TW200427961A - Thermal interface material and method for making same - Google Patents

Thermal interface material and method for making same Download PDF

Info

Publication number
TW200427961A
TW200427961A TW92115117A TW92115117A TW200427961A TW 200427961 A TW200427961 A TW 200427961A TW 92115117 A TW92115117 A TW 92115117A TW 92115117 A TW92115117 A TW 92115117A TW 200427961 A TW200427961 A TW 200427961A
Authority
TW
Taiwan
Prior art keywords
thermal interface
interface material
item
scope
patent application
Prior art date
Application number
TW92115117A
Other languages
Chinese (zh)
Other versions
TWI232286B (en
Inventor
Shou-Shan Fan
Po-Luo Liu
Hua Huang
Yong-De Li
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW92115117A priority Critical patent/TWI232286B/en
Publication of TW200427961A publication Critical patent/TW200427961A/en
Application granted granted Critical
Publication of TWI232286B publication Critical patent/TWI232286B/en

Links

Abstract

A thermal interface material includes a polymer matrix and an array of carbon nanotubes incorporated in the polymer matrix. The polymer matrix has a thermally conductive first face and an opposite thermally conductive second face. The carbon nanotubes are substantially parallel to each other, and extend between the first and the second faces. A preferred method for making the thermal interface material includis the steps of: (a) forming the array of carbon nanotubes on a substrate; (b) immersing the carbon nanotubes in a liquid prepolymer such that the liquid prepolymer infuses into the array of carbon nanotubes; (c) polymerizing the liquid prepolymer to obtain the polymer matrix having the carbon nanotubes secured therein; and (d) peeling the polymer matrix having the carbon nanotubes off from the substrate to obtain the thermal interface material.

Description

200427961 五、發明說明(1) 【發明所屬之技術領域】 本發明係關於一種熱介面材料及其製造方法,尤指一、. 種利用奈米碳管導熱之熱介面材料及其製造方法。 、 【先前技術】 近年來,隨著半導體器件集成工藝之快速發展,半導 體器件之集成化程度越來越高,惟,器件體積卻變得越來 越小,其對散熱之需求越來越高,已成為一個越來越重要 之問題。為滿足該需要,風扇散熱、水冷輔助散熱及熱管 散熱等各種散熱方式被廣泛運用,並取得一定之散熱效 果,但因散舦器與半導體集成器件之接觸介面之不平整,φ 一般相互接觸面積不到2 %,未有一個理想之接觸介面,從 根本上影響半導體器件向散熱器傳遞熱量之效果,故,於 散熱器與半導體器件之間增加一具較高熱傳遞係數之介面 材料以增加介面之接觸程度實為必要。 傳統熱介面材料係將導熱係數較高之顆粒分散於聚合 物基體以形成復合材料,如石墨、氮化硼、氧化矽、氧化 鋁、銀或其他金屬等。此種材料之導熱性能取決於聚合物 基體之性質。其中以油脂、相變材料為基體之復合材料因 其使用時為液態能與熱源表面浸潤故接觸熱阻較小,而矽 膠和橡膠為載體之復合材料接觸熱阻相對較大。該類材料 一普遍缺陷係整個材質導熱係數較小,典型值為1 W/mK, 這已經越來越不能適應半導體集成化程度之提高對散熱之 需求,而增加聚合物基體之導熱顆粒含量使得顆粒與顆粒 之間儘量相互接觸‘以增加整個復合材料之導熱係數,如某200427961 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a thermal interface material and a method for manufacturing the same, and more particularly, to a thermal interface material that utilizes carbon nanotubes to conduct heat and a method for manufacturing the same. [Previous technology] In recent years, with the rapid development of semiconductor device integration processes, the integration degree of semiconductor devices is getting higher and higher, but the device size has become smaller and smaller, and its demand for heat dissipation has become higher and higher. Has become an increasingly important issue. In order to meet this need, various cooling methods such as fan cooling, water cooling auxiliary cooling, and heat pipe cooling have been widely used, and have achieved a certain cooling effect. However, due to the uneven contact interface between the diffuser and the semiconductor integrated device, φ generally contacts each other. Less than 2%, there is no ideal contact interface, which fundamentally affects the effect of transferring heat from the semiconductor device to the heat sink. Therefore, an interface material with a higher heat transfer coefficient is added between the heat sink and the semiconductor device to increase the interface. The level of contact is really necessary. Traditional thermal interface materials disperse particles with high thermal conductivity in the polymer matrix to form composite materials, such as graphite, boron nitride, silicon oxide, aluminum oxide, silver, or other metals. The thermal conductivity of this material depends on the nature of the polymer matrix. Among them, the composite materials based on grease and phase change material are in a liquid state when in use and can infiltrate the surface of the heat source, so the contact thermal resistance is small, while the composite materials with silicone and rubber as the carrier have relatively large contact thermal resistance. A common defect of this type of material is that the thermal conductivity of the entire material is relatively small, with a typical value of 1 W / mK, which has become increasingly unable to meet the demand for heat dissipation due to the integration of semiconductors. Increasing the content of thermally conductive particles in the polymer matrix makes Particles and particles should be in contact with each other as much as possible to increase the thermal conductivity of the entire composite material, such as

200427961 五、發明說明(2) 些特殊之介面材料因此可達到4-8W/mK,惟,聚合物基體 之導熱顆粒含量增加至一定程度時,會使聚合物基體失去、 原本之性能,如油脂會變硬,從而浸潤效果變差,橡膠亦 會變得較硬,從而失去應有之柔韌性,這都將使熱介面材 料性能大大降低。 近來有一種熱介面材料,係將定向排列之導熱係數約 為1 1 00 W/mK之碳纖維一端或整體用聚合物固定,從而於 熱介面材料之垂直方向形成定向排列之碳纖維陣列,以使 每一碳纖維均可形成一導熱通道,該方式可有效提高熱介 面材料之導熱係數,達到50-90 W/mK。惟,該類材料一個 缺點係厚度必須於4 0微米以上,而整個熱介面材料之導熱 係數與薄膜之厚度成反比,故當其熱阻降低至一定程度, 進一步降低之空間相當有限。 為改善熱介面材料之性能,提高其熱傳導係數,各種 材料被廣泛試驗。S a v a s B e r b e r等人2 0 0 0年於美國物理 學會上發表一篇名為11 Unusually High Thermal Conductivity of Carbon Nanotubes"之文章指出,"Ζπ 形 (10, 10) 奈米碳管於室溫下導熱係數可達6 6 0 0 W/mK ,具 體内容可參閱文獻 Phys. Rev. Lett(2000),84,4613。 美國專利第6,4 0 7,9 2 2號揭示一種利用奈米碳管導熱 之熱介面材料,其係將奈米碳管糝到聚合物基體結成一 體,通過注模方式製得熱介面材料,且該熱介面材料之兩 導熱表面之面積不等,其中與散熱器接觸一.面之面積大於 與熱源接觸一面之哂積,這樣可有利於散熱器散熱,但該200427961 V. Description of the invention (2) Some special interface materials can reach 4-8W / mK. However, when the content of the thermal conductive particles of the polymer matrix is increased to a certain level, the polymer matrix will lose its original properties, such as grease It will harden, so that the wetting effect becomes worse, and the rubber will also become harder, thus losing its flexibility. This will greatly reduce the performance of the thermal interface material. Recently, there is a thermal interface material. One end or the whole of the carbon fiber with a thermal conductivity of about 1 100 W / mK in a directional arrangement is fixed with a polymer, so as to form an aligned carbon fiber array in the vertical direction of the thermal interface material, so that each A carbon fiber can form a thermal conduction channel. This method can effectively improve the thermal conductivity of the thermal interface material to 50-90 W / mK. However, a disadvantage of this type of material is that the thickness must be more than 40 microns, and the thermal conductivity of the entire thermal interface material is inversely proportional to the thickness of the film. Therefore, when its thermal resistance is reduced to a certain extent, the space for further reduction is quite limited. In order to improve the performance of thermal interface materials and their thermal conductivity, various materials have been extensively tested. An article published by Savas Berber et al. At the American Physical Society in 2000 entitled "11 Unusually High Thermal Conductivity of Carbon Nanotubes" states that "Zπ-shaped (10, 10) carbon nanotubes at room temperature The lower thermal conductivity can reach 6 6 0 W / mK. For details, please refer to Phys. Rev. Lett (2000), 84, 4613. U.S. Patent No. 6,407,9 2 2 discloses a thermal interface material utilizing nano carbon tube for heat conduction. The thermal interface material is obtained by injecting a nano carbon tube into a polymer matrix to obtain a thermal interface material by injection molding. And the areas of the two heat-conducting surfaces of the thermal interface material are different, in which the area of the surface in contact with the heat sink is larger than the area of the surface in contact with the heat source, which can help the heat sink to dissipate heat, but the

第8頁 200427961 五、發明說明(3) 方法製得之熱介面材料有不足之處,其一,注模方式製得 熱介面材料厚度較大,導致該熱介面材料之導熱係數之較、. 高,且增加該熱介面材料之體積,與器件向小型化方向發 展之趨勢不相適應,且熱介面材料缺乏柔韌性;其二,奈 米碳管於基體材料中未有序排列,其於基體分佈之均勻性 較難確保,因而熱傳導之均勻性亦受到影響,且奈米碳管 縱向導熱之優勢未充分利用,影響熱介面材料之熱傳導係 數。 有鑒於此,提供一種具優良之熱傳導效果、厚度薄、 柔韌性佳且熱傳導均勻之熱介面材料實為必要。 Φ 【内容】 本發明之目的在於提供一種導熱效果優良、厚度薄、 柔韋刃性佳之熱介面材料。 本發明之另一目的係提供此種熱介面材料之製作方 法。 本發明係基於奈米碳管陣列導熱之熱介面材料,該熱 介面材料係由聚合物基體及分佈於其中之碳納管陣列構 成。該奈米碳管陣列於該聚合物基體沿同一方向平行排 列。 本發明熱介面材料之製造方法包括以下步驟: ® 首先,提供一奈米碳管陣列,該奈米碳管陣列置於 一基底上; 其次,用預聚物浸潤奈米碳管陣列; 最后,固化‘預聚物,形成熱介面材料。Page 8 200427961 V. Description of the invention (3) The thermal interface material produced by the method has shortcomings. First, the thickness of the thermal interface material obtained by injection molding is relatively large, which results in a relatively low thermal conductivity of the thermal interface material. High, and increasing the volume of the thermal interface material is not compatible with the trend of device miniaturization, and the thermal interface material lacks flexibility; second, the carbon nanotubes are not arranged in an orderly manner in the base material, and The uniformity of the matrix distribution is difficult to ensure, so the uniformity of heat conduction is also affected, and the advantages of the longitudinal thermal conductivity of the carbon nanotubes are not fully utilized, affecting the thermal conductivity of the thermal interface material. In view of this, it is necessary to provide a thermal interface material with excellent heat conduction effect, thin thickness, good flexibility and uniform heat conduction. Φ [Content] The object of the present invention is to provide a thermal interface material with excellent heat conduction effect, thin thickness, and good flexibility. Another object of the present invention is to provide a method for manufacturing such a thermal interface material. The invention is a thermal interface material based on the thermal conductivity of a carbon nanotube array. The thermal interface material is composed of a polymer matrix and a carbon nanotube array distributed therein. The nano carbon tube array is arranged in parallel with the polymer matrix in the same direction. The manufacturing method of the thermal interface material of the present invention includes the following steps: ® First, a nano carbon tube array is provided, and the nano carbon tube array is placed on a substrate; second, a nano carbon tube array is impregnated with a prepolymer; finally, The 'prepolymer' is cured to form a thermal interface material.

200427961 五、發明說明(4) 與先前之熱界面材料相比,本發明提供之熱界面材料 因奈米碳管陣列具均勻定向排列之優點,該熱介面材料之 每一根奈米碳管均可於垂直熱介面材料方向形成熱傳導通 道,得到導熱係數較高之熱介面材料。 【實施方式】 請一併參閱第一圖與第二圖,首先係於一基底1 1均勻 沈積一催化劑層1 2,其方法可利用熱沈積、電子束沈積或 濺射法完成。基底1 1之材料可用玻璃、石英、矽或氧化 I呂。本實施例採用多孔石夕,其表面係一多孔層,孔之直徑 極小,一般小於3奈米。催化劑層1 2之材料可為滅、敍、 鎳及其合金,本實施方式選用鐵作為催化劑材料。 氧化催化劑層1 2,形成催化劑顆粒(圖未示),再將 分佈有催化劑之基底1 1置於反應爐中(圖未示),於7 0 0〜 1 0 0 0攝氏度下,通入碳源氣,生長出奈米碳管陣列,其中 碳源氣可為乙炔、乙烯等氣體,奈米碳管陣列2 2之高度在 一定範圍内可通過控制其生長時間來控制,一般生長高度 為1〜1 0 0微米,本實施例之奈米碳管陣列2 2之生長高度為 1 0 0微米。有關奈米碳管陣列2 2之生長方法已較為成熟, 具體可參閱文獻Science,1999,283,512-414及文獻 J.Am.Chem.Soc, 2 0 0 1, 123,115 0 2 - 1 1 5 0 3,此外美國專利 第6,3 5 0,4 8 8號亦公開一種大面積生長奈米碳管陣列之方 法。 請參閱第三圖,將預聚物3 2裝入一容器3 0中,將生長 完備之定向排列奈•米碳管陣列2 2連同基底1 1 一同浸到預聚200427961 V. Description of the invention (4) Compared with the previous thermal interface material, the thermal interface material provided by the present invention has the advantage of uniformly aligned carbon nanotube arrays. Each nano carbon tube of the thermal interface material is Thermal conduction channels can be formed in the direction of the vertical thermal interface material to obtain a thermal interface material with a high thermal conductivity. [Embodiment] Please refer to the first figure and the second figure together. First, a catalyst layer 12 is uniformly deposited on a substrate 11. The method can be completed by thermal deposition, electron beam deposition, or sputtering. The material of the substrate 11 can be glass, quartz, silicon, or oxide. This embodiment uses porous stone, the surface of which is a porous layer, and the diameter of the pores is extremely small, generally less than 3 nm. The material of the catalyst layer 12 may be quenching, nickel, nickel, and alloys thereof. In this embodiment, iron is used as the catalyst material. The catalyst layer 12 is oxidized to form catalyst particles (not shown), and then the substrate with the catalyst distributed 1 1 is placed in a reaction furnace (not shown), and carbon is introduced at a temperature of 700 to 100 degrees Celsius. The source gas grows a carbon nanotube array. The carbon source gas can be acetylene, ethylene and other gases. The height of the carbon nanotube array 22 can be controlled by controlling its growth time within a certain range. The general growth height is 1 ~ 100 microns, the growth height of the nano-carbon tube array 22 of this embodiment is 100 microns. The growth method of the carbon nanotube array 22 has been relatively mature. For details, please refer to Science, 1999, 283, 512-414 and J. Am. Chem. Soc, 2 0 1, 1, 123, 115 0 2-1 1 5 In addition, U.S. Patent No. 6,35,048,8 also discloses a method for growing a large area carbon nanotube array. Referring to the third figure, the prepolymer 3 2 is packed into a container 30, and the fully-grown directional carbon nanotube array 2 2 is dipped into the prepolymer together with the substrate 1 1.

第10頁 200427961 五、發明說明(5) 物3 2中,待預聚物3 2完全浸潤奈米碳管陣列2 2,預聚物3 2 之完全浸潤之時間同奈米碳管陣列2 2之高度、密度以及整. 個奈米碳管陣列2 2之面積及預聚物3 2自身之粘度有關。、 請參閱第四圖、第五圖及第六圖,將經預聚物3 2浸潤之奈 米碳管陣列2 2連同基底1 1從容器3 0取出,浸潤奈米碳管陣 歹U 2 2之預聚物3 2於相對濕度大於4 0 %之條件下進行固化反 應,待24小時後,預聚物32固化形成聚合物34,再將該聚 合物3 4從基底1 1進行脫膜,再經7 2小時固化,形成熱介面 材料4 0,其厚度為1 0 0微米,與原先奈米碳管陣列2 2高度 一致。即熱介面材料4 0之厚i取決於所生長之奈米碳管陣 φ 列之高度,故,可通過控制奈米碳管陣列之生長高度製得 所需不同厚度之熱介面材料40。 再請參閱第六圖,本發明之熱介面材料4 0,奈米碳管 陣列2 2經聚合物3 4固結形成一體,奈米碳管陣列2 2於聚合 物3 4垂直、均勻分佈,形成複數熱傳遞通道,所形成之熱 介面材料40具較高導熱係數,且導熱均勻之特點。 通過掃描電子顯微鏡(SEM )圖像證實,本發明製得之 熱介面材料4 0,奈米碳管陣列2 2於熱介面材料4 0之形態基 本未變,即奈米碳管陣列2 2之奈米碳管之間距未變,且奈 米碳管陣列未聚集成束,保持初始定向排列之狀態,且此 熱介面材料4 0具有一般聚合物之良好柔韌性。 經檢測’本發明製得之熱介面材料4 0之抗拉強度為 0.5〜2MPa,斷裂拉伸率為50〜600%,同時具有耐油、而于熱 與抗老化之優良性•能。Page 10 200427961 V. Description of the invention (5) In the object 3 2, the prepolymer 3 2 is completely infiltrated into the carbon nanotube array 2 2, and the time of the complete infiltration of the prepolymer 3 2 is the same as that of the carbon nanotube array 2 2 The height, density, and area of the nano-carbon tube array 22 are related to the viscosity of the prepolymer 32 itself. Please refer to the fourth, fifth and sixth figures, take out the nano-carbon tube array 2 infiltrated with the prepolymer 3 2 together with the substrate 1 1 from the container 30 and infiltrate the nano-carbon tube array 歹 U 2 The prepolymer 3 2 of 2 undergoes a curing reaction at a relative humidity of more than 40%. After 24 hours, the prepolymer 32 is cured to form a polymer 34, and the polymer 3 4 is stripped from the substrate 1 1 After being cured for 72 hours, a thermal interface material 40 is formed, with a thickness of 100 microns, which is the same height as the original carbon nanotube array 22. That is, the thickness i of the thermal interface material 40 depends on the height of the φ row of the grown carbon nanotube array. Therefore, the thermal interface material 40 of different thickness can be obtained by controlling the growth height of the nanotube array. Referring again to the sixth figure, the thermal interface material 40 of the present invention, the nano-carbon tube array 22 is consolidated by the polymer 34, and the nano-carbon tube array 22 is vertically and uniformly distributed on the polymer 34. A plurality of heat transfer channels are formed, and the formed thermal interface material 40 has a high thermal conductivity and uniform thermal conductivity. The scanning electron microscope (SEM) image confirms that the shape of the thermal interface material 40, the nano-carbon tube array 22, and the thermal interface material 40, which have been prepared by the present invention, are basically unchanged. The distance between the carbon nanotubes is not changed, and the carbon nanotube array is not clustered into a bundle to maintain the initial orientation. The thermal interface material 40 has good flexibility of general polymers. According to the test, the thermal interface material 40 produced by the present invention has a tensile strength of 0.5 to 2 MPa, a tensile elongation at break of 50 to 600%, and has oil resistance, excellent heat and aging resistance and performance.

第11頁 200427961 五、發明說明(6) 本發明採用之預聚物3 2可為多元醇聚醚和異氰酸酯類 化合物反應而成,其中多元醇聚醚之分子量範圍為3 0 0〜 3 0 0 0,官能度為2〜4,異氰酸酯之分子量範圍為1 0 0〜3 0 0,、 官能度為2〜3,其分子鏈節結構可為脂肪族,亦可為芳香 族,通過調節多元醇聚鱗與異氰酸酯之分子量與官能度之 比例,可改變預聚物3 2之強度與韌性。 上述多元醇聚醚可從以下所列方法選取,但不限於以 下所列之方法:〇)乙二醇為起始劑,經環氧乙烷或環氧 丙烷擴鏈而成之聚醚二元醇;(2 ) 甘油為起始劑,經環氧 毛烷或環氧丙烷擴鏈而成之聚醚二元醇;(3 )季戊四醇 為起始劑,經環氧乙烧或環氧丙烧擴鏈而成之聚醚四元醇 等。 上述異氰酸酯化合物可以從以下但不限於以下所列方 法選取:(1)芳香族之曱苯二異氰酸酯(TDI),二苯基甲烷 二異氰酸酯(MD I ) ; ( 2 )脂肪族之已二異氰酸酯(HD I ),異佛 爾酮二異氰酸酯(IPDI) ;(3)由上述之二異氰酸酯與三羥 曱基丙烷形成具三官能度之異氰酸酯。 預聚物3 2合成之具體步驟如下:: 首先,將所用多元醇聚醚於1 0 0 °C以上、較佳值於 1 1 0 °C〜1 4 0 °C進行真空脫水2小時; 然後,將一定質量之二苯基曱烷二異氰酸酯加入裝有 攪拌器、溫度計及帶有乾燥劑封端之冷凝器之反應瓶中攪 拌,緩慢加熱,待其融化後按理論計算比例加入混合多元 醇聚醚以及部分經·簡單蒸餾脫水之乙酸乙酯,充分混合Page 11 200427961 V. Description of the invention (6) The prepolymer 3 2 used in the present invention can be obtained by reacting a polyol polyether and an isocyanate compound, wherein the molecular weight range of the polyol polyether is 3 0 0 to 3 0 0 0, functionality is 2 ~ 4, molecular weight range of isocyanate is 1 0 ~ 3 0 0, functionality is 2 ~ 3, and its molecular chain structure can be aliphatic or aromatic, by adjusting the polyol The ratio of molecular weight and functionality of polyscale and isocyanate can change the strength and toughness of prepolymer 32. The above polyol polyether can be selected from the methods listed below, but not limited to the methods listed below: 0) Polyether binary formed by ethylene glycol or ethylene oxide or propylene oxide chain extension Alcohol; (2) glycerin as a starting agent, a polyether diol obtained by elongating propylene oxide or propylene oxide; (3) pentaerythritol as a starting agent, after ethylene oxide or propylene oxide Polyether tetraols made by chain extension. The above isocyanate compounds can be selected from the following but not limited to the methods listed below: (1) aromatic benzene diisocyanate (TDI), diphenylmethane diisocyanate (MD I); (2) aliphatic diisocyanate ( HD I), isophorone diisocyanate (IPDI); (3) forming a trifunctional isocyanate from the above-mentioned diisocyanate and trihydroxymethylpropane. The specific steps for the synthesis of the prepolymer 3 2 are as follows: First, the polyether polyether used is subjected to vacuum dehydration at 100 ° C or higher, preferably at 110 ° C to 140 ° C for 2 hours; Add a certain amount of diphenylphosphonium diisocyanate to a reaction bottle equipped with a stirrer, a thermometer, and a condenser with a desiccant cap, and slowly heat it. After it melts, add the mixed polyol according to the theoretical calculation ratio. Polyether and ethyl acetate dehydrated by simple distillation

第12頁 200427961 五 發明說明(7) —-°將溫度緩慢升至8 Q 〇c〜8 5 °c左右反應,於反應過程 每定時間取樣,用A T - 4 1 0型自動電位滴定儀進行電位 f疋’測定反應體係之NC0(異氰酸根基團)之含量,待該、 心標達到預定值後停止反應。 為利於預聚物32充分浸潤奈米碳管陣列22,其粘度之 入^ = =100mps。預聚物32粘度之調節,可於聚合體係加 =,情性溶劑’本實施例加入惰性溶劑為乙酸乙酯,惰 t办剎亦可為其他材料,包括低分子量之酯類,如乙酸丙 =^酸異戊酯等;_類如丙_、丁酮、環己酮等;鹵 可上、 兀 二風^乙烷、四氣化碳等。惰性溶劑之用量 聚物32質量〇〜2〇 %,惰性溶劑僅用於降低預聚物32 ^以利於對奈米碳管陣列2 2空隙之浸潤。 面# i 第七圖,本發明製得奈米碳管陣列之埶介 阳柯枓4 0具有極估逡為&古, " 器(CPU)、功率電數,可廣泛應用於包括中央處理 晶片在内之電子哭:;;中視頻圖形陣列晶片(VGA)、射頻 與散熱器60之間:能提供=f面材料40置於電子器件80 良介面熱接觸,熱介面材::侧與散熱器60之間一優 之表面(未標示)接觸,與 2乐一表面42與電子器件8〇 4〇之第二表面44與散熱器6〇之^ 相對應之熱介面材料 發明製得奈米碳管陣列之熱介而(未標不)接觸。由於本 不齊情勢木 即便於電子哭彳度僅微 $之下,本發明之熱介而u 件80之表面灸至 8 0與散熱器6 0之間一 料4 0亦能提供電,: 灯热接觸。 兒t器件Page 12 200427961 Fifth invention description (7) —- ° Slowly raise the temperature to 8 Q 〇c ~ 8 5 ° c reaction, take samples at regular intervals during the reaction, use AT-4 10 automatic potentiometric titrator The potential f 疋 'is used to determine the content of NC0 (isocyanate group) in the reaction system, and the reaction is stopped when the heart mark reaches a predetermined value. In order to facilitate the prepolymer 32 to fully infiltrate the carbon nanotube array 22, its viscosity is ^ = = 100 mps. The viscosity of the prepolymer 32 can be adjusted in the polymerization system. In this example, the inert solvent is ethyl acetate. The inert solvent can also be other materials, including low molecular weight esters, such as propyl acetate. = ^ Isoamyl acid, etc .; _ such as propane, methyl ethyl ketone, cyclohexanone, etc .; halogen can be used, Wu Erfeng ^ ethane, carbon tetracarbonate and so on. The amount of inert solvent is 32% to 20% by mass of the polymer. The inert solvent is only used to reduce the prepolymer by 32% to facilitate the infiltration of the voids in the carbon nanotube array 22.面 # i The seventh picture, the nano-carbon tube array obtained by the present invention, which has an extreme value of & ancient, " CPU (CPU), power and electricity, can be widely used in including the central Electronic crying inside the processing chip: ;; Between the video graphics array chip (VGA), RF and heat sink 60: can provide = f surface material 40 placed in the electronic device 80 good interface thermal contact, thermal interface material: side An excellent surface (not marked) contact with the heat sink 60, and a thermal interface material corresponding to the surface of the 2 music one 42 and the second surface 44 of the electronic device 8040 and the heat sink 60 is made by the invention Nano-tube arrays are thermally contacted (not marked). Because the inconsistent situation is only slightly below the electronic crying degree, the heat medium of the present invention and the surface moxibustion of the U-piece 80 to between 80 and the radiator 60 can provide electricity: The lamp is in thermal contact. T device

200427961 五、發明說明(8) 綜上所述,本發明符合發明專利之要件,爰依法提出 專利申請。惟,以上所述者僅為本發明之較佳實施例,舉. 凡熟悉本案技藝之人士,在援依本案發明精神所作之等效 修飾或變化,皆應包含於以下之申請專利範圍内。200427961 V. Description of the invention (8) In summary, the present invention complies with the requirements of an invention patent, and a patent application is filed according to law. However, the above is only a preferred embodiment of the present invention. For example, those who are familiar with the technology of this case, equivalent modifications or changes made in accordance with the spirit of this invention should be included in the scope of patent application below.

200427961 圖式簡單說明 【圖式簡單說明】 第一圖係本發明含有催化劑薄膜之基底示意圖。 . 第二圖係於第一圖所示基底生長定向排列之奈米碳管 陣列示意圖。 第三圖係本發明奈米碳管陣列於預聚物浸泡之示意 圖。 第四圖係本發明浸有預聚物之奈米碳管陣列之固化示 意圖。 第五圖係本發明固化之奈米碳管陣列於基體被揭起之 過程示意圖。 丨 φ 第六圖係本發明含奈米碳管陣列之熱介面材料示意 圖。 第七圖係本發明熱介面材料之應用示意圖。 【主要元件符號說明】 基底 11 催化劑層 12 奈米碳管陣列 22 容器 30 預聚物 32 聚合物 34 熱介面材料 40 散熱器 60 電子器件 80200427961 Brief description of the drawings [Simplified description of the drawings] The first diagram is a schematic diagram of a substrate containing a catalyst film according to the present invention. The second figure is a schematic diagram of a nano-carbon tube array with a substrate growth orientation shown in the first figure. The third figure is a schematic view of the nano-carbon tube array of the present invention soaked in a prepolymer. The fourth figure is a schematic view showing the curing of a nanocarbon tube array impregnated with a prepolymer according to the present invention. The fifth figure is a schematic diagram of the process of lifting the cured carbon nanotube array of the present invention from the substrate.丨 φ The sixth diagram is a schematic diagram of the thermal interface material of the carbon nanotube array containing the present invention. The seventh diagram is an application schematic diagram of the thermal interface material of the present invention. [Description of main component symbols] Substrate 11 Catalyst layer 12 Nano carbon tube array 22 Container 30 Prepolymer 32 Polymer 34 Thermal interface material 40 Radiator 60 Electronic device 80

第15頁Page 15

Claims (1)

200427961 六、申請專利範圍 1. 一種熱介面材料,其包括: 一聚合物基體,該聚合物基體包括一第一導熱面及. 一相對於第一導熱面之第二導熱面;及 複數奈米碳管,該複數奈米碳管分佈於該聚合物基 體中; 其中,該熱介面材料之第一表面與熱源相接觸,該 第二表面與散熱器相接觸,該複數奈米碳管於該聚合 物基體沿第一表面延伸至第二表面且該複數奈米碳管 之間相互平行。 2·如Ψ請專利範圍第1項所述之熱介面材料,其中該熱介 m 面材料厚度為1〜1 0 0微米。 3 .如申請專利範圍第1項所述之熱介面材料,其中該第一 表面與該第二表面相互平行。 4. 如申請專利範圍第1項所述之熱介面材料,其中該複數 奈米碳管垂直於熱介面材料之第一及第二表面。 5. —種熱介面材料之製造方法,其包括以下步驟: 首先,提供一奈米碳管陣列,該奈米碳管陣列置於 一基底 ; 其次,用預聚物浸潤奈米碳管陣列; 最后,固化預聚物,形成熱介面材料。 ^ 6. 如申請專利範圍第5項所述之一種熱介面材料製造方 法,其中該預聚物钻度低於1 0 0 m p s。 7. 如申請專利範圍第6項所述之一種熱介面材料製造方 法,其中該預聚物粘度通過加入惰性溶劑調節。200427961 VI. Application Patent Range 1. A thermal interface material comprising: a polymer matrix including a first thermally conductive surface and a second thermally conductive surface opposite to the first thermally conductive surface; and a plurality of nanometers A carbon tube, the plurality of nano carbon tubes being distributed in the polymer matrix; wherein a first surface of the thermal interface material is in contact with a heat source, the second surface is in contact with a heat sink, and the plurality of nano carbon tubes are in the The polymer matrix extends along the first surface to the second surface and the plurality of carbon nanotubes are parallel to each other. 2. The thermal interface material described in item 1 of the patent scope, wherein the thickness of the thermal interface m-plane material is 1 to 100 microns. 3. The thermal interface material according to item 1 of the scope of patent application, wherein the first surface and the second surface are parallel to each other. 4. The thermal interface material according to item 1 of the scope of patent application, wherein the plurality of carbon nanotubes are perpendicular to the first and second surfaces of the thermal interface material. 5. A method for manufacturing a thermal interface material, which includes the following steps: First, a nano carbon tube array is provided, and the nano carbon tube array is placed on a substrate; second, a nano carbon tube array is impregnated with a prepolymer; Finally, the prepolymer is cured to form a thermal interface material. ^ 6. A method for manufacturing a thermal interface material as described in item 5 of the scope of the patent application, wherein the prepolymer has a drill degree of less than 100 m ps. 7. A method for manufacturing a thermal interface material according to item 6 of the patent application, wherein the viscosity of the prepolymer is adjusted by adding an inert solvent. SH6 第16頁 200427961 六、申請專利範圍 8. 如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該惰性溶劑包括乙酸乙酯、乙酸丙酯、乙酸. 異戊酯、丙酮、丁酮、環己酮、二氯乙烷、三氯乙 烧、四氯化碳。 9. 如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該惰性溶劑含量小於預聚物質量之20%。 1 0.如申請專利範圍第5項所述之一種熱介面材料製造方 法,其中該預聚物係由多元醇聚醚與異氰酸酯類化合 物反應而成。 1 1 .如申請專利範圍第1 0項所述之一種熱介面材料製造方 4 法,其中該多元醇聚醚之分子量為3 0 0〜3 0 0 0,官能度 為2〜4。 1 2.如申請專利範圍第1 0項或第1 1項所述之一種熱介面材 料製造方法,其中該多元醇聚醚可為聚醚二元醇、聚 醚三元醇或聚_四元醇。 1 3.如申請專利範圍第6項所述之一種熱介面材料製造方 法,其中該該異氰酸醋化合物之分子量為1 0 0〜3 0 0,官 能度為2〜3。 1 4.如申請專利範圍第6項或第9項所述之一種熱介面材料 製造方法,其中該異氰酸酯化合物可為芳香族之曱苯 二異氰酸酯(TDI),二苯基甲烷二異氰酸酯(MDI),脂 肪族之已二異氰酸酯(HD I ),異佛爾酮二異氰酸酯 (IPDI),或係由上述二異氰酸酯與三羥曱基丙烷形成 之具有三官能度之異氰酸酯。SH6, page 16, 200427961 6. Application scope of patent 8. A method for manufacturing a thermal interface material as described in item 7 of the scope of patent application, wherein the inert solvent includes ethyl acetate, propyl acetate, acetic acid, isoamyl ester, acetone, Butanone, cyclohexanone, dichloroethane, trichloroethane, carbon tetrachloride. 9. A method for manufacturing a thermal interface material as described in item 7 of the scope of the patent application, wherein the content of the inert solvent is less than 20% of the mass of the prepolymer. 10. The method for manufacturing a thermal interface material according to item 5 of the scope of the patent application, wherein the prepolymer is formed by reacting a polyol polyether with an isocyanate compound. 1 1. A method for manufacturing a thermal interface material according to item 10 of the scope of the patent application, wherein the polyol polyether has a molecular weight of 300 to 300, and a functionality of 2 to 4. 1 2. The method for manufacturing a thermal interface material as described in item 10 or item 11 of the scope of the patent application, wherein the polyol polyether may be a polyether diol, a polyether triol or a poly-quaternary alcohol. 1 3. A method for manufacturing a thermal interface material according to item 6 of the scope of the patent application, wherein the molecular weight of the isocyanate compound is 100 to 3 0, and the official energy is 2 to 3. 1 4. A method for manufacturing a thermal interface material according to item 6 or item 9 of the scope of the patent application, wherein the isocyanate compound may be aromatic benzenebenzene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) , Aliphatic diisocyanate (HD I), isophorone diisocyanate (IPDI), or a trifunctional isocyanate formed from the above diisocyanate and trihydroxymethylpropane. 第17頁 200427961Page 17 200427961 第18頁Page 18
TW92115117A 2003-06-03 2003-06-03 Thermal interface material and method for making same TWI232286B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92115117A TWI232286B (en) 2003-06-03 2003-06-03 Thermal interface material and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92115117A TWI232286B (en) 2003-06-03 2003-06-03 Thermal interface material and method for making same

Publications (2)

Publication Number Publication Date
TW200427961A true TW200427961A (en) 2004-12-16
TWI232286B TWI232286B (en) 2005-05-11

Family

ID=36319987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92115117A TWI232286B (en) 2003-06-03 2003-06-03 Thermal interface material and method for making same

Country Status (1)

Country Link
TW (1) TWI232286B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678614B2 (en) 2005-03-31 2010-03-16 Tsinghua University Thermal interface material and method for making the same
CN101121791B (en) * 2006-08-09 2010-12-08 清华大学 Method for preparing carbon nano-tube/polymer composite material
WO2024036611A1 (en) * 2022-08-19 2024-02-22 中国科学院深圳先进技术研究院 Gecko-claw-imitating composite thermal interface material and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386152B (en) * 2005-11-11 2013-02-11 Hon Hai Prec Ind Co Ltd Heat sink

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678614B2 (en) 2005-03-31 2010-03-16 Tsinghua University Thermal interface material and method for making the same
CN101121791B (en) * 2006-08-09 2010-12-08 清华大学 Method for preparing carbon nano-tube/polymer composite material
WO2024036611A1 (en) * 2022-08-19 2024-02-22 中国科学院深圳先进技术研究院 Gecko-claw-imitating composite thermal interface material and preparation method therefor

Also Published As

Publication number Publication date
TWI232286B (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP4897188B2 (en) Thermally conductive interface material and method for producing the same
CN100383213C (en) Thermal interface material and its manufacturing method
CN100345472C (en) Thermal-interface material and production thereof
TWI299358B (en) Thermal interface material and method for making same
TW200521218A (en) Thermal interface material and methode for making same
US20100172101A1 (en) Thermal interface material and method for manufacturing the same
JP4704899B2 (en) Manufacturing method of heat conduction material
US9023477B2 (en) Thermally conductive pad with an array of carbon nanotubes and method for making the same
Cai et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks
US7794639B2 (en) Method for manufacturing carbon nanotube composite
CN101671442A (en) Preparation method of carbon nano tube array composite material
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
Nguyen et al. Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites
WO2021135378A1 (en) Graphene-based polyurethane porous nanometer material and preparation method therefor
TW200427961A (en) Thermal interface material and method for making same
TWI331132B (en) Method of fabricating thermal interface material
CN100356556C (en) Thermal interfacial material and method of manufacture
CN113897184B (en) Graphene-based high-thermal-conductivity phase-change material, and preparation method and production device thereof
CN1266247C (en) Thermal interface material and its production method
TW200533736A (en) Thermal interface material and method for making same
TWI306117B (en) Thermal interface material and method for making same
Du et al. Efficient preparation of polydimethylsiloxane-based phase change composites by forced network assembly with outstanding thermal management capability
Liu et al. Honeycomb networks of boron nitride/nanodiamond with interlocking interfaces enhance the application reliability of silicone rubber thermal conductivity composites
TWI295317B (en) Method for making thermal interface material
TWI233331B (en) Heat sink and a method for making the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent