電極層2 5形 成為彼此正交的長條狀,其交點區域構成像素,從而構成 了單純矩陣式液晶顯示裝置。 由上述的第1基板1 〇、第2基板2〇以及設在這些基板之間 的各構成構件構成液晶單元35b。 在第2基板20的相對於液晶層30側相反的一側(第2基板 100597.doc 11 200540521 2〇的外表面側)’依次層疊形成了相位差板27和偏光板 28 ° 將如此的液晶顯示裝置1組裝到筆記型Pc等攜帶型資訊 終端般的電子設備的顯示部上來使用,在使用^電子1備 時,較多情況下係在使由液晶顯示裝置旧成的顯示部傾 斜或者立起來的狀態了,觀察其暴員示。液晶顯示裝置… 顯示區域係在液晶單元面内的大致整個面,但是實際的液However, in the conventional liquid crystal display device &apos; having the above-mentioned Gaussian-type reflection characteristics, when the size of the display area becomes larger, the reflectance difference on the reflecting plate surface β becomes larger, causing a problem of uneven brightness. For example, a) in the case of a portable size liquid crystal display device with a vertical dimension m (a vertical dimension of about ⑷ cm) in the display area, at the observer's point of view. When the distance between the b and the center of the display area is Liy0, In the case of a liquid crystal display device in which the predetermined angle 左右 is about degrees and the vertical size of the display area is about ⑽ ⑽ (diagonal is equivalent to 1G inch), between the viewpoint of the observer. B and the center of the display area When the distance ⑽% ⑽, the predetermined angle Θ is about 14 degrees, which is about three times that in the case of 3) above. In case b), for example, when a 30-degree parallel light beam is incident on the reflector, the angle of incidence is as follows. The light incident on the upper part of the display area of the reflector is reflected at 14 degrees, and the reflection angle of the light b incident on the center is b. It is 0 degree, and the emission angle of the light c incident to the lower part is · Η degrees, which corresponds to the difference in reflectance between different in-plane positions of the reflecting plate (as shown in Figure 25, 'the difference in reflectance corresponding to the light receiving angle is large), resulting in The problem of uneven brightness. The present invention is to solve the above problems, and one of the objects thereof is to provide a reflector, which can obtain uniform and sufficient brightness even if the display surface becomes a large area. Another object of the present invention is to provide a liquid crystal display device that can obtain uniform brightness in a plane and improve visibility even if the area of a display area is increased. To achieve the above object, the present invention adopts the following structure. The reflector of the present invention is provided in a liquid crystal display device and has a reflective surface. It is characterized in that the reflection characteristic of the reflector changes according to the distance from the center of the display area on the surface of the reflective surface. The intensity of the reflected light reflected by the incident light on the surface of the reflecting surface is set to be uniform within a predetermined range of soil, and the predetermined angle satisfies the relationship of the following formula ⑴: e (^) = tan'1 (H / 2L) Formula ⑴ This In the formula, Θ is a predetermined angle; Η is the size of the above-mentioned display area in the vertical direction 'is greater than or equal to 2 cm and less than or equal to 30 cm; L is the distance from the middle of the display area to the viewpoint, which is greater than or equal to cm and less than or equal to 3 °. 0 cm ° In the reflector of the present invention, the display area on the surface of the reflective surface refers to a range corresponding to the display area of a liquid crystal display device including the reflector. In addition, the reflector of the present invention having the above-mentioned structure is characterized in that the reflection characteristics of the upper portion located on the upper side than the central portion of the display region are higher than the reflection angle of the central part of the display system, and the higher the angle is, the higher the angle is. The central portion of the display area is the lower reflection characteristic at the lower side, and the rising angle is shifted to a lower angle side than the reflection characteristic of the central portion. Alternatively, the center of the display area may be used as a reference position, and an arbitrary position x of the surface of the reflective surface may be expressed as a distance from the center of the above-mentioned 100597.doc 200540521 display area, and a position above the t-center of the display area may be an upper position. When (+) is set, and when the lower position is set to ㈠, the reflection characteristic at an arbitrary position x on the surface of the reflecting surface is shifted by ㊀ (degree Han · 1 (x / L) reflection characteristics (the common L represents the distance from the center of the display area to the viewpoint, which is a predetermined angle). In the present invention, the rising angle of the reflection characteristics means that the incident light incident on the reflector is on the surface of the reflection surface The graph of the relationship between the reflected reflected light intensity (or reflectance) and the light receiving angle + is the minimum light receiving angle when the reflection intensity on the low-angle side increases. In addition, the reflector of the present invention in any one of the configurations described above is The metal film formed on the substrate or the surface of the substrate is formed with a plurality of reflective portions at irregular intervals. The inner surface of the concave portion has a curved surface that is spherical or aspherical. The inclination of the cross-section curve of the longitudinal section of the boundary between adjacent recesses or between adjacent recesses is discontinuous, and the surface of the metal film or substrate becomes a reflective surface. The plurality of recesses correspond to the center of the display area on the reflective surface. Distance, change any one or more of its depth, width (or diameter), the radius of the curved surface, or the inclination of the curved surface. Alternatively, in the reflector, a metal film or substrate formed on a substrate A plurality of convex portions having reflective properties are formed at irregular intervals on the surface of the convex portion. The inner surface of the convex portion has a curved surface that is a part of a spherical surface or an aspherical surface. The inclination of the profile curve of the profile is discontinuous, and the surface of the metal film or substrate becomes a reflective surface. 100597.doc 200540521 The plurality of convex portions change their height and width corresponding to the distance from the center of the display area on the reflective surface. (Or diameter), any one or more of the surface semi-control of the above-mentioned surface, or the inclination of the above-mentioned surface. In the Ming, the inclination of the curved surface of the concave or convex part refers to the absolute value of the angle formed between the cut surface of any point on the curved surface and the surface of the base material, or the concave. For example, in the case of a minute range with a width of 0.5 micron, the angle of the inclined plane relative to the horizontal plane (the surface of the metal reflective film) in the minute range. In addition, the liquid crystal display device of the present invention includes a liquid crystal cell, This liquid crystal cell is provided with an electrode and an alignment film on the inner surface side of one substrate as an observation side in a pair of substrates facing each other with a liquid crystal layer interposed therebetween, and an electrode and an alignment film are provided on the inner surface side of the other substrate far from the observation side. The liquid crystal display device is provided with the reflector having any one of the above-mentioned structure between the other substrate and the alignment film provided on the inner surface side thereof or the outer surface side of the other substrate. [Technical Effects] As described in detail above, according to the reflector of the present invention, even in a large area, uniform and sufficient brightness can be obtained in a plane. In addition, according to the liquid crystal display device of the present invention, by placing the reflector inside the liquid crystal cell or the outside of the liquid crystal army, even if the area of the display area is increased, uniform brightness, Improve visibility. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. In order to make it easy, 100597.doc 10 200540521 ’has a proper ratio and it is different. Regarding the observation of the drawings, in all the following drawings, the first embodiment of the film thickness and size of each constituent element is shown. Figure 1 is a nuclear-type ground surface. A diagram of a partial cross-sectional structure of a simple matrix reflection type liquid crystal display device according to the embodiment. In FIG. 1, the structure of the reflective liquid crystal display device i is: a substrate (another substrate away from the observation side) 10 and a second substrate (a substrate farther from the observation side) made of transparent glass and the like that are opposed to each other holding the liquid crystal layer 30. The substrates on the side) 20 are bonded together with a packaging material (not shown) provided in a ring shape on the peripheral edge portions of the two substrates 10 and 20. On the inner surface side (the liquid crystal layer 30 side) of the first substrate 10, a reflector 47 according to an embodiment of the present invention, a transparent interlayer 53 formed as desired, a color filter 13 for color display, and the like are stacked in this order. A coating film (transparent flattening layer) 14 for flattening the unevenness caused by the color filter 13, a transparent electrode layer (electrode) 15 for driving the liquid crystal layer 30, and a liquid crystal molecule for controlling the liquid crystal layer 30. The directional alignment film 16. In addition, a transparent electrode layer (electrode, coating film 24, and alignment film 26) is formed in this order on the inner surface side (the liquid crystal layer 30 side) of the second substrate 20. The transparent electrode layer 1 sandwiches the liquid crystal layer 30. 5 and the transparent electrode layer 25 are formed into long strips orthogonal to each other, and the intersection region constitutes a pixel, thereby constituting a simple matrix liquid crystal display device. The above-mentioned first substrate 10, second substrate 20, and Each constituent member between these substrates constitutes a liquid crystal cell 35b. On the opposite side of the second substrate 20 from the liquid crystal layer 30 side (the outer surface side of the second substrate 100597.doc 11 200540521 20), the layers are sequentially formed. The retardation plate 27 and the polarizing plate 28 ° are used to assemble such a liquid crystal display device 1 to a display portion of a portable information terminal-like electronic device such as a notebook PC, and are often used when the electronic device 1 is used. The old display part of the liquid crystal display device is tilted or erected. Observe the indication of its brutality. Liquid crystal display device ... The display area is almost the entire surface of the liquid crystal cell, but the actual liquid

晶顯示裝置上’在上述顯示區域的周圍存在不顯示的非顯 不區域。 在上述液晶單元35b内設置的反射體47,例如由有機膜 Π、形成在該有機膜11上的金屬反射膜(金屬膜)12構成。 有機膜11的設置目的係··使在其上形成的金屬反射膜12具 有凹凸形狀’從而高效散射反射光。該金屬反射膜12的表 面12 b係反射面表面。 圖2係表不在直立的狀態下使用液晶顯示裝置丨時的反射 體的立體圖。圖2中,符號47a係反射面表面的顯示區域, 係與液晶顯示裝置1的顯示區域對應的區域。此外,圖2 中,符號(2)係反射體表面的顯示區域47a的中央部,該中 央部(2)係包含顯示區域47a的中心〇的水平帶狀部分;符號 (1)係顯示區域47a的上部,係位於中央部(2)上侧(裝置1處 於傾斜或水平狀態時的裏側)的水平帶狀部分,符號(3)係 顯示區域47a的下部,係位於中央部(2)下側(裝置丨處於斜 或水平狀態時的近側)的水平帶狀部分。 該反射體47的反射特性對應從反射面表面12b的顯示區 100597.doc 12 200540521 域47a的中央部(2)起的距離而發生變化,入射到反射體47 的入射光在反射面表面12b上反射的反射光強度在土預定角 的範圍内均勻。 • 而且,預定角滿足下述公式⑴表示的關係。 Θ(度 htanlHQL) 公式(I) 遠公式中’ Θ係預定角;Η係上述顯示區域47a的上下方 向的尺寸,大於等於2 cm且小於等於30 cm ; l係從上述顯 示區域47a的中心〇到視點〇bl的距離,大於等於1〇 cm且小 ®於等於300 cm。) 例如’顯示區域47a的Η為30 cm,L為40 cm的情況下, 由於Θ大約係20度,入射到反射體47的入射光在反射面表 面12b反射的反射光的強度在±2〇度的範圍内均勻。 作為使得反射光強度在±預定角的範圍内均勻的方法, 例如,在以入射角_30度入射到反射面表面12b的顯示區域 47a的中央部(2)的入射光q的反射特性,顯示出用圖3的實 φ 線表示的特性,·上升角為-20度的情況下,控制上部(1)上 形成的凹凸的形成條件,使得以入射角_3〇度入射到上部 (1)的入射光Q的反射特性與中央部的反射特性相比,前 者的上升角更偏向高角度。最好將在上部⑴上形成的凹凸 形成條件控制成:使上升角比令央部⑺的反射特性的上升 角大+20度而更偏向高角度,並成為0度,從而表現如圖3 的虛線所不的特性。 此外’對形成在下部(3)上的凹凸形成條件進行控制, 使付以入射角-30度入射到下部⑺的入射光Q的反射特性 100597.doc 200540521 前者的上升角更偏向低角 凹凸形成條件進行控制,使 ,其上升角向低角側偏移_ 呈現如圖3的點劃線所示的 與中央部(2)-的反射特性相比, 度。最好對形成在下部(3)上的 得與中央部(2)的反射特性相比 20度,使得上升角成為-40度, 特性。 圖3所示的上部⑴、下部(3)的反射特性的分佈寬度,與 中央部⑺的反射特性的分佈寬度具有同樣的大小。 、 ,而且’在本實施方式中,入射角和反射角的符號係將相 對反射體表面的法線方向hl的光源側(入射側)角度作為 負’將與光源側相反的角度作為正。 此外,作為使得反射光強度在±預定角的範圍内均勻的 其他方法,如圖4所示,將處於直立狀態的反射體47的顯 示區域47a的中心〇作為基準位置,將反射面表面4九的任 忍位置X用從顯示區域47a的中心〇起的距離來表示,且將 藉由顯示區域47a的中心〇的水平線]^的上側位置取為(+), 下側位置取為㈠的情況下,反射面表面的任意位置x的反 射特性係,藉由對形成在金屬反射膜丨2上的凹凸形狀條件 進行控制,使得以上述基準位置(χ=〇 cm)的反射特性為基 準,其具有偏移Θ(度)=tan-i(x/L)(該公式中,l表示從顯示 區域47a的中心〇到視點〇bl的距離,㊀為預定角)的反射特 性。 例如’在圖4的反射體47的顯示區域47a的尺寸為對角線 英寸’ Η為15 cm,從中心〇到視點〇bl的距離L為28 cm 時’圖中符號(i)-(vii)的線的位置X和預定角θ在以下的情 100597.doc -14- 200540521 以x = 〇 預定 況下,各位置x(各線)的反射特性,如圖5_圖6所示, cm時的反射特性為基準 偏私了各位置x(各線)的 角。 ⑴的線 (ii)的線 (Hi)的線 (iv)的線 (V)的線 (vi) 的線 (vii) 的線 χ=+7·5 cm、 x==+5.〇 cm &gt; χ=+2·5 cm、 x=〇 cm &gt; x=-2.5 cm、 ^=-5.0 cm ^ x=-7.5 cm、On the crystal display device, there is a non-display area which is not displayed around the display area. The reflector 47 provided in the liquid crystal cell 35b is composed of, for example, an organic film II and a metal reflective film (metal film) 12 formed on the organic film 11. The installation purpose of the organic film 11 is to make the metal reflection film 12 formed thereon a concave-convex shape 'so as to efficiently scatter the reflected light. The surface 12b of the metal reflective film 12 is a reflective surface. Fig. 2 is a perspective view of a reflector when the liquid crystal display device is not used in an upright state. In FIG. 2, reference numeral 47 a denotes a display region on the surface of the reflective surface, and a region corresponding to the display region of the liquid crystal display device 1. In addition, in FIG. 2, the symbol (2) is a central portion of the display area 47 a on the surface of the reflector, and the central portion (2) is a horizontal band portion including the center 〇 of the display area 47 a; the symbol (1) is a display area 47 a The upper part of the horizontal band-shaped part is located on the upper side of the central part (2) (the inner side when the device 1 is inclined or horizontal), and the symbol (3) is the lower part of the display area 47a, which is located on the lower side of the central part (2). (Proximal side when the device is in an oblique or horizontal state). The reflection characteristics of the reflector 47 change according to the distance from the center portion (2) of the display area 100597.doc 12 200540521 of the reflective surface 12b. The incident light incident on the reflector 47 is on the reflective surface 12b. The intensity of the reflected light is uniform within a predetermined range of the soil. • Furthermore, the predetermined angle satisfies the relationship represented by the following formula ⑴. Θ (degree htanlHQL) Formula (I) Far formula 'Θ is the predetermined angle; Η is the size of the above display area 47a in the vertical direction, 2 cm or more and 30 cm or less; l is from the center of the above display area 47a. The distance to the viewpoint OB1 is 10 cm or more and 300 cm or less. ) For example, when Η is 30 cm and L is 40 cm in the display area 47a, since Θ is about 20 degrees, the intensity of the reflected light reflected by the incident light incident on the reflector 47 on the reflecting surface 12b is ± 2. The range is uniform. As a method of making the reflected light intensity uniform within a range of ± predetermined angles, for example, the reflection characteristic of incident light q at the central portion (2) of the display area 47a of the reflective surface 12b at an incident angle of -30 degrees is displayed, The characteristics shown by the solid φ line in FIG. 3 are used. When the rising angle is -20 degrees, the formation conditions of the unevenness formed on the upper portion (1) are controlled so that the incident angle _30 degrees is incident on the upper portion (1). The reflection characteristics of the incident light Q are higher than the reflection characteristics of the central portion. It is best to control the formation conditions of the unevenness formed on the upper ridge so that the rising angle is +20 degrees larger than the rising angle of the reflection characteristics of the central ridge, and is more inclined to a high angle, and becomes 0 degrees, so as shown in Figure 3 Dotted characteristics. In addition, the conditions for forming the unevenness formed on the lower part (3) are controlled so that the reflection characteristics of the incident light Q incident on the lower part with an incident angle of -30 degrees 100597.doc 200540521 The rising angle of the former is more inclined to the low-angle unevenness formation The conditions are controlled so that the rising angle is shifted toward the low-angle side, and the reflection characteristic of the central portion (2)-is shown in degrees as shown by the chain line in FIG. 3. It is preferable that the characteristic formed on the lower portion (3) is 20 degrees compared with the reflection characteristic of the central portion (2) so that the rising angle becomes -40 degrees. The distribution width of the reflection characteristics of the upper ridge and lower portion (3) shown in Fig. 3 is the same as the distribution width of the reflection characteristics of the central ridge. In addition, in this embodiment, the sign of the angle of incidence and the angle of reflection refers to the angle of the light source side (incident side) relative to the normal direction hl of the reflector surface as negative, and the angle opposite to the light source side is positive. In addition, as another method for making the intensity of the reflected light uniform within a range of ± predetermined angles, as shown in FIG. 4, the center 0 of the display area 47 a of the reflector 47 in the upright state is used as a reference position, and the reflecting surface surface 49 is The tolerance position X of is represented by a distance from the center 0 of the display area 47a, and the upper position of the horizontal line passing through the center 0 of the display area 47a is taken as (+), and the lower position is taken as ㈠ In the following, the reflection characteristic at an arbitrary position x on the surface of the reflection surface is controlled by controlling the shape of the unevenness formed on the metal reflection film 2 so that the reflection characteristic at the reference position (χ = 0 cm) is used as a reference. A reflection characteristic having an offset Θ (degrees) = tan-i (x / L) (in the formula, l represents the distance from the center 0 of the display area 47a to the viewpoint 0bl, and ㊀ is a predetermined angle). For example, 'the size of the display area 47a of the reflector 47 in FIG. 4 is diagonal inches' Η is 15 cm, and when the distance L from the center 0 to the viewpoint 0bl is 28 cm, the symbols (i)-(vii The position X of the line and the predetermined angle θ are as follows: 100597.doc -14- 200540521 With x = 〇, the reflection characteristics of each position x (each line) are shown in Figure 5_6. The reflection characteristics of X are the angles at which each position x (each line) is biased. ⑴ line (ii) line (Hi) line (iv) line (V) line (vi) line (vii) line χ = + 7.5 cm, x == + 5.0 cm &gt; χ = + 2.5 cm, x = 〇cm &gt; x = -2.5 cm, ^ =-5.0 cm ^ x = -7.5 cm,

預定角Θ=+15度 預定角θ=+1〇度 預定角θ=+5度 預定角θ=〇度 預定角θ=-5度 預定角θ = ·1〇度 預定角θ = -15度 圖5〜圖6係表示以入射角_3〇度入射到圖4的反射體以的 顯示區域47a、的入射光Q的反射特性。Predetermined angle Θ = +15 degrees Predetermined angle θ = +10 degrees Predetermined angle θ = +5 degrees Predetermined angle θ = 0 degree Predetermined angle θ = -5 degrees Predetermined angle θ = · 10 degrees Predetermined angle θ = -15 degrees 5 to 6 show the reflection characteristics of the incident light Q that is incident on the display area 47a and the display area 47a of the reflector in FIG. 4 at an incidence angle of 30 degrees.

由於入射到顯示區域47a的㈣線的入射光Q的反射特性 顯示出如圖5的實線㈣所示的特性,對形成在金屬反射膜 12上的凹凸形狀條件進行控制,使得㈣線的反射特性顯 示出比圖5的實線(iv)所示的特性向高角度偏移+5度的反射 特性;⑼線的反射特性顯示出比圖5的實線㈣所示的特 性向高角度偏移+1G度的反射特性;⑴線的反射特性顯示 出比圖5的實線(iv)所示的特性向高角度偏移⑴度的反射 特性。 此外’對形成在金屬反射膜12上的凹凸形狀條件進行控 制,使得(V)線的反射特性顯示出比圖6的實線(iv)所示的 特性向低角度偏移-5度的反射特性;⑽線的反射特性顯 示出比圖6的實線㈣所示的特性向低角度偏移-1G度的反 100597.doc -15- 200540521 射特性,(vn)線的反射特性顯示出比圖6的實線(b)所示的 . 特性向低角度偏移-15度的反射特性。 此外,在特性方面最好係對應預定角的變化,使對應從 觀察側看面板時的預定角來控制的凹部的形成(條件)參數 連續變化,實際上,藉由針對每一個不會看見莫阿條紋等 的範圍内區域(帶狀)使其所述參數變換,來進行上述控 制。 $ 圖7係表示反射體47的一部分的立體圖。 如圖7所示,在該反射體47的金屬反射膜12的表面上, 以不規則的間距形成有具有反光性的多個凹部Μ。 本實施方式的反射體47的金屬反射膜12的剖面形狀如圖 15所示,在凹部之間邊界處縱剖面的剖面曲線傾角不連 續,換句話說,縱剖面的剖面曲線的一次微分係數不連 續。 作為在金屬反射膜12上形成的多個凹部63的例子,對應 φ 離開顯示區域47a中心的距離,適當選擇並形成圖8〜圖9所 示的第1例的凹部70、圖1〇〜圖12所示的第2例的凹部8〇、 圖13所示的第3例的凹部9〇、以及圖14所示的第4例的凹部 163中任何一種或者一種以上。 此外’在金屬反射膜12上形成的多個凹部63對應其從顯 示區域47的中央部a起的距離,改變其深度、寬度(或者直 瓜)、後述曲面的曲率半徑和曲面傾角之中的任何一個或 者一個以上。 圖8表示作為與顯示面的大致中央部相當的部分的反射 100597.doc -16- 200540521 體的例子,係表示第1例的凹部70的立體圖;圖9係表示圖 8的凹部70的Y軸方向剖面圖的圖。取向係圖2或者: 的直立狀態下的反射體的上下方向。凹部7()的内表面在本 實施方式中具有作為非球面的一部分的曲面向設置有多 個如此的凹部70的狀態的金屬反射膜,以預定角度(例2 30度)入射的光的散射反射光的反射強度分佈,以其正反 射角度為中心形成非對稱。 具體而言,該凹部70由曲率小的第1曲面和曲率大的第2 曲面構成,第1曲面及第2曲面在圖9所示的γ軸方向剖面 中’分別具有如下的形狀:從凹部70的一邊的周邊部s丨到 最深點D的第1曲線A1,和與第1曲線A1平緩連續地從凹部 70的最深點D到另一邊周邊部S2的第2曲線B1。 。亥最;木點D位於從凹部7 0的中心01向y方向側偏離的位 置,相對於基板10的水平面的第1曲線A1的傾角及第2曲線 B1的傾角的絕對值的平均值,分別設定為在i度〜89度、 0 · 5度〜8 8度的範圍内不規則地分散,且第1曲線a 1的傾角 平均值比第2曲線B1大。此外,表示最大傾角的第1曲線 A1的周邊部s 1的傾角在凹部70中不規則地大概分散在4 度〜35度的範圍内。 如此,將各凹部70的深度d設定為在大於等於0.25且小 於等於3的範圍内不規則地分散。在凹部70的深度d不滿 0.25微米的情況下,難於得到充分的反射光散射效果,或 者,在深度超過3微米的情況下,在後續工序中對凹部進 行了平坦化時,其頂部難以以平坦化膜埋住,而難於得到 100597.doc -17- 200540521 期望的平坦性。另外,在深度d超過3微米時,由於使平坦 化膜過厚,在高溫、高濕的條件下,液晶顯示面板的面板 外周部和端子附近的平坦化膜容易產生收縮、破裂。 此外’凹部7 〇的直徑1 (圖9的Y軸方向剖面中的凹部7 〇的 開口部的最大直徑)被設定為:在大於等於5微米且小於等 於100微米的範圍内不規則地分散。如果凹部7〇的直徑π 滿5微米,則由於為形成反射體而所使用的模型的製作方 籲 面的制約’加工時間延長,如果直徑1超過100微米,則很 難形成可得到期望的反射特性的形狀,此外容易發生産生 干涉光等的問題。而且,凹部7〇的直徑丨也被稱為凹痕直 徑。 此外,鄰接的凹部7〇的間距還可以配置成隨機的,以防 止凹部70的排列和液晶顯示裝置内的其他規則圖形之間的 干涉所引起的莫阿條紋。 在此,’’凹部的深度”係指從沒有形成凹部的部分的金屬 φ 反射膜12的表面(金屬反射膜12的水平面)12a到凹部底部的 距離,”鄰接的凹部間距&quot;係指俯視時凹部中心之間的距 離。 上述形狀係配置成x=0 cm的凹痕(dimple)形狀,按照χ&lt;〇 或者x&gt;0配置的形狀則從x==〇cm時的凹痕形狀變化而來。 圖10係表示第2例的一個凹部8〇的立體圖,圖u、圖12 分別係凹部80的Y軸方向剖面圖、χ軸方向剖面圖。 第2例的凹部80係改變第1例的凹部70的内表面形狀之後 的凹部,與上述凹部70同樣,反射光具有指向性。 100597.doc -18- 200540521 具體而言,第2例的凹部80與第1例的凹部70同樣,由曲 率小的第1曲面和曲率大的第2曲面構成,在圖丨丨的γ軸方 向剖面中’弟1曲面以及弟2曲面分別具有用從凹部$ 〇的一 邊的周邊部S1到最深點D的第1曲線A’、和與第i曲線A,平 緩地連績的從凹部8 0的最深點D到另一邊的周邊部$ 2的第2 曲線B’表示的形狀。該最深點d位於從凹部8〇的中心〇 1向y 方向側偏離的位置,相對於金屬反射膜表面(水平面)12a 的、第1曲線A’的傾角及第2曲線B,的傾角的絕對值的平均 值,分別在2度〜90度、1度〜89度的各範圍内不規則分散地 δ又疋’且弟1曲線A’的傾角的平均值比第2曲線b,的平均值 更大。此外,表示最大傾角的第1曲線Α,的周邊部s丨中的 傾角δα,在各凹部80中大概不規則地分散在4度〜35度的範 圍内。如此,各凹部80的深度d在0.25微米〜3微米的範圍 内不規則地分散。 此外,凹部80的直徑1(圖11的γ軸方向剖面中的凹部8〇 的開口部的最大直徑)被設定為不規則的分散在5微米以上 100微米以下的範圍内。 此外,鄰接的凹部80的間距被配置成隨機的。 上述形狀係配置成x=0 cm的凹痕(dimple)形狀,配置成 x&lt;0或者x&gt;0的形狀係從x=〇 cm時的凹痕形狀變化而來的。 另一方面,第1曲面和第2曲面兩者的形狀係:都相對於 如圖12所示的X軸方向剖面的中心01而大致左右對稱的形 狀。該X軸方向剖面的形狀係在最深點D的周邊曲率較大 的(即、接近於直線的平緩)曲線E,相對於該金屬反射膜 100597.doc -19- 200540521 表面(水平面)12a的傾角的絕對值大概小於等於1〇度。此 外,相對於深型曲線F、G的表面(金屬反射膜的水平面)丨2a 的傾角的絕對值,在2度〜9度的範圍内不規則地分散。 圖13係表示第3例的一個凹部9〇的剖面圖。 第3例的凹部9〇係改變第!例的凹部7〇的内表面形狀的凹 部。第3例的凹部90的内表面具有作為球面的一部分的曲 面以預疋角度(例如3 0度)入射到設置有多個如此的凹部 9〇的狀態的金屬反射膜的光的散射反射光的反射強度分 佈’以其正反射角度為中心在寬範圍内大致對稱。具體而 έ ’凹部90的内表面的傾角eg例如設定在大於等於-3〇度 且小於等於+30度的範圍。 此外’鄰接的凹部9〇的間距配置成隨機,可以防止由凹 部90的排列引起的莫阿條紋的産生。 此外,凹部90的直徑1(圖13中的凹部90的開口部的最大 直徑)在大於等於5微米且小於等於100微米的範圍内被設 定成不規則地分散。 而且,凹部90的深度形成為在大於等於〇·丨微米且小於 等於3微米的範圍内不規則地分散。此係因為,在凹部9〇 的深度不滿0.1微米的情況下,不能充分地得到反射光的 政射效果’而在深度超過3微米的情況下,為了滿足上述 内表面傾角的條件,不得不擴大凹部9〇的間距,由此有可 能導致産生莫阿條紋。 在此,”凹部90的深度,,係指從沒有形成凹部9〇的部分的 金屬反射膜12的表面(金屬反射膜12的水平面)i2a到凹部90 100597.doc -20- 200540521 的底部的距離,”鄰接的凹部90的間距”係指從俯視時具有 圓形形狀的凹部90的中心之間的距離。且,,凹部9〇的内表 面的傾角”係指:如圖1 3所示,在凹部90的内表面的任咅 • 處,例如取〇·5微米寬度的微小範圍時,相對於在該微小 範圍内的斜面水平面(金屬反射膜12的水平面12心的角度 eg。邊角度的正負定義為:相對於在沒有形成凹部9〇的 部分的金屬反射膜12的表面的法線,例如圖13的右側的斜 面為正,左側的斜面為負。 鲁 上述形狀係配置成cm的凹痕(dimpie)形狀,改變配 置成x&lt;0或x〉0的係從x=〇 cm時的凹痕形狀而得到者。 圖14係表不弟4例的凹部16 3的一個的剖面圖。 第4例的凹部1 63係改變第1例的凹部7〇的内表面形狀而 得到。 該凹部163·的特定縱剖面γ的内表面形狀係由以下部分構 成··從凹部的一個周邊部S 1到最深點D的第i曲線j,與該 φ 第1曲線;連續且從凹部的最深點D到第3曲線或直線N的第 2曲線K,以及與該第2曲線κ連續且到另一個周邊部“的 第3曲線或直線N。該第1和第2曲線在最深點D處共同相對 於表面(水平面)12a的傾角為〇,且彼此連接。 凹部163相對於第1曲線j的表面(水平面)12a的傾角比相 對於第2曲線K的傾角或相對於第3曲線或直線N更大,且 最深點D位於從凹部3的中心〇向丫方向偏移的位置。即, 第1曲線J相對於基材表面i 2a的傾角絕對值的平均值(以 下,稱為第1曲線J的傾角平均值),比第2曲線κ的相對於 100597.doc -21 - 200540521 基材表面(水平面)12a的傾角絕對值的平均值、以及第3曲 線或直線N的相對於基材表面(水平面)12a的傾角絕對值的 平均值大。此外,第2曲線K相對於基材表面(水平面)12a 的傾角絕對值的平均值(以下,稱為第2曲線κ的傾角的平 均值)與第3曲線或直線Ν相對於表面(水平面)12a的傾角絕 對值的平均值(以下,稱為第3曲線或直線^^的傾角平均值) 不同,在本實施方式中,第3曲線或者直線N的傾角平均值 比苐2曲線K的傾角平均值大。 換句話說,第1曲線J的曲率半徑R1的大小比第2曲線κ 的曲率半徑R2和第3曲線或者直線L的曲率半徑R3小,第3 曲線或直線L的曲率半徑R3的大小比第2曲線κ的曲率半徑 R2小。而且,上述第3曲線或直線l在曲率半徑R3為①的情 況下,成為直線。 多個凹部163的第1曲線J相對於表面(水平面)12a的傾角 平均值不規則地分散在1度〜89度的範圍内。此外,多個凹 部163a相對於第2曲線K的表面(水平面)i2a的傾角平均值 不規則地分散在0.5度〜88度的範圍内。且,多個凹部163 的第3曲線或者直線N的相對於表面(水平面)12a的傾角平 均值不規則地分散在0.5度〜88度的範圍内。 苐1曲線和第2曲線以及第3曲線或直線的傾角都平緩地 變化,所以第1曲線J的最大傾角5max(絕對值)比第2曲線κ 的最大傾角(絕對值)δΐ)以及第3曲線或直線ν的最大傾角 (絕對值)δο大。此外,第1曲線J和第2曲線Κ連續的最深點 D相對於基材表面的傾角為0,傾角為負值的第i曲線j和傾 100597.doc -22- 200540521 角為正值的第2曲線K平緩地連續,傾角為正值的第2曲線 Κ和第3曲線或者直線ν也平緩地連接。 本實施方式的反射體中,凹部163的各最大傾角Smaxf 規則地分散在2度〜90度的範圍内。但是,多個凹部的最大 傾角5max不規則地分散在4度〜35度的範圍内。 此外’該凹部163的凹面具有單獨的極小點(傾角為〇的 曲面上的點)D。且該極小點D和基材的基材表面(水平 面)12a之間的距離形成凹部ι63的深度d,該深度d在多個 凹部163中分別不規則地分散在〇」微米〜3微米的範圍内。 並且’郴接的凹部之間的間距不規則地設置在5微米〜5 〇微 米的範圍内。 本實施方式中,多個凹部163的各特定縱剖面¥均形成在 同方向上。此外,各第1曲線J形成為從觀察者的視點 Ob 1向遠方的方向γ方向對齊。此外,各第2曲線κ、第3曲 線或者直線N形成為與從觀察者的視點〇Μ到遠方的丫方向 相反的方向對齊。 上述的形成多個凹部163的部分中,各第丨曲線;形成為 沿單一方向定向,且第丨曲線j的傾角的平均值比第2曲線κ 的相對基材奉面(水平面)12a的傾角的平均值或者第3曲線 或直線L的相對於基材表面12a的傾角的平均值大,所以其 反射特性從相對於基材表面12a的正反射方向偏移。即, 其反射特性係··明亮的顯示範圍偏向來自Y方向的斜上方 向的入射光的反射光比正反射方向更朝向表面的法線方向 偏移的方向的反射特性。 100597.doc -23- 200540521 此外,在形成有多個凹部163的部分中,各第2曲線κ、 第3曲線或者直線Ν形成為向與第丨曲線:相反方向定向,而 且由於第3曲線或者直線Ν的傾角的平均值比第2曲線尺的 傾角的平均值大’在特定縱剖面γ上的综合反射特性,係 表現為·由第2曲線κ周邊的面反射的方向的反射率增加, 且與該反射率的大小相比,由第3曲線或者直線1周邊的面 反射的方向的反射率更大。因此,可以實現反射光適度地 集中在特定方向上的反射特性。 而且,對於上述實施方式的反射型液晶顯示裝置,說明 了將反射從外部入射的光的反射體内置於基板丨〇和基板2〇 之間的反射體内置型的情況,但是也可以係將反射體設置 在基板10外側的反射體外置型的裝置。 且,上述實施方式中,說明了在第2基板2〇和偏光板28 之間設置1片相位差板的情況,但是也可以設置多個相位 差板。 此外,上述實施方式中,對將本發明液晶顯示裝置適用 於反射型液晶顯示裝置的情況進行了說明,但是也可以適 用於半透射反射型液晶顯示裝置,此時,可以在反射體47 的金屬反射膜上設置微小開口部,或者,將金屬反射膜形 成為薄膜並構成半透射型薄膜,並在第1基板丨〇的外表面 側配置背光元件。 此外,上述實施方式中,說明了反射體由有機膜和金屬 反射膜(金屬膜)構成的情況’但是也可以用由鋁板等具有 反光性的金屬膜構成的基材形成,用衝壓工具(punch)(衝 100597.doc -24- 200540521 壓工具)的前端衝壓該基材的表面來形成凹部。 此外,本實施方式中,作為形成在反射體的金屬反射膜 上的多個凹部,可以採用第1〜第4例的凹部中一種或者一 種以上’但是也可以將第1〜第4例的凹部的一種或者一種 以上形成為使其凹部側朝向基板1 〇側(下側)(換句話說,凸 部側(與凹部相反側)朝向基板20側(上側)的),則可將其作 為在本發明反射體的金屬反射膜上形成的凸部。 此外,上述實施方式中,對將本發明適用於單純矩陣式 反射型液晶顯示裝置的情況進行了說明,但是其也同樣可 以適用於使用薄膜電晶體或者薄膜二極體的有源矩陣式, 或者片段(segment)式液晶顯示裝置等。如此的液晶顯示裝 置也都被包含在本發明中。 [實施例] 對應從反射面表面的顯示區域的中央部起的距離,來將 金屬反射膜上形成的凹部的尺寸控制成如表丨所示,由此 φ 製作入射到反射體的入射光在反射面表面上反射的反射光 強度在土預定角範圍内均勻的反射體。而且,圖16係此處 製作的處於直立狀態的反射體47的側面圖。 該反射體47的顯示區域47m々h為3〇 cm、[為仞㊀大 約為20度。 此外,將反射體47的顯示區域47a的中心〇作為基準位置 (x=0),將反射面表面47a的任意位置χ用從顯示區域的 中心Ο起的距離來表不’且將藉由顯示區域仏的中心〇的 水平線上側的位置作為(+),下側位置作為。 100597.doc -25- 200540521 圖16中符號(a)〜(e)點的位置乂和預定角㊀在以下的情況 下,各位置x(各區域)的反射特性以χ=〇 cm((c)點)時的反射 特性為基準,使上升角從χ=〇時的上升角偏移各位置χ(各 區域)的預定角(但是,反射特性的分佈幅度不變)。圖丨7表 示從貫施例中反射體的顯示區域的基準位置起的距離 x(cm)和入射角30度的上升角(度)的關係。 ⑷點 x=+15 cm 上升角θ=+0度 (b)點 x=+7 cm 上升角θ = -10度 (C)點 x=0 cm 上升角θ = -20度 ⑷點 xf-7 cm 上升角θ = -30度 (e)點 x=-15 cm 上升角θ=·40度Since the reflection characteristics of the incident light Q incident on the squall line entering the display area 47a show the characteristics as shown by the solid line ㈣ in FIG. 5, the condition of the uneven shape formed on the metal reflection film 12 is controlled so that the reflection of the squint line The characteristic shows a reflection characteristic shifted by +5 degrees to a high angle from the characteristic shown by the solid line (iv) in FIG. 5; the reflection characteristic of the ⑼ line shows a higher angle than the characteristic shown by the solid line ㈣ in FIG. 5. The reflection characteristic shifted by + 1G degrees; the reflection characteristic of the chirp line shows a reflection characteristic shifted to a higher angle than the characteristic shown by the solid line (iv) in FIG. 5. In addition, the conditions of the concave-convex shape formed on the metal reflective film 12 are controlled so that the reflection characteristics of the (V) line show a reflection shifted by -5 degrees to a lower angle than the characteristics shown by the solid line (iv) in FIG. 6. Characteristics; the reflection characteristics of the ⑽ line show an inverse 100597.doc -15- 200540521 radiation characteristic which shifts to -1G degrees lower than the characteristics shown by the solid line ㈣ in FIG. 6, and the reflection characteristics of the (vn) line show a ratio The solid line (b) in FIG. 6 shows a reflection characteristic whose characteristic is shifted to a low angle by -15 degrees. In addition, in terms of characteristics, it is desirable to respond to changes in the predetermined angle so that the formation (condition) parameters of the recesses controlled corresponding to the predetermined angle when the panel is viewed from the observation side are continuously changed. The area (band shape) within the range of A-stripe and the like is changed in its parameter to perform the above-mentioned control. FIG. 7 is a perspective view showing a part of the reflector 47. As shown in FIG. 7, a plurality of concave portions M having reflective properties are formed on the surface of the metal reflection film 12 of the reflector 47 at irregular intervals. The cross-sectional shape of the metal reflective film 12 of the reflector 47 of the present embodiment is shown in FIG. 15. The inclination angle of the cross-sectional curve of the vertical cross-section at the boundary between the recesses is not continuous. In other words, the first-order differential coefficient of the cross-sectional curve of the vertical cross-section is not constant. continuous. As an example of the plurality of recessed portions 63 formed on the metal reflection film 12, the recessed portions 70 and the first and second recessed portions 70, 10 to 10 shown in FIGS. 8 to 9 are appropriately selected and formed in accordance with the distance φ from the center of the display area 47a. Any one or more of the concave portion 80 of the second example shown in FIG. 12, the concave portion 90 of the third example shown in FIG. 13, and the concave portion 163 of the fourth example shown in FIG. 14. In addition, the plurality of recessed portions 63 formed on the metal reflective film 12 change their depth, width (or straightness), the radius of curvature of the curved surface, and the inclination of the curved surface according to the distance from the central portion a of the display area 47. Any one or more. FIG. 8 shows an example of the reflection 100597.doc -16- 200540521 as a portion corresponding to the substantially central portion of the display surface, and is a perspective view showing the concave portion 70 of the first example; FIG. 9 shows the Y axis of the concave portion 70 of FIG. 8. Illustration of a directional section. The orientation is the vertical direction of the reflector in the upright state of FIG. 2 or. The inner surface of the recessed portion 7 () in this embodiment has a curved surface that is a part of an aspherical surface, and the metallic reflection film in a state where a plurality of such recessed portions 70 are provided is scattered at a predetermined angle (Example 2 30 degrees). The reflection intensity distribution of the reflected light forms an asymmetry around its regular reflection angle. Specifically, the concave portion 70 is composed of a first curved surface with a small curvature and a second curved surface with a large curvature. The first curved surface and the second curved surface have the following shapes in the γ-axis direction cross section shown in FIG. 9. The first curve A1 to the deepest point D on one side of the peripheral portion 70 of the 70 and the second curve B1 from the deepest point D of the recessed portion 70 to the other side peripheral portion S2 gently and continuously from the first curve A1. . The point D is located at a position deviating from the center 01 of the recess 70 toward the y-direction side, and the average values of the absolute values of the inclination angles of the first curve A1 and the second curve B1 with respect to the horizontal plane of the substrate 10 are respectively It is set to be irregularly dispersed in the range of i to 89 degrees, and 0.5 to 88 degrees, and the average value of the inclination angle of the first curve a 1 is larger than the second curve B 1. In addition, the inclination angle of the peripheral portion s 1 of the first curve A1 indicating the maximum inclination angle is irregularly dispersed in the concave portion 70 in a range of approximately 4 degrees to 35 degrees. In this manner, the depth d of each of the recesses 70 is set to be irregularly dispersed in a range of 0.25 or more and 3 or less. When the depth d of the concave portion 70 is less than 0.25 μm, it is difficult to obtain a sufficient reflected light scattering effect, or when the depth exceeds 3 μm, when the concave portion is planarized in a subsequent process, it is difficult to flatten the top portion thereof. The film is buried and it is difficult to obtain the desired flatness of 100597.doc -17- 200540521. When the depth d exceeds 3 m, the flattening film is too thick, and the flattening film in the outer peripheral portion of the panel of the liquid crystal display panel and near the terminals is liable to shrink and crack under high temperature and high humidity conditions. In addition, the diameter 1 of the recessed portion 70 (the maximum diameter of the opening portion of the recessed portion 70 in the Y-axis direction cross section in FIG. 9) is set to be irregularly dispersed in a range of 5 μm or more and 100 μm or less. If the diameter π of the concave portion 70 is larger than 5 micrometers, the processing time of the model used to form the reflector is restricted due to the limitation of the processing time. If the diameter 1 exceeds 100 micrometers, it is difficult to form a desired reflection. In addition to the characteristic shape, problems such as interference light are likely to occur. The diameter 丨 of the recessed portion 70 is also referred to as a dent diameter. In addition, the pitch of the adjacent concave portions 70 may be randomly arranged to prevent moire fringes caused by interference between the arrangement of the concave portions 70 and other regular patterns in the liquid crystal display device. Here, "the depth of the recessed portion" means the distance from the surface of the metal φ reflective film 12 (the horizontal surface of the metal reflective film 12) 12a to the bottom of the recessed portion where the recessed portion is not formed, and "the distance between adjacent recessed portions" refers to a plan view. The distance between the centers of the recesses. The above-mentioned shape is arranged as a dimple shape of x = 0 cm, and the shape arranged according to χ &lt; 0 or x &gt; 0 is changed from the shape of the dent when x == 〇cm. FIG. 10 is a perspective view showing one recessed portion 80 in the second example, and FIGS. U and 12 are Y-axis cross-sectional views and χ-axis cross-sectional views of the recessed portions 80, respectively. The recessed portion 80 of the second example is a recessed portion after changing the shape of the inner surface of the recessed portion 70 of the first example. Similar to the recessed portion 70 described above, the reflected light has directivity. 100597.doc -18- 200540521 Specifically, the recessed portion 80 of the second example is composed of a first curved surface with a small curvature and a second curved surface with a large curvature, similar to the recessed portion 70 of the first example. In the cross section, the first and second curved surfaces respectively have a first curve A ′ from the peripheral portion S1 on one side of the recessed portion $ 0 to the deepest point D, and a continuous succession from the recessed portion 80 to the i-th curve A. The shape represented by the second curve B ′ from the deepest point D to the peripheral portion $ 2 on the other side. The deepest point d is located at a position deviated from the center 〇1 of the recessed portion 80 toward the y-direction side, and the absolute angle of the inclination of the first curve A ′ and the second curve B with respect to the surface (horizontal plane) 12a of the metal reflection film is absolute. The average value of the values is irregularly dispersed in the ranges of 2 degrees to 90 degrees and 1 degree to 89 degrees, respectively, and the average value of the inclination angle of the first curve A 'is greater than that of the second curve b. Bigger. In addition, the inclination angle δα in the peripheral portion s 丨 of the first curve A, which represents the maximum inclination angle, is approximately irregularly dispersed in the range of 4 to 35 degrees in each of the recesses 80. As described above, the depth d of each of the recesses 80 is irregularly dispersed in a range of 0.25 to 3 m. In addition, the diameter 1 of the recessed portion 80 (the maximum diameter of the opening portion of the recessed portion 80 in the γ-axis direction cross section in FIG. 11) is set to be irregularly dispersed in a range of 5 μm to 100 μm. Moreover, the pitch of the adjacent recessed part 80 is arrange | positioned at random. The above-mentioned shape is arranged as a dimple shape of x = 0 cm, and the shape arranged as x &lt; 0 or x &gt; 0 is changed from the shape of the dent when x = 0 cm. On the other hand, the shape of both the first curved surface and the second curved surface is a shape that is approximately symmetrical with respect to the center 01 of the X-axis direction cross section shown in FIG. 12. The shape of the cross section in the X-axis direction is the inclination of curve E at the periphery of the deepest point D with a large curvature (that is, a gentleness close to a straight line) with respect to the surface (horizontal plane) 12a of the metal reflective film 100597.doc -19- 200540521. The absolute value of is approximately 10 degrees or less. In addition, the absolute value of the tilt angle with respect to the surfaces of the deep curves F and G (the horizontal plane of the metal reflective film) 2a is irregularly dispersed in a range of 2 to 9 degrees. FIG. 13 is a cross-sectional view showing a concave portion 90 in the third example. The concave portion 90 of the third example is changed! The recessed portion of the example has an inner surface shaped recessed portion. The inner surface of the concave portion 90 of the third example has a scattering reflection of light that is a curved surface that is a part of a spherical surface and is incident at a predetermined angle (for example, 30 degrees) on a metal reflective film in a state where a plurality of such concave portions 90 are provided. The reflection intensity distribution 'is approximately symmetrical over a wide range with its specular reflection angle as the center. Specifically, the inclination angle eg of the inner surface of the recessed portion 90 is set in a range of, for example, 30 ° or more and + 30 ° or less. In addition, the spacing of the adjacent recesses 90 is arranged at random, and it is possible to prevent the occurrence of moiré fringes caused by the arrangement of the recesses 90. Further, the diameter 1 of the recessed portion 90 (the maximum diameter of the opening portion of the recessed portion 90 in Fig. 13) is set to be irregularly dispersed in a range of 5 m or more and 100 m or less. Further, the depth of the recessed portion 90 is formed to be irregularly dispersed in a range of ≧ µm to 3 µm. This is because when the depth of the recess 90 is less than 0.1 micron, the effect of reflected light cannot be sufficiently obtained. When the depth exceeds 3 micron, in order to meet the above conditions of the inclination of the inner surface, it must be enlarged. The pitch of the recesses 90 may cause moire fringes. Here, "the depth of the recessed portion 90" means the distance from the surface of the metal reflection film 12 (the horizontal surface of the metal reflection film 12) i2a to the bottom of the recessed portion 90 100597.doc -20- 200540521 "The distance between adjacent recesses 90" refers to the distance from the center of the recesses 90 having a circular shape in plan view. Also, the inclination of the inner surface of the recesses 90 means "as shown in FIG. 13, At any position of the inner surface of the recessed portion 90, for example, when a minute range with a width of 0.5 micron is taken, the angle eg with respect to the inclined horizontal plane (the horizontal plane 12 of the horizontal plane of the metal reflective film 12) within the minute range. Positive and negative are defined as normal with respect to the surface of the metal reflective film 12 in the portion where the recessed portion 90 is not formed. For example, the slope on the right side of FIG. 13 is positive and the slope on the left side is negative. The shape of the dimpie is obtained by changing the shape of the dent when x = 0 or x> 0. The cross-sectional view of one of the dents 16 3 in 4 examples is shown in FIG. 14. The recessed portion 1 63 of the fourth example is changed from the recessed portion 7 of the first example. The inner surface shape of the specific longitudinal section γ of the concave portion 163 is composed of the following: The i-th curve j from one peripheral portion S 1 of the concave portion to the deepest point D, and the φ first curve ; A second curve K that is continuous and from the deepest point D of the concave portion to the third curve or line N, and a third curve or line N that is continuous with the second curve κ and goes to another peripheral portion. The first and second The inclination angle of the two curves at the deepest point D in common with respect to the surface (horizontal plane) 12a is 0 and connected to each other. The inclination ratio of the concave portion 163 with respect to the surface (horizontal plane) 12a of the first curve j is relative to the inclination of the second curve K or It is larger than the third curve or straight line N, and the deepest point D is located at a position shifted from the center 0 to the direction of y. That is, the average value of the absolute value of the inclination of the first curve J with respect to the substrate surface i 2a (Hereinafter, referred to as the average value of the inclination angle of the first curve J), the average value of the absolute value of the inclination angle of the second curve κ with respect to 100597.doc -21-200540521 substrate surface (horizontal plane) 12a, and the third curve or The inclination of the straight line N with respect to the substrate surface (horizontal plane) 12a is absolutely The average value of the values is large. In addition, the average value of the absolute value of the inclination angle of the second curve K with respect to the substrate surface (horizontal plane) 12a (hereinafter, referred to as the average value of the inclination angle of the second curve κ) and the third curve or straight line N The average value of the absolute value of the inclination angle with respect to the surface (horizontal plane) 12a (hereinafter, referred to as the average value of the inclination angle of the third curve or the line ^^) is different. In this embodiment, the average value of the inclination angle of the third curve or the line N is平均值 2 The average value of the inclination angle of the curve K is large. In other words, the curvature radius R1 of the first curve J is smaller than the curvature radius R2 of the second curve κ and the curvature radius R3 of the third curve or the straight line L. The third curve or The magnitude of the curvature radius R3 of the straight line L is smaller than the curvature radius R2 of the second curve κ. The third curve or straight line l is a straight line when the radius of curvature R3 is ①. The average inclination angle of the first curve J of the plurality of concave portions 163 with respect to the surface (horizontal plane) 12a is irregularly dispersed in a range of 1 to 89 degrees. In addition, the average inclination angle of the plurality of concave portions 163a with respect to the surface (horizontal plane) i2a of the second curve K is irregularly dispersed in a range of 0.5 to 88 degrees. In addition, the average value of the inclination of the third curve or straight line N of the plurality of recesses 163 with respect to the surface (horizontal plane) 12a is irregularly dispersed in a range of 0.5 to 88 degrees.的 The inclination angles of the 1st curve, the 2nd curve, and the 3rd curve or straight line change gently, so the maximum inclination angle 5max (absolute value) of the first curve J is larger than the maximum inclination angle (absolute value) δ of the second curve κ) and the third The maximum inclination (absolute value) δο of the curve or straight line ν is large. In addition, the inclination angle of the deepest point D continuous with the first curve J and the second curve K with respect to the surface of the substrate is 0, and the i-th curve j and the inclination with a negative inclination angle 100597.doc -22- 200540521 The two curves K are smoothly continuous, and the second curve K and the third curve or straight line ν having a positive inclination are also smoothly connected. In the reflector of this embodiment, each maximum inclination angle Smaxf of the recessed portion 163 is regularly dispersed in a range of 2 ° to 90 °. However, the maximum inclination angle 5max of the plurality of recesses is irregularly dispersed in a range of 4 ° to 35 °. In addition, the concave surface of the concave portion 163 has a single minimum point (point on a curved surface with an inclination angle of 0) D. And the distance between the minimum point D and the substrate surface (horizontal plane) 12a of the substrate forms the depth d of the recessed portion ι63, and the depth d is irregularly dispersed in the plurality of recessed portions 163 in the range of 0 micrometers to 3 micrometers, respectively. Inside. In addition, the interval between the contiguous recesses is irregularly set in a range of 5 to 50 μm. In the present embodiment, each of the specific longitudinal sections ¥ of the plurality of recessed portions 163 is formed in the same direction. In addition, each of the first curves J is formed so as to be aligned in a distant direction γ direction from the observer's viewpoint Ob 1. In addition, each of the second curve κ, the third curve, or the straight line N is formed so as to be aligned in a direction opposite to the y direction from the viewpoint OM of the observer to the distance. In the above-mentioned portion where the plurality of recesses 163 are formed, each of the first and second curves is formed to be oriented in a single direction, and the average value of the inclination angle of the first and second curves j is greater than the inclination angle of the second substrate κ (the horizontal plane) 12a of the second curve κ. Since the average value of the angle of inclination or the third curve or straight line L with respect to the substrate surface 12a is large, the reflection characteristics thereof are shifted from the direction of regular reflection with respect to the substrate surface 12a. That is, the reflection characteristic is a reflection characteristic in which a bright display range is deflected toward the incident light from the obliquely upward direction from the Y direction, and the reflected light is shifted toward the surface normal direction than the specular reflection direction. 100597.doc -23- 200540521 In the portion where the plurality of recesses 163 are formed, each of the second curve κ, the third curve, or the straight line N is formed to be oriented in a direction opposite to the first curve: and the third curve or The average value of the inclination angle of the straight line N is larger than the average value of the inclination angle of the second curve ruler. The comprehensive reflection characteristic on a specific longitudinal section γ is expressed as the increase in the reflectance in the direction reflected by the surface around the second curve κ, In addition, the reflectance in the direction reflected by the surface around the third curve or the straight line 1 is larger than the magnitude of the reflectance. Therefore, a reflection characteristic in which the reflected light is appropriately concentrated in a specific direction can be achieved. Furthermore, in the reflective liquid crystal display device of the above-mentioned embodiment, the case where the reflector which reflects the light incident from the outside is placed between the substrate 丨 and the substrate 20 has been described, but the reflection may also be used. A reflecting external-type device whose body is disposed outside the substrate 10. Furthermore, in the above-mentioned embodiment, the case where one retardation plate is provided between the second substrate 20 and the polarizing plate 28 has been described. However, a plurality of retardation plates may be provided. In addition, in the above embodiment, the case where the liquid crystal display device of the present invention is applied to a reflective liquid crystal display device has been described. However, the liquid crystal display device may also be applied to a transflective liquid crystal display device. In this case, the metal of the reflector 47 may be used. A minute opening is provided in the reflective film, or a metal reflective film is formed as a thin film to form a semi-transmissive thin film, and a backlight element is disposed on the outer surface side of the first substrate. In addition, in the above-mentioned embodiment, the case where the reflector is composed of an organic film and a metal reflective film (metal film) has been described. However, it may be formed of a substrate made of a reflective metal film such as an aluminum plate, and a punching tool (punch ) (Punch 100597.doc -24- 200540521 press tool) the front end of the substrate is punched to form a recess. In addition, in the present embodiment, as the plurality of recesses formed on the metal reflection film of the reflector, one or more of the recesses of the first to fourth examples may be used. However, the recesses of the first to fourth examples may be used. If one or more of them are formed such that the recessed portion side faces the substrate 10 side (lower side) (in other words, the convex portion side (opposite to the recessed portion) faces the substrate 20 side (upper side)), it can be used as The convex portion formed on the metal reflection film of the reflector of the present invention. In addition, in the above embodiment, the case where the present invention is applied to a simple matrix reflection type liquid crystal display device has been described, but it can also be applied to an active matrix type using a thin film transistor or a thin film diode, or Segment type liquid crystal display device and the like. Such a liquid crystal display device is also included in the present invention. [Example] According to the distance from the center of the display area on the surface of the reflective surface, the size of the concave portion formed on the metal reflective film was controlled as shown in Table 丨. A reflector having a uniform intensity of reflected light reflected on the surface of the reflecting surface within a predetermined angle range of the soil. FIG. 16 is a side view of the reflector 47 in the upright state produced here. The display area 47 m々h of this reflector 47 is 30 cm, and [仞 ㊀ is approximately 20 degrees. In addition, the center 0 of the display area 47a of the reflector 47 is used as a reference position (x = 0), and an arbitrary position χ of the reflective surface 47a is expressed by a distance from the center 0 of the display area. The position on the horizontal side of the center 0 of the region 作为 is taken as (+), and the position on the lower side is taken as (+). 100597.doc -25- 200540521 The positions 的 and predetermined angles 点 of the symbols (a) to (e) in FIG. 16 are as follows: the reflection characteristic of each position x (each area) is χ = 0 cm ((c Point)), and the rising angle is shifted from the rising angle when χ = 0 by a predetermined angle at each position χ (each region) (however, the distribution width of the reflection characteristic does not change). Fig. 7 shows the relationship between the distance x (cm) from the reference position of the display area of the reflector in the embodiment and the rising angle (degree) of the incident angle of 30 degrees. Point x = +15 cm Rise angle θ = +0 degree (b) Point x = +7 cm Rise angle θ = -10 degrees (C) Point x = 0 cm Rise angle θ = -20 degrees Point xf-7 cm rise angle θ = -30 degrees (e) point x = -15 cm rise angle θ = 40 degrees

圖1 8係表示製作的反射體47的顯示區域47a的(c)點附近 形成的凹部263(和圖14的凹部163大致相同)的剖面圖。由 於(c)點附近形成的凹部263的曲率半徑ri係15微米,第3 直線N的傾角係90度,所以凹部内形成垂直的平坦面。 在顯示區域47a的(a)、(b)、(d)、(e)點附近分別形成的 凹部中,係將(c)點附近形成的凹部263的特定縱剖面的第i 曲線J的傾角θ!、寬度ri、從水平面12a起的深度^、第2曲 面K的傾角㊀2 ’寬度r2、第3曲面或者直線N起的深度d2變 更為表1所示的值者。 100597.doc -26- 200540521 表1 位置 Θ!(度) 山(榻:米) rl(微米) 〇2(度) 、--- d2(微米) -------- r2(微米) C I ⑻ 15 0.5 3.9 20 0.9 (b) 20 0.9 5.1 15^ ^---^ 0.5 3.9 (c) 25 1.4 6.3 10 0.23 2.6 ---—_ 1 〇 ⑼ 30 2 7.5 5 0.05 (e) 35 8.6 —---— --^^ 0 1.J 此外 ’為了進行比較: ’除了將在顯示區 —---- 域中形j U 完的多個 凹部與所有形成在(c)點上的凹部2 6 3具有相同條件之外 製造與實施例相同尺寸的反射體,作為比較例。 圖19〜圖20表示分別以入射角_30度入射到所製作的實施 例和比較例的反射體上時的反射特性。圖2 分別形成在實施例中反射體的⑷、⑻、⑷、:二 近的凹部。實施例中分別形成在反射板的顯示區域47a的 ⑷、(b)、⑷、⑷、⑷點附近的凹部,越靠近上側形成, 深度越淺。此外’實施财分別形成在⑻〜⑷點附近的凹 部’形成有平面的一側靠近上側設置,形成在⑷點附近的 凹部的形成有平面的一側成為下側。 根據如圖19〜圖20所示的結果可知,本實施例的反射體 人比較例相比’在更廣的受光角範圍内反射強度更大,且 反射強度偏差小。因&amp;,根據本實施例的反射體,即使 在大面積的面内能夠得到均句且足夠程度的亮度。 【圖式簡單說明】 100597.doc -27 - 200540521 圖1係表示本發明的第1實施方式的反射型液晶顯示裝置 的部分剖面結構的圖。 圖2係表示圖1的液晶顯示裝置處於直立狀態的時候的反 射體的立體圖。 圖3係表示圖1的液晶顯示裝置中配備的反射體的反射特 性的俯視圖。 圖4係表示圖1的液晶顯示裝置處於直立狀態時的反射 體’即從各線的基準位置起的距離以及預定角的立體圖。 圖5係表示圖4的反射體的顯示區域的(i)〜(iv)線的位置上 以-30度入射角入射的入射光的反射特性的圖。 ,圖6係表示圖4的反射體的顯示區域的(iv)〜(Vii)線的位置 上以-30度入射角入射的入射光的反射特性的圖。 圖7係表示圖1的液晶顯示裝置配備的反射體的一部分的 立體圖。 圖8係表示圖7的反射體的金屬反射膜上形成的凹部的第 1例的立體圖。 圖9係表示圖8的凹部的Y軸方向剖面圖的圖。 圖1 〇係表示圖7的反射體的金屬反射膜上形成的凹部的 第2例的立體圖。 圖11係圖10的凹部的Y轴方向剖面圖。 圖12係圖1〇的凹部的X軸方向剖面圖。 圖13係表示圖7的反射體的金屬反射膜上形成的凹部的 第3例的剖面圖。 圖丨4係表示圖7的反射體的金屬反射膜上形成的凹部的 100597.doc -28- 200540521 第4例的剖面圖。 圖15係表示圖7的反射體的剖面形狀的圖。 圖丨6係實施例中製作的反射體的直立狀態的側面圖。 圖17係表示實施例的從反射體的顯示區域的基準位置起 的距離與上升角的關係的圖。 圖1 8係表示實施例的反射體的顯示區域的(c)點附近形成 的凹部的剖面圖。 • _表示實施例的反射體的反射特性的圖。 圖2 0係表示比較例的反射體的反射特性的圖。 圖21係表示現有的反射型液晶顯示裝置的例子的側面剖 面圖。 圖22係表示圖21的反射液晶顯示裝置中配備的反射體的 反射層的剖面圖。 圖23係表示圖21的反射液晶顯示裝置中配備的反射板的 反射特性的圖。 • 圖24係具備現有的液晶顯示裝備的攜帶型電子設備的使 用狀態的說明圖。 圖25係表示現有的反射板的面内各部分的反射率的圖。 圖26係模式地表示實施例的反射體的(a)、(b)、(c)、 (d)、(e)點附近分別形成的凹部形狀的縱剖面圖。 【主要元件符號說明】 1 反射型液晶顯示裝置 10 第1基板 11 有機膜 100597.doc -29- 200540521 12 金屬反射膜 12a 表面 12b 表面 13 遽色器 14 覆層膜 15 透明電極層 16 定向膜 20 第2基板 24 覆層膜 25 透明電極層 26 定向膜 27 相位差板 28 偏光板 30 液晶層 35b 液晶早元 47 反射體 47a 區域 53 透明夾層 63, 70, 80, 90, 163, 263 凹部 101 相對基板 110 液晶層 102 元件基板 122 金屬膜 122b 凹部 100597.doc -30- 20054052118 is a cross-sectional view showing a recessed portion 263 (approximately the same as the recessed portion 163 in FIG. 14) formed in the vicinity of the point (c) of the display area 47a of the reflector 47 produced. Since the curvature radius ri of the concave portion 263 formed near the point (c) is 15 micrometers and the inclination angle of the third straight line N is 90 degrees, a vertical flat surface is formed in the concave portion. The inclination of the i-th curve J of the specific longitudinal section of the concave portion 263 formed near the point (c) in the concave portions formed near the points (a), (b), (d), and (e) of the display area 47a θ !, the width ri, the depth ^ from the horizontal plane 12a, the inclination angle ㊀2 'of the second curved surface K, the width r2, and the depth d2 from the third curved surface or the straight line N are changed to the values shown in Table 1. 100597.doc -26- 200540521 Table 1 Position Θ! (Degrees) mountain (tat: meters) rl (microns) 〇2 (degrees), d2 (microns) -------- r2 (microns) CI ⑻ 15 0.5 3.9 20 0.9 (b) 20 0.9 5.1 15 ^ ^ --- ^ 0.5 3.9 (c) 25 1.4 6.3 10 0.23 2.6 -----_ 1 〇⑼ 30 2 7.5 5 0.05 (e) 35 8.6 — ------^^ 0 1.J In addition, 'for comparison:' Except for the multiple recesses formed by the shape j U and all the recesses formed at point (c) in the display area —---- domain. As a comparative example, a reflector having the same size as that of the example was manufactured with the same conditions as those of 2 6 3. 19 to 20 show reflection characteristics when incident on the reflectors of the examples and comparative examples produced at an incidence angle of -30 degrees. Fig. 2 is formed with the concave portions ⑷, ⑻,:, and: 2 of the reflector in the embodiment. In the embodiment, the recesses formed near the ⑷, (b), ⑷, ⑷, and ⑷ points of the display area 47a of the reflecting plate are formed closer to the upper side, and the depth becomes shallower. In addition, the "implementation recesses formed in the vicinity of the ⑻ to ⑷ points" are provided near the upper side, and the flat side of the recesses formed near the ⑷ points is the lower side. According to the results shown in Figs. 19 to 20, it can be seen that, compared with the comparative example of the reflector in this embodiment, the reflection intensity is greater in a wider light receiving angle range, and the variation in the reflection intensity is small. Therefore, according to the reflector of this embodiment, even and uniform brightness can be obtained even in a large area. [Brief description of the drawings] 100597.doc -27-200540521 Fig. 1 is a diagram showing a partial cross-sectional structure of a reflective liquid crystal display device according to a first embodiment of the present invention. Fig. 2 is a perspective view showing a reflector when the liquid crystal display device of Fig. 1 is in an upright state. Fig. 3 is a plan view showing a reflection characteristic of a reflector provided in the liquid crystal display device of Fig. 1. Fig. 4 is a perspective view showing a distance from a reference position of each line and a predetermined angle of the reflector when the liquid crystal display device of Fig. 1 is in an upright state. Fig. 5 is a diagram showing reflection characteristics of incident light incident at an incidence angle of -30 degrees at positions of lines (i) to (iv) in a display area of the reflector of Fig. 4. FIG. 6 is a diagram showing the reflection characteristics of incident light incident at an angle of incidence of -30 degrees at positions of lines (iv) to (Vii) in the display area of the reflector of FIG. 4. Fig. 7 is a perspective view showing a part of a reflector provided in the liquid crystal display device of Fig. 1. Fig. 8 is a perspective view showing a first example of a recessed portion formed in the metal reflection film of the reflector of Fig. 7. FIG. 9 is a view showing a cross-sectional view in the Y-axis direction of the recessed portion of FIG. 8. Fig. 10 is a perspective view showing a second example of a recessed portion formed in the metal reflection film of the reflector in Fig. 7. 11 is a cross-sectional view in the Y-axis direction of the recessed portion of FIG. 10. FIG. 12 is a cross-sectional view in the X-axis direction of the recessed portion of FIG. 10. Fig. 13 is a cross-sectional view showing a third example of a recessed portion formed in the metal reflection film of the reflector of Fig. 7. FIG. 4 is a cross-sectional view of a fourth example of 100597.doc -28- 200540521 showing a recess formed on the metal reflection film of the reflector of FIG. 7. FIG. 15 is a view showing a cross-sectional shape of the reflector in FIG. 7. FIG. 6 is a side view of an upright state of the reflector manufactured in the 6-series embodiment. Fig. 17 is a diagram showing the relationship between the distance from the reference position of the display area of the reflector and the rising angle in the embodiment. FIG. 18 is a cross-sectional view showing a recessed portion formed near a point (c) in a display area of the reflector of the embodiment. • _ is a graph showing the reflection characteristics of the reflector of the embodiment. FIG. 20 is a diagram showing reflection characteristics of a reflector of a comparative example. Fig. 21 is a side cross-sectional view showing an example of a conventional reflective liquid crystal display device. Fig. 22 is a cross-sectional view showing a reflective layer of a reflector provided in the reflective liquid crystal display device of Fig. 21. Fig. 23 is a diagram showing the reflection characteristics of a reflection plate provided in the reflection liquid crystal display device of Fig. 21. • Fig. 24 is an explanatory diagram of a use state of a portable electronic device equipped with a conventional liquid crystal display device. FIG. 25 is a diagram showing the reflectance of each part in the plane of a conventional reflecting plate. FIG. 26 is a longitudinal cross-sectional view schematically showing a shape of a concave portion formed in the vicinity of points (a), (b), (c), (d), and (e) of the reflector of the embodiment. [Description of main component symbols] 1 Reflective liquid crystal display device 10 First substrate 11 Organic film 100597.doc -29- 200540521 12 Metal reflective film 12a Surface 12b Surface 13 Dust 14 Coating film 15 Transparent electrode layer 16 Orientation film 20 Second substrate 24 Overlay film 25 Transparent electrode layer 26 Orientation film 27 Phase difference plate 28 Polarizing plate 30 Liquid crystal layer 35b Liquid crystal early element 47 Reflector 47a Area 53 Transparent interlayer 63, 70, 80, 90, 163, 263 Recess 101 Substrate 110 Liquid crystal layer 102 Element substrate 122 Metal film 122b Recess 100597.doc -30- 200540521

122c 凸部 122d 連接部 122e 連接部 128 絕緣層 130 反射板 200 顯示部 205 主體 H 縱向尺寸 L 距離 100597.doc -31 -122c Convex portion 122d Connection portion 122e Connection portion 128 Insulation layer 130 Reflector 200 Display portion 205 Main body H Longitudinal dimension L Distance 100597.doc -31-

Claims (1)

200540521 十、申請專利範圍: 1 · 一種反射體,係設置於液晶顯示裝置中,具有反射面, 其特徵在於: 上述反射體的反射特性對應從反射面表面的顯示區域 中央部起的距離而改變,入射到上述反射體的入射光在 反射面表面所反射的反射光強度設定為在±預定角的範 圍内均勻,上述預定角滿足下述公式⑴的關係: Θ(度 ^taniHOL) 公式(I)200540521 X. Scope of patent application: 1 · A reflector, which is provided in a liquid crystal display device and has a reflective surface, characterized in that the reflection characteristics of the reflector change according to the distance from the center of the display area on the surface of the reflective surface , The intensity of the reflected light reflected by the incident light incident on the reflector on the surface of the reflecting surface is set to be uniform within a range of ± predetermined angle, and the predetermined angle satisfies the relationship of the following formula ⑴: Θ (degrees ^ taniHOL) formula (I ) (該公式中,Θ係預定角;η係上述顯示區域的上下方 向尺寸,大於等於2 cm且小於等於3〇 cm ; L係從上述顯 示區域的中心到視點的距離,大於等於1〇 〇111且小於等 於 300 cm) 〇 2.如請求項1之反射體,其中位於較顯示區域中央部為上 側的上部的反射特性,比起中央部的反射特性係上升角 被偏向高角度側’而位於較顯示區域中央部為下側的下 部的反射特性,比起中央部的反射特性係上升角被偏向 低角度側。 3.如請求❸之反射體,其中若以顯示區域的中心作為基 準位置,而將上述反射面表面的任意位置X以從上述顯 不區域中心起的距離表示,且將較上述顯示區域的中心 為上側的位魏為(+)’為下側的位置設為㈠時,上述反 射面表面的任意位置x的反射特性為將上述基準位置的 反射特性作為基準而僅偏移Q(声 α八“ T主 (度)-tan (X/L)的反射特性 表不從顯示區域的中心到視點的距離,θ 100597.doc 200540521 係預定角)。 4 ·如睛求項1至3中任一項之, 貝之反射體,其中上述反射體,係 在基材上形成的金屬膜或基封的矣 乂丞柯的表面上,以不規則的間 距形成具有反光性的多個凹部,上述凹部内表面具有為 球面或者非球面的一部分的曲面,在鄰接的上述凹部邊 界或鄰接的凹部之間,縱剖面的剖面曲線的傾角不連 續,上述金屬膜或基材的表面成為反射面,上述多個凹 部,對應從反射面表面的顯示區域中央部起的距離,改 變其深度、寬度(或者直徑)、上述曲面的曲面半徑或上 述曲面的傾角之中的任何一個或—個以上。 5. 如請求項⑴中任一項之反射體,其中上述反射體,係 在基材上形成的金屬膜或基材的表面上,以不規則的間 距形成具有反光性的多個凸部,上述凸部内表面具有為 球面或者非球面的一部分的曲面,在鄰接的上述凸部邊 界或鄰接的凸部之間,縱剖面的剖面曲線的傾角不連 續’上述金屬膜或基材的表面成為反射面,上述多個凸 部,對應從反射面表面的顯示區域中央部起的距離,改 變其高度、寬度(或者直徑)、上述曲面的曲面半徑或上 述曲面的傾角之中的任何一個或一個以上。 6. -種液晶顯示裝置’其特徵在於,具有液晶單元,該液 晶單元係在夾著液晶層而相對的—對基板中,於作為觀 察側的-個基板的内表面側設置電極及定向膜,在遠離 觀察側的另-個基板的内表面側設置電極及定向膜; 在上述另-個基板與在其内表面側上設置的定向膜之 100597.doc 200540521 間或者上述另一個基板的外表面側,設置如請求項1至3 中任一項之反射體。(In the formula, Θ is a predetermined angle; η is the size of the above display area in the vertical direction, 2 cm or more and 30 cm or less; L is the distance from the center of the display area to the viewpoint, 100 mm or more And less than or equal to 300 cm) 〇2. The reflector according to claim 1, wherein the reflection characteristic located on the upper side of the upper portion of the display region is higher than the reflection characteristic of the central portion. The reflection characteristic of the lower portion is lower than the center portion of the display region, and the rising angle is shifted to the low angle side compared to the reflection characteristic of the center portion. 3. If a reflector is requested, if the center of the display area is used as a reference position, an arbitrary position X of the surface of the reflective surface is expressed by a distance from the center of the display area, and will be greater than the center of the display area. When the position on the upper side is (+) 'and the position on the lower side is set to ㈠, the reflection characteristic at an arbitrary position x on the surface of the reflection surface is shifted by only Q (acoustic α 八"The reflection characteristic of T main (degrees) -tan (X / L) indicates the distance from the center of the display area to the viewpoint, θ 100597.doc 200540521 (predetermined angle). 4 · Ask for any one of items 1 to 3 In the item, the reflector of the shell, wherein the reflector is a surface of a metal film formed on the base material or a base seal, and a plurality of concave portions having reflective properties are formed at irregular intervals. The inner surface has a curved surface that is a part of a spherical surface or an aspherical surface. The inclination of the sectional curve of the longitudinal section is discontinuous between the adjacent concave portions or the adjacent concave portions, and the surface of the metal film or substrate becomes a reflective surface. The plurality of concave portions change any one or more of the depth, width (or diameter), the radius of the curved surface of the curved surface, or the inclination of the curved surface according to the distance from the center of the display area on the reflective surface. 5 The reflector according to any one of the claims, wherein the reflector is a metal film formed on a substrate or a surface of the substrate, and a plurality of convex portions having reflective properties are formed at irregular intervals. The inner surface of the convex portion has a curved surface that is a part of a spherical surface or an aspherical surface, and the inclination angle of the cross-sectional curve of the longitudinal section is discontinuous between the adjacent convex boundary or the adjacent convex portions. The surface of the metal film or substrate becomes a reflective surface. The plurality of convex portions change any one or more of their height, width (or diameter), the radius of the curved surface of the curved surface, or the inclination of the curved surface according to the distance from the center of the display area on the reflective surface. 6. A liquid crystal display device 'characterized in that it has a liquid crystal cell which is opposed to each other with a liquid crystal layer interposed therebetween-in a substrate An electrode and an alignment film are provided on the inner surface side of the one substrate as the observation side, and an electrode and an alignment film are provided on the inner surface side of the other substrate away from the observation side; on the other substrate and on the inner surface side thereof In the 100597.doc 200540521 of the orientation film provided, or the outer surface side of the other substrate, a reflector as set forth in any one of claims 1 to 3 is provided. 100597.doc100597.doc
TW094112161A 2004-04-16 2005-04-15 Reflector and liquid crystal display device using the same TWI266934B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121658A JP2005308789A (en) 2004-04-16 2004-04-16 Reflector and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
TW200540521A true TW200540521A (en) 2005-12-16
TWI266934B TWI266934B (en) 2006-11-21

Family

ID=35095896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094112161A TWI266934B (en) 2004-04-16 2005-04-15 Reflector and liquid crystal display device using the same

Country Status (5)

Country Link
US (1) US20050231663A1 (en)
JP (1) JP2005308789A (en)
KR (1) KR100694900B1 (en)
CN (1) CN100432779C (en)
TW (1) TWI266934B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466394B2 (en) * 2005-12-21 2008-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using a compensation scheme for a patterning array
CN111462650B (en) * 2020-04-23 2022-03-25 歌尔光学科技有限公司 Imaging assembly and imaging device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226061B1 (en) * 1997-03-25 2001-05-01 Sharp Kabushiki Kaisha Liquid crystal display device having phase different plates
US6130736A (en) * 1997-06-13 2000-10-10 Alps Electric Co., Ltd. Liquid crystal display with corrugated reflective surface
TW496992B (en) * 1997-07-29 2002-08-01 Alps Electric Co Ltd Reflector having pits and projections on a surface thereof, manufacturing method for the same, and reflection type liquid crystal display device using the same
CN1201170C (en) * 1999-11-09 2005-05-11 欧姆龙株式会社 Reflecting member and light reflecting method
JP3871913B2 (en) * 2000-11-14 2007-01-24 シャープ株式会社 Reflective display device and prism array sheet
JP2002328396A (en) * 2001-04-26 2002-11-15 Nec Corp Liquid crystal display device and its manufacturing method
KR100483979B1 (en) * 2001-06-22 2005-04-18 엔이씨 엘씨디 테크놀로지스, 엘티디. Reflection plate, manufacturing method thereof, liquid crystal display device and manufacturing method thereof
JP4671562B2 (en) * 2001-08-31 2011-04-20 富士通株式会社 Illumination device and liquid crystal display device
JP4162900B2 (en) * 2002-02-05 2008-10-08 アルプス電気株式会社 Illumination device and liquid crystal display device

Also Published As

Publication number Publication date
JP2005308789A (en) 2005-11-04
CN1683975A (en) 2005-10-19
US20050231663A1 (en) 2005-10-20
TWI266934B (en) 2006-11-21
KR100694900B1 (en) 2007-03-13
KR20060045737A (en) 2006-05-17
CN100432779C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
TW594218B (en) Reflector and reflective liquid crystal display device
KR100478574B1 (en) Reflector and reflective liquid crystal display
JP2005114772A (en) Reflector and liquid crystal display device using the same
TWI269107B (en) Transflective film and liquid crystal display device
JP2004133250A (en) Reflector and liquid crystal display device
EP1271190B1 (en) Reflector and reflective liquid crystal display
JP4159886B2 (en) Reflector and liquid crystal display device
TW200540521A (en) Reflector and liquid crystal display device using the same
TW202328780A (en) Reflective displays including reflectors
JP4544182B2 (en) Illumination device, electro-optical device, and manufacturing method thereof
US7057685B2 (en) Reflective plate, liquid crystal display (LCD) using same, and electronic apparatus using this LCD
JP4030835B2 (en) Reflector and reflective liquid crystal display device including the reflector
JP4307799B2 (en) Reflector and reflective liquid crystal display device
TWI832256B (en) Light diffusion sheets, backlight units, liquid crystal display devices and information equipment
JP3694220B2 (en) Reflector and reflective liquid crystal display device
JP3515544B2 (en) Reflector and reflective liquid crystal display
JP4310130B2 (en) Reflector and liquid crystal display device
JP2004061767A (en) Reflector and manufacturing method therefor, and reflection type liquid crystal display
TW202407438A (en) Reflective displays including reflectors
TWI294058B (en)
JP2004157568A (en) Liquid crystal display device and portable electronic apparatus
JP2002328368A (en) Reflector and reflection type liquid crystal display device
TW200525187A (en) Reflector and liquid-crystal display
JP2003195021A (en) Reflector, method for manufacturing the same and liquid crystal display device
JP2003287611A (en) Optical member and liquid crystal display element using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees