TW200536248A - Control method and apparatus of synchronous motors - Google Patents

Control method and apparatus of synchronous motors Download PDF

Info

Publication number
TW200536248A
TW200536248A TW93112199A TW93112199A TW200536248A TW 200536248 A TW200536248 A TW 200536248A TW 93112199 A TW93112199 A TW 93112199A TW 93112199 A TW93112199 A TW 93112199A TW 200536248 A TW200536248 A TW 200536248A
Authority
TW
Taiwan
Prior art keywords
motor
current
voltage
command
phase angle
Prior art date
Application number
TW93112199A
Other languages
Chinese (zh)
Inventor
Yen-Shin Lai
Su-Chen Tien
Fu-San Shyu
Jhih-Ciang Hu
Original Assignee
Yen-Shin Lai
Su-Chen Tien
Fu-San Shyu
Jhih-Ciang Hu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yen-Shin Lai, Su-Chen Tien, Fu-San Shyu, Jhih-Ciang Hu filed Critical Yen-Shin Lai
Priority to TW93112199A priority Critical patent/TW200536248A/en
Publication of TW200536248A publication Critical patent/TW200536248A/en

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

This invention presents the control method and appatrus for synchronous motor drives. The basic principle is to make the phase shift between back electromagnetic force and stator current equal zero. It simplifies the calculation complexityof the controller, which derive the reference angle of voltage by the phase angle between voltage and stator current, and the synchronous angle of back electromagnetic force, and thereby giving the optimal torque output.

Description

200536248 玖、發明說明: 【發明所屬之技術領域】 本發明係應用於有Μ永磁同步馬達之驅動控制技 術,特別是本驅動控制技術具有計算簡單、控制容易之特 性’並且可得到最佳之轉矩/定子電流比。 【先前技術】 永磁同步馬達因體積小與效率高等優點,於中低容量應用場 σ曰趨曰遍,第1圖為永磁同步馬達患用向量控制於調速系統之架 麵 構,此例以往技術詳細記載於西元:〇〇〇年國際工業電子協會之年 度會議論文[i ;以下說明此例以往技術並統一元件與符號,第工 圖乂向量控制達成馬達調速·利用室標轉換將永磁同步馬達的數 子模式轉換至同步旋轉d-Q轴座標,並對弦波時變電流於同步旋轉 d-q軸座標映射之等效直流投影量扣以控制與運算後,產生馬達靜 止座標α袖電壓L與馬達靜止座標3軸電壓心,匕與^經由脈波 寬度調變信號產生裝置7產生脈波寬度調變信號心〜以控制功率晶 變頻裳置17’達成變頻裝置υ相電壓6、變頻裝置ν相電签κ與鲁 變頻裝置W相電壓心之控制:與F,供應功率至同步馬達1,分 另J由~^與厂,對同步馬達中心點電壓K之差值產生馬達U相電流 △'馬達V相電流Λ與馬達相電流/,。 , /〃、Λ與分別於同步馬達1之定子線圈產生磁場,定子線圈 jQeS^ 冬日 野對同步馬達1之轉子磁場作功產生軸承機械輸出,轉子 磁場於定J2L _ <于二相線圈分別產生馬達11相反電勢〜、馬達V相反電勢 、馬達W相反電勢;同步馬達1之軸承與馬達轉子共軸回授裝 12 200536248 置2相接以產生馬達轉子回授信號3,亦可由信號3得知馬達轉子資 訊;轉子回授信號轉換裝置5利用信號3取得馬達轉子資訊,並產 生馬達轉子速度〜Λ與馬達電機角夕4個輸出信號;其中信號〜 正比率於同步馬達1之轉子轉速,信號由同步馬達i之轉子位置 轉換,轉子旋轉一圈則夕e經過角度為36〇Q乘以極數再除以2,亦 可由夕,取得同步馬達i之三相反電勢e〃、〜與〜之相位;以信號^ 作為α -点軸靜止座標對d — q軸旋轉座標之轉換角度,可確保d — q 軸旋轉座標相對於同步馬達丨之轉子磁場兩者同步。 由電流回授裝置分別對"、"與/,偵測可分別取得馬達_電 流回授/〜、馬達V相電流回授“與馬達w相電流回授,其中可由 /〜與/”如下式之運算取得“。 I Vi = - ( IU1 -f l V1) - /3軸靜止座標 α軸電流八與 /V/如下式之運 將1吕號/〜、/”與/〇,輸入至三相弦波對邙 轉換裝置4,可計算或查表以求取馬達靜止座標 馬達靜止座標冷軸電流^,其中可由"與 算取得"與〇。 Iα = I in -1 η/2 -1 m/2 “ =30 5χ(Ινι—ινι)/2 將信號h與/〆,輪入至 5妯 主α々轴靜止座標對d-q軸旋轉座 標轉換裝置6,可取得馬達電流 ; 疋轉軸座標映射之等 :直流投影量’其中“轴旋轉座標相對於"軸靜止座標之 又為〜,裝置6可由計算或查表得知馬達旋轉座標d轴電流 ^與馬達旋轉座.標轴電流 ,、中久與八如下式之運算可取 传/,與八。 13 200536248200536248 发明 Description of the invention: [Technical field to which the invention belongs] The present invention is applied to the drive control technology of the permanent magnet synchronous motor with M, especially the drive control technology has the characteristics of simple calculation and easy control, and can obtain the best Torque / stator current ratio. [Previous technology] Because of its small size and high efficiency, permanent magnet synchronous motors are used in low and medium capacity applications. Figure 1 shows the frame structure of the permanent magnet synchronous motor with vector control in the speed control system. This example The past technology is described in detail in the AD: 2000 Annual Conference Paper of the International Association of Industrial Electronics [i; the following describes this example of the prior art and unifies the components and symbols. The PM mode of the permanent magnet synchronous motor is switched to the synchronous rotation dQ axis coordinate, and the equivalent DC projection amount of the sine wave time-varying current mapped on the synchronous rotation dq axis coordinate is buckled for control and calculation, and the motor stationary coordinate α sleeve voltage is generated. L and motor stationary coordinates are 3 axis voltage centers, and the pulse width modulation signal center is generated by the pulse width modulation signal generating device 7 ~ to control the power crystal frequency converter 17 'to achieve the frequency conversion device υ phase voltage 6, frequency conversion Device ν phase electric sign κ and Lu frequency conversion device W phase voltage core control: Supply power to F with synchronous motor 1, separately from J and factory, produce the difference between voltage K of synchronous motor center point U-phase motor current △ 'Λ V-phase current motor and the motor phase current / ,. / 〃, Λ generate magnetic fields with the stator coils of the synchronous motor 1, respectively. The stator coil jQeS ^ The work of the rotor magnetic field of the synchronous motor 1 generates a mechanical output of the bearing. The rotor magnetic field is fixed at J2L _ < Generate the opposite potential of the motor 11 ~, the opposite potential of the motor V, and the opposite potential of the motor W; the bearing of the synchronous motor 1 and the motor rotor coaxial feedback device 12 200536248 2 are connected to generate the motor rotor feedback signal 3, which can also be obtained from signal 3. Know the motor rotor information; the rotor feedback signal conversion device 5 uses the signal 3 to obtain the motor rotor information and generates 4 output signals of the motor rotor speed ~ Λ and the motor motor angle; where the signal ~ is proportional to the rotor speed of the synchronous motor 1, The signal is converted by the rotor position of the synchronous motor i. If the rotor rotates once, the angle e passes through 36Q multiplied by the number of poles and then divided by 2. It is also possible to obtain the three opposite potentials of the synchronous motor i〃, ~ and ~. Phase; using the signal ^ as the α-point axis stationary coordinate to d — q axis rotation coordinate conversion angle, can ensure that the d — q axis rotation coordinate relative to the rotor magnetic field of the synchronous motor 丨The two are synchronized. The current feedback device detects ", " and /, respectively, and can obtain the motor_current feedback / ~ and the motor V-phase current feedback "and the motor w-phase current feedback, where / ~ and /" can be obtained. The following formula is used to obtain ". I Vi =-(IU1 -fl V1)-/ 3-axis static coordinate α-axis current eight and / V / The following formula will be 1 Lu / /, /" and / 〇, enter to The three-phase sine wave confrontation conversion device 4 can calculate or look up a table to obtain the motor stationary coordinate motor stationary coordinate cold axis current ^, which can be obtained by " and calculation " and 〇. Iα = I in -1 η / 2 -1 m / 2 "= 30 5χ (Ινι—ινι) / 2 Turn signals h and / 〆 to 5 妯 The main α々 axis static coordinate pair dq axis rotation coordinate conversion device 6, the motor current can be obtained; 疋 mapping of the rotation axis coordinates: DC projection amount 'of which "axis rotation coordinate relative to the" axis static coordinate is again ~ ", device 6 can calculate the motor rotation coordinate d-axis current by calculating or checking the table ^ And motor rotating seat. Axis current, Zhongjiu and eight can be calculated by the following formula /, and eight. 13 200536248

Id= /^ xcos Θ e +1^ xsin 0 e I~I^ xsin /9 e +1^ xcos /9 e 第l圖由三組控制器對信號〜π、信號與信號八控制及與 運异,目的為產生適當之^與Γ々以控制變頻裝置輸出電壓h、 ~與心’且此適當之^與心提供之能量將促使同步馬達1的速 度達到系統期望之目標速度。馬達轉速命令〜/為控速系統期望 之系統目標速度,將〜/與〜〃輸入至速度誤差量求取裝置g,裝 置9求取以/對以〃之差值並輸入速度控制裝置1〇,裝置以以/ 對心〃之差值判別出適當之轉矩命令輸入至q軸電流計算 裝置1 5以a十异出q軸電流命令/〆,此//可視為促使同步馬達工 速度達到α/的適當馬達旋轉座標q轴電流成分。將八、八輸入 至q軸電流誤差量求取裝置i 3,裝置丨3求取八,對八之差值並輸 入q軸電流控制裝置14,裝置14以//對/,之差值判別出適當之 Q軸電壓叩令&,將d軸電流命令與八輸入至d軸電流誤差 、$置11裝置11求取對/〃之差值並輸入d軸電流控制 ^ 2 ,裝置1 2以//對之差值判別出適當之d輛電壓命令 匕’一般而言,設定"Μ以降低損失。 dq軸電壓控制裝置16之目的,為求取旋轉座標d軸輸出電 C匕與旋轉座標q轴輸出電壓匕,將dH與仏輸入 至裝置1 fi,梦要1 β ,、》u , 裝置1 b以其内件之計算功能達成為求κ與匕之目的; 甘中 , 匕匕〃匕可視為促使同步馬達1之電流成分,達到符合 八與八期望的適當電壓命令。 將乜號K與匕,輪入至d-q軸旋轉座標對α _冷軸靜止座標 轉換凌置8,可將信號h與信號L於同步旋轉d-q軸座標映射之 14 200536248 等效直流投影量,轉換成α —点轴靜止座標映射之等效直流投影 f匕與b ’其中d — q轴旋轉座標相對於α-/3軸靜止座標之角 度為夕裝置8可由計算或查表得知L與5,其中h與Κ如 下式之運算可取得匕與❼。Id = / ^ xcos Θ e + 1 ^ xsin 0 e I ~ I ^ xsin / 9 e + 1 ^ xcos / 9 e Figure l The signal is controlled by three groups of controllers ~ π, signal and signal eight, and the difference The purpose is to generate appropriate ^ and Γ々 to control the output voltage h, ~ and heart of the frequency conversion device, and the energy provided by this appropriate ^ and heart will cause the speed of the synchronous motor 1 to reach the desired speed of the system. The motor speed command ~ / is the system target speed expected by the speed control system, and ~ / and ~ 〃 are input to the speed error amount obtaining device g, and the device 9 obtains the difference between / pair of 〃 and enters the speed control device 1〇 , The device judges the appropriate torque command by the difference between the palpitations and the input to the q-axis current calculation device. 15 makes a q-axis current command different from a, which is considered to promote the speed of the synchronous motor. The appropriate motor rotation coordinate of α / is the q-axis current component. Input eight and eight into the q-axis current error amount determining device i 3, and the device 丨 3 finds the difference between eight and enters the q-axis current control device 14, and the device 14 judges by the difference of //// Issue the appropriate Q-axis voltage command & input the d-axis current command and eight to the d-axis current error, set 11 to 11 to find the difference between pairs / 〃 and enter the d-axis current control ^ 2, device 1 2 Use the difference between the // pair to determine the appropriate voltage command command. Generally speaking, "M" is set to reduce losses. The purpose of the dq-axis voltage control device 16 is to obtain the rotating coordinate d-axis output electric C and the rotating coordinate q-axis output voltage d, and input dH and 仏 to the device 1 fi, dream 1 β ,, u, device 1 b The calculation function of its internals is used for the purpose of seeking κ and dagger; Gan Zhong, dagger dagger can be regarded as the current component of the synchronous motor 1 to achieve the appropriate voltage command that meets the expectations of eight and eight. Rotate K and dagger to dq axis rotation coordinate pair α _ cold axis static coordinate conversion set to 8, signal h and signal L can be synchronized to rotate dq axis coordinate mapping 14 200536248 equivalent DC projection amount, conversion The equivalent DC projections of the α-point axis static coordinate mapping f d and b ′, where the angle of the d — q-axis rotation coordinate relative to the α- / 3-axis static coordinate is the device. The device 8 can be obtained by calculation or look-up table. , Where h and κ can be obtained by the following formula.

Va = VdXCOS Θ e - VqXSi Π Θ e = Vdxsin Θ eiVqXcos Θ e 信號^與信號匕經由裝置7產生信號以控制功率晶體 變頻裝置1 7,達成變頻裝置輸出電壓κ、厂與g之控制;匕、厂 與心供應功率至同步馬達丨,分別由心、卜與&對同步馬達中心 麵 點電壓之差值產生馬達電流/〃、Λ與/,,且八、"與/,於同 步馬達1之定子線圈產生磁場對轉子磁場作功產生轴承機械輸 出’並產生馬達轉子速度似〃與馬達電機角夕e之變化;由裝置2、 裝置5、信號/〃/與信號/"等回授裝置再次取得、a、γ CO m 與夕θ,可再次由上述永磁同步馬達調速系統之架構與流程,週 而復始進行永磁同步馬達調速。上述中,信號^與信號匕經由 裝置7產生信號以達成裝置1 7輸出電壓卜、h與Γ,之控制, 裝置1 7可採用三相二階變頻器架構,習知技藝以空間向量調 % 調變波-載波比較法達成裝置7之信號[ 3 ];裝置1 7亦可採 用三相三階變頻器架構,習知技藝以調變波-載波比較法[4]或外 間向量調變[5 ]達成裝置7之信號;裝置1 7亦可ά用三4目多 階變頻器架構,習知技藝以調變波-載波比較法[6 ]或空間向# 士 里占周 變[7]達成裝置7之信號。 回顧第1圖永磁同步馬達應用向量控制於調速系統之以奸 仗技 術,為記載於西元2000年國際工業電子協會之年度會議論文 〈架 15 200536248 構[1 ],此架構必須使用三句> 土,丨哭从…t •3 <二d 故1加設計之複雜度,三個控 制器分別為速度控制裝置U、;鈾雷、土〜止丨壯@。 丄υ α轴冤义控制裝置1 2與q轴電流控 制裝置14,其中裝置12與奘玄Λ i 裝ι 1 4必!依照馬達本體之各項參數 而a又计,此外,q轴電流言十苜窆要1 q 「π久置11)與dq軸電壓控制裝置1 6必 須執行複雜之計算,且裝薏H座装 i i 〇興衷置1 6必須使用馬達本體之各 項參數藉以計算;但眾所咨土民、去, 穿知,馬達各體之各項參數會因長期使 用、環境溫度、環境溼度茇=I , 寻s素改變,且相異馬達彼此間之各項 參數亦相異。Va = VdXCOS Θ e-VqXSi Π Θ e = Vdxsin Θ eiVqXcos Θ e The signal ^ and the signal d are generated by the device 7 to control the power crystal frequency conversion device 17 to achieve the control of the output voltage κ, factory and g of the frequency conversion device; The power is supplied to the synchronous motor by the factory and the heart, and the motor currents / 〃, Λ and / are generated from the difference between the center point voltage of the synchronous motor and the & and, respectively. The stator coil generates a magnetic field to perform work on the rotor magnetic field to generate a bearing mechanical output, and generates a change in the speed of the motor rotor similar to 〃 and the angle of the motor angle e; feedback from device 2, device 5, signal / 信号 / and signal / " etc. The device obtains again, a, γ CO m, and evening θ, which can be controlled by the structure and flow of the above-mentioned permanent magnet synchronous motor speed regulation system again and again to perform permanent magnet synchronous motor speed regulation. In the above, the signal ^ and the signal signal are generated by the device 7 to achieve the control of the output voltages b, h, and Γ of the device 17. The device 17 can adopt a three-phase second-order inverter architecture. The wave-carrier comparison method achieves the signal of the device 7 [3]; the device 17 can also adopt a three-phase three-order frequency converter architecture, and the technique is known to modulate the wave-carrier comparison method [4] or the outer vector modulation [5] ] Achieved the signal of device 7; device 17 can also use three or four mesh multi-level inverter architecture, and know the technique to modulate the wave-carrier comparison method [6] or space direction # 士 里 占 周 变 [7] reached Signal of device 7. Reviewing the first figure, the permanent magnet synchronous motor applies vector control to the speed control system. It is described in the paper of the annual conference of the International Industrial Electronics Association in 2000 [Frame 15 200536248] [1]. This architecture must use three sentences. > Soil, cry from ... t • 3 < 2d, so 1 plus the complexity of the design, the three controllers are the speed control device U ,; uranium mine, soil ~ 止 丨 壮 @.丄 υ α-axis injustice control device 12 and q-axis current control device 14, among which device 12 and 奘 玄 Λ i installed 1 4 must! According to the various parameters of the motor body, a is also counted. In addition, the q-axis current is 10 窆, and the dq-axis voltage control device 16 must perform complex calculations. ii 〇 It is necessary to use 16 to calculate the parameters of the motor body; however, the public, the people, and the wearer know that the parameters of the motor body will be due to long-term use, ambient temperature, and environmental humidity 茇 = I , The sine change is changed, and the parameters of the different motors are also different.

王理上述第1圖之以爸技術架嘍[1 1控制器之設計福雜、控 迴一裔必須依"照馬4本體之參·皇設計、雷洎邀雷壓計算裝豎必 須執行福雜計算、電流盘*^ ^ # "~' 1 計具裝f必須依循馬達各項參數且 異馬達彼此間不具相定nwWang Li's first picture above is based on the technology of the father. [1 1 The design of the controller must be mixed, and the control must be performed according to the reference design of the horse. Blessing calculation, current plate * ^ ^ # " ~ '1 The meter must be installed in accordance with the parameters of the motor and the different motors do not have a phase relationship nw

第2圖為永磁同步馬達應同向量苎制於調速系統之架構,此例 、住技術詳細,己載於中華民§專利公告號00437151 [2],利用電壓 相位補j貝角度△心之偏差量達成靜二座標輸出電壓角纟夕。之控 制以調整馬達有效功率電:m:圖中靜止座標輸出電壓絕對 值厂7與靜止座標輸出電麗角复夕~輸〜至脈波寬度調變信號產生 裝置18 ’仏號厂與信號$ 經由裝置:8產生信號卜"以控制功率晶 體變頻裝置1 7 ’達成變頻裝置輸出電墼、心與厂,之控制,分別由 hh與h對同步馬達中心點電壓h之差值產生馬達電#流/〃、八與 h ’馬達電流於同步馬達1之定子線g產生磁場對轉子磁場作功產 生轴承機械輸出’並產生馬達轉子运度〜α與馬達電機角&之變 化’其中’信號h與夕”為信號厂2與心於相同物理量與相同座標 系統下的另一種數學表示法.厂:與y ”對於L與b之關係如下式 16 200536248 表示。Figure 2 shows the structure of a permanent magnet synchronous motor that should be controlled with a vector in a speed-regulating system. This example, detailed in the technology, has been published in the Chinese People's Republic § Patent Bulletin No. 00437151 [2], using the voltage phase to compensate for the angle of the j. The deviation amount reaches the static second coordinate output voltage angle. Control to adjust the effective power of the motor: m: the absolute value of the stationary coordinate output voltage in the picture, factory 7 and the stationary coordinate output, electric angle, eve ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Via the device: 8 generates a signal "to control the power crystal frequency conversion device 17" to achieve the control of the frequency conversion device output voltage, core and plant, respectively, the motor voltage is generated by the difference between hh and h to the synchronous motor center point voltage h # 流 / 〃 、 八 和 h 'The motor current generates a magnetic field on the stator line g of the synchronous motor 1 to work on the rotor magnetic field to generate a bearing mechanical output' and generates a motor rotor's movement ~ α and the change of the motor angle & “Signal h and evening” is another mathematical representation of signal plant 2 with the same physical quantity and the same coordinate system. Plant: and y ”for L and b is represented by the following formula 16 200536248.

Va = VlXCOS Θ VI Vβ = Vixsin θ 將馬達轉速命令〜/與馬達轉子速度〜〃輸入至速度誤差量 求取裝置9 ’裳置9求取似/對〜,之差值並輸入速度控制裝置 20 ’裝置20以以/對〜贝之差值判別出適當之馬達有效功率命令 //;/?可視為促使同步馬達1之速度達到似/的有效功率電流。 信號^與^輸入至α-/3軸靜止座標對ρ轴旋轉座標轉換 裝置19’其中ρ軸旋轉座標相對於α -点轴靜止座標之角度為 夕”’以此取得馬達有效功率電流/〃;將//與//>輸入至有效電流 誤差量求取裝置21,裝置21求取//對/〃之差值並將此差值輸入 至有效電流控制裝置2 2,裝置2 2以//對/〃之差值判別出適當之 電壓相位補償角度△夕厂△夕/可視為促使同步馬達1之八達到 //的適當電壓相位補償角度。信號△夕/與夕,輸入至電壓相位 角度運鼻裝置以取得夕”,其中夕w二△夕7 /夕換言之,第2 圖之以往技術利用△夕/之偏差量達成夕”之控制,以夕"調整 馬達有效功率電流//>,此適當之//?促使同步馬達1之實際速度心成 達到期望之系統目標速度似/,達成永磁同步馬達調速之目的。 回顧第2圖永磁同步馬達應用向量控制於調速系統之以往技 術,為記載於中華民國專利公告號〇〇4371 51之架構[2],此架構 利用調整相位角之偏差量達成電壓相位之控制,以達成馬達有效 功率電流"之調整’並以此促使同步馬達之實際速度達到期望之 目標。但以另一方面,此架構所調整之電壓相位亦包含無效功率 電流,無效功率電流雖無法經由定子線圈產生磁場對轉子磁場作 17 200536248 功產生軸承機械輸出,但無效功率電流使馬達電流八、Λ與Λ 之有效值增加’電流有效值增加亦等同於馬達定子銅損、馬達定 子鐵損、馬達雜散損與變頻裝置損失增加;故此架構調速系統具 玄的無效^^電流,且無效功率雷洁無法對機械輪出作功祐 損失° 【以往技術之來源】Va = VlXCOS Θ VI Vβ = Vixsin θ Input the motor speed command ~ / and the motor rotor speed ~ 〃 into the speed error amount determining device 9 'Shangjia 9 finds the similarity / pair ~, and enters the difference into the speed control device 20 'The device 20 judges the proper motor effective power command with the difference between / pair and shells. //; /? Can be regarded as promoting the speed of the synchronous motor 1 to reach a similar effective power current. The signals ^ and ^ are input to the α- / 3-axis stationary coordinate to the ρ-axis rotary coordinate conversion device 19 ', where the angle of the ρ-axis rotary coordinate with respect to the α-point-axis stationary coordinate is evening "' to obtain the motor effective power current / 〃 ; // and // > are input to the effective current error amount obtaining device 21, the device 21 obtains the difference of // pair / 〃 and inputs this difference to the effective current control device 2 2 and the device 22 2 to // Distinguish the proper voltage phase compensation angle for the difference of / △△ Xi Factory △ Xi / can be regarded as an appropriate voltage phase compensation angle that promotes the eighth of the synchronous motor //. Signal △ Xi / Yi, input to the voltage Phase angle operation of the nose device to obtain the evening ", among which evening w 2 △ evening 7 / evening In other words, the prior art of Fig. 2 uses the deviation of △ evening / to achieve evening" control to evening " adjust the motor effective power current / / > This appropriate //? promotes the actual speed of the synchronous motor 1 to achieve the desired system target speed similar to /, and achieves the purpose of the permanent magnet synchronous motor speed regulation. Recalling Figure 2 the permanent magnet synchronous motor uses vector control at The previous technology of the speed control system is recorded in the Chinese people Patent Bulletin No. 0437371 51's architecture [2], this architecture uses the adjustment of the phase angle to achieve the voltage phase control to achieve the motor effective power and current 'adjustment' and thereby promote the actual speed of the synchronous motor to meet expectations On the other hand, the voltage phase adjusted by this architecture also includes reactive power current. Although the reactive power current cannot generate a magnetic field to the rotor magnetic field through the stator coil, the 2005 2005248 work produces mechanical output of the bearing, but the reactive power current causes the motor Increase of the effective value of current eight, Λ and Λ 'The increase of effective value of current is also equivalent to the increase of motor stator copper loss, motor stator iron loss, motor stray loss, and inverter loss; therefore, the architecture speed regulation system has a mysterious ineffective current ^^ , And the ineffective power Lei Jie can't make a contribution to the mechanical wheels. [Source of past technology]

tl] S. C. Hsu, w. D. Liu, and C. H. Liu, "Parameter auto-tuning for a linear permanent magnet synchronous motor drive,,, Proc. of the IEC0N, pp. 1 03 1 -1 036, 2000.tl] S. C. Hsu, w. D. Liu, and C. H. Liu, " Parameter auto-tuning for a linear permanent magnet synchronous motor drive ,,, Proc. of the IEC0N, pp. 1 03 1 -1 036, 2000.

[2]中華民國專利公告號00437151,「同步電動機之控制裝置」, 東芝股份有限公司申請 f3] S. R. Bowes and Y. S. Lai, “The relationship between space-vector modu 1 ation and regu1ar-samp1ed PWM,” IEEE Trans, on Industrial Electronics, Vo 1. 44, pp. 670 — 679, 1 997.[2] Republic of China Patent Publication No. 00437151, "Control Device for Synchronous Motors", Toshiba Corporation Application f3] SR Bowes and YS Lai, "The relationship between space-vector modu 1 ation and regu1ar-samp1ed PWM," IEEE Trans , on Industrial Electronics, Vo 1. 44, pp. 670 — 679, 1 997.

[4] G· Carrara,S. Gade Ilia, M. Marcheson i, R. Salitari, and[4] G. Carrara, S. Gade Ilia, M. Marcheson i, R. Salitari, and

G. Sc i utto, u k new multilevel PWM method: a theoretical analysis,” IEEE Trans, on Power E1ectronics,Vo 1. 17, pp. 497-505, 1992.G. Sc i utto, u k new multilevel PWM method: a theoretical analysis, "IEEE Trans, on Power Electronics, Vo 1. 17, pp. 497-505, 1992.

[5] J. H. Suh, C. H. Choi, and D. S. Hyun, “ A new simplified space-vector PWM method for three-level inverters, in Proc. of IEEE APEC. pp. 51 5-520,1 999. 令 [6] B. Mwinyiwiwa, Z. Wo 1ansk i, and B. T. Ooi, “Microprocessor-implemented SPWM for Multi converters wi th phase-shi f ted triangle carriers, IEEE Trans, on Industry Applications, Vol. 34, pp. 487-494, 1998.[5] JH Suh, CH Choi, and DS Hyun, “A new simplified space-vector PWM method for three-level inverters, in Proc. Of IEEE APEC. Pp. 51 5-520, 1 999. Order [6] B Mwinyiwiwa, Z. Wo 1ansk i, and BT Ooi, "Microprocessor-implemented SPWM for Multi converters wi th phase-shi f ted triangle carriers, IEEE Trans, on Industry Applications, Vol. 34, pp. 487-494, 1998.

[7] L. Li, D. Czarkowski, Y. Liu, and P. Pi11 ay, “Multilevel space vector PWM technique based on phase-shift harmonic 18 200536248 suppression,” in Proc. of IEEE APEC、pp. 535 — 54 1, 2 0 0 0. 【本發明擬解決之課題與解決課題之手段】 由習知技藝說明,回顧第1圖永磁同步馬達應用向量控制於 調速系統之以往技術,為記載於西元2 0 0 〇年國際工業電子協會之 年度會議論文之架構[1 ],此架構之控制器設計複雜、控制器必須 依照馬達本體各項參數設計、電流與電壓計算裝置必須執行複雜 計算、電流與電壓計算裝置必須依循馬達各項參數且相異馬達彼 此間不具相容性。 由習知技藝說明,回顧第2圖永磁同步馬達應用向量控制於 調速系統之以往技術,為記載於中華民國專利公告號〇 q 4 3 71 5 1 之架構[2 ]’此架構利用所調整之電壓相位亦包含無效功率電流, 無效功率電流對軸承產生機械作功輸出,但無效功率電流導致馬 達電流有效值增加,亦等同於馬達定子銅損、馬達定子鐵損、馬 達雜散損與變頻裝置損失增加;故此架構調速系統具有寄生的無 效功率電流’且無效功率電流無法對機械輸出作功並增加損失。 本發明在不增加任何回授元件與成本之前提下,將回授完整 利用以取代運算,直接以負載相位角計算裝置與電壓相位角計算 裝置,使無效功率電k強制為零,系統維持於相同電流之最大轉 矩工作,換言之相同轉矩出力下之損失最低;另一方面,直接以 一組電壓振幅控制裝置,於馬達最大轉矩與最高效率狀態,控制 系統輸出功率,故控制器設計簡單、無需執行複雜計算、電流與 電壓計算裝置無須依循大量馬達參數且相異馬達彼此間相容性極 南0 19 200536248 為解決習知技藝中,控制i設計嗄雜之缺點,以及電流與* 壓計算裝置必須執行複雜計算等缺點·本發明以減少控制器數旦 克服此缺點,以往技術記載於3元2 0 0〕年國際工業電子協會 度會議論文之架構[1 ],需使汚三組控刮器完成調速系統,舉例本 發明第3圖所示之調速系統,配合第,圖所示之負载相位角計算 裝置第-例與第15圖所示之電壓振幅控制裝置第 卜1加 任何回授元件與成本之前提下,σ ^ ^ ,、而尺用一組控制器即完成調速 系統。 為解決習知技藝中,和& t队器必須义照馬達本體之各項參數設 计之缺點’以及電流與電懕 电璺。弄裝置4須依循馬達各項參數且相 異馬達彼此間不具相容性箄, ^ α ‘銘,本發明以減少控制器數量並 回授完整利用取代運曾,冷,、 f # 達战此缺點之克服;舉例本發明示第 圖所示之調速系統,配合第〜- 弟,5所不之負載相位角計算裝置 — 例與第1 5圖所示之電壓搞$ 一 壓振幅-制裝置第二例,在不增加任何回於 元件與成本之前提下,只需 又 而杈用一組控制器即完成調速系統, 無需任何馬達參數運算。 為解決習知技藝中,LV ^ x二技術記載於中華民國專利公生 〇〇437151 之架構[2] , △。就 生〜·热效e率電流產生的馬達定子銅 才貝、馬達定子鐵損、焉 丁別 發明在不增加任何回’本 "成尽之前提下,將回授完整利用 無效功率電流強制為零He 利用使 失之缺點。 解-寄生…功率電流產生的各項損 換言之’本發明之靼 器設計簡單、益需執二…諸習知技藝,具備之優點包含控制 …、而執行複雜Μ 5异、電流與電壓計算裝置無須依循 20 200536248 大量馬達參數且相異馬達彼此間相容性極高,亦解決寄生的無效 功率電流產生之各項損失;以電子裝置完成本發明之架構,只需 «周士極少參數即可達成相異馬達彼此間相容性,此少量參數調整 利用可程式邏輯裝置或外接控制器即可達成修正;亦可以積體電 路達成本發明之架構,可大量降低積體電路之邏輯數目,因本發 明兼具相異馬達彼此間之高相容性,大量生產後可更進一步有效 整體降低成本。 【發明内容】[7] L. Li, D. Czarkowski, Y. Liu, and P. Pi11 ay, “Multilevel space vector PWM technique based on phase-shift harmonic 18 200536248 suppression,” in Proc. Of IEEE APEC, pp. 535 — 54 1, 2 0 0 0. [Problems to be Solved by the Present Invention and Means of Solving the Problems] Review the prior art of the permanent magnet synchronous motor using vector control in the speed control system, as shown in Figure 2, from the description of the conventional technology. The structure of the annual conference paper of the International Industrial Electronics Association in 2000 [1]. The controller design of this architecture is complex, the controller must be designed according to the parameters of the motor body, and the current and voltage calculation device must perform complex calculations, current and voltage. The computing device must follow the motor parameters and the different motors are not compatible with each other. From the description of the know-how, review the previous technology of the permanent magnet synchronous motor applied vector control in the speed control system in Figure 2. It is the architecture described in the Republic of China Patent Publication No. 0q 4 3 71 5 1 [2] 'This architecture uses The adjusted voltage phase also includes reactive power current. The reactive power current generates mechanical work output for the bearing, but the reactive power current causes the effective value of the motor current to increase, which is also equivalent to the motor stator copper loss, motor stator iron loss, and motor stray loss. The loss of the frequency conversion device increases; therefore, the speed control system of this architecture has parasitic reactive power current 'and the reactive power current cannot work on the mechanical output and increase the loss. In the present invention, before adding any feedback element and cost, the feedback is completely used instead of the calculation. The load phase angle calculation device and the voltage phase angle calculation device are directly used to force the reactive power k to zero, and the system is maintained at The maximum torque of the same current works, in other words, the loss under the same torque output is the lowest; on the other hand, a set of voltage amplitude control device is directly used to control the system output power under the state of maximum torque and maximum efficiency of the motor, so the controller is designed Simple, no need to perform complex calculations, current and voltage calculation devices do not need to follow a large number of motor parameters, and the compatibility of dissimilar motors is extremely low. 0 19 200536248 To solve the shortcomings of the control i design in the conventional art, and the current and * Pressure computing devices must perform complex calculations and other shortcomings. The present invention reduces the number of controllers and overcomes this shortcoming. The previous technology is documented in the paper of the International Industrial Electronics Association Conference Paper [3]. The group control scraper completes the speed control system. For example, the speed control system shown in FIG. 3 of the present invention is matched with the load phase shown in FIG. Angle calculating means - of the embodiment shown in FIG voltage of the first amplitude control device 15 BU plus 1 Any feedback element provided with the cost, σ ^ ^ ,, and foot controller with a complete set of speed control system. In order to solve the problems in the conventional art, the & t team device must be based on the shortcomings of the various parameters of the motor body design, as well as the current and electricity. The device 4 must follow the various parameters of the motor and the different motors are not compatible with each other. ^ Α 'Ming, the present invention replaces Yun Zeng, Leng, and F # to reduce the number of controllers and feedback the complete use. Overcoming the shortcomings; For example, the present invention shows the speed regulation system shown in the figure, with the load phase angle calculation device of the 5th and the 5th-the example with the voltage shown in Figure 15 In the second example of the device, before adding any components and costs, only a set of controllers can be used to complete the speed regulation system without any calculation of motor parameters. In order to solve the conventional skills, LV ^ x two technologies are described in the framework of the Republic of China Patent Public Health 〇437151 [2], △. The motor stator copper shell, the motor stator iron loss, and the Ding Dingbei invention that are generated by the thermal efficiency e-rate current will be added before the completion of the "cost" and will be used to force the full use of the invalid power current. Zero He exploits the disadvantages of loss. Solution-parasitic ... various losses caused by power and current. In other words, the design of the device of the present invention is simple and needs to be implemented in two ways. Known techniques, including advantages such as control, and the implementation of complex M5, current and voltage calculation devices. There is no need to follow 20 200536248 a large number of motor parameters and the compatibility of dissimilar motors with each other is very high, and also to solve the various losses caused by parasitic reactive power current; to complete the structure of the invention with an electronic device, only «Zhou Shi very few parameters can be To achieve compatibility between dissimilar motors, this small amount of parameter adjustment can be achieved by using programmable logic devices or external controllers; it can also integrate the integrated circuit into the structure of the invention, which can greatly reduce the number of integrated circuits. The invention has the high compatibility between dissimilar motors, and can further effectively reduce costs after mass production. [Summary of the Invention]

第3圖為本發明永磁同步馬達應用向量控制於調速系統之架 構,控制裝置包含負載相位角計算裝置3〇、電壓相位角計算裝置 31與電壓振幅控制裝置32 ;裝置32用以控制靜止座標輸出電麼 寸值L裝置3 〇與裝置31用以控制靜止座標輸出電壓相位角 7以衷置30與裝置31求取適當之夕”,使同步馬達輸入電 机與同步馬達反電勢間之相位一致,促使無效功率電流強制為 零,故同步馬達於相同電流下達成最大轉矩工作,換言之同步馬 達相同轉矩出力下損失最低且效率最高;裝置32用以求取適當之 、x適田之[產生適當之輸出功率,此促使同步馬達之實際速 度或實際轉矩,達到與馬達轉速命令⑼人馬達轉矩命令之㈣ 目標。以裝置3◦與裝置31促使同步馬達於高效率與最佳轉矩狀 ·:工作,以裝i 32们吏實際速度或實際轉矩符合命“期望目 標’同時以6與厂直接強迫同步馬達工作於高效率、最佳轉矩 與高響應速度之狀態,故本發明永磁同步馬達應用向量控制之系 統架構具有極高性能。 負載相位角計算裝置30之目的 乃取得變頻裝置輸出電壓超 21 200536248 鈾馬達輸入電流之角度,技十 1 读5之為;仔同步馬達運轉時的等效負 載相位角’產生之輸出作誇立 山^也為負載相位角 △夕本發明之特色 為取付同步馬達運轉時的望 才幻导政負載相位角後隨即用以調整輸出電 壓相位角夕以,故可破保πη丰$、太 崎保門步馬達褕入電流與同步馬達反電勢間 相位一致;此外,本發明之 - ._ ^ Λ 月之另一特己,為裝置30取得同步馬達等 效負載相位角之手段不/李珥江打篆、去士 μ a & ‘。任何馬達本體參數,故可減少控制裝 置與計算裝置數量,並杳码+木丨么2 Μ。+ 兄& <工市i不洗於相異馬達彼此間不具相容FIG. 3 is a structure of a permanent magnet synchronous motor applying vector control to a speed regulating system according to the present invention. The control device includes a load phase angle calculation device 30, a voltage phase angle calculation device 31, and a voltage amplitude control device 32. The device 32 is used to control stationary The coordinate output electric value L device 3 〇 and device 31 are used to control the phase angle of the stationary coordinate output voltage 7 to settle 30 and device 31 to find the appropriate night, so that the synchronous motor input motor and the synchronous motor back EMF The phase is consistent, and the reactive power current is forced to zero, so the synchronous motor achieves the maximum torque work at the same current, in other words, the synchronous motor has the lowest loss and the highest efficiency under the same torque output; the device 32 is used to obtain the appropriate [Produce the appropriate output power, which promotes the actual speed or actual torque of the synchronous motor to reach the goal of the motor speed command and the motor torque command. Use device 3◦ and device 31 to promote the high efficiency and maximum synchronization motor. Best torque condition: Work, install i 32 with the actual speed or actual torque in line with the "expected target" and force the synchronous motor directly with the factory at 6 For high efficiency, optimum torque and high response speed state, so the present invention is a permanent magnet synchronous motor vector control system architecture application of very high performance. The purpose of the load phase angle calculation device 30 is to obtain the angle of the output voltage of the frequency conversion device over 21 200536248 Uranium motor input current, which is read from 5 to 10; the output of the equivalent load phase angle when the synchronous motor is running is exaggerated. ^ It is also the phase angle of the load. The present invention is characterized in that the phase angle of the load voltage is adjusted when the synchronous motor is running, and then the phase angle of the output voltage is adjusted, so it can be broken. The phase difference between the inrush current of the doorstep motor and the back-EMF of the synchronous motor; In addition, another special feature of the -._ ^ Λ month of the present invention is that the means for the device 30 to obtain the equivalent load phase angle of the synchronous motor , Qu Shi μ a & '. Any motor body parameter can reduce the number of control devices and computing devices, and the code + wood 2M. + Brother & < Industry i does not wash in different motors are not compatible with each other

性之缺點’同時馬達本體之各項參數因長期使用、環境溫度、環 境溼度等因素改變後,造成控制系統之誤差等缺點亦可克服。 電壓相位角計算裝置3丨之目士,為夂 ,馮翏考裝置go產生之輸出 △夕Z,並參考轉子回控》辞絲祕壯班 40唬轉換裝置5產生之輸出信號 夕6’以產生之輸出信號夕Γ·;輪屮伊缺々 -V 4-dt ΑΛ -,m出U唬^ η之特色為,信號夕n 可直接強迫同步馬達輸入電流舆同步馬達反電勢間之相位一致。 同步馬達i之轴承與馬達轉子共細授裝置2相接以產生馬達轉 子回授信號3 ’轉子回授信號轉換装置5利用信號3取得馬達電 機角I,故馬達轉子位置之資t由馬達電機角^求取,換言 夕e求取同步馬達反電勢相位 夕2,且可由夕,求取同步馬達Disadvantages of the performance 'At the same time, the various parameters of the motor body can be overcome due to long-term use, ambient temperature, ambient humidity and other factors that cause errors in the control system. The eyes of the voltage phase angle calculation device 3 丨 are the output △ Xi Z produced by the Feng Go test device go, and refer to the output signal xi 6 ′ generated by the conversion device 5 of the Citroen Secret Class 40 rotator control. The output signal Γ ·; wheel 屮 I missing 々 -V 4-dt ΑΛ-, m out of U ^ ^ η is characterized in that the signal nn can directly force the synchronous motor input current and the phase of the synchronous motor back EMF. The bearing of the synchronous motor i is connected to the motor rotor common fine-feeding device 2 to generate a motor rotor feedback signal 3 'The rotor feedback signal conversion device 5 uses the signal 3 to obtain the motor angle I, so the position of the motor rotor is t Find the angle ^, in other words e to find the back-EMF phase of the synchronous motor 2 and to get the synchronous motor

之可由代表馬達轉子位置之信號 角。裝置31於已知負載相立角△ 反電勢相位角之情況下 本發明之待色為直接強迫靜止座標輸出 ~超前同步 :因同步馬 可直接強迫 電壓相位角夕"超前同步馬達反電勢間之相位角,夕 馬達反電勢間之相位角之考度等於負載相位角 達之負載相位角Δβζ不可能急劇變化,故信號夕" 同步馬達輸入電流與同步馬達反電勢間之相位一致。 電壓振幅控制裝置32之目 的為產生靜止座標輸出電壓絕對 22 200536248 值第3圖之永磁同步馬達調速系統之架構,裝置32用以求 取適當之並以適當之R控制永磁同步馬達產生適當之實際輸 出功率與實際輸出轉矩,使促使同步馬達之馬達轉子速度〜⑪達 到與馬達轉速命令〜/之期望目標。裝置32之輸入信號為,將 似/與β ,輸入至速度誤差量求取裝置9,裝置9求取〜/對以, 之差值並輸入裝置32,裝置32以馬達轉速誤差判別出 適當之裝置31之輸出信號夕"與裝置32之輸出信號κ輸入 至脈波寬度調變信號產生裝置1 8,信號R與信號夕^經由裝置 1 8產生信號以控制功率晶體變頻裝置1 7,達成變頻裝置輸出 電壓厂〃、h與h之控制,分別由厂〃、h與h對同步馬達中心點 電壓h之差值產生馬達電流/〃、yv與/,,馬達電流於同步馬達1 之定子線圈產生磁場對轉子磁場作功產生軸承機械輸出,促使轉 速誤差〜達成零。 第4圖為本發明永磁同步馬達應用於向量控制系統中,控制 裝置之原理示意圖;以第4圖說明變頻裝置輸出電壓、馬達輸入 電流與馬達反電勢間之相互關係,並說明本發明電壓相位角計算 與電壓振幅控制之原理,以及簡介本發明負載相位角之取得技 巧,第4圖舉例同步馬達之u相作說明。第4圖中變頻裝置盯相 對同步馬達中心點之等效電壓厂〃/,等於變頻裝置U相電壓匕減 同步馬達中心點電壓r之基本波成分,心〆可視為裝置,17預定於 相產生之基本波成分,同理,第5圖中卜/與可視為裝置 17預疋於v相與w相產生之基本波成分;m 由裝置 之輸出電壓hh與厂,控制,且信號沁與信號夕”經由裝置 u產生信號厂^控制裝置17之輸出電壓,故與& 23 200536248 龟壓相位角由夕w所控制,〆a fJ & 、心,與卜,之電壓有欵值由& 所控制;換言之;^ ^ 1 〜興之電壓相位角由裝置3〇與 置31所控制,π、Γ 1 、、 /、心〃之電壓有效值由裝置32所控制。 因負載相位角△夕2κ 寺於S:頻裝置輸出電壓超前馬達輪入電 流之角度,如第4圖舉例π相从 J υ相作就明之區間1,可知△夕2視為 厂"/7超前馬達U相電流,夕备☆ ' 包L ^之角度,其中Δ &之取得以裝置30達 成;如第4圖舉例u相作兮日日* 相作況明之區間2 ,因馬達電機角夕e由與馬 達轉子共轴回授裝置2 η μ& π ^ Ζ間接取侍,故由夕e可轉換得知馬達U相It can be represented by a signal angle representing the position of the motor rotor. In the case of the known load phase stand angle △ back-EMF phase angle, the device 31 of the present invention directly forces the stationary coordinate output to lead synchronization: because the synchronous horse can directly force the voltage phase angle, " leading-phase motor back-EMF The phase angle and the phase angle between the back-EMF of the motor are equal to the load phase angle Δβζ that the load phase angle reaches. It is not possible to change the phase suddenly. Therefore, the phase between the input current of the synchronous motor and the back-EMF of the synchronous motor is the same. The purpose of the voltage amplitude control device 32 is to generate the structure of the permanent magnet synchronous motor speed control system with absolute coordinate output voltage absolute 22 200536248 value 3, and the device 32 is used to obtain the appropriate and control the permanent magnet synchronous motor generation with the appropriate R Appropriate actual output power and actual output torque make the motor rotor speed of the synchronous motor ~ ⑪ reach the desired goal of the motor speed command ~ /. The input signal of the device 32 is to input the like / and β to the speed error amount obtaining device 9, the device 9 obtains the difference between ~ / pair, and enters the device 32, and the device 32 judges the appropriate value based on the motor speed error. The output signal of the device 31 and the output signal κ of the device 32 are input to the pulse width modulation signal generating device 18, and the signal R and the signal are generated through the device 18 to control the power crystal frequency conversion device 17 to achieve The output voltage of the frequency conversion device is controlled by plant 〃, h and h, and the motor current / 〃, yv and / are generated by the difference between the plant 〃, h and h and the synchronous motor center point voltage h. The motor current is on the stator of synchronous motor 1. The magnetic field generated by the coil acts on the rotor magnetic field to produce the mechanical output of the bearing, which promotes the speed error to zero. FIG. 4 is a schematic diagram of the principle of the control device used in the vector control system of the permanent magnet synchronous motor of the present invention; FIG. 4 illustrates the relationship between the output voltage of the frequency conversion device, the motor input current and the back-EMF of the motor, and explains the voltage of the present invention The principle of phase angle calculation and voltage amplitude control, and the technique of obtaining the phase angle of the load of the present invention are briefly described in FIG. 4 as an example of the u-phase of a synchronous motor. In Fig. 4, the frequency conversion device is equivalent to the equivalent voltage of the synchronous motor center point 〃 /, which is equal to the U-phase voltage of the frequency conversion device minus the basic wave component of the center point voltage r of the synchronous motor. The basic wave components are the same. In Fig. 5, // can be regarded as the basic wave components generated by the device 17 in the v phase and the w phase; m is controlled by the output voltage hh of the device and the factory, and the signal Q and the signal Xi "generates a signal through the device u. The output voltage of the control device 17 is controlled by the & 23 200536248. The phase angle of the turtle pressure is controlled by the xi w. 〆a fJ &Controlled; in other words, ^ ^ 1 ~ the voltage phase angle of Xing is controlled by device 30 and device 31, and the effective value of the voltage of π, Γ 1, /, and palpitations is controlled by device 32. Because of the load phase angle △ Xi 2κ Temple at S: The frequency of the output voltage of the motor is ahead of the motor's turn-in angle. As shown in Figure 4, for example, the π phase is clear from the J υ phase and the interval 1 is clear. It can be seen that △ X2 is regarded as the factory " / 7 advanced motor U phase Current, Xibei ☆ 'angle of package L ^, where Δ & obtained by device 30 Achieved; as shown in Figure 4 for example, the phase u is the same as the phase * The phase 2 of the phase is clear, because the motor motor angle xi e is indirectly served by the coaxial feedback device 2 with the motor rotor η μ & Switchable to know the motor U phase

反電勢以之相位,故可控制^達成^超前❹之相位角等於 Δ ^目的’其中夕”之控制以裝置31達成;如第4圖舉例^相 作說明之區間3,可知當以裝置3〇取得厂〃/超前/〃之角度△夕" 並以裝置31控制夕〜達成匕,超前〜之相位角等於△夕2目的; 由上述可知裝置30取得之應用於裝置31超前角度設定, 因L超刖/"之角度為△夕j,且厂"/超前之角度為△夕Ρ,故 可知可使之相位角等於e"之相位角;使"與e"間之相位一致,The phase of the back-EMF is controlled, so it can be controlled ^ to achieve ^ advance ❹ The phase angle is equal to Δ ^ The objective 'where the evening' is controlled by device 31; as shown in Figure 4 for example ^ phase 3 interval, it can be seen that device 3 〇Obtain the angle of the factory 〃 / advance / 〃 △ and control it with the device 31 ~ to achieve the dagger, the phase angle of the lead ~ is equal to △ 2; the above can be obtained from the device 30 to apply the device 31 advanced angle setting, Because the angle of L super 刖 / " is △ xi j, and the factory quotation / lead angle is △ xi P, it can be known that the phase angle can be made equal to the phase angle of e " so that the phase between " and e " Consistent,

促使無效功率電流強制為零,故同步馬達於相同電流下達成最大 轉矩工作。 第5圖為本發明負載相位角計算裝置第一例之原理說明示意 圖,用以説明本發明負載相位角計算裝置第一例中電壓相位補償 相位角之取得技巧;第6圖為本發明負載相位角計算i置第一例 中,偵測電流零交越點裝置之原理示意圖,說明偵測電流零交越 點之技巧;第7圖為本發明負載相位角計算裝置第一例30a之架 構,包含偵測電流零交越點裝置34與相位角延遲計算裝置35。 因信號R與信號^ "經由裝置1 8產生信號厂#,控制裝置1 7之輪 24 200536248 出電壓,^F 、 ^之電壓相位角由夕n所控制,故 負載相位角計算萝 本毛月 斤裝置苐一例由夕"取得&、〆 交越點與h電壓零 交越點n广二每36°2皆具有正負半週期之2個㈣零 如第5圖所示,且,共可取得6個電零交越點, ^ 、FnT與之電壓零交越點由 舉例ϋ相作說明, 夕以取付。 &為R與cos夕"之函數如下式所 苴 constant 為當叙 τ —,同理數’故可知…零交越點發…一 之電…電…越點發生於—與 〃之電a零交越點發生於〜15〇s與〜33〇ePrompt the reactive power current to be forced to zero, so the synchronous motor achieves the maximum torque operation at the same current. FIG. 5 is a schematic diagram illustrating the principle of the first example of the load phase angle calculation device of the present invention, which is used to explain the technique of obtaining the voltage phase compensation phase angle in the first example of the load phase angle calculation device of the present invention; FIG. 6 is the load phase of the present invention. In the first example of the angle calculation i, the principle diagram of the device for detecting the zero-crossing point of the current illustrates the technique of detecting the zero-crossing point of the current; FIG. 7 shows the structure of the first example 30a of the load phase angle calculating device of the present invention. The detection device includes a zero-crossing point detection device 34 and a phase angle delay calculation device 35. Because the signal R and the signal ^ are generated by the device 18 via the device 18, the wheel 24 of the control device 17 200536248 generates the voltage, and the voltage phase angles of ^ F and ^ are controlled by Xi n, so the load phase angle is calculated. An example of the device of the moon is obtained by Xi " acquisition ", the crossing point of the voltage and the zero crossing point of the voltage h. The two zeros with positive and negative half periods every 36 ° 2 are shown in Fig. 5, and, A total of 6 electrical zero crossing points can be obtained. The voltage zero crossing points of ^ and FnT will be described by examples, and will be paid later. & is the function of R and cos eve " as follows: The constant is the same as τ —, the number of the same reason 'so we can know that ... the zero crossing crosses out the point of view ... the first point of electricity ... the point of view ... the more point occurs at—and the point of point a The zero crossing point occurs at ~ 15〇s and ~ 33〇e

Vun ^constantxVixcos θ Vl / Π二負載相位角計算裝置第一例以馬達υ相電流回授 ϋί 目電流回授仏與馬達w相電流回授/“貞測/,一 八電流零交越點,盆 … •-八中可由/〜與^如下式之運算取得"〆 = -( Ιυι+ IV1) 如第6圖所示,回授 扠L唬/〜、/"與“每36〇Q皆i 週期之2個電壓零交越點,每36 ,、 取得6個電流零交越點·無w ^ ,舉例u相作說明’仏正電流轉負電流可 取得u相正電流零交 、 口扠L^〜負電流轉正電流可取 得U相負電流零交越點回授信號心 J主7 ~ 3取付零交越點回 授信號與犯5 , /,7可取得 , 取仔零父越點回授信號瓜與u 發明以負載相位角計算裝置第—例,由㈣電流零交越點裝置34 對回授/〜、/”與/以貞測,取得沉"、犯” ^與 zc1 越點 6~ = 902與 ^~ = 270 q, 舉例U相作說明,之電壓零交 25 200536248 分別對仏之電流零交越.點沉,與ι之時間差,分別可取得 △夕说與“说。故由^之電壓零交越點 夕二 3 3 0 Q、夕 ~ = μ q、4 ~ = 9 0 2、θ , r Λ Λ 分別對/〜、/"與/"之電流零交越點n” 、心 與^之時間差,分別可取得Δ〜⑺、△ 6⑺、△…W、 Δ 0 2(4)^ Δ Θ 2C^ Δ (9 2ίβ ) ' 4- ^ (5’興 ,本發明以負栽相位角計算裝置 第-例,由相位角延遲計算裝置35具備之計時器,以〜33r、 Θ ^/ = 30 :210Q與夕f/ = 27〇q為基準 0 ^y = 90Q - ^ r/=150Q > θThe first example of Vun ^ constantxVixcos θ Vl / Π two load phase angle calculation device uses motor υ phase current feedback ϋ mesh current feedback 仏 and motor w phase current feedback / "Chast test /, one eight current zero crossing point, Basin ... • -8 can be obtained by the operation of / ~ and ^ " 〆 =-(Ιυι + IV1) As shown in Figure 6, the feedback fork Lbl / ~, / " and "every 36〇Q Both voltage zero crossing points of the i period, 6 current zero crossing points are obtained every 36, no w ^, for example, the description of the u-phase is given by '仏 positive current to negative current can obtain u-phase positive current zero-crossing, Fork L ^ ~ Negative current to positive current can obtain U-phase negative current zero crossing point feedback signal core J master 7 ~ 3 to get zero crossing point feedback signal and commit 5, /, 7 can be obtained, take the zero father The crosspoint feedback signal is the first to invent a device that calculates the phase angle of the load. An example of a zero-crossing point device of the ㈣ current is 34. The feedback / ~, / ", and / is obtained by the test, and Shen " The crossing point with zc1 is 6 ~ = 902 and ^ ~ = 270 q. Take the example of U as an example, the voltage zero crossing 25 200536248 is zero crossing of the current of 仏 respectively. The time difference between point sinking and ι is preferable. △ Xi said and "said. So the voltage zero crossing point of ^ Xi 3 3 0 Q, Xi ~ = μ q, 4 ~ = 9 0 2, θ, r Λ Λ are respectively / ~, / " and / " the current zero crossing point n ”, the time difference between the heart and ^, can be obtained Δ ~ ⑺, △ 6⑺, △ ... W, Δ 0 2 (4) ^ Δ Θ 2C ^ Δ (9 2ίβ) '4 -^ (5 '), the present invention uses a negative phase angle calculation device as a first example. The timer provided by the phase angle delay calculation device 35 uses ~ 33r, Θ ^ / = 30: 210Q and evening f / = 27. q is the reference 0 ^ y = 90Q-^ r / = 150Q > θ

分別計算此六個角度相對於犯” n” m 1 之時間差,以分別可取得Δ 、△ &⑺、△ 、 與△〜⑺;裝置35並將△、 Δ心⑺Δ〜⑺、△ 6⑷、Δ心⑺與△心…中最新之更 新值選擇為Δ 6並,裝置30a之輸出信號為△〜Calculate the time differences of these six angles with respect to the crime "n" m 1 to obtain Δ, △ & ⑺, △, and △ ~ ⑺, respectively; the device 35 sets △, Δ heart ⑺ Δ ~ ⑺, △ 6⑷, The latest update value of Δheart⑺ and △ heart ... is selected as Δ6, and the output signal of device 30a is △ ~

第8圖為本發明永磁同步馬達應用向量控制於調速系統中, 控制裝置之原理不意圖;第8圖說明變頻裝置輸出電壓相量 匕/_/心、馬達輪入電流相量"與馬達反電勢相量〜〇〜 彼此相位角之相互關係’藉以說明本發明負載相位角計算裝置第 二例30b、負載相位角計算裝置第三例3〇c、負載相位角計算裝置 第四例30d與負載相位角計算裝置第五例3〇e之原理,以及簡介 其負載相位角Δ夕2之取得技巧;相較於裝置3〇&每36〇s共可對 回授彳貞測取得6個△&,裝置3〇 b、裝置30 c、裝置30d與裝 置3 0e取得Δ之更新頻率,可與裝置17之切換頻率相等。第 8圖中’ α轴與万軸相互垂直形成α-石軸靜止座標,d轴與q 軸相互垂直形成d~Q軸旋轉座標,d軸與^軸角度差為馬達電機 26 200536248 角〜卢轴與q軸角度差為馬達電機角心;變頻裝置輸出電壓 相量於α軸與石軸之投影量分別為l與匕,相量 匕―d軸與0之投影量分別“與馬達輸入電流: 量/ jy·"於α轴與石轴之投影量分別為"與",相量" 於d轴與q轴之投影量分別為乃與八;換言之,因相量匕^·/ 超前於相量之角度為負載相位角△&,分別取出相;量 之角度與相量•"之角度,相減後即為△ &;並2 取△心之工作,於靜止座標或皆可d_q輛旋轉座標。 第9圖為本發明負載相位角計算裝置 』心朱構,本發明 負載相位角計算裝置第二例鳩之目的,與裝置心相同為求取 負載相位肖Δ〜裝置抓於靜止座標取得負載相位角;裝置 3 0 b包3暫存裝置4 〇、馬達電流相位角計算 么, 丁异裝置41與電壓電流相 位角差值計算裝置42 ;裝置3〇b由 々軸靜止座標取得相量 超前於相量之角度,於α Ρ釉靜止座標計算相 量L Ob超前於相量之角 相 ^ 又稽乂取得Δ夕厂其中, 量/〃〇"於α軸與々軸之投影量夂蛊 〃 ,可表示為馬達有 之關係式如下式 效值參考電流人與靜止座標電流偵測相位角夕 所示。 i 1 i 1 I a = hxcos Θ 1^= Iixsin 0 裝置41之輸出 裝置30b中,以41將八與八轉換為夕 信號夕“由八與〇轉換的關係式如下式。 Θ n = tan 1 (Iα ί Iβ ) 本發明之特色為,相量經由裝 i 1 8與裝置1 7控制 27 200536248 同步馬達外,亦同時作為測4 Δ卜之參考相量:本發明視利用 相量動同步馬達·υ與夕"為反映負載相位角 △夕2之回授,故須對裝置先前:更用之夕"暫存;暫存裝置4〇 將裝置㈣前使用之6暫存,裝置40之輸出為靜止座標電壓 偵測相位角Θ 夕"為裝置1 8先前使用之夕”。 裝置40之輸出信號夕與裝置41之輸出信號6",經由電 壓電流相位角差值計算裝置42相減後產生△夕”裝置42轉換 的關係式如下式。Figure 8 shows the application of vector control in the speed control system of the permanent magnet synchronous motor of the present invention, and the principle of the control device is not intended; Figure 8 illustrates the output voltage phasor of the inverter device, _ / heart, and motor wheel current phasor " The phase relationship with the motor back-EMF ~~~ The phase angle of each other 'will explain the second example of the load phase angle calculation device 30b, the third example of the load phase angle calculation device 30c, and the fourth example of the load phase angle calculation device. 30d and the principle of the third example of the load phase angle calculation device 30e, and the introduction of its load phase angle ΔX2; compared with the device 3 & a total of 36 s can be obtained for feedback The six Δ & devices 30b, 30c, 30d, and 30e obtain the update frequency of Δ, which can be equal to the switching frequency of device 17. In Figure 8, the α-axis and the 10,000-axis are perpendicular to each other to form an α-stone axis static coordinate, and the d-axis and the q-axis are perpendicular to each other to form a d ~ Q-axis rotation coordinate. The angle difference between the d-axis and the ^ -axis is the motor motor 26 200536248 angle ~ Lu The angular difference between the axis and the q axis is the angular center of the motor. The phasor of the output voltage of the frequency conversion device is projected on the α axis and the stone axis, respectively. : Quantities / jy · " The projected quantities on the α axis and the stone axis are " and ", the phasor " The projected quantities on the d axis and the q axis are respectively and eight; in other words, due to the phasor ^ · / The angle ahead of the phasor is the load phase angle △ &, and the phases are taken out separately; the angle of the phasor and the phasor • ", the angle after subtraction is △ &; The stationary coordinates or d_q rotating coordinates can be used. Figure 9 shows the load phase angle calculation device according to the present invention. The purpose of the second example of the load phase angle calculation device of the present invention is the same as the device center. Δ ~ The device grasps the static coordinates to obtain the load phase angle; the device 3 0 b includes 3 temporary storage devices 4 〇, motor power What is the current phase angle calculation? The Ding Yi device 41 and the voltage and current phase angle difference calculation device 42; the device 30b obtains the angle of the phasor ahead of the phasor from the y-axis stationary coordinate, and calculates the phasor L from the α-P glaze stationary coordinate. Ob is ahead of the phase of the phasor. ^ Obtained Δ Xi factory, where the amount / 〃〇 " the projection amount 夂 蛊 〃 on the α axis and 々 axis, can be expressed as the relationship between the motor and the following formula. The phase angle of the current detection between the current person and the stationary coordinate is shown below. I 1 i 1 I a = hxcos Θ 1 ^ = Iixsin 0 In the output device 30b of the device 41, the eighties and eight are converted to the evening signal by 41. The relational expression with 0 conversion is as follows. Θ n = tan 1 (Iα ί Iβ) The feature of the present invention is that the phasor is controlled by the device i 1 8 and the device 17 7 200536248 The synchronous motor is also used as a reference phasor for measuring 4 Δbu: Phasor-Motion Synchronous Motor · υ 和 夕 " To reflect the feedback of the load phase angle △ Xi 2 , it is necessary to the device before: temporary use " temporary storage; temporary storage device 40. For the time being, the output of the device 40 is the phase angle Θ of the stationary coordinate voltage detection. "It is the night of the previous use of the device 18." The output signal of the device 40 and the output signal 6 of the device 41 are passed through the voltage and current phase angle difference. The relationship between the value calculation device 42 and the result of ΔX "conversion by the device 42 is as follows.

Δ Θ 2 = θ V : ~ θ i I 第10圖為本發明負載相位角言一算裝置第三例之架構,本發明 負載相位角計算裝置第三例3。…的,與裝置3〇a相同為求取 負載相位角Δ夕2’裝置3〇c於旋轉座標取得負載相位角;裝置 30c包含暫存裝置40、馬達電流相仁角計算裝置43與電壓電流相 位角差值計算裝置44;裝置3〇c由d_q轴旋轉座標取得相量 /超月】於相1; 之角度’於d_q軸旋轉座標計算相量Δ Θ 2 = θ V: ~ θ i I Figure 10 shows the structure of the third example of the load phase angle calculation device of the present invention, and the third example of the load phase angle calculation device of the present invention. …, The same as device 30a is to obtain the load phase angle Δ2 2 ′ device 30c obtains the load phase angle at the rotation coordinates; device 30c includes a temporary storage device 40, a motor current phase angle calculation device 43 and a voltage current Phase angle difference calculation device 44; device 30c obtains phasor / super moon from d_q axis rotation coordinate] in phase 1; angle '; calculates phasor on d_q axis rotation coordinate

超前於相量之角度藉以取得△ & ;其中,相量 /,"/…軸與q軸之投影量,:與",可表示為馬達有效值參 考電流//與旋轉座標電流債測相也肖“之關係式如下式所示。The angle ahead of the phasor is used to obtain △ &; Among them, the phasor /, " / ... the projection of the axis and q axis, and and, can be expressed as the motor effective value reference current // and the rotation coordinate current debt The relationship of phase measurement is also as follows.

Iz= IIXCCS Θ 12 h= Iixsin Θ i2 裝置30c中’以馬達電流相位角計算裝置㈣"與八轉 為〜’裝置43之輸出信號“由/d與八轉換的關係式… Θ ^tarf1、“/h) 本發明之特色為’相* w:.經由裝置18與裝置17控 28 200536248 同步馬達外亦同日^作為測量△夕2之參考相量;本發明視為利 用相量l 〇·匕驅動同步馬達,^、八與夕^為反映負载相位角 △夕2之回授’故須對先前之(夕〃△夕2暫存,夕為 〜〇〜於α-/3軸靜止座標之相位角;第8圖中夕5W=9〇Q+夕。, (夕㈣D為相量e 〜相對於轴旋轉座標之相位角, (夕I為相量相對於軸旋轉座標之相位 角;暫存裝置49將(夕暫存,裝置49之輸出為旋 轉座標電壓積測相位角,夕^等於先前之 裝置49之輸出信號夕‘與裝置饲之輸出信號夕",經由電 壓電流相位角差值計算裝置44相減後產生△夕^裝置44轉換 的關係式如下式。 Δ Θ 2 = Θ V2* - 0 i 12 第11圖為本發明負载相位角計算裝置第四例之架構,本發明 負載相位角計算裝置第四例30d之目的,與裝置30a相同為求取 負載相位角△夕r裝置3〇d以α 轴靜止座標對d-q軸旋轉 座標轉換裝置之原理,取得負載相位角;裝置3〇d包含暫存裝置 4〇、α -冷軸靜止座標對d — q轴旋轉座標轉換裝置45與馬達電流 相位角计算裝置46,裝置30d將相量"輸入至裝置45,且 轉換角度選擇為裝置40之輸出,為靜止座標電壓偵測相位角 夕”,使相量h 於旋轉座標之投影量相對於相量匕匕之 靜止座標相位角,故相量^於旋轉座標之相位角可視為相 量匕Ob超前於相量久之角度,故可藉//與///轉換 以取得△ ^。裝置30d中,裝置46將//與y//轉換為夕… 裝置46之輸出信號△夕2由,/與’轉換的關係式如下式。 29 200536248 A 0 2^-ran^Ch/L·) 第1 2圖為本發明負載相位考計算裝置第五例之架構,本發明 負載相位角計算裝置第五例30e之目的,與裝置30a相同為求取 負載相位角△夕裝置30e以馬達旋轉座標d軸電流為參考取 得負載相位角;裝置30e包含q軸電流誤差量求取裝置47與電壓 角度控制裝置48;將馬達旋轉室標d軸電流/〃與零輸入至裝置 47,裝置47求取/〃對0之差值並輸入裝置48,裝置47以/,對0 之差值判別出適當之負載相位考△夕厂△夕$可視為促使馬達旋 轉座標d軸電流h達到Θ的合適負載相位角。 第13圖為本發明電壓相位角計算裝置31之架構,由電壓相 位補償相位角△夕/與馬達電機角夕,,取得靜止座標輸出電壓相 位角夕^ ;裝置3 1包含反電勢相位角計算裝置5 〇、濾波裝置51 與相位角相加計算裝置52。濾波裝置51對負載相位角△夕2濾波 後產生信號△夕/,△夕/為濾波後負載相位角;反電勢相位角 計算裝置50由馬達電機角琿換取得反電勢相位角夕㈣,,夕 為〜於α -冷軸靜止查標之相位角,第8圖所示為 夕9 0 2 +夕e ’相量匕fj於α轴與万軸之投影量〜與〜, 夕wy/·由轉換的關係式如下式。 ^ bemf= tan'1 (ea / ea )Iz = IIXCCS Θ 12 h = Iixsin Θ i2 In the device 30c, the device calculates the phase angle of the motor current 与 " and eight turns to ~ 'The output signal of the device 43 "the relationship between / d and eight conversion ... / h) The feature of the present invention is' phase * w :. Controlled by device 18 and device 28 28 200536248 Synchronous motor is also used on the same day ^ as a reference phasor for measuring △ Xi 2; the present invention is considered to use phasor l 0 · dagger Drive the synchronous motor, ^, eight and eve ^ to reflect the feedback of the load phase angle △ eve 2 'Therefore, it is necessary to temporarily store the previous (eve 〃 △ eve 2 temporarily, eve is ~ 〇 ~ at the α- / 3 axis static coordinates Phase angle; 5W = 9〇Q + evening in Fig. 8, (Xi D is the phase angle of phasor e ~ relative to the axis rotation coordinate, (Xi I is the phase angle of phasor relative to the axis rotation coordinate; temporarily stored The device 49 temporarily stores (the output of the device 49 is a rotating coordinate voltage accumulated phase angle), which is equal to the output signal of the previous device 49 'and the output signal of the device feed " through the voltage and current phase angle difference The calculation formula of the calculation device 44 after subtraction is ΔX ^ The conversion formula of the device 44 is as follows: Δ Θ 2 = Θ V2 *-0 i 12 FIG. 11 shows the structure of the fourth example of the load phase angle calculation device of the present invention. The purpose of the fourth example of the load phase angle calculation device of the present invention, 30d, is the same as that of the device 30a, in order to obtain the load phase angle. The principle of the axis static coordinate to dq axis rotation coordinate conversion device is to obtain the load phase angle; the device 30d includes a temporary storage device 40, the α-cold axis static coordinate pair d — q axis rotation coordinate conversion device 45 and the motor current phase angle The computing device 46 and device 30d input the phasor " into the device 45, and the conversion angle is selected as the output of the device 40, and the phase angle of the stationary coordinate voltage is detected ", so that the projection amount of the phasor h to the rotation coordinate relative to the phase The phase angle of the stationary coordinate of the dagger, so the phase angle of the phasor ^ in the rotation coordinate can be regarded as the angle that the phasor dagger Ob is ahead of the phasor, so it can be converted by // and /// to obtain △ ^. In the device 30d The device 46 converts // and y // to the evening ... The output signal of the device 46 △ evening 2 is given by the relationship between / and 'conversion as follows. 29 200536248 A 0 2 ^ -ran ^ Ch / L ·) Section 1 FIG. 2 shows the structure of the fifth example of the load phase test calculation device of the present invention. The purpose of the fifth example of the load phase angle calculation device 30e is the same as that of the device 30a to obtain the load phase angle. The device 30e obtains the load phase angle by using the motor rotation coordinate d-axis current as a reference; the device 30e includes the q-axis current error calculation Take the device 47 and the voltage angle control device 48; input the d-axis current / 〃 and zero of the motor rotation chamber to the device 47, and the device 47 finds the difference between / 〃 and 0 and enters the device 48, and the device 47 starts with /, and 0 The difference determines the proper load phase. △ xi factory △ xi $ can be regarded as a suitable load phase angle that promotes the motor's rotating coordinate d-axis current h to reach Θ. FIG. 13 is the structure of the voltage phase angle calculation device 31 of the present invention. The voltage phase is used to compensate the phase angle Δ // and the motor motor angle to obtain the stationary coordinate output voltage phase angle ^; the device 31 includes the back-EMF phase angle calculation. The device 50, the filtering device 51 and the phase angle addition calculation device 52. The filter device 51 filters the load phase angle ΔX2 to generate a signal ΔXi /, ΔXi / is the phase angle of the load after filtering; the back-EMF phase angle calculation device 50 obtains the back-EMF phase angle ΔX by changing the motor angle. Xi is ~ the phase angle of the α-cold axis stationary index. Figure 8 shows the projection of Xi 9 0 2 + Xi e 'phasor fj on the alpha axis and the million axis ~ and ~, Xi wy / · The conversion relation is as follows. ^ bemf = tan'1 (ea / ea)

cP 將△夕/與夕以好輪入至相位角相加計算裝置52,裝置52之 輸出信號為夕",其中夕r/的關係式如下式。 0 y 1 = ^ 2*\ Θ bemf 換言之’夕“較夕_超前考度為△夕,,故可知相量匕 30 200536248 超前於相量〜之角度為負载相 位角△夕厂本發明負載相位 角計算裝置中,裝置3〇a '裝 置d0 b、裝置30 c、裝置30d裝 置3 0 e,目的皆為取得相量厂 卞々置^ 超前於相量之角度 超前於相量匕〜之角度 △ &;整理上述,因為相量 為△ &,而且匕"匕超前於相 ^ 厶之角度△〜,故可知 相量〜f 〜與相量^ 万之s_ 角又相等,故本發明以裝置3 0與 裝置31求取適當之夕〜,使同 /馬達輪入電流與同步馬達反電勢 間之相位一致,促使無效功率 L強制為零,故同步馬達於相同 電流下達成最大轉矩工作,換今 、σ之问步馬達相同轉矩出力下損失 最低且效率最高。 第U圖為電振幅控制裝置第-例32a之架構,裝置32a 包含馬達有效值參考電流計算褒置6〇、速度控制裝置6i、有效值 電流限制裝置62、有效值電流誤差量求取裝置63與有效值電流 二制裝置64,馬達轉速秩差以〜〃輸入速度控制裝置6卜裝置cP △ Xi / Xi turns into the phase angle addition calculation device 52, and the output signal of the device 52 is "Xi", where the relationship of Xr / is as follows. 0 y 1 = ^ 2 * \ Θ bemf In other words, "Xi" is more advanced than __ advanced, so it can be seen that the phasor 30 200536248 The angle ahead of the phasor ~ is the load phase angle △ The phase of the load In the angle calculation device, the device 30a ', the device d0b, the device 30c, and the device 30d and the device 3e are used to obtain the phasor factory settings. ^ The angle ahead of the phasor is the angle ahead of the phasor. △ & finishing the above, because the phasor is △ & and the dagger " dagger is ahead of the angle △ 相 △, so we can know that the phasor ~ f ~ is equal to the s_ angle of the phasor ^ 10,000, so this The invention uses the device 30 and the device 31 to find the appropriate time ~ to make the phase between the current of the motor / motor wheel and the back electromotive force of the synchronous motor consistent, so that the reactive power L is forced to zero, so the synchronous motor reaches the maximum rotation at the same current. The torque loss is the lowest and the efficiency is the highest under the same torque output of the stepping motor. The figure U shows the structure of the electric amplitude control device-Example 32a. The device 32a contains the motor effective value reference current calculation setting 6. , Speed control device 6i, effective value current limiting device Set 62, rms current error quantity determination device 63 and rms current two-system device 64, the motor speed rank difference is input to the speed control device 6 ~

〜·判別出適當之馬達有效值電流命令,广,,广可視為 促使同步馬達1之速度達到似/的合適電流。裝置Μ目的為限制 電流以達過載保護,裝£ 62之輸入信號為,,,裝置Μ限流過 載保4後產生輸出信號為广,广為限制後馬達有效值電流命令, 強迫厂不得大於電流最大值命令,心;當,广“⑴則//= /广, 田八 >/ΜΑΧ 則 / ΜΑχ,以確保/ m。 ’ 裝置60由/〃與轉換馬達有效值參考電流,/,其中骏置 由^與轉換//的關係式如下式,h正比於馬達電流之有 效值。~ · Identifies an appropriate motor effective value current command, which can be regarded as a suitable current to promote the speed of the synchronous motor 1 to a similar level. The purpose of the device M is to limit the current to achieve overload protection. The input signal for the installation of £ 62 is, the output signal of the device M after the current limit overload protection 4 is wide, and the rms current command of the motor after the limit is widely restricted, forcing the plant to not exceed the current. Maximum command, mind; when "Guang" rule // = / Guang, Tian Ya > / ΜΑχ rules / ΜΑχ to ensure / m. 'Device 60 by / 〃 and conversion motor effective value reference current, /, where The relationship between Jun Zhi and ^ and conversion // is as follows, h is proportional to the effective value of the motor current.

31 200536248 將//與//輸入至有效值電流誤差量求取裝置63’裝置63求 取//對//之差值並輸入有效值電泛控制裝置64 ’裝置64以// 對//之差值判別出適當之厂’〆7可視為促使人達到”的合適電 壓命令。 第15圖為電壓振幅控制裝置冥二例3 2b之架構,裝置3 2b 包含速度控制裝置65、電壓最大值聂小值計算裝置66、與電壓限 制裝置67;裝置65用以求取適當之速度控制裝置電壓命令Γ/, 並以適當之厂7促使β β二〜,,馬達轉速誤差〜® β 〃輸入速度控 制裝置裝置65,裝置65以〜判別出適當之速度控制裝置 電壓命令F /,厂/可視為促使同步馬達1之速度達到〜/的合適 電壓。 裝置66與裝置67,以裝置66參考馬達轉子速度似,,取得 轉速為心β下馬達電流有效值不超遇額定電流之範圍ri(Max_Min), 以裝置67判別5是否介於R之最大值與最小值範圍間, 以控制L範圍防止馬達電流有效值超過額定電流。 電壓最大值最小值計算裝置6j,依〜〃產生電壓命令最大值31 200536248 Input // and // to the effective value current error calculation device 63 'device 63 obtains the difference between // pair // and enters the effective value electric pan control device 64' device 64 to // pair // The difference discriminates the proper voltage command “厂 7 can be regarded as an appropriate voltage command to promote people to reach”. Figure 15 shows the structure of the voltage amplitude control device 2 example 3 2b. The device 3 2b contains the speed control device 65 and the maximum voltage. Nie Xiao value computing device 66, and voltage limiting device 67; device 65 is used to obtain the appropriate speed control device voltage command Γ /, and to promote β β 2 ~, motor speed error ~ ® β 〃 input with appropriate factory 7 Speed control device 65, device 65 determines the appropriate speed control device voltage command F / with ~, the factory / can be regarded as a suitable voltage to promote the speed of the synchronous motor 1 to ~ /. Device 66 and device 67 refer to the motor with device 66 The rotor speed is similar, and the speed of rotation is the range of the motor current effective value at the core β that does not exceed the rated current range ri (Max_Min). The device 67 determines whether 5 is between the maximum and minimum values of R to control the L range to prevent Motor current is valid Exceed the rated current. The minimum value of the maximum voltage means 6j, by generating a voltage command maximum ~〃

與最小值範圍,以求取Γ.之最大值與最小值範圍限制馬 達電流有效值不超過額定電流;裝置66以馬達轉子速度^^判別 K之最大值與最小值,因同步馬 而同步馬達輸入電壓等於馬 壓降與反電勢相加,故可由似· 達反電勢之電壓有效值正比率於 達輸入電流在電阻與4感造成之 反推電流在電阻與電感造成之壓 降,進而推判馬達輸人電流有效值:裝置6 6可由計算裝置帶入馬 達本體參數完成’裝置66亦可由置表電路完成,裝置66亦可由 可程式電路完成’裝置66亦可由τ程式電路紀錄馬達本體參數。 32 200536248 電壓限制裝置6 7用以限制R介於最大值與最小值範圍間; 當厂/介於ruMax_Mln)設定之範圍則厂/;=厂,,當厂/大於設 疋之範圍农大值則r等於h(Max Min)設定之最大值,當f小於 FuMamd設定之範圍最小值則幻等於Kwmn)設定之最小值。And the minimum range to obtain the maximum and minimum ranges of Γ. Limit the effective value of the motor current to not exceed the rated current; the device 66 determines the maximum and minimum values of K at the motor rotor speed ^^, and synchronize the motor due to the synchronous horse The input voltage is equal to the horse's voltage drop and the back-EMF, so the effective value of the voltage of the back-EMF can be proportional to the voltage drop caused by the reverse current caused by the input current in the resistance and the 4 inductance, and then Judging the effective value of the motor input current: Device 66 can be completed by the calculation device to bring in the motor body parameters. 'Device 66 can also be completed by a table circuit, device 66 can also be completed by a programmable circuit.' Device 66 can also record the motor body parameters by a τ program circuit. . 32 200536248 The voltage limiting device 6 7 is used to limit R between the maximum and minimum ranges; when the factory / is within the range set by ruMax_Mln), the factory /; = factory, when the factory / the value of the agricultural university is greater than the set range r is equal to the maximum value set by h (Max Min). When f is less than the minimum value set by FuMamd, it is equal to the minimum value set by Kwmn).

第16圖為電壓振幅控制裝置第三例32c之架構,裝置32c 包含馬達有效值參考電流計算裝置6〇、有效值電流誤差量求取裝 置63、有效值電流控制裝置64與速度控制裝置65、電壓命令選 擇裝置68、馬達有效值判別裝置69。裝置65用以求取適當之速 度控制裝置電壓命令Γ/,並以適當之促使〜/二似〆馬達轉速 決差〜Λ 〜〃輸入速度控制裝置裝置6 5,裝置6 5以β 判別 出適*之速度控制裝置電壓命令Γ /,厂/可視為促使同步馬達j 之速度達到的合適電壓。 裝置60由八與〇轉換馬達有效值參考電流乃,將電流最 大值命令,MAX與輸入至有效值電流誤差量求取裝置63,裝置 63求取/MAX對7/之差值並輸入有效值電流控制裝置64,裝置64FIG. 16 shows the structure of the third example 32c of the voltage amplitude control device. The device 32c includes a motor effective value reference current calculation device 60, an effective value current error amount obtaining device 63, an effective value current control device 64, and a speed control device 65. The voltage command selection device 68 and the motor effective value determination device 69. The device 65 is used to obtain an appropriate speed control device voltage command Γ /, and to appropriately promote the speed difference between the two motors ~ Λ ~ 〃 The speed control device 65 is input, and the device 65 determines the appropriate speed by β The voltage command of the speed control device Γ /, can be regarded as an appropriate voltage to promote the speed of the synchronous motor j. The device 60 converts the motor effective value reference current by eight and zero, and commands the maximum value of the current, MAX, and the inputted value to the effective value current error calculation device 63. The device 63 calculates the difference between / MAX and 7 / and enters the effective value. Current control device 64, device 64

以/_對乃之差值判別出適當之電流控制裝置電壓命令… T視為促使人達到γ ΜΑΧ的合適電壓命令。以電壓命令選擇裝置 68與馬達有效值判別裝置69選擇厂,等於間接強迫△不得大於 電流最大值命令/ΜΑΧ;當/<Ααχ則當乃〉^則^ L… 可知當/d/MAX則裝置32c 促使似/__〜,當^⑴則裝置 60裝置63與裝置64作用且厂/=厂“"厂並強迫/;=/max。〇 第17圖為本發明同步馬達應用於定電流型式控制系統8丨之 架構’裝f 7G以輸人馬達有效值電流命令^控制同步馬達電流 h 與Λ之電流有效值;控制系統8 1包含控制裝置包含負載 33 200536248 相位角計算裝置30、電壓相位角計算裝置31與定電流型式電壓 振幅控制裝置70。裝置30用以產生負载相位角△ &,裝置31 利用Δ心與馬達電機角^以控制靜止座標輸出電壓相位角 夕”,以適當之夕"使同步馬達輸入電流與同步馬達反電勢間之 相位一致,促使同步馬達於高效至與最佳轉矩狀態工作;裝置讪 用輸入馬達有效值電流命令Α以控制靜止座標輸出電壓絕對值 厂,其中,裝置70包含馬達有效值參考電流計算裝置、有效 值電流誤差量求取裝置63、有效直電流限制裝置8〇與有效值電 流控制裝置6 4。 效值電流限制裝置80目的鸟限制電流以達過載保護,裝置 62之輸入信號為/,,裝置8〇孓流過載保護後產生輸出信號為 //,//為限制後馬達有效值電流命令,強迫乃,不得大於電流最 大值命令/«AX ;當/广以川則//W广,當/广〉^則^ , 以確保//$ / «ΑΧ。 裝置6 0由h與"轉換馬這有效值參考電流人,其中裝置 6 0由/,與轉換八的關係式知下式,a正比於馬達電流之有 效值。 將△與△輸入至有效值電沆誤差量求取裝置63,裝置63求 取//對/7之差值並輸入有效值電流控制裝置w,裝置μ以人* 對人之差值判別出適當之厂/,r可視為促使^達參!》的合適電 壓命令。 第18圖為本發明同步馬達蕙用於第一種定電壓型式控制系 統82之架構’以輸入馬達有效值電壓命令控制變頻裝置輸出電壓 有效值,控制系統82包含控制裝置包含負載相位角計算裝置、 200536248 電壓相位角計曾 〃我置31與第一種定電壓型式電壓振幅控制裝置 71。裝置30用 A屋生負載相位角△夕,,裝置3 1利用△夕2與馬 達電機角夕 炫制靜止座標輸出電壓相位角夕以,以適當之夕〜 使同步馬達輪入 €流與同步馬達反電勢間之相位一致,促使同步 馬達於高效率邀异 〃 I佳轉矩狀態工作;裝置71用輸入馬達有效值電 壓命令以控制^ J —止座標輸出電壓絕對值,其中,裝置71包 含電壓最大值爭t 小值計算裝置66與電壓限制裝置67。 裝置 衣罝66與裝置67,以裝置66參考馬達轉子速度 以® ’取得轉速為 下馬達電流有效值不超過額定電流之範圍 ’UMax-Min),以裂置 D ’判別h是否介於厂1(Max_Min)之最大值與最小值 範圍間,以控制r 乾圍防止馬達電流有效值超過額定電流。 裝置66,依_ β產生電壓命令最大值與最小值範圍R(Max ^η), 乂求取F/之最大值盘^L 々々 ^ /、取小值乾圍限制馬達電流有效值不超過額 :電流;《置66以〜判別厂之最大值與最小值,可由❼反推 =流在電阻與電感造成之壓降’進而推判馬達輸人電流有效值; 敦置66可由計算穿詈嫌 "▼ 馬達本體參數完成,裝置66亦可由查 表電路完成,裝晉 Μ β由可程式電路完成,裝置66亦可由可 程式電路紀錄馬達本體參數。 . 策置6 7用以限制h介於最大值與 最小值範圍間;當厂/介於Γ 、定之範圍則厂,=R,當h大 於Fl(Max-Min)設定之範圍最大 , ^ 、 7 4於Γι(Max_Min)設定之最大值, 冨K小於厂1 ( M a X ~ μ i η )設定之筋圖界▼ 疋之扼圍最小值則r等於“_ μ⑷設定之最 小值。 第19圖為本發明同步黾拿 巧運應用於第二種定電壓型式控制系 统83之架構,以輸入馬達有效值你 %域命令控制變頻裝置輸出電壓 35 200536248 载相位角 貝 有效值,控制系統8 3包含控制 電壓相位角計算裝置31與冥 72。裝置30用以產生 裝置£含負載相位角計算裝置3〇、 二種芝電壓型式電壓振幅控制裝置 裝置31利 達電機角^以控制靜止座漂輪出電壓相位肖〜以適當之… 使同步馬達輪入電流與同步馬達反電勢間之相位一致,促使同步 72用輸入馬達有效值電 馬達於高效率與最佳轉矩狀態工作:裝置 壓命令h以控制靜止座標輪出電壓絕對值厂,Based on the difference of / _ pair, the appropriate voltage command of the current control device is determined ... T is regarded as a suitable voltage command to motivate people to reach γ ΜAX. The selection of the plant by the voltage command selection device 68 and the motor effective value determination device 69 is equal to indirect forcing △ must not be greater than the current maximum command / ΜΑχ; 当 / < Ααχthen dnai ^ ^ ^ L ... The device 32c causes / __ ~. When ^ ⑴, the device 60, the device 63, and the device 64 act and the factory / = factory "" factory and forces /; = / max. 〇 Figure 17 shows that the synchronous motor of the present invention is applied to a constant current. Structure of type control system 8 丨 F7G is used to input motor effective value current command ^ Control synchronous motor current h and Λ current effective value; control system 8 1 includes control device including load 33 200536248 phase angle calculation device 30, voltage Phase angle calculation device 31 and constant current type voltage amplitude control device 70. Device 30 is used to generate a load phase angle Δ & device 31 uses Δ center and motor angle ^ to control the phase angle of the stationary coordinate output voltage. " Evening " Make the phase between the synchronous motor input current and the synchronous motor back EMF, promote the synchronous motor to work at high efficiency and the best torque state; the device uses the input motor effective value current command A to control The absolute coordinate output voltage of the stationary plant is controlled, wherein the device 70 includes a motor effective value reference current calculation device, an effective value current error amount obtaining device 63, an effective direct current limit device 80 and an effective value current control device 64. The effective current limiter 80 is designed to limit the current to achieve overload protection. The input signal of device 62 is /, and the output signal of device 80 after the current overload protection is //, // is the motor effective value current command after the limit, Forced, must not be greater than the current maximum command / «AX; Dang / Guang Yichuan Ze // W Guang, Dang / Guang> ^ Ze ^, to ensure // $ /« ΑAX. Device 60 0 refers to the current value of the effective value of the horse and "transition horse", among which the relationship between the device 60 and the conversion value of eight is known as the following formula, a is proportional to the effective value of the motor current. △ and △ are input to the effective value electric error error determination device 63, the device 63 obtains the difference between // pair / 7 and inputs the effective value current control device w, and the device μ judges by the difference between people * and people Appropriate factory /, r can be regarded as promoting ^ dashen! 》 Appropriate voltage command. FIG. 18 is a structure of a synchronous motor according to the present invention, which is used in the first constant voltage type control system 82. The input motor effective voltage command controls the output voltage effective value of the frequency conversion device. The control system 82 includes a control device and a load phase angle calculation device. , 200536248 The voltage phase goniometer had set up 31 and the first constant voltage type voltage amplitude control device 71. Device 30 uses A to generate a load phase angle Δ 夕, and device 3 1 uses Δ 夕 2 and the motor motor 夕 炫 to create a stationary coordinate output voltage phase angle 以 to make the synchronous motor wheel flow and synchronize. The phases of the motor back-EMF are consistent, which promotes the synchronous motor to work in a high-efficiency torque state. The device 71 uses the input motor effective voltage command to control ^ J — the absolute value of the output voltage of the coordinate, where the device 71 contains The maximum voltage value competes with a small value calculation device 66 and a voltage limiting device 67. Device quilt 66 and device 67, using device 66 to refer to the rotor speed of the motor with ® 'acquired rotation speed as the effective value of the motor current does not exceed the range of the rated current' UMax-Min), and use the split D 'to determine whether h is in the factory 1 (Max_Min) is between the maximum value and the minimum value, in order to control r to prevent the effective value of the motor current from exceeding the rated current. The device 66 generates a voltage command maximum and minimum value range R (Max ^ η) according to _ β, 乂 finds the maximum value of F / ^ L 々々 ^ /, takes a small value and limits the effective value of the motor current to not exceed Amount: current; "Set 66 to determine the maximum and minimum values of the factory, can be inferred = the voltage drop caused by the resistance between the resistance and the inductance 'to infer the effective value of the motor input current; set 66 can be calculated through If the parameters of the motor body are completed, the device 66 can also be completed by a table lookup circuit, the installation of β β can be completed by a programmable circuit, and the device 66 can also record the parameters of the motor body by a programmable circuit. Policy setting 6 7 is used to limit h between the maximum and minimum ranges; when the factory / between Γ and the fixed range, the factory, = R, when h is greater than the range set by Fl (Max-Min), the maximum, ^, 7 4 The maximum value set in Γι (Max_Min), 冨 K is less than the rib map boundary set by factory 1 (M a X ~ μ i η) ▼ The minimum value of the encirclement of 疋 is r equal to the minimum value set by “_ μ⑷. 19 is the structure of the synchronous constant current type of the present invention applied to the second constant voltage type control system 83. The input voltage is the effective value of the motor. The% field command controls the output voltage of the frequency conversion device. 35 200536248 The effective value of the phase angle shell. Control system 8 3 Includes control voltage phase angle calculation device 31 and mag 72. Device 30 is used to generate the device. Includes load phase angle calculation device 30. Two kinds of zhi voltage type voltage amplitude control device 31 Lida motor angle ^ to control the stationary seat floating wheel Phase out of voltage ~ With proper ... Make the phase of synchronous motor wheel current and synchronous motor back electromotive force consistent, and promote synchronous 72 to use input motor effective value electric motor to work in high efficiency and best torque state: device pressure command h To control the stationary seat The absolute value of voltage wheel plant,

裝置72包含電壓最大·直最小值計算裝置66與電壓限制裝置 67 ° 馬達有效值參考電流計算裝置3〇、有效值電流誤差量求取裝 置63、有效值電流控制裝置64、電蜃命令選擇裝置68與馬達有 效值判別裝置69。 裝置6 0由/〃與//轉換馬達可效值參考電流人,將電流最 大值命令/ «αχ與八輸入至有效值電流誤差量求取裝置63,裝置 63求取/ max對乃之差值並绮入有讫值電流控制裝置64。 裝置64以/ MAX對/;之差值判別出適當之電流控制裝置電壓 命令Γ/m,R…可視為促使//達到/max的合適電壓命令。以電壓 命令選擇裝置68與馬達有效值判5:裝置69選擇R,等於間接'強 迫//不得大於電流最大值合令/n:當/θ/μαχ則厂二&當/λ/μαχ Ρ 則Γ/= hr";可知當/6/«“則裝置32c控制Γ/= h,Γ/輸入至脈 波寬度調變信號產生裝置18’信號Α與信號夕以經由裝置18產 生信號以控制功率晶體變頻裝置1 7 ;當/A /MAX則裝置6 0、 裝置63與裝置64作用且厂=,以強迫/β/ΜΑχ。 第2 0圖為本發明同步馬達應用於第一種定轉矩型式控制系 36 200536248 統7 3之架構,以輸入馬達轉矩命令厂控制馬達電磁轉矩;控制 系統7 3包含控制裝置包含負載相位角計算裝置3 0、電壓相位角 計算裝置3 1、定電流型式電壓振幅控制裝置7 〇與q軸電流計算 裝置15。裝置30用以產生負載相位角裝置31利用△夕之 與馬達電機角夕e以控制靜止座標輸出電壓相位角夕Μ,以適當 之夕^使同步馬達輸入電流與同步馬達反電勢間之相位一致,促 使同步馬達於高效率與最佳轉矩狀態工作。The device 72 includes a voltage maximum / straight minimum calculation device 66 and a voltage limiting device 67 ° Motor rms reference current calculation device 30, rms current error amount determination device 63, rms current control device 64, and electronic command selection device 68 and a motor effective value discriminating device 69. Device 60 0 refers to the current value of the motor's effective value by / 〃 and //, and inputs the current maximum command / «αχ and eight to the effective value current error amount calculation device 63, and the device 63 calculates the difference between / max The value is incorporated into a threshold current control device 64. The device 64 judges the appropriate current control device voltage command Γ / m, R ... based on the difference between / MAX and / ;, which can be regarded as a suitable voltage command to make / max reach / max. Use the voltage command to select the device 68 and the motor effective value to judge 5: The device 69 selects R, which is equal to the indirect 'force // must not be greater than the maximum value of the current order / n: when / θ / μαχ then factory two & when / λ / μαχ Ρ Then Γ / = hr " It can be known that when / 6 / «", the device 32c controls Γ / = h, Γ / is input to the pulse width modulation signal generating device 18 'signal A and the signal to generate a signal through the device 18 to control Power crystal frequency conversion device 17; when / A / MAX, device 60, device 63 and device 64 function and factory = to force / β / ΜΑχ. Figure 20 shows that the synchronous motor of the present invention is applied to the first type of fixed rotation. The structure of the rectangular type control system 36 200536248 system 7 3, which uses the input motor torque to command the factory to control the electromagnetic torque of the motor; the control system 7 3 contains the control device including the load phase angle calculation device 3 0, the voltage phase angle calculation device 3 1. The current type voltage amplitude control device 70 and the q-axis current calculation device 15. The device 30 is used to generate a load phase angle. The device 31 utilizes Δ 之 and the motor angle e to control the stationary coordinate output voltage phase angle Μ, and appropriately Evening ^ Invert the synchronous motor input current to the synchronous motor The potential between the same phase, the synchronous motor operation to promote efficient and best-torque state.

輸入馬達轉矩命令Α經由裝置15產生輸入馬達有效值電流 命令Λ,裝置7 0以/,控制同步馬達電流/〃、Λ與/,之電流有效 值;裝置70用輸入馬達有效值電流命令八以控制靜止座標輸出 電壓絕對值R,其中,裝置70包含馬達有效值參考電流計算裝 置60、有效值電流誤差量求取裝置63、有效值電流限制裝置80 與有效值電流控制裝置6 4。 7V輸入至q軸電流計算裝置1 5以計算出q轴電流命令八, 此/ ζ可視為促使同步馬達1馬達電磁轉矩達到A的適當電流成 分,八轉換馬達旋轉座標d軸電流/〃的關係式如下式;其中,為 0 户同步馬達極數,為2 /轉子等效磁通鏈,故乃為7V之常數倍。The input motor torque command A generates an input motor effective value current command Λ through the device 15, and the device 70 controls the effective current value of the synchronous motor currents / 〃, Λ and /, with the device 70; the device 70 uses the input motor effective value current command eight In order to control the absolute value of the stationary coordinate output voltage R, the device 70 includes a motor effective value reference current calculating device 60, an effective value current error calculating device 63, an effective value current limiting device 80, and an effective value current control device 64. 7V is input to the q-axis current calculation device 15 to calculate the q-axis current command eight. This / ζ can be regarded as an appropriate current component that causes the electromagnetic torque of the synchronous motor 1 motor to reach A. The eight-transition motor rotation coordinate d-axis current / 〃 The relationship is as follows; where 0 is the number of poles of the synchronous motor, which is 2 / rotor equivalent magnetic flux chain, so it is a constant multiple of 7V.

Id= T2X [ 4/ (3χΡχΑ ί )] 又本發明以裝置3 0與裝置3 1,偵測負載相位角△夕2並控制 靜止座標輸出電壓相位角夕以適當之夕n使同步馬達輸入電 流與同步馬達反電勢間之相位一致,促使同步馬達八;故裝置 15由A轉換產生",其中a轉換Λ的關係式如下式。 Ι2= Ϊ2Χ [ 4/ (JxPxA f )] 37 200536248 第21圖為本發明同步馬達牽同 、弟一種定轉矩型式控制系 統7 4之架構,以輸入馬達轉矩会令τ J控制馬達電磁轉矩;控制 系統74包含控制裝置包含負载相位角 用彳异裝置30、電壓相位角 計算裝置31、q軸電流誤差量求取裝詈 表置1 3、Q軸電流控制裝置1 4、 Q軸電流計算裝置1 5與第一種定雪壓切彳 一受災式電壓振幅控制裝置71。 裝置30用以產生負載相位角,穿 哀置31利用與馬達電 機角夕f以控制靜止座標輸出電辱相位条 相仅冉夕r/,以適當之夕以使 同步馬達輸入電流與同步馬達反t墊門 / 1、叉I努間之相位一致,促使同步馬Id = T2X [4 / (3χΡχΑ ί)] and the present invention uses the device 30 and the device 31 to detect the load phase angle Δ 夕 2 and control the stationary coordinate output voltage phase angle to make the synchronous motor input current at an appropriate time n The phase with the back electromotive force of the synchronous motor is consistent, which promotes the synchronous motor VIII; therefore, the device 15 is generated by A conversion ", where the relationship of a conversion Λ is as follows. Ι2 = Ϊ2 × [4 / (JxPxA f)] 37 200536248 Figure 21 shows the structure of a synchronous torque control system 7 4 in accordance with the synchronous motor of the present invention. The input of motor torque will cause τ J to control the electromagnetic rotation of the motor. The control system 74 includes the control device, including the load phase angle difference device 30, the voltage phase angle calculation device 31, the q-axis current error amount to obtain the device table 1, 3, the Q-axis current control device 1, and 4, the Q-axis current The computing device 15 and the first type of snow pressure-cutting-disaster-type voltage amplitude control device 71. The device 30 is used to generate a load phase angle, and the wear and tear device 31 uses the motor motor angle f to control the stationary coordinates to output the electric phase phase phase R / R, so that the input current of the synchronous motor is inverse to that of the synchronous motor. t pad door / 1, the phase between fork and fork is consistent, which promotes synchronization

達於高效率與最佳轉矩狀態工作: h輸入至q軸電流計算裝置1 5 ^ ^ x 丨α衣置i 〇以计异出q軸電流命令Λ, 此八可視為促使同步馬達!馬達電磁轉矩達到η的適當電流成 分;將/達八輸入至q轴電流誤差量求取裝置13,裝置13求取 h對八之差值並輸入q軸電流控制裝置14,裝置i“又八對八 之差值判別出適當之q軸電壓命令h。 裝置Π用輸人馬達有效值電签命令^控制靜止座標輸出 電壓絕對值PO,其中,梦苦71 — ααγ-πTo achieve high efficiency and optimal torque state work: h is input to the q-axis current calculation device 1 5 ^ ^ x 丨 α clothes i 〇 to calculate the q-axis current command Λ, these eight can be regarded as promoting synchronous motor! Motor electromagnetic torque reaches the appropriate current component of η; input / up to the q-axis current error amount determination device 13, the device 13 finds the difference between h and eight and enters the q-axis current control device 14, the device "" The eight-to-eight difference determines the proper q-axis voltage command h. The device Π uses the input motor effective value electric sign command ^ to control the absolute value of the stationary coordinate output voltage PO, of which dream pain 71 — ααγ-π

裝置71邑含電壓最大值最小值計算裝置 66與電壓限制裝置67。 第22 ®為本發明同步馬達%用於第三種定轉矩型式控制系 統75之架構’以輸入馬達轉矩会令η控制馬達電磁轉矩;控制 系統7。包含控制裝置包含負載秸位角計算裝f 3。、電壓相位角 ,十算裝置3 1、q軸電流誤差量求取裝置丨3、q轴電流控制裝置工心 q轴電μ 4算裝置15與第二種定電壓型式電壓振幅控制裝置72。 裝置30用以產生負載相位角△夕”裝置31利用與馬 達電機角夕e以控制靜止座標輸土電壓相位角夕",以適當之夕。 33 200536248 使同步馬達輸入電流與同步馬達反電勢間之相位一致,促使同步 馬達於南效率與最佳轉矩狀態工作。 A輸入至q軸電流計算裝置1 5以計算出q軸電流命令& , 此h可視為促使同步馬達1馬達電磁轉矩達到A的適當電流成 分;將h與八輸入至q軸電流誤差量求取裝置13,裝置13求取 A對/,之差值並輸入q軸電流控制裝置1 4,裝置1 4以Λ對八 之差值判別出適當之q軸電壓命令R。 裝置72用輸入馬達有效值電壓命令R以控制靜止座標輸出 電壓絕對值R,其中,裝置72包含電壓最大值最小值計算裝置 66與電壓限制裝置67。 【圖式簡單說明】 第1圖為習知技藝永磁同步馬達應用向量控制於調速系統之 架構,此例習知技藝分別對馬達於同步旋轉d-q轴座標映射之等 效d轴電流與q轴電流調整,以此促使同步馬達之實際速度達到 期望之目標。 第2圖為習知技藝永磁同步馬達應用向量控制於調速系統之 φ 架構,此例習知技藝利用調整相位角之偏差量達成馬達有效功率 電流之調整,以此促使同步馬達之實際速度達到期望之目標。 第3圖為本發明永磁同步馬達應用向量控制於調速系統之架 構,控制裝置包含負載相位角計算裝置、電壓相位角計算裝置與 電壓振幅控制裝置。 第4圖為本發明永磁同步馬達應用於向量控制系統中,控制 裝置之原理示意圖;第4圖說明變頻裝置輸出電壓、馬達輸入電 流與馬達反電勢間之相互關係,並說明本發明電壓相位角計算與 39 200536248 電壓振幅控制之原理,以及簡介本發明負載相位角之取得技巧。 第5圖為本發明永磁同步馬達應用向量控制於調速系統中, 負載相位角計算裝置第一例之原理說明示意圖;第5圖說明本發 明負載相位角計算裝置第一例中,電壓相位補償相位角之取得技 巧。 第6圖為本發明負載相位角計算裝置第一例中,偵測電流零 父越點裝置之原理示意圖;第6圖說明本發明負載相位角計算裝 置第一例中,偵測電流零交越點之技巧。 第7圖為本發明負載相位角計算裝置第一例之架構,包含# ♦ 測電流零交越點裝置與相位角延遲計算裝置。 第8圖為本發明永磁同步馬達應用向量控制於調速系統中, 控制裝置之原理示意圖;第8圖說明變頻裝置輸出電壓相量、馬 達輸入電流相量與馬達反電勢相4,彼此相位角之相互關係,# 、說月本發明負載相位角計算裝置第二例、負載相位角計算裝置 J負載相位角计异裝置第四例與負載相位角計算裝置第五 例之原理,以及簡介其負載相位角之取得技巧。 鲁 第9圖為本發明負載相位角計算裝置第二例之架構,於靜止 座標取得負載相位角。 第10圖為本發明負載相位角計算裝置第三例之架構,於旋轉 座標取得負载相位角。 , 第11圖為本發明負載相位角計算裝置第四例之架構,以 α /5軸靜止座標對d — q軸旋轉座標轉換裝置之原理,取得負載 相位角。 第12圖為本發明負載相位角計算裝置第五例之架構,以馬達 40 200536248 旋轉座標d轴電流為參考取得負、載相位角。 第13圖為本發明電壓相位角計算裝置之架構,由電壓相位補 饧相位角與馬達電機角,取得靜止座標輸出電壓相位角。 第14 ® ^電壓振幅控制裝置第一例之架構,由馬達轉速誤差 與馬達有效值參考電流,經由速度控制裝置與有效值電流控制裝 置取得靜止座標輸出電壓絕對值;其中,馬達有效值參考電流經 由有效值電流限制裝置,控制靜止座標輸出電壓絕對值作為過載 保護。 第15圖為電壓振幅控制裝置第二例之架構,由馬達轉速誤差 經由速度控制裝置取得靜止座標輸出電壓絕對值;其中,速度栌 制裝置電壓命令經由電壓最大值最大值計算裝置,控制靜止座標 輸出電壓絕對值作為過載保護。 第16圖為電壓振幅控制裝置第三例之架構,由馬達轉速誤差 經由速度控制裝置取得靜止座標輸出電壓絕對值;其中,速产栌 制裝置電壓命令經由電壓命令選擇裝置,以選擇合適之靜止座標 輸出電壓絕對值作為過載保護。 第17圖為本發明同步馬達應用於定電流型式控制系統之架 構,以輸人馬達有效值電流命令控制同步馬達馬達輸人電流有效 值,控制系統包含控制裝置包含負載相位角計算裝置、電壓相位 角計算裝置與定電流型式電壓振幅控制裝置。 * 第18 為本發明同步馬達應用&第一種定電壓型式控制系 統之架構,以輸入馬達有效值電壓命令控制變頻裝置輪出電壓有 效值;控制系統包含控制裝置包含負載相位角計算裝置、電壓相 位角計算裝置與第一種定電壓型式電壓振幅控制裝置。 41 200536248 第1 9圖為本發明同步馬達應丐於第二種定電壓型式控制系 統之架構,以輸入馬達有效直電壓会令控制變頻裝置輸出電壓有 效值;控制系統包含控制裝置包含i載相位角計算裝置、電壓相 位角計算裝置與第二種定電墾型式畫壓振幅控制裝置。 第2 G圖為本發明同步馬達應弓於第一種定轉矩型式控制系 統之架構’以輸入馬達轉矩命令控刮馬達電磁轉矩;控制系統包 含控制裝置包含負載相位角計算裝置、電壓相位角計算裝置、q 軸電流計算裝置與定電流型弍電壓振幅控制裝置。 第21圖為本發明同步馬達應司於第二種定轉矩型式控制系 統之架構’以輸入馬達轉矩命令控刮馬達電磁轉矩;控制系統包 含控制裝置包含負載相位考計算裝置、電壓相位角計算裝置、q 軸電流誤差量求取裝置' q輛電流苎制裝置、q轴電流計算裝置與 第一種定電壓型式電壓振幅控制裝置。 第2 2圖為本發明同步馬達應写於第三種定轉矩型式控制系 統之架構’以輸入馬達轉矩命令控刮馬達電磁轉矩;控制系統包 含控制裝置包含負載相位’考計算衣置、電壓相位角計算裝置、q 轴電流誤差量求取裝置、q耘電流在制裝置、q軸電流計算裝置與 第二種定電壓型式電壓振福控制裝置。The device 71 includes a voltage maximum and minimum calculation device 66 and a voltage limiting device 67. The 22nd ® is the structure of the synchronous motor of the present invention, which is used for the third type of constant torque type control system 75 '. Inputting the motor torque will cause η to control the electromagnetic torque of the motor; Contains the control device including the load straw angle calculation device f3. Voltage phase angle, ten calculation device 3 1, q-axis current error amount obtaining device 3, q-axis current control device work center q-axis electrical μ 4 calculation device 15 and the second constant voltage type voltage amplitude control device 72. The device 30 is used to generate the load phase angle Δ 夕. The device 31 utilizes the motor angle ee to control the stationary coordinate earth voltage phase angle quot, as appropriate. 33 200536248 Make the synchronous motor input current and the synchronous motor back EMF The phase is consistent, which promotes the synchronous motor to work at the highest efficiency and the best torque state. A is input to the q-axis current calculation device 15 to calculate the q-axis current command & The appropriate current component of the moment reaches A; input h and eight to the q-axis current error amount determining device 13, the device 13 finds the difference between A pair /, and inputs the q-axis current control device 1 4 and the device 14 to Λ An appropriate q-axis voltage command R is determined for the difference of eight. Device 72 uses the input motor effective value voltage command R to control the absolute value of the static coordinate output voltage R, where device 72 includes a maximum and minimum voltage calculation device 66 and a voltage Restriction device 67. [Schematic description] Figure 1 shows the structure of the permanent magnet synchronous motor using vector control in the speed control system of the conventional technology. In this example, the conventional technology maps the motor to the dq axis coordinates of synchronous rotation. The equivalent d-axis current and q-axis current are adjusted to promote the actual speed of the synchronous motor to achieve the desired goal. Figure 2 shows the φ architecture of the conventional art permanent magnet synchronous motor using vector control in the speed control system. This example The conventional technique utilizes the adjustment of the deviation of the phase angle to achieve the adjustment of the effective power and current of the motor, thereby promoting the actual speed of the synchronous motor to achieve the desired goal. Figure 3 shows the architecture of the permanent magnet synchronous motor of the present invention using vector control in the speed control system. The control device includes a load phase angle calculation device, a voltage phase angle calculation device and a voltage amplitude control device. Fig. 4 is a schematic diagram of the principle of the control device when the permanent magnet synchronous motor of the present invention is applied to a vector control system; Fig. 4 illustrates a frequency conversion device The relationship between output voltage, motor input current and motor back-EMF, and explains the principle of voltage phase angle calculation and voltage control of 2005 200536248, and introduces the technique of obtaining the load phase angle of the invention. The magnetic synchronous motor uses vector control in the speed control system, and the load phase angle calculation device is the first Schematic illustration of the principle of the example; Figure 5 illustrates the technique of obtaining the phase angle of the voltage phase compensation in the first example of the load phase angle calculation device of the present invention. Figure 6 illustrates the detection current in the first example of the load phase angle calculation device of the present invention. The principle diagram of the zero-parent cross-point device; Fig. 6 illustrates the technique of detecting the zero-crossing point of the current in the first example of the load phase angle calculation device of the present invention. Fig. 7 illustrates the first example of the load phase angle calculation device of the present invention. Architecture, including # ♦ Measuring current zero-crossing point device and phase angle delay calculation device. Figure 8 is a schematic diagram of the principle of the control device using the vector control of the permanent magnet synchronous motor of the present invention in the speed control system; Figure 8 illustrates the frequency conversion device Output voltage phasor, motor input current phasor and motor back-EMF phase 4, the relationship between the phase angles of each other, #, said the second example of the load phase angle calculation device of the present invention, load phase angle calculation device J load phase angle meter is different The principle of the fourth example of the device and the fifth example of the load phase angle calculation device, and the techniques for obtaining the load phase angle are introduced. Figure 9 shows the structure of the second example of the load phase angle calculation device according to the present invention. The load phase angle is obtained at a stationary coordinate. Fig. 10 is a structure of a third example of a load phase angle calculation device according to the present invention, and the load phase angle is obtained at a rotation coordinate. FIG. 11 is a structure of a fourth example of a load phase angle calculation device according to the present invention. The principle of α / 5-axis static coordinates versus d-q-axis rotation coordinate conversion device is used to obtain the load phase angle. Fig. 12 shows the structure of the fifth example of the load phase angle calculation device of the present invention. The negative and load phase angles are obtained by taking the motor 40 200536248 rotation coordinate d-axis current as a reference. FIG. 13 is a structure of a voltage phase angle calculation device according to the present invention. The phase angle and the motor angle are supplemented by the voltage phase to obtain a stationary coordinate output voltage phase angle. The structure of the first example of the 14th voltage amplitude control device, the absolute value of the static coordinate output voltage is obtained from the speed error of the motor and the rms reference current of the motor; among them, the rms reference current of the motor Through the effective value current limiting device, the absolute value of the static coordinate output voltage is controlled as overload protection. Figure 15 shows the structure of the second example of the voltage amplitude control device. The absolute value of the static coordinate output voltage is obtained from the speed error of the motor through the speed control device. Among them, the voltage command of the speed control device controls the static coordinates through the maximum voltage calculation device. The absolute value of the output voltage is used as overload protection. Figure 16 shows the structure of the third example of the voltage amplitude control device. The absolute value of the stationary coordinate output voltage is obtained from the speed error of the motor through the speed control device. Among them, the voltage command of the rapid-production control device selects the device through the voltage command to select the appropriate stationary. The absolute value of the coordinate output voltage is used as overload protection. FIG. 17 is a structure of a synchronous motor applied to a constant current type control system according to the present invention. The input value of a motor effective value current command is used to control the input value of a synchronous motor motor. The control system includes a control device, a load phase angle calculation device, and a voltage phase. Angle calculation device and constant current type voltage amplitude control device. * The eighteenth is the structure of the synchronous motor application & the first constant voltage type control system of the present invention. The input motor effective value voltage command is used to control the inverter output voltage effective value. The control system includes a control device including a load phase angle calculation device, The voltage phase angle calculation device and the first constant voltage type voltage amplitude control device. 41 200536248 Figure 19 shows the structure of the synchronous motor of the present invention in the second constant voltage type control system. The input of the effective direct voltage of the motor will control the effective value of the output voltage of the frequency conversion device. The control system includes the control device and the i-phase. An angle calculation device, a voltage phase angle calculation device, and a second fixed power reclamation type painting pressure amplitude control device. Figure 2G is the structure of the synchronous motor of the present invention that should be bowed to the first constant torque type control system. The input motor torque command is used to control the electromagnetic torque of the scraper motor. The control system includes a control device, a load phase angle calculation device, and a voltage. Phase angle calculation device, q-axis current calculation device and constant current type 弍 voltage amplitude control device. Figure 21 shows the structure of the synchronous motor of the present invention in the second type of constant torque control system. The motor torque is controlled by the input motor torque command; the control system includes the control device, including the load phase calculation device, and the voltage phase. Angle calculation device, q-axis current error amount determination device 'q vehicle current control device, q-axis current calculation device and the first constant voltage type voltage amplitude control device. Figure 22 shows the structure of the synchronous motor of the present invention which should be written in the third type of constant-torque type control system. The motor torque is controlled by the input motor torque command; the control system includes the control device and the load phase. The voltage phase angle calculation device, the q-axis current error amount determination device, the q-current current in-production device, the q-axis current calculation device, and the second constant voltage type voltage vibration control device.

Claims (1)

200536248 拾、申請專利範圍: L 一種同步馬達控制裝置,該同步馬達控制裝置用以控制功率晶 體變頻裝置產生之電壓,並用上述功率晶體變頻裝置產生之電壓以驅 動該同步馬達之定子繞組,該同步馬達控制裝置具備: 電流回授裝置’其用以檢測流於上述同步馬達之定子繞組的電 流; 馬達轉子共軸回授裝置,其與上述同步馬達之轉子軸承連接以產 生馬達轉子回授信號;200536248 Scope of patent application: L A synchronous motor control device, which is used to control the voltage generated by the power crystal frequency conversion device, and uses the voltage generated by the power crystal frequency conversion device to drive the stator winding of the synchronous motor. The synchronization The motor control device includes: a current feedback device for detecting a current flowing in a stator winding of the synchronous motor; a motor rotor coaxial feedback device connected to a rotor bearing of the synchronous motor to generate a motor rotor feedback signal; 轉子回授信號轉換裝置,其用以將上述馬達轉子回授信號轉換為 馬達轉子速度信號與反電勢相位角信號,該馬達轉子速度信號之數值 正比率於上述同步馬達的轉子之實際速度,該反電勢相位角信號之數 值相同於上述同步馬達的轉子磁場對定子繞組產生之反電動勢相位; 脈波見度調變信號產生裝置,其用以控制上述功率晶體變頻裝置 内部之多數個功率晶體,藉由該脈波寬度調變信號產生裝置對多數個 功率晶體之控㈣達成對於上述功率晶體魏裝置產生之電壓的絕 對值之控制’細由該脈波寬度調籠號產生裝置對多數個功率晶體 之控制達成對於上述功率晶體變頻裝置產生之電壓的相位角之控The rotor feedback signal conversion device is used to convert the motor rotor feedback signal into a motor rotor speed signal and a back-EMF phase angle signal. The value of the motor rotor speed signal is proportional to the actual speed of the rotor of the synchronous motor. The value of the back-EMF phase angle signal is the same as the back-EMF phase generated by the rotor magnetic field of the synchronous motor to the stator windings; the pulse wave visibility modulation signal generating device is used to control most of the power crystals in the power crystal frequency conversion device. The control of the plurality of power crystals by the pulse width modulation signal generating device achieves the control of the absolute value of the voltage generated by the power crystal device described above. The crystal control achieves the control of the phase angle of the voltage generated by the power crystal inverter device 頻裝置產生之電壓的絕對值正比率於靜止座· 靜止座標触龍她肖; 電_相位角專於 位角計算裝置,用以計算上述功率晶體變頻裝置產生之電 述脈將該電餘位角計算裝置之計算結果作為上 功率曰體i—二繼於控制功率晶體_裝置之依據,上述 力革日日體變頻裝置產生之電麼必須符合的相 電壓相价麵她姆版糧撕 43 200536248 出電壓相位角; 、、負載相位n衣置’其3以計#上述同步馬達的負載相位角, 上述=步馬達的負載相位角等於上述同步馬達的定子繞組之電壓相 位超則於上賴步馬细定子修之购目㈣角度差,並將該 心裝置對於上述同步馬達的1载相位角之計算結果作為上 二’金相位角計算裝置於計箕功率晶€變頻裝置產生之電壓的相位 靜峨祖偷騰触位角等於 座仏輸出電遂她角,該負載相位考計算裝置之 止座標輸出電壓相位角; 、,。果寺於静 電壓振幅控繼置,用財取上述功率晶體變縣置產生之電壓 將該fs^㈣裝置之求取結果作為上述脈 曰曰體i觀裝置於钟功率晶體變頻裝置之依據,上述功率 二#值。、n必須符合的€對值等於靜止座標輸出電壓 票輸出電弟ϋ所迅之電1相1^角計算裝置,其對於靜止座 的負載^自之。f异結果,等於1載相位肖計算裝置制步馬達 =相==與嶋㈣雜账電動勢相位 3.由申請翻第丨項所叙綠她角計算裝置, 靜 止座標輸咖她肖,該㈣㈣魏咖Γ 負載树ίίΐ算裝除魏之裝置,以該遽波屬置處理 濾除負載相位角的頻雜:的的㈣目位角之計算結果’藉以達成 相加有加法功能之裝置’以該相位角 ",1月匕’錢上述遽波裝置針對負載相位角遽除雜 44 200536248 值’5反電勢相位角信號所代表反電動勢相位之數值,兩者 4二 相蚊㈣於靜止鍊触輕相位角。 達的娜 1===_樹4,料該同步馬 位角計算瓣第—繼成,負載相 - 门^馬達之疋子繞組的電流安培值通過零 κ 1本亚#同步馬達之定子繞組的電做特值通過零的瞬間,將 上述兩者通過零的瞬間之時間差取得以求得負載相位角。 /θ5.由申請專利第4項所述之負載相位角計算裝置第-例,其中該The absolute value of the voltage generated by the high-frequency device is proportional to the stationary seat and the stationary coordinates of Touch Dragon. The electrical phase angle is specifically designed for the position angle calculation device. The calculation result of the angle calculation device is used as the basis for the upper power body i—secondary to control the power crystal device. The phase voltage and phase value of the electricity generated by the above-mentioned power conversion device must meet the phase voltage phase value. 200536248 The voltage phase angle is provided. The load phase n is set to # 3 above the load phase angle of the synchronous motor. The load phase angle of the step motor is equal to the voltage phase of the stator winding of the synchronous motor. The angle difference between the purchase and repair of the Buma thin stator is calculated, and the calculation result of the phase angle of the load device for the above-mentioned synchronous motor is used as the phase of the voltage generated by the upper two gold phase angle calculation device in the power crystal frequency conversion device. The contact angle of Jing'ezu's stealing is equal to the angle of the output voltage of the seat. The load phase test calculates the phase angle of the output voltage of the device. Guosi was placed under the control of the static voltage amplitude, and the obtained voltage of the power crystal was used to obtain the fs ^ ㈣ device. The result of the fs ^ 脉 device was used as the basis for the above-mentioned pulse body view device in the clock power crystal frequency conversion device. The above power two # value. The pair of values n and n must be equal to the output voltage of the stationary coordinate. The output device of the electric output of the ticket is 1-phase and 1-angle calculation device, and it takes care of the load of the stationary seat. f different results, equal to 1 phase phase calculation device step motor = phase = = and miscellaneous electromotive force phase 3. The green angle calculation device described by the application to turn item 丨, and the static coordinates lose the coffee angle. The load tree of Wei Ka Γ is calculated to install a device for removing Wei, and to filter out the frequency phase of the load phase angle by using the wave position: the calculation result of the eye position angle 'to achieve a device with an addition function' The phase angle ", in January, the above-mentioned wave device for the load phase angle was deducted 44 200536248 value '5 The value of the back-EMF phase represented by the back-EMF phase angle signal, both of which are two-phase mosquitoes on the stationary chain Touch the light phase angle. Dana 1 === _ tree 4, the synchronous horse position angle is calculated to calculate the number of petals—the successor, the load phase—the current value of the ampere winding of the gate winding of the motor passes through the zero κ 1benya # the stator winding of the synchronous motor The instantaneous value of the electric power is zero, and the time difference between the instants when the two pass through zero is obtained to obtain the load phase angle. / θ5. The first example of the load phase angle calculation device described in the fourth patent application, where 取仵同步馬達之定子繞組的電流安培值通過零的瞬間之手段,可針對 同步馬達之任一定子繞組實施。 、 6.由申請專利第4項所述之負餘位鱗算裝置第-例,盆令該 取得同步馬達之定子繞組的電壓伏特值通過零的瞬間之手段,可由電 屋相位鱗算裝置取得靜止賴輸出龍她肖,_取得同步馬達 之定子繞組的電壓伏特值通過零的瞬間。 7·由申請專利第4項所述之負載相位角計算裝置第—例,其用以 計算同步馬達的_目位角,該娜目位鱗算裝置第-例呈備: _電流零交越蹄置,制以將電流回授裝置制步馬達之定Taking the current amperage of the stator winding of the synchronous motor through zero instantaneous means, it can be implemented for any stator winding of the synchronous motor. 6. From the negative margin scaling device described in item 4 of the application patent, the first example is to obtain the voltage volt value of the stator winding of the synchronous motor through the instantaneous means of zero, which can be obtained by the electric house phase scaling device. The stationary Lai output dragon she Xiao, _ obtained the moment when the voltage volt value of the stator winding of the synchronous motor passed zero. 7. The first example of the load phase angle calculation device described in item 4 of the patent application, which is used to calculate the _mesh angle of the synchronous motor. The first example of this scale calculation device is: _current zero crossing Hoof setting 子繞組的電紅_絲轉,絲得定子敝的電流錢過零 間0 相位角延遲計算裝置,其中該相位角延遲計算裝置具有計時功 能,該相位角賴計算裝置由電壓相位角計算裝置取得靜止座標輸出 電壓相位角,藉以取得同步馬達之定子繞_電壓伏特值通過零的瞬 間,並使麟相㈣延遲計算裝置之計時魏,藉以求朗步馬達之 定子繞組的電流安培值通過零的瞬間相對於同步馬達之定子繞組的 電壓伏特值通過零的瞬間,兩者之時間差,上述兩者之時間差等於同 45 200536248 步馬達的負載相位角。 8·由申請專利第L述之負載齡角計算裝置,其巾該同步焉 達的負載相位角之計算可由負載相位角計算裝置第二例達成,^載 =位角計算裝置第二例取得同步馬達之定子繞組的電壓她角了並取 定子繞組的電餘位角,壯述兩者的相位角相減=取 9.由申請專利第8項所述之負載相.立角計算裝置第二例,The electrical winding of the sub-winding turns the current of the stator to the current of the stator. The phase angle delay calculation device has a timing function. The phase angle calculation device is obtained by the voltage phase angle calculation device. The phase angle of the output voltage of the stationary coordinate is used to obtain the moment when the stator winding of the synchronous motor _ voltage volts passes zero, and delays the timing of the calculation device of Lin Xiangyan, so that the amperage value of the stator winding of the step motor passes through zero. The moment when the voltage volt of the stator winding of the synchronous motor passes zero, the time difference between the two, the time difference between the two is equal to the load phase angle of the same step. 8. The load age angle calculation device described in the patent application No. L, the calculation of the load phase angle of the synchronization can be achieved by the second example of the load phase angle calculation device, and ^ load = the second example of the bit angle calculation device to obtain synchronization The voltage of the stator winding of the motor is angled and the electrical residual angle of the stator winding is taken. It is stated that the phase angle of the two is subtracted = 9. The phase of the load described in item 8 of the applied patent. The second angle calculation device example, 取传同步馬達之定子繞組的電流相位角之手段,達成方式為將電流回 授裝置_步馬達之定子繞_駿之檢现果鮮至靜止座標 m步馬達之奸繞_f流安駐鮮為驗的絕對值與電流 —10.由申請專利第8項所述之負載相位角計算裝置第二例,其用以 汁异同步馬達的負餘㈣,該負_位角計算裝置第二例具備: 幹出==中該暫存㈣糖目位娜裝置取得靜止座標 :電=儲存,該暫存裝置儲存先前使一 馬達電流相位角計算裝置,其中該馬The means to obtain the current phase angle of the stator winding of the synchronous motor is achieved by the current feedback device _step motor stator winding _ Jun's inspection results to the static coordinate m step motor winding _f 流 安 住 鲜To verify the absolute value and current—10. The second example of the load phase angle calculation device described in the patent application No. 8 is used to determine the negative margin of the synchronous motor, the second example of the negative _ angle calculation device Equipped with: Dry-out == The temporary storage of sugar sugar and bit-na device to obtain the stationary coordinates: electricity = storage, the temporary storage device stores a motor current phase angle calculation device, where the horse 將電似恤的紐^=*= 止座標軸,以將同步馬達之定子繞域電流安谇值換篡A '异’ 值與電流的相位角: 〜…。值換异為電流的絕對 電壓角目計算裝置’其為具傷有減法功能之裝置,該 之減法棚細价上述 數辣上物=:肖標輸_位角之 出兩者相減之差’上述兩者城之差轉同步馬達的賴相位角。 46 200536248 達的㈣Ί Λ 所述之負載相位角計算裝置,其中該同步馬 '目鹎之#可由負載相位綺算裝置第 置第三例取得同步馬達之定子燒組的電流=角= 得負載相位=子練組的電壓相位角’將上述兩者的相位角相減以取 对^1由/請翻第11項所述之負軸位鱗算裝置第三例,盆令 繞組的電流相位角之手段’達成方式為將電流Change the ^ = * = coordinates of the electric shaft to the axis of the stator to change the current value of the stator windings of the synchronous motor to the value of A 'different' value and the phase angle of the current: ~…. The value is changed to the absolute voltage angle calculation device of current. It is a device with a function of subtraction. The above-mentioned number of subtraction sheds the fine price =: Xiao Biao loses _ the difference between the two angles. 'The phase angle of the differential synchronous motor of the above two cities. 46 200536248 The load phase angle calculation device described in ㈣Ί Λ, where the synchronous horse '目 鹎 之 # can be set in the third example of the load phase calculation device to obtain the current of the stator burning group of the synchronous motor = angle = the load phase = Phase phase angle of the sub-training group 'Subtract the phase angles of the above two to get the correct value ^ 1 The third example of the negative axis scale calculation device described in item 11 above, the current phase angle of the basin winding The means to achieve this is to turn the current 軸,使同步紐定子繞組的電流之檢測結果換算至旋轉座標 的相位//以子繞組的電流安培值換算為電流的絕對值與電流 13.由申sf專利第u項所述之負載相位角計算裝置第三例,其用 以計算同步馬達㈣載相位角,該負載相位糾算裝置第三例且備: S,2ί置,射該暫存裝蝴載相㈣計算裝置取得負載相位 心暫存裝置儲存先前使用的負载相位角·· 、馬達電机相^ 立角計异裝置,其中該馬達電流相位角計算裝置將電 ^回授裝置對同步馬達之定子繞_電流之檢測結果換算至旋轉座 、使同V馬達之疋子繞組的電流安培值換算為電流的絕對值與電 流的相位角: 電壓電机她角差值汁算裝置,其為具備有加法與減法功能之裝 置’該電壓電流相位角差值計算I置用以計算同步馬達的負載相位 角,上述之減法功能將暫存裝置儲存綠使用的負載相絲之數值, 減以馬達電流她騎魏韻⑼之電流的她肖,兩者滅之差 再加上反魏勢她於旋轉座標軸之紐,上述兩者相減之差再加上 反電動勢相位於旋轉座標軸之角度等於貞載相位角。 14·由申4專利第13項所述之電壓電流相位角差值計算裝置,其 47 200536248 所述的反魏勢她概轉郝軸之肢,—般常見之旋觀標轴轉 換將反電動勢相位於旋轉座標#之角度定義觸度電機角。 15.由申請專利第1項所述之負載相亡角計算裝置,其中該同步馬 達的負載相位角之計算可由負_位奸算裝置第四例達成,該負载 相位角計隸置第四罐電流膽裝置轉關步馬達以子繞組 的電流轉換至靜止座標辦砰直轴之練量與絲之投影量,並將 上述兩投影量經由靜止座標軸雜轉座雜之轉換且_換之角度 為靜止座標輸出電壓她角’其賴所得之落後相位角等於同步馬達 的負載相位角。 16·由申請專利第1項所述之負載相士角計算裝置,其中該同步馬 達的負載相位角之計算可由負載相位角#算裝置第五例達成,該負載 相位角計算裝置第五例將電流习授裝置取得的同步馬達之定子繞組 的電流轉換至旋轉座標軸,並求出同步馬達之定子繞組的電流於與旋 轉座標軸中於反電動勢正交之輛的投影量,並以控制裝置尋找適當之 同步馬達的負載相位角促使同步馬達之定子繞組的電流於該軸之投 影量為零。 17·由申請專利第1項所述之電壓振嗝控制裝置,其中該靜止座標 輪出電壓絕對值之求取可由定電流型式電壓振幅控制裝置達成,該定 電流型式電壓振幅控制裝置由外界輸入之控制命令包含馬達有效值 電流命令與電流最大值命令,該定電流^式電壓振幅控制裝置由馬達 有效值電流命令與電流最大值命令之比較結果選擇限制後;馬達有效 值電流命令,當馬達有效值電沆命令小於電流最大值命令則限制後馬 達有效值電流命令等於馬達有效值電流争令,否則限制後馬達有效值 電流命令等於電流最大值命令: 18·由申請專利第π項所迟之定電污型式電壓振幅控制裝置,其 48 200536248 電流命令 中該定電流型式電壓振幅控繼置由求出合適之靜止座標輪出電壓 絕對值使同步馬達之定子繞_電流有效值滿足限概馬達有效值Axis, the phase of the current of the synchronous button stator winding is converted to the phase of the rotating coordinate // the current ampere value of the sub-winding is converted to the absolute value of the current and the current 13. The phase angle of the load as described in item u of the sf patent The third example of the calculation device is used to calculate the load phase angle of the synchronous motor. The third example of the load phase correction device is prepared as follows: S, 2ί, shoot the temporarily installed butterfly phase calculation device to obtain the load phase center temporarily. The storage device stores the previously used load phase angle ..., motor motor phase ^ vertical angle meter different device, wherein the motor current phase angle calculation device converts the detection result of the stator winding _ current of the synchronous motor by the electric current feedback device to Rotating seat, converting the current ampere value of the windings of the same motor as the V motor into the absolute value of the current and the phase angle of the current: The voltage motor's angle difference calculation device is a device with addition and subtraction functions. The voltage and current phase angle difference calculation I is set to calculate the load phase angle of the synchronous motor. The above-mentioned subtraction function will store the value of the load phase wire used by the temporary storage device, and subtract it from the motor current. The difference between Wei Yunzhen ’s current, the difference between the two, plus the anti-Wei potential, she is on the axis of the rotating coordinate axis. The difference between the two subtracted, plus the angle of the back electromotive force phase on the axis of the rotating coordinate, is equal to the phase angle. . 14. The voltage and current phase angle difference calculation device described in the 13th item of the Shen 4 patent, the anti-Wei potential described in 47 200536248, she will turn the shaft of the Hao axis, which is a common rotation. The angle at which the phase is located in the rotation coordinate # defines the touch motor angle. 15. The load phase dead angle calculation device described in the first item of the application patent, wherein the calculation of the load phase angle of the synchronous motor can be achieved by the fourth example of the negative phase calculation device, and the load phase angle meter is attached to the fourth tank. The current bile device turns off the step motor. The current of the sub-winding is converted to the stationary coordinate. The amount of the linear axis is projected and the projection of the wire. The two projections are converted through the stationary coordinate axis and the transposition. The phase angle of the stationary coordinate output voltage is determined by the backward phase angle equal to the load phase angle of the synchronous motor. 16. The load phase angle calculation device described in item 1 of the application patent, wherein the calculation of the load phase angle of the synchronous motor can be achieved by the fifth example of the load phase angle calculation device. The fifth example of the load phase angle calculation device will be The current of the stator winding of the synchronous motor obtained by the current learning device is converted to the rotating coordinate axis, and the projection amount of the current of the stator winding of the synchronous motor on a vehicle orthogonal to the back electromotive force in the rotating coordinate axis is calculated, and the control device is used to find the appropriate The load phase angle of the synchronous motor causes the projection of the stator winding current of the synchronous motor on the axis to be zero. 17. The voltage vibration control device described in the first item of the patent application, wherein the absolute value of the stationary coordinate wheel's voltage can be obtained by a constant current type voltage amplitude control device, which is input from the outside The control commands include the motor rms current command and the current maximum command. The constant current voltage-type voltage amplitude control device selects a limit based on the comparison result of the motor rms current command and the current maximum command; the motor rms current command, when the motor If the effective value electric command is less than the maximum current command, the limited motor rms current command is equal to the motor rms current command. Otherwise, the limited motor rms current command is equal to the current maximum command. The fixed electric pollution type voltage amplitude control device, in its 48 200536248 current command, the constant current type voltage amplitude control is implemented by finding the absolute value of the appropriate stationary coordinate wheel output voltage so that the stator winding of the synchronous motor _ current effective value meets the limit Motor effective value 19·由申請專利第17項所述之定電流型式電壓振幅控制裝置,其 中=定電流型式龍振幅控織置由電流回授裝置取得的^步馬達 之定子繞組的電流藉以求取同步馬達之定子繞組的電流有效值,該定 電忠型式振幅控锻置並將關後馬達有效值電流命令對同步 =達之疋子繞組的電流有效值兩者相減,該定電流型式電壓振幅控制 名置並以内件之控制裝置觀測上^^之兩者相減值以求出合適之靜止 座標輸出電壓絕龍使同步馬達之定子繞_電流有效值滿足限制 後馬達有效值電流命令。19. The constant current type voltage amplitude control device described in the 17th item of the application patent, where = the constant current type dragon amplitude control weaves the current of the stator winding of the ^ step motor obtained by the current feedback device to obtain the synchronous motor. Stator winding current RMS value. This fixed-electricity type amplitude control forging is set and the motor RMS current command after synchronization is turned off. Synchronization = the current effective value of the 疋 子 winding is subtracted from both. The constant current type voltage amplitude control name. Observe the subtracted value of the two on the control device of the internal parts to find the appropriate stationary coordinate output voltage. The absolute winding of the stator will be used to make the stator winding current of the synchronous motor meet the limit and the motor effective value current command. 20·由申請專利第丨項所述之電壓振幅控制裝置,其中該靜止座標 輸出電壓絕對值之求取可由第_歡電壓型式電壓振幅控制裝置達 成’該第-種定電壓型式電壓振幅控制裝置由取得的馬達轉子速度信 號判斷出·命令最大值與最小健®,且該第-歡糕型式電壓 振巾田控制裝置由電壓命令最大健最小絲圍關靜止座標輸出電 麼絕對值藉以_同步馬達之定子繞_電流有效值不超過額定電 21·由申請糊第21項所狀第-歡電麵錢壓振幅控制裝 一 ”中該第種疋電壓型式電壓振幅控制裝置由外界輸入之控制命 7包含馬達有效值電壓命令,該定第_歡電翻式電獅幅控制裝 置由電壓命令最大值與最小值範酸馬達有效值龍命令之比較結 $擇靜止座標輸出電壓絕對值,#馬達有效值電壓命令介於電壓命 7最大值與最小值範圍則靜止座標輸出電壓絕對值等於馬達有效值 電壓命令’當馬達有效值電壓命令大於賴命令最大值與最小值範圍 49 200536248 之最大值設定則靜止座標輸出電壓絕對值等於電齡令最大值與最 小,範社最大值設定,當馬達有效直電齡令小於電齡令最讀 ”最]值範圍之最小值⑦疋則靜止座標輸出電i絕對值等於電壓命 令最大值與最小值範圍之最小值設定。 22.由申請專利第!項所述之電墨振幅控制裝置,其中該靜止座標 輸出電舰對值之求取可由第二種宅電顧式電壓振幅控制裝置達 成,該第二種定電壓型式電麵幅控徽置由外界輸人之控制命令包 含馬達有效值龍命令與電流最纽命令,該第二種定電壓型式電壓 振幅控制裝置由電流喊裝置取得_步馬達之定子餘的電流藉 以求取同步馬達之定子繞㈣電雜效值,當畔馬達之定子繞組的 電流有效值小於電流最大值命令則靜止座標輸出電壓絕對值等於馬 達有效值電壓命令,否則該第二種定電壓型式電壓振幅控制裝置強制 減低靜止鋪輸出電壓絕對值以促純步馬達之定子繞組的電流有 效值減低。 23·由申請專利第23項所述之第二種定電壓型式電壓振幅控制裝 置,其中該第二種定電壓型式電壓振幅控制裝置由電流回授裝置取得 的同步馬達之定子繞組的電流藉以求取同步馬達之定子繞組的電流 =效值,當同步馬達之定子繞組的電流有效值小於電流最大值命令則 靜止座標輸出電壓絕對值等於馬達有效值電壓命令,否則該第二種定 電壓型式電壓振幅控制裝置以内件之控制裝置求出合適之靜止座標 輪出電壓絕對值使同步馬達之定子繞組的電流有效值等於慮流最大 值命令。 24·由申睛專利第24項所述之第二種定電壓型式電壓振幅控制裝 置,其中該第二種定電壓型式電壓振幅控制裝置達成定子繞組的電流 有效值等於電流最大值命令之手段.以該第二種定電壓型式電壓振幅 50 200536248 控制裝置内件之控制裝置達成’上述的内件之控制裝置觀測電流最大 值命令對同步馬達之定子繞組的電流有效值相減差以求出合適之靜 止座標輸出電壓絕對值使同步馬達之定子繞組的電流有效值滿足電 流最大值命令。 25·由申睛專利第1項所述之電壓振幅控制裝置,其中該靜止座標 輸出電壓絕對值之求取可由第—種轉矩型式控制系統達成,該第一 種定轉矩赋控⑽、統耕界輸人之控制命令包含馬雜矩命令,該 第種定轉矩型式控制系統將馬達轉矩命令乘以常數倍後產生馬達 有效值電流命令。 』26.由申請專利第26項所述之第一種定轉矩型式控制系統,其令 1 該馬達有效值電流命令用以控制申請專利第17項所述之定電流型式 電壓振幅控制裝置,且由該定電流型式電壓振幅控制裝置求出合適之 靜止座標輸出電壓絕對值使同步馬達之定子繞組的電流有效值滿足 馬達有效值電流命令。 27·由申請專利第!項所述之電壓振幅控制裝置,其中該靜止座標 輸出電壓絕對值之求取可由第二種定轉矩型式控制系統達成,該第二 種定轉矩型式控㈣統由外界輸人讀制命令包含馬越矩命令,該 第種疋轉矩里式控制系統將馬達轉矩命令乘以常數倍後產生馬達 φ f效值電齡令’該第二種定轉矩型式控· 由電流回授裝置取 ^的同步馬達之定子繞_電流藉財取时馬達之定子繞組的電 机有效值該第一種疋轉矩型式控制系統並由内件之控制裝置觀測馬 達有效值電流命令對同步馬達之定子繞組的電流有效值相減之差以 求出合適之馬達有效值電麼命令,使同步馬達之定子繞組的電流有效 值滿足電«大值命令。射上述之馬達有效值電齡相以控制申 請專利第21項所述之第—種定電翻式電壓振幅控制裝置,且由該第 51 200536248 -種定電壓型式電壓振幅控制裝置求 =步馬達之定顺電_-=:=: 28.由申請專利第!項所述之電$振幅控制 輸出電壓絕對值之求取可由第三種定轉矩型式控制㈣查f止座標 型式剛物卜界輸人猶】命令包含騎轉矩命^ 第二種疋轉矩默__將馬達_命令乘20. The voltage amplitude control device described in the application item No. 丨, wherein the absolute value of the output voltage of the static coordinate can be obtained by the voltage amplitude control device of the third voltage type, the voltage constant control device of the first constant voltage type. Judging from the obtained motor rotor speed signal, the commanded maximum value and minimum health®, and the -three-dimensional cake type voltage vibration field control device outputs the absolute value of the absolute value by using the voltage commanded maximum health and minimum wire to close the stationary coordinates. The stator winding of the motor _ The effective value of the current does not exceed the rated power 21 · The first type of voltage type voltage amplitude control device in the "Voltage and Voltage Amplitude Control Device" described in item 21 of the application is controlled by external input Command 7 contains the motor rms voltage command. The determination of the _ Huandian electric electric lion width control device is based on the comparison of the maximum and minimum voltage commands of the motor rms command and the absolute value of the output voltage of the stationary coordinates. The motor rms voltage command is between the range of the maximum and minimum values of the voltage command.The absolute value of the output voltage at the stationary coordinate is equal to the motor rms voltage command. The effective voltage command is greater than the maximum and minimum range of the Lai command. 49 200536248 The maximum setting is the absolute value of the static coordinate output voltage equal to the maximum and minimum of the electrical age order. The maximum value of the fan society is set. The minimum value of the "most] value range of the age order, then the absolute value of the output of the stationary coordinate is equal to the minimum value of the maximum and minimum range of the voltage command. 22. By patent application! The electronic ink amplitude control device described in the above item, wherein the determination of the value of the static coordinate output electric ship can be achieved by a second type of home electric Gu amplitude voltage amplitude control device, and the second constant voltage type electric surface amplitude control emblem is set by The external input control commands include the motor effective value dragon command and the current command. The second constant voltage type voltage amplitude control device obtains the current from the stator of the step motor to obtain the stator winding of the synchronous motor.杂 Electrical miscellaneous value. When the RMS current of the stator winding of the motor is less than the maximum current command, the absolute value of the stationary coordinate output voltage is equal to the motor RMS voltage command. Otherwise, the second constant voltage type voltage amplitude control device forcibly reduces the static Set the absolute value of the output voltage to reduce the effective value of the stator winding current of the pure step motor. 23. The second constant voltage type voltage amplitude control device according to item 23 of the application patent, wherein the second constant voltage type voltage amplitude control device is obtained by a current of a stator winding of a synchronous motor obtained by a current feedback device. Take the stator winding current of the synchronous motor = effective value. When the effective value of the stator winding of the synchronous motor is less than the maximum current command, the absolute value of the stationary coordinate output voltage is equal to the motor effective value voltage command. Otherwise, the second constant voltage type voltage The amplitude control device uses the internal control device to determine the absolute value of the stationary coordinate wheel output voltage so that the effective value of the stator winding current of the synchronous motor is equal to the maximum current command. 24. The second type of constant voltage type voltage amplitude control device described in item 24 of Shenyan Patent, wherein the second type of constant voltage type voltage amplitude control device is a means for achieving the effective value of the stator winding equal to the maximum current command. With the second constant voltage type voltage amplitude of 50 200536248, the control device of the internal device of the control device achieves the above-mentioned control device of the internal device to observe the maximum current command to subtract the difference from the effective value of the stator winding current of the synchronous motor to find the appropriate The absolute value of the stationary coordinate output voltage makes the effective value of the stator winding current of the synchronous motor meet the current maximum command. 25. The voltage amplitude control device described in the first item of Shenyan Patent, wherein the absolute value of the output voltage of the stationary coordinate can be obtained by the first torque type control system, the first constant torque control ⑽, The control commands lost by the unified farming community include the horse miscellaneous moment command. This first constant torque type control system multiplies the motor torque command by a constant multiple to generate a motor effective value current command. "26. The first constant-torque type control system described in item 26 of the application patent, which makes 1 the motor effective value current command to control the constant-current type voltage amplitude control device described in item 17 of the application patent, And the constant current type voltage amplitude control device obtains a suitable absolute coordinate output voltage absolute value so that the rms current of the stator winding of the synchronous motor meets the motor rms current command. 27 · By patent application! The voltage amplitude control device described in the above item, wherein the absolute value of the stationary coordinate output voltage can be obtained by the second constant torque type control system, and the second constant torque type control system is input by a command from outside. Contains the Ma Yue moment command. The first type of torque torque control system multiplies the motor torque command by a constant multiple to generate the motor φ f effect value electric age order. The second type of constant torque control is controlled by a current feedback device. Take the stator winding of the synchronous motor _ The current value of the motor's stator winding when the motor is borrowed. The first 疋 torque type control system and the internal device's control device observes the motor effective value current command to the synchronous motor. The difference between the subtraction of the rms current of the stator windings in order to find a suitable motor rms electric command, so that the stats of the stator windings of the synchronous motor meet the electric «large value command. The above-mentioned motor effective value electric age phase is used to control the first type of constant voltage flip-type voltage amplitude control device described in the patent application No. 21, and is calculated by the 51st 200536248-type constant voltage type voltage amplitude control device = step motor Zhiding Shundian _- =: =: 28. By patent application! The absolute value of the output voltage of the electric amplitude control described in the above item can be controlled by the third type of constant torque. (Check the f-stop coordinate type. The rigid object can be lost.) The command includes the riding torque. Momo__ multiply the motor_command 有效織料,贩崎賴_紐嫩 2同步馬達之定子繞組的電流藉以求取_達之定子繞組的電 j效值,該t種定轉矩型式控锻統並由内件之控繼置觀測馬 達有效值電齡令對同步馬達之定子繞_電流有雜相減之差以 求出合適之馬達有效值電壓命令,使同步馬達之定子繞組的電流有效 值滿足電流最大值命令。其中上述之馬達有效值電壓命令用以控制申 請專利第23項所述之第二種定電壓奴電驗偷繼置,且由該第 二種定電壓型式電壓振幅_裝置求出合適之靜止座標輸出電壓絕 對值使同步馬達之定子繞組的航纽值滿足上述之馬達有效值電 流命令。For effective weaving, the current of the stator winding of the _Nunen 2 synchronous motor is used to obtain the electrical efficiency of the stator winding. The t-type constant-torque type controls the forging system and is controlled by the internal parts. Observe the effective age of the motor to make the stator winding current of the synchronous motor have a subtraction difference to find the appropriate motor effective voltage command, so that the effective value of the stator winding current of the synchronous motor meets the maximum current command. The above-mentioned motor effective value voltage command is used to control the second type of constant voltage slave electromechanical testing described in the patent application No. 23, and the appropriate constant coordinates are obtained by the second type of constant voltage type voltage amplitude _ device The absolute value of the output voltage makes the threshold value of the stator winding of the synchronous motor meet the above-mentioned motor effective value current command. 29·由申請專利冑1項所述之電!振幅控制裝置,射該靜止座標 輸出電壓絕對值之求取可由第一種定轉速型式控制系統達成,該第一 種疋轉速型式控制系統由外界輸a之控制命令包含馬達轉速命令,該 第一種定轉速型式控制系統由轉子回授信號轉換裝置取得馬達轉 子速度信號,該第一種定轉速型式控制系統並由馬達轉子速度信號對 馬達轉速命令相減之差以求出合適之馬達有效值電壓命令,其中上述 之馬達有效值電壓命令用以控制申請專利第21項所述之第一種定電 壓型式電壓振幅控制裝置,且由該第一種定電壓型式電壓振幅控制裝 52 200536248 置表出σ適之靜止座標輸出電壓絕對值使同步馬達之馬達轉子速度 j吕號滿足馬達轉速命令。 3〇·β由申明專利第1項所述之電壓振幅控制裝置,其中該靜止座標 輸出電祕對值之求取可由第二歡轉速型式㈣紐達成,該第二 種定魏型式控_統由外界輸人之控齡令包含馬達轉速命令,該 第一種^轉速型式控制系統由轉子回授信號轉換裝置取得之馬達轉 子速度信號’鄉二歡觀型式控⑽、統並由馬辅子速度信號對 馬達轉速^相減之差財出合適之馬達有效值電壓命令,其中上述 ^馬達有效值電壓命令用啸辦請專·23項所述之第二種找 壓呈式電[振巾S控繼置,且由雜二歡賴型式糕振幅控制裝 置求出σ適之靜止座標輸出電壓絕對值使同步馬達之馬達轉子速产 信號滿足馬達轉速命令。 又 31.由申請專利第丄項所述之電舰幅控制裝置,其中該靜止座標 輸$電壓絕對值之求取可由第三種定轉速型式控㈣統達成,該第三 種=轉^ _彳_由外界輸人之控齡令包含馬賴速命令,該 第-種讀速型式控⑽統轉子喊信_換裝置取得之馬達轉 子速度信號’該第二歡觀型從⑽、缝由馬賴子速度作 馬達轉速命令相減之差以求出合適之馬達有效值電流命令,1中^述 · 命令㈣_中請專利第17項所述之定電流型式 控制裝置,由該定電流型式電壓振幅控制裝置求出合適之靜 止座標輸出電壓絕對值使同步馬達之定子繞組的電流有效值滿足上 ^之馬達有效值電流命令’且由該定電流型式電壓振幅控制裝置求出 合適之靜止座標輸出電壓絕對值使同步馬達之馬達轉子速度信號滿 5329 · Electricity mentioned in item 1 of the patent application! The amplitude control device can obtain the absolute value of the output voltage of the stationary coordinate by the first constant speed type control system. The first type of speed control system includes a motor speed command from the outside. The first This type of constant speed type control system obtains the motor rotor speed signal from the rotor feedback signal conversion device. The first type of constant speed type control system uses the difference between the motor rotor speed signal and the motor speed command to determine the appropriate effective value of the motor. Voltage command, in which the above-mentioned motor effective value voltage command is used to control the first constant voltage type voltage amplitude control device described in the patent application No. 21, and the first constant voltage type voltage amplitude control device 52 200536248 sets the table The absolute value of the output voltage of the stationary coordinate of σ is made to make the motor rotor speed j of the synchronous motor satisfy the motor speed command. 30 · β is the voltage amplitude control device described in the first item of the declared patent, wherein the determination of the output value of the static coordinate output can be achieved by the second type of rotation speed control. The age control command input from the outside includes a motor speed command. The first speed type control system is a motor rotor speed signal obtained by the rotor feedback signal conversion device. Make a proper motor effective voltage command for the difference between the motor speed ^ subtraction. Among them, the above ^ motor effective voltage voltage command should be used to request the second type of pressure-seeking electric power described in [23]. It is successively set, and the absolute value of the output voltage of the stationary coordinate of σ is obtained by the hybrid control device of the second type, so that the motor rotor speed production signal of the synchronous motor meets the motor speed command. 31. The electric ship width control device described in the item 丄 of the application patent, wherein the absolute value of the input voltage of the stationary coordinate can be obtained by a third type of constant speed control system, the third type = turn ^ _彳 _The age control order input from the outside includes the Ma Lai speed command, the first read speed type control system rotor shouts the letter _ the motor rotor speed signal obtained by the changing device 'the second Huanguan type follower, sewing The speed difference between the horse speed and the motor speed command is used to obtain a suitable motor effective value current command. The command is described in 1. The command is the constant current type control device described in item 17 of the patent. The voltage amplitude control device finds a suitable absolute coordinate output voltage absolute value so that the effective value of the stator winding current of the synchronous motor satisfies the above-mentioned motor effective value current command ', and the constant current type voltage amplitude control device finds a suitable static coordinate The absolute value of the output voltage makes the motor rotor speed signal of the synchronous motor full 53
TW93112199A 2004-04-30 2004-04-30 Control method and apparatus of synchronous motors TW200536248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93112199A TW200536248A (en) 2004-04-30 2004-04-30 Control method and apparatus of synchronous motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93112199A TW200536248A (en) 2004-04-30 2004-04-30 Control method and apparatus of synchronous motors

Publications (1)

Publication Number Publication Date
TW200536248A true TW200536248A (en) 2005-11-01

Family

ID=52348885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93112199A TW200536248A (en) 2004-04-30 2004-04-30 Control method and apparatus of synchronous motors

Country Status (1)

Country Link
TW (1) TW200536248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563791B (en) * 2015-11-17 2016-12-21 En Technologies Corp System and way for no sensor three-phase motor
CN111034017A (en) * 2017-09-07 2020-04-17 三菱重工制冷空调***株式会社 Current estimation device, electric compressor, current estimation method, and motor current effective value estimation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563791B (en) * 2015-11-17 2016-12-21 En Technologies Corp System and way for no sensor three-phase motor
CN106953556A (en) * 2015-11-17 2017-07-14 祥诚科技股份有限公司 Sensorless three-phase motor driving system and method thereof
CN106953556B (en) * 2015-11-17 2020-03-17 祥诚科技股份有限公司 Sensorless three-phase motor driving system and method thereof
CN111034017A (en) * 2017-09-07 2020-04-17 三菱重工制冷空调***株式会社 Current estimation device, electric compressor, current estimation method, and motor current effective value estimation method

Similar Documents

Publication Publication Date Title
Lee et al. An improved DTC-SVM method for sensorless matrix converter drives using an overmodulation strategy and a simple nonlinearity compensation
KR20200075937A (en) Apparatus of controlling charging system using motor driving system
JP2011050198A (en) Driving system of permanent magnet synchronous motor
CN106357196A (en) Power converter
WO2015073446A1 (en) Field weakening control of magnet motor drives
CN105680752B (en) A kind of discrimination method and system of permanent magnet synchronous motor pulsactor parameter
Luo et al. Operating-point tracking method for sensorless induction motor stability enhancement in low-speed regenerating mode
Yang et al. Micro-stepping control of a two-phase linear stepping motor with three-phase VSI inverter for high-speed applications
CN109936320A (en) A kind of bi-motor series connection Direct Torque Control based on duty ratio modulation
Schoonhoven et al. Harmonic injection-based adaptive control of IPMSM motor drive for reduced motor current THD
CN110098772B (en) Function switching-based direct-current magnetic modulation type memory motor position-free control method and system
CN110011588A (en) A kind of half control type opens winding permanent magnet synchro generator model prediction flux linkage control method
Lee et al. Speed-sensorless DTC-SVM for matrix converter drives with simple nonlinearity compensation
Zhou et al. Extended operation of brushless dc motors beyond 120° under maximum torque per Ampere control
Chen et al. Implementation issues of flux linkage estimation on permanent magnet machine position sensorless drive at low speed
TW200536248A (en) Control method and apparatus of synchronous motors
CN106059442B (en) The fault-tolerant vector control method of the adjacent two-phase open circuit of five phase fault tolerant permanent magnet linear motors
JP2003061382A (en) Control method of inverter and control circuit of inverter
He et al. Single-Phase H-Bridge Rectifier Fed High-Speed SRM System Based on Integrated Power Control
Gong Carrier signal injection based sensorless control of permanent magnet brushless AC machines
JP2009019561A (en) Control system for turbocharger with electric motor
JP3468751B2 (en) Motor drive
Lee et al. Standstill Sensorless Self-Commissioning Strategy of Synchronous Machines Including Initial Positioning and Torque Canceling Techniques
Fernandes et al. Speed sensorless PMSM motor drive system based on four-switch three-phase converter
Singh et al. Improved DSVM-DTC based current sensorless permanent magnet synchronous motor drive