TW200410026A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TW200410026A
TW200410026A TW092117124A TW92117124A TW200410026A TW 200410026 A TW200410026 A TW 200410026A TW 092117124 A TW092117124 A TW 092117124A TW 92117124 A TW92117124 A TW 92117124A TW 200410026 A TW200410026 A TW 200410026A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
image element
display device
crystal display
electrode
Prior art date
Application number
TW092117124A
Other languages
Chinese (zh)
Other versions
TWI275886B (en
Inventor
Masumi Kubo
Kiyoshi Ogishima
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200410026A publication Critical patent/TW200410026A/en
Application granted granted Critical
Publication of TWI275886B publication Critical patent/TWI275886B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)

Abstract

A liquid crystal display device includes picture element regions defined each by a first electrode and a second electrode opposing the first electrode via the liquid crystal layer therebetween. The first electrode includes, in each picture element region, a plurality of unit solid portions arranged in a first direction, whereby the liquid crystal layer takes a vertical alignment in the absence of an applied voltage, and forms a liquid crystal domain taking a radially-inclined orientation in each unit solid portion by an inclined electric field produced around the unit solid portion in response to an applied voltage. The picture element regions are arranged in a matrix pattern including a rows extending in the second direction different from the first direction and columns extending in the first direction, and picture elements adjacent to each other in the second direction are driven with voltages of opposite polarities in each frame.

Description

200410026 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示裝置,更明確地說,係關於 一種具廣視角特性且能夠產生高品質顯示的液晶顯示裝置。 【先前技術】 近年來,輕薄型的液晶顯示裝置已經被使用於個人電腦 顯示器及PDA(個人數位助理)顯示器中。不過,慣用的扭轉 向列(TN)型及超扭轉向列(STN)型的液晶顯示裝置的视角 都非常窄。目前已經有人著手進行各種技術研究來解決該 項問題。 用以改良TN或STN型液晶顯示裝置視角的典型技術便是 於其中加入光補償板。另一種方式則是採用橫向電場模式 ,其中係將相對於該基板平面的水平電場施加至整個液晶 層上。近年來’橫向電場模式的液晶顯示裝置已經成為眾 所矚目的焦點,並且被大量製造。還有一種技術則是採用 DAP(垂直對準相變形)模式,其中係以具有負介電各向異性 的向列型液晶材料作為液晶材料,並且以垂直對準膜作為 對準膜。這係一種ECB(電控雙折射)模式,其中該透射率係 使用液晶分子的雙折射來控制。 雖然橫向電場模式係—種改μ角的有效方式,但是與 -般的ΤΝ型裝置比較起來’其製程的製造容限值非常的低 ,所以無法穩^地製造該裝置。這係因為顯示器亮度或對 比會明顯地受到該等基板間的間隙的影響,或會明顯地受 到偏光板的透光軸(偏光軸)相對於該等液晶分子之方位軸 86289 200410026 的偏移的影響。其需要在技術上作進一步的研發,方α 確地控制該些因素,以便穩定地製造該裝置。 ^ 為能夠利用DAP模式该曰顧;為士翠十— 俣式/夜,曰頌不农置來貫現均勻顯示的目 的,而不會顯示出不均勻的結果,必須要控制方位。為了 要控制方位’必須藉由摩擦對準膜的表面進行對準處理。 不過’對垂直對準膜進行摩擦處理時,非常 马 像中出現摩擦條紋,因此並不適合大量製造。 ' - 有鑑於此,本發明的發明者連同其他人,提出本技術中 的另種万法來控制万位且不f要摩擦處理,在該方法中 ’一組彼此㈣的電極之―,透過居間㈣晶層提供作為 兩層式電極’包括一下方電極、—包含有開口的上方電極 ,以及-介電層居兩者之間’以致方位的方向由上方電極 開口邊緣部份產生的傾斜電場控制(請參見,例如日本開放 專利公開案第2002-55343號)。藉由此種方式,每一個完整 圖像兀件㈣晶分子都可取#具有足夠方位$續性的穩定 万位,藉此改良視角並實現高品質的顯示。 但是,近年來,除了要求视角和顯示品質的提升之外, 還進一步要求增加孔徑比’以產生較明亮的顯示。但在方 位控制仍使用傾斜電場執行的情況下,該技術中尚未出現 任何特殊方法可進一步地改良孔徑比。 【發明内容】 本發明係設計來克服上述的缺點,本發明的目的是要提 供一種液晶顯示裝置,具有廣視角特性、高顯示品=和: 孔徑比,並能夠產生明亮的顯示。 ' 冋 H62H9 200410026 一種創新的液晶顯示裝置包括··一第一基板;一第二基 板;和一液晶層,位在第一基板和第二基板之間,其中·· 複數個圖像元件區,由一第一電極定義,該電極位在接近 該液晶層第一基板的某一侧,以及由一第二電極所定義, 該電極位在第二基板上,透過居間的液晶層與第一電極相 對;該第一電極包括,在複數個圖像元件區的每一區内, 複數個以第-方向對準的單元實體部份,藉此該液晶層在 第一電極和第二電極之間未存在有施加電壓時採取垂^對 2,並在第一電極的複數個單元實體部份中,藉由複數個 單元實體部份周圍產生的傾斜電場,形成複數個液晶域, 以回應在第-電極和第二電極之間施加的電壓,每個複數 個液晶域都採取放射狀傾斜方位;複數個圖像㈣區對准 成-矩陣圖案,該圖案包括複數個列,以不同於第一方: 的第二方向延伸,以及複數個行,以第一方向延伸·:: 施加在複數個圖像元件區中第-圖像元件區液晶層… 壓極性,不、同於施加在複數個圖像元件區中第二圖像元: 區液晶層上的電壓極性,該複數個圖像元 中與第-圖像元件區屬於同—列,並:母:圖框 件區所屬行的—行。 近弟一圖像元 在較佳具體實施例中,複數個圖像元件區中每— 7大,其長度方向由第一方向定義, y 定義。 見度万向由第二方向 在較佳具體實施例中,施加在屬於 中-行的液晶層的電壓極性,在每 ^像凡件£其 回王中,每”列U為1 86289 200410026 或以上的整數)反轉—次。 在-較佳具體實施例中,施加在第—圖像元件區液晶展 的,壓極性,不同於施加在第三圖像元件區的電壓極性: 該第三圖像元件區在每一圖框中與第一圖像元件區屬於相 同的行’且屬於鄰近第一圖像元件區所屬列的—列。 在-較佳具體實施例中,每一複數個單元實體部份具有 旋轉對稱的形狀。例如,每—個複數”元實體部㈣且 有-般圓形的形狀,或每一個複數個單元部份都具有帶有 一般弧形隅角部份的一般矩形形狀。 ^ _ 力外,母一個複數個 早兀貫邯份還可以具有銳角隅角的形狀。 在一較佳具體實施例中,今裳-就4c: 丄 财基板,在對應到至少複 數個液晶域之-的區域中,包括—施力調整方位的調整方 位㈣,用於在至少存在有施加電壓時使至少-液晶域中 的液晶分子朝向放射狀傾斜方位。 ϋ线具體實施例中,每—對應到複數個液 域都具有調整方位結構。 ^ _近至少—液晶域中心的區域 在一較佳具體實施例中 具有調整方位結構。 在車乂佳具體貫施例中,在至少一、、存曰^ + 結構的方位調整方向,1之二1調整方位 近產生的放射狀傾钭/、母# %極早兀實體部份附 對準。射狀傾斜電場所形成的放射狀傾斜方位的方向 在-較佳具體實施例中,調整方位結構 ,使液晶分予即使在夫户产亡Α > 力碉整万位 使在未存在有施加電壓時仍能朝向放射狀 86289 -10 - 200410026 /、斜方位。例如,調整方位、 —^ 治曰赶 傅』以疋攸罘一基板哭出到 曰曰層的第一突出部 硬日曰層的厚度由從第二基板突出到 曰曰層的第一突出部定羞 〜山 我在一較佳具體實施例中,第一 大出邵有一侧表面,以小 卜、 、罘一基板面90。的角度傾斜。另 卜’啁整方位結構可包括— 水平万位表面,位在比較靠近 /促日曰層第二基板的—侧。 二:較佳具體實施例中,調整方位結構會施力調整方位 硬晶分子只在存在有施加電壓時朝向放射狀傾斜方位 B周正方&結構可包括—由第二電極提供的開口。 广較佳具體實施例中,第一基板包括複數個不與第一 電極重疊的開放區;以 久两在罘一電極和弟二電極間施加 %二時液阳層在賴斜電場旁的複數個開放區中形成複 數個额外的液晶域,每—個额外的液晶域都呈現放射狀傾 斜方位。 在一較佳具體實_中,至少-些複數個開放區實質上 具有相同的形狀和實質上相同的大小,並形成對準為複數 個單元晶格’因此具有旋轉對稱的形狀。在一較佳具體實 施例中,土少些複數個開放區的形狀為旋轉對稱。 在-較佳具體實施例中,至少—些複數個開放區具有一 般圓形的形狀。 在一較佳具體實施例中,液晶顯示裝置另包括一第二突 出部,位於第一基板複數個開放區内,其中該突出部的侧 表面,對液晶層的液晶分子施加與傾斜電場所形成的方位 調整方向相同的調整方位力。 86289 -11 - 200410026 在一較佳具體實施例中,第-基板另包括複數個轉換元 件,分別提供給複數個圖像元件區;以及該第—電極包括 複數個圖像元件電極,分別提供給複數個圖像元件區,並 分別由轉換元件轉換,且該第二電極至少是—反電極,與 複數個圖像元件電極相反。$常,該反電極形成為單一電 極,延伸至整個顯示區。 私 現在將說明本發明的功能。 在本發明的液晶顯示裝置中’施加電壓至圖像元件區整 個液晶層的-组電極’包括複數個單元實體部份,以預定 =對準(以下稱為「第-方向」)。液晶層在未存在有施加 私壓時知取垂直對準,在存在有施加電壓時,&電極的複 數個單元實體部份㈣產生的傾斜電場,形成複數個液晶 域’每-個複數個液晶域都採取放射狀傾斜方位。因此, 界=出=組其中之—電極的外部形狀’使傾斜電場在複數 固早兀實體邵份的周圍產生,形成複數個液晶_,每一個 區域都採取放射狀傾斜方位,以回應施加在該組電 的電壓。-般來說,該液晶層係由具有負介電各向異性的 =材科所製成,並且該液晶層的方位可由位於其對面例 上的垂直對準膜來控制。 該等液晶域係由對應該單元實體部份的傾斜電 的,而且每個液晶域的方位都可根據施加電壓而改變,二 而產生顯示。因為每個液晶域都呈放射狀傾斜方 : ,稱方位’所以幾乎不會有顯示品質的視角二 喊,因此可實現寬視角特性。 Ί 86289 -12 - 200410026 此處,有傳導性薄膜存在的電極部份稱為「實體部份」 ^產生電場以構成單—液晶域的實體部份稱為「單元實體 ^刀」。母個:T體邵份通常由連續的傳導性薄膜構成。 在:發明的液晶顯示裝置中,每個圖像元件電極包括複 數個早兀貫體邯份’當作是次要圖像元件電極,藉此可根 據輯元件區的形狀和大小等適當對準圖像元件區中複數 單兀⑤’在圖像元件區實現穩定的 位,不需受到圖像元件區的形狀及大小等的限制。,、 、甚至,’複數個單元實體部份在每個圖像元件區中以預定 ϋ 2卞(排成一排),相較於單元實體部份對準成兩列以 藉由可增加圖像元件區單元實體部份的面積比 ,還可藉此改良孔徑比。 讀個圖像兀件區對準成一矩陣圖案,該圖案包括複數 列:以不同於第-方向的第二方向延伸,以及複數個行 以罘-万向延伸;在本發明的液晶顯示裝置中,施加在 個圖像兀件區中第一圖像元件區液晶層上的電壓極性 爲不同於施加在複數個圖像元件區中第二圖像元件區液晶 二上的私壓極性,該複數個圖像元件區在每-圖框中與第 圖像兀件區屬於同一列,並屬於鄰近第一圖像元件區所 5仃的:仃。因此,以列方向(第二方向)彼此毗連的圖像元 ^ ,、斗被寫入所有圖像元件(也就是說,一個圖框)期間 ,文到相反極性電壓的驅動。 因此才目&於非由相反極性電壓驅動的以列方向彼此毗 t、圖像凡件’可以在以列方向彼此田比連的圖像元件間產 86289 -13 - 200410026 生具有陡山肖電位斜度的傾斜電場。因此,即使當以列方向 :皮此田比連的圖像元件之間電極間所對準的距離很短,仍有 可能:成夠穩定的放射狀傾斜方位,且孔徑比也很高。 通常,圖像元件區的形狀,長度方向以第一方向(單元膏 ㈣份所對準的方向)定義,其翻方向以第二方向定義; 田圖像兀件區呈這種形狀的時候,有可能有效地改良孔徑 ^ ]如圖像元件區具有一般矩形的形狀,其長邊以第 一方向延伸,而短邊以第二方向延伸。 β、猎由使母n列(其中n是1或以上的整數)圖像元件的施加電 壓極性倒反,可抑制閃爍,也就是說,針對行方向上每n個 圖像兀件(換句話說,使每11列相同行圖像元件區中液晶層 :Μ加兒壓極性反向)’同時在每個圖框中利用相反極性的 電壓驅動以列方向彼此毗連的圖像元件。 争別疋§以行方向彼此毗連的圖像元件以相反極性的 ^ 也就疋,施加在複數個圖像元件區第一圖像 兀2區液晶層的電壓極性,不同於施加在第三圖像元件區 的電壓極性,纟中第三圖像元件區在每一圖框中與第一圖 像元件區屬於相同的行,且屬於鄰近第一圖像元件區所屬 列的一歹丨JΑ可α + 乂在以行方向彼此毗連的圖像元件間產生 -有陡峭電位斜度的傾斜電場,藉此可以縮短以行方向彼 此毗連圖像兀件之間電極間的距離,因此進一步地改善孔 徑比。 〇 ^好每個複數個單元實體部份的形狀都具有旋轉對稱 田單兀實體邯份具有旋轉對稱的形狀時,所形成的液晶 86289 200410026 的方位,也就是軸 域放射狀傾斜方位也將是具有旋轉 對稱方位,藉此改善視角特性。 田每複數個單兀貫體邵份具有一般圓形或糖圓形的形 狀時丄液晶分子在放射狀傾斜方位上的方位連續性將會增 加’藉此改良方位穩定性。 相對地,當每一複數個單元實體部份具有一般矩形的形 狀時’圖像兀件區中單兀實體部份的面積比(有效的孔徑比) 會增加’藉此改良展現的光學特性(也就是傳輸),以回應施 加在液晶層上的電壓。 甚至,當每一複數個單元實體部份具有帶有一般弧形隅 角部份的-般㈣時’可以改良方位穩定性和光學特性。 此外’ §每-複數個單元實體部份具有銳角隅角的時候 ,,;口著產生傾斜電場的電極側的總長度會增加,藉此傾斜 電場可以對更多的液晶分子有所反應。因此,改良了回應 速度。 較好是另一個基板(也就是相對於具有單元實體部份的 基板),在對應到至少複數個液晶域之一的區域中,包括一 施力調整方位的調整方位結構,在至少存在有施加電壓時 ,使至少一液晶域中的液晶分子朝向放射狀傾斜的方位。 然後,至少在存在有施加電壓時,來自單元實體部份電極 及來自調整方位結構的調整方位力,作用在液晶域的液晶 为子上’藉此穩定液晶域的放射狀傾斜方位,並抑制由於 在液晶層上施加的應力導致顯示品質惡化的問題(例如,影 像後現象的發生)。 86289 -15 - 200410026 當調整方位結構提供給對應到複數個液晶域的每—個時 ,可以穩足所有液晶域的放射狀傾斜方位。 , 當調整方位結構提供給鄰近由調整方位結構所構成且t 取放射狀傾斜方位的液晶域中央的區域時,可以校正: 狀傾斜方位中央軸的位置’藉此有效地改良放射狀傾 位對應力的抗力。 ^調整方位結構所調整的方位方向,對準由在每—個單 元實體部份周圍產生的傾斜電場所構成的放射狀頻斜方位 的方向,方位的連續性和敎性會增加,藉此改(顯示二 質和回應特性。 /、要土少在存在有施加電壓時施力調整方位即可獲得穩 定方位的效果,此外還可獲得進一步的好處,如果執行的 對準即使在未存在有施加電壓時仍可施加調整方位的力, 則不論施加電壓的位準高低,都可穩定方位。但是應注意 ,由於本發明的液晶顯示裝置利用垂直對準型的液晶層, 其中該液晶分子在未存在有施加電壓時實質上會對準成與 基板垂直,因此當利用即使未存在有施加電壓仍施力調整 方位的調整方位結構時,顯示品質可能會惡化。然而,由 於即使是調整方位結構的調整方位力相當地弱,仍能提供 所需的效果,將在稍後描述,因此即使相對於圖像元件大 小屬於小的結構仍足以穩定方位。藉由這類小結構,因未 存在有施加電壓使顯示品質惡化的狀況,實際上會變得無 足輕重。在某些情況下’會根據所應用的液晶顯示裝置(例 如’從外部施加的應力位準)或電極結構(來自具有單元實體 86289 -16 - 200410026 部份電極的調整方位力的,提 力的調敕女p a μ 和田& 口周整万位 ,以#: 構:在這類情況下,可能會提供-光阻層 卩制因1周整万位結構所導致的顯示品質惡化。各種 =結構都'用來當作調整方位結構,因為調整方位結 ’、而要她加比皁兀實體部份電極弱的調整方位力即可。 另—基板上提供的調整方位結構可以是,例如,從第二 :板突出到液晶層的突出部’或可包括位於較接近液晶層 土板側上的水平万位表面。另外,調整方位結構可以是 由電極提供的開口。這些結構可利用本技藝中的已知方法 製造。 迥常’包含單元實體部份電極的基板,包括複數個不金 電極重疊白㈣放區(也就是㉟,作》電極的傳導性薄膜不會 在開放區形成)。本發明的液晶顯示裝置可使用一種對準, 使採用放射狀傾斜方位的液晶域也會在開放區形成。 在開放區形成的液晶域和在單元實體部份形成的液晶域 ,都是由開放區邊緣部份產生的傾斜電場所構成(也就是說 ’沿著單元實體部份的周緣),因此這些液晶域另外也彼此 毗連,且液晶分子的方位本質上在毗連的液晶域之間連續 。因此,在開放區形成的液晶域和在單元實體部份形成的 液晶域之間的邊界並未形成任何向錯線,因此顯示品質未 受到向錯線的惡化,且液晶分子方位的穩定性也很高。 當液晶分子採取放射狀傾斜方位的時候,不只在對應到 電極單元實體邵份的區域,還有對應到開放區的區域,實 現具有高度液晶分子方位持續性的穩定方位,藉此取得均 86289 -17- 200410026200410026 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a liquid crystal display device, more specifically, to a liquid crystal display device with wide viewing angle characteristics and capable of producing high-quality displays. [Prior Art] In recent years, thin and light liquid crystal display devices have been used in personal computer displays and PDA (personal digital assistant) displays. However, the conventional twisted nematic (TN) type and super twisted nematic (STN) type liquid crystal display devices have very narrow viewing angles. Various technical studies have been initiated to solve this problem. A typical technique for improving the viewing angle of a TN or STN type liquid crystal display device is to add a light compensation plate thereto. Another way is to use a transverse electric field mode, in which a horizontal electric field relative to the substrate plane is applied to the entire liquid crystal layer. In recent years, a liquid crystal display device in a 'transverse electric field mode' has become the focus of much attention, and has been mass-produced. Another technique is to use DAP (Vertical Alignment Phase Deformation) mode, in which a nematic liquid crystal material with negative dielectric anisotropy is used as the liquid crystal material, and a vertical alignment film is used as the alignment film. This is an ECB (electrically controlled birefringence) mode, in which the transmittance is controlled using the birefringence of liquid crystal molecules. Although the transverse electric field mode is an effective way to change the μ angle, compared with a typical TN device, the manufacturing tolerance of the process is very low, so the device cannot be manufactured stably. This is because the brightness or contrast of the display is obviously affected by the gap between the substrates, or it may be significantly affected by the shift of the transmission axis (polarization axis) of the polarizing plate with respect to the azimuth axis 86289 200410026 of the liquid crystal molecules. influences. It needs to be further researched and developed technically, and α can control these factors in order to stably manufacture the device. ^ In order to be able to take advantage of the DAP mode, it is necessary to use Gu; for Shi Cui Shi-俣 style / night, to praise the purpose of uniform display without showing uneven results, you must control the orientation. In order to control the orientation ', an alignment process must be performed by rubbing the surface of the alignment film. However, when rubbing the vertical alignment film, rubbing streaks appear in the very horse image, so it is not suitable for mass production. -In view of this, the inventor of the present invention, along with others, proposed another method in the technology to control the tens of thousands without friction treatment. In this method, one of a group of electrodes ㈣, through The interstitial crystal layer is provided as a two-layer electrode 'including a lower electrode, an upper electrode including an opening, and a dielectric layer between the two', so that the azimuth direction is generated by the inclined electric field of the upper electrode opening edge portion Control (see, for example, Japanese Open Patent Publication No. 2002-55343). In this way, each complete image element can be stable and stable with sufficient orientation and continuity, thereby improving the viewing angle and achieving high-quality display. However, in recent years, in addition to the improvement of viewing angle and display quality, it is further required to increase the aperture ratio 'to produce a brighter display. However, in the case where the position control is still performed using a tilted electric field, no special method has yet appeared in this technology to further improve the aperture ratio. [Summary of the Invention] The present invention is designed to overcome the above-mentioned shortcomings. The object of the present invention is to provide a liquid crystal display device with wide viewing angle characteristics, high display quality and aperture ratio, and capable of producing a bright display. '冋 H62H9 200410026 An innovative liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate, among which a plurality of image element regions, Defined by a first electrode, the electrode is located on a side close to the first substrate of the liquid crystal layer, and is defined by a second electrode, which is located on the second substrate and passes through the intervening liquid crystal layer and the first electrode. Opposite; the first electrode includes, in each of the plurality of image element regions, a plurality of unit solid portions aligned in the first direction, whereby the liquid crystal layer is between the first electrode and the second electrode When there is no applied voltage, the vertical pair 2 is taken, and among the plurality of unit solid parts of the first electrode, a plurality of liquid crystal domains are formed by the inclined electric field generated around the plurality of unit solid parts in response to the first electrode. -The voltage applied between the electrode and the second electrode, each of the plurality of liquid crystal domains adopts a radial tilt orientation; the plurality of image regions are aligned into a matrix pattern, the pattern includes a plurality of columns, different from the first square Extending in two directions, and a plurality of lines, extending in the first direction :: Applied to the-image element region liquid crystal layer in the plurality of image element regions ... The polarity is not the same as that applied to the plurality of image element regions The second image element: the voltage polarity on the liquid crystal layer of the region, and the plurality of image elements belong to the same column as the-image element region, and are: the parent row of the frame frame region. Nearest one image element In a preferred embodiment, each of the plurality of image element regions is larger than -7, and its length direction is defined by the first direction and y is defined. The visibility is from the second direction. In a preferred embodiment, the polarity of the voltage applied to the liquid crystal layer belonging to the middle-row. In each case, the unit U is 1 86289 200410026 or The above integer) is inverted one time. In a preferred embodiment, the polarity of the voltage applied to the liquid crystal of the first image element region is different from that of the voltage applied to the third image element region: the third The image element area belongs to the same row as the first image element area in each frame and belongs to a column adjacent to the column to which the first image element area belongs. In a preferred embodiment, each of the plurality The unit solid part has a rotationally symmetric shape. For example, each "plural" unit solid part has a generally circular shape, or each of the plurality of unit parts has a part with a generally curved corner. Generally rectangular shape. ^ _ In addition to the mother, one or more early Wuguan can also have the shape of an acute angle. In a preferred embodiment, Jinshang-Ji 4c: Qi Cai substrate, in an area corresponding to at least one of the plurality of liquid crystal domains, includes an adjustment orientation ㈣ for adjusting the orientation by force application, for When a voltage is applied, at least the liquid crystal molecules in the liquid crystal domain are oriented in a radially inclined orientation. In the specific embodiment of the squall line, each of the plurality of liquid regions has an adjustment structure for the orientation. ^ _Nearly at least—the area in the center of the liquid crystal domain has a azimuth adjustment structure in a preferred embodiment. In the specific implementation example of Che Xingjia, in the direction of the orientation adjustment of at least one of the structures, and the structure of 1-2, the radial tilting produced by adjusting the orientation is near 1 /, and the mother #% very early solid part is attached. alignment. The direction of the radial tilt azimuth formed by the radial tilt electric field is-in a preferred embodiment, the azimuth structure is adjusted so that the liquid crystal is divided even if the husband and wife are killed A > When the voltage is applied, it can still face the radial direction 86289 -10-200410026 /, oblique orientation. For example, to adjust the orientation, "^ Zhi Yue Chou Fu" uses a substrate to cry out to the first protrusion of the layer. The thickness of the hard layer is protruded from the second substrate to the first protrusion of the layer. Ding Shao ~ In a preferred embodiment, the first major part has a surface on one side, and a substrate surface 90 is used for the dimples. Angle. In addition, the azimuth alignment structure may include a horizontal ten-thousand-dimensional surface, which is located closer to the second substrate of the / promoting layer. 2: In a preferred embodiment, the azimuth-adjusting structure will force the azimuth to adjust the orientation. The hard crystal molecules will tilt toward the radial direction only when there is an applied voltage. The B-circle square & structure may include an opening provided by the second electrode. In a preferred embodiment, the first substrate includes a plurality of open areas that do not overlap with the first electrode. A long period of time is applied between the first electrode and the second electrode. A plurality of additional liquid crystal domains are formed in the open area, and each additional liquid crystal domain exhibits a radial inclined orientation. In a preferred embodiment, at least some of the plurality of open regions have substantially the same shape and substantially the same size, and form a plurality of unit lattices aligned so that they have a rotationally symmetrical shape. In a preferred embodiment, the shape of the plurality of open regions is rotationally symmetrical. In a preferred embodiment, at least some of the plurality of open regions have a generally circular shape. In a preferred embodiment, the liquid crystal display device further includes a second protruding portion located in the plurality of open areas of the first substrate, wherein a lateral surface of the protruding portion is applied to the liquid crystal molecules of the liquid crystal layer to form an inclined electric field. The azimuth adjustment direction is the same as the azimuth adjustment force. 86289 -11-200410026 In a preferred embodiment, the first substrate further includes a plurality of conversion elements, which are respectively provided to the plurality of image element regions; and the first electrode includes a plurality of image element electrodes, which are respectively provided to The plurality of image element regions are respectively converted by the conversion element, and the second electrode is at least a counter electrode, which is opposite to the plurality of image element electrodes. Often, the counter electrode is formed as a single electrode and extends to the entire display area. The function of the present invention will now be explained. In the liquid crystal display device of the present invention, the "group electrode" that applies a voltage to the entire liquid crystal layer of the image element region includes a plurality of unit solid portions, and is predetermined to be aligned (hereinafter referred to as "the -direction"). The liquid crystal layer knows vertical alignment when no private pressure is applied. When there is an applied voltage, the inclined electric field generated by a plurality of cell solid parts of the & electrode forms a plurality of liquid crystal domains. The liquid crystal domains all adopt a radial tilt orientation. Therefore, the boundary = out = one of the groups-the external shape of the electrode 'causes a tilted electric field to be generated around the complex solid element, forming a plurality of liquid crystals, each region adopts a radial tilt orientation in response to the applied The voltage of the set of electricity. -In general, the liquid crystal layer is made of a material having a negative dielectric anisotropy, and the orientation of the liquid crystal layer can be controlled by a vertical alignment film on the opposite side. These liquid crystal domains are electrically generated by the tilt corresponding to the solid part of the cell, and the orientation of each liquid crystal domain can be changed according to the applied voltage. Second, a display is produced. Because each liquid crystal domain is inclined in a radial direction:, called azimuth ’, there are almost no viewing angles of display quality, so wide viewing angle characteristics can be achieved. 289 86289 -12-200410026 Here, the electrode part with conductive film is called "solid part" ^ The solid part that generates an electric field to form a single-liquid crystal domain is called "unit entity ^ knife". Female: T body component is usually composed of a continuous conductive film. In the liquid crystal display device of the invention, each image element electrode includes a plurality of early elements, and is regarded as a secondary image element electrode, so that it can be properly aligned according to the shape and size of the element region The plural number in the image element area ⑤ 'realizes a stable bit in the image element area, without being restricted by the shape and size of the image element area. ,,, and even, 'a plurality of unit entity parts are predetermined ϋ 2 卞 (arranged in a row) in each image element area, compared to the unit entity parts aligned in two rows to increase the figure by The area ratio of the solid part of the image element area can also be used to improve the aperture ratio. The image element regions are aligned into a matrix pattern, which includes a plurality of columns: extending in a second direction different from the first direction, and a plurality of rows extending in a 罘 -universal direction; in the liquid crystal display device of the present invention The polarity of the voltage applied to the liquid crystal layer of the first image element region in each of the image element regions is different from the polarity of the private voltage applied to the liquid crystal two of the second image element region in the plurality of image element regions. Each image element area belongs to the same column as the second image element area in each frame, and belongs to the following image frame:: 仃. Therefore, the image elements ^ adjacent to each other in the column direction (second direction) are driven to the opposite polarity voltage during the writing of all the image elements (that is, a frame). Therefore, the head & Yu is not driven by the opposite polarity voltage in the column direction, and the image elements can be produced between the image elements that are connected to each other in the column direction. 86289 -13-200410026 Slope electric field with potential slope. Therefore, even when the alignment distance between the electrodes of the image elements in the row direction: Picion field is short, it is still possible to achieve a stable radial tilt orientation with a high aperture ratio. Generally, the shape and length of the image element area are defined by the first direction (the direction in which the unit paste is aligned), and the turning direction is defined by the second direction. When the field image component area has this shape, It is possible to effectively improve the aperture ^] If the image element area has a generally rectangular shape, the long side extends in the first direction and the short side extends in the second direction. β. Reversing the polarity of the applied voltage of the image element of the parent n column (where n is an integer of 1 or more) can suppress flicker, that is, for every n image elements in the row direction (in other words, , So that the liquid crystal layer in the image element area of the same row in each 11 columns: the polarity of M plus pressure is reversed) 'At the same time, the image elements adjacent to each other in the column direction are driven by the voltage of the opposite polarity in each frame. Disagree 疋 § The image elements adjacent to each other in the row direction have opposite polarities, that is, the voltage polarity applied to the liquid crystal layer in the first image and the second image region of the plurality of image element regions is different from that applied to the third image. The voltage polarity of the image element area, the third image element area in each frame belongs to the same row as the first image element area, and belongs to a column adjacent to the column to which the first image element area belongs. α + 产生 is generated between the image elements adjacent to each other in the row direction-a gradient electric field with a steep potential gradient, thereby reducing the distance between the electrodes adjacent to the image element in the row direction, thereby further improving the aperture ratio. 〇 ^ Well, the shape of each of the multiple unit solid parts has a rotationally symmetric shape. When the single solid body has a rotationally symmetric shape, the orientation of the liquid crystal 86289 200410026 formed, that is, the radial tilt orientation of the axial domain will also be Has a rotationally symmetric orientation to improve viewing angle characteristics. When a plurality of monocoques have a generally circular or sugar-circular shape, the azimuthal continuity of the liquid crystal molecules in the radial oblique azimuth will increase ', thereby improving azimuth stability. In contrast, when each of the plurality of unit solid parts has a generally rectangular shape, 'the area ratio (effective aperture ratio) of the single solid parts in the image element area will increase', thereby improving the displayed optical characteristics ( (I.e., transmission) in response to the voltage applied to the liquid crystal layer. Furthermore, when each of the plurality of unit solid portions has a-general angle with a generally curved corner portion ', azimuth stability and optical characteristics can be improved. In addition, when the solid part of a plurality of cells has an acute angle, the total length of the electrode side that generates an oblique electric field increases, whereby the oblique electric field can respond to more liquid crystal molecules. Therefore, the response speed has been improved. Preferably, another substrate (that is, relative to a substrate having a unit solid portion) includes an adjustment azimuth structure for adjusting the azimuth in a region corresponding to at least one of the plurality of liquid crystal domains. When the voltage is applied, the liquid crystal molecules in at least one of the liquid crystal domains are oriented in a radially inclined direction. Then, at least when there is an applied voltage, the adjustment azimuth force from the electrode of the unit solid part and from the azimuth adjustment structure acts on the liquid crystal of the liquid crystal domain to thereby stabilize the radial tilt orientation of the liquid crystal domain and suppress the The stress applied to the liquid crystal layer causes a problem that the display quality is deteriorated (for example, the occurrence of a phenomenon after an image). 86289 -15-200410026 When the azimuth adjustment structure is provided to each of a plurality of liquid crystal domains, the radial tilt orientation of all liquid crystal domains can be stabilized. When the azimuth-adjusting structure is provided to an area adjacent to the center of the liquid crystal domain composed of the azimuth-adjusting structure and t takes a radial tilt orientation, t can be corrected: the position of the central axis of the tilt-azimuth orientation, thereby effectively improving the radial tilt correspondence Resistance. ^ Adjust the azimuth direction adjusted by the azimuth structure, and align the direction of the radial frequency oblique azimuth formed by the inclined electric field generated around the solid part of each unit. The continuity and azimuth of the azimuth will increase, thereby improving (Shows the second quality and response characteristics. / 、 You need to adjust the orientation when force is applied in the presence of applied voltage to obtain a stable orientation effect. In addition, you can also obtain further benefits. If you perform alignment even when there is no application A force for adjusting the orientation can still be applied when voltage is applied, and the orientation can be stabilized regardless of the level of the applied voltage. However, it should be noted that, because the liquid crystal display device of the present invention uses a vertically aligned liquid crystal layer, the liquid crystal molecules When there is an applied voltage, it is substantially aligned perpendicular to the substrate. Therefore, when an azimuth-adjusting structure is used that adjusts the orientation even when there is no applied voltage, the display quality may be deteriorated. However, even if the azimuth-adjusting structure is used, Adjusting the azimuth force is quite weak and still provides the desired effect, which will be described later, so even if it is large relative to the image element A small structure is still sufficient to stabilize the orientation. With this type of small structure, there is no situation in which the display quality is deteriorated by the application of voltage, and it actually becomes insignificant. In some cases, it will depend on the liquid crystal display used. Device (such as' stress level applied from the outside) or electrode structure (from a unit entity with 86289 -16-200410026 part of the electrode to adjust the azimuth force, the force-adjusting daughter pa μ Wada & the whole mouth ## structure: In such cases, it may provide-photoresist layer to suppress the display quality deterioration caused by the 10,000-bit structure for 1 week. Various = structures are used to adjust the azimuth structure because adjustment Orientation knot ', and she needs to adjust the azimuth force weaker than the electrodes of the solid part of the soap. In addition-the adjustment orientation structure provided on the substrate may be, for example, the protrusion from the second: plate protruding to the liquid crystal layer' Or may include a horizontal tens of thousands of surfaces located on the soil plate side closer to the liquid crystal layer. In addition, the azimuth adjustment structure may be an opening provided by an electrode. These structures may be manufactured by a known method in the art. Very often, the substrate including the electrodes of the solid part of the unit, including a plurality of non-gold electrodes overlapping the white electrode region (that is, the conductive film of the electrode is not formed in the open region). The liquid crystal display device of the present invention can A kind of alignment is used, so that the liquid crystal domain with radial tilt orientation will also be formed in the open area. The liquid crystal domain formed in the open area and the liquid crystal domain formed in the solid part of the cell are both tilts generated by the edge portion of the open area. The electrical field structure (that is, 'along the periphery of the solid part of the unit), so these liquid crystal domains are also adjacent to each other, and the orientation of the liquid crystal molecules is essentially continuous between adjacent liquid crystal domains. Therefore, the formation in the open area The boundary between the liquid crystal domain and the liquid crystal domain formed in the unit solid part does not form any misaligned lines, so the display quality is not deteriorated by the misaligned lines, and the orientation stability of the liquid crystal molecules is also high. When the liquid crystal molecules adopt a radial oblique orientation, not only in the area corresponding to the physical unit of the electrode unit, but also in the area corresponding to the open area, a stable orientation with a high degree of continuity of the orientation of the liquid crystal molecules is achieved, thereby achieving an average of 86289- 17- 200410026

、,不會顯示不均勻。特別是,為了要實現所希望 的回應特性(4許、B ;不e 1也说疋說,高速回應),控制液晶分子方位的傾 ^琢太必須對許多液晶分子有所反應,而這需要開放區 勺…面% (相關邊緣部份的總長度)很大才能做到。 定放射狀傾钭古尸沾、 ^ 、1寸万位的液晶域對應到開放區形成的時候,為 一 良回應特性即使開放區總面積增加,仍可以抑制顯 不口口濫(非均勻顯示的發生)的惡化。 田土分孩等複數個開孔實質上具有相同的形狀且會 f上具有相同的尺寸並且構成具旋轉對稱對準的至少一個 單元晶格時,便可針對每個單元晶格,以極高的對稱性來 對準稷數個液晶域,從而可改良顯示品質的視角依存性問 題。 當每個至少某些複數個開放區(通常是那些構成單元晶 才口的區域)的形狀具旋轉對稱時,便可增加形成於該開放區 中液晶域放射狀傾斜方位的穩定度。舉例來說,每個開放 區的形狀(從該基板的法線方向看去)較好是圓形或是多邊 形(例如正方形)。請注意,視圖像元件的形狀(長寬比)而定 ,亦可採用不具旋轉對稱的形狀(例如橢圓形)。 為穩定形成於該開放區中之液晶域的放射狀俜斜方位, 較好是形成於開放區中的液晶域為一般的圓形形狀。換言 〈,可將該開放區的形狀設計成讓形成於該開放區中的液 晶域為一般的圓形形狀。 如上所述,當液晶域形成於開放區和單元實體部份時, 可藉由在另一基板上提供調整方位結構以對應到將形成的 86289 -18 - 200410026 液晶域,來穩定所有液晶域的放射 可以只為形成於單元實俨邱彳八的,、日…位。仁疋,也 ,就处豹¥ 只隨口H刀的夜晶域提供調整方位έ士诘 取得實際上足夠程度的穩^性(應力阻抗)。 甘力疋《生產力的觀點,最好所使用的調整方七社 ,、所施加的調整方位力符合形 ;構 放射㈣斜方位,這類調整方位結構所使用的流ΓΓ 區中形成符合放射狀傾斜方位的調整方位力的ί A構的流程要簡I。雖然調整方位的結構較好針對 母一早兀實體部份提供,但實際上足夠程度的方位穩定性 ’在某些情況下,仍可視電極結構(例如,單元實體部份的 數量和相關設置),只針對某些單元實體部份提供調整方位 結構來取得這是由於形成於本發明液晶顯示裝置液晶層的 放射狀傾斜方位,本質上是連續的。 甚至,為了要改良對應力的阻抗,在每個開放區中,提 供具有一側表面、且針對液晶層的液晶分子施加調整方位 力與傾斜電場方位調整方向同方向的突出部。較好是突出 邵在基板平面上具有與開放區形狀相同的橫斷面形狀,並 具有與開放區形狀相同的旋轉對稱。但是應注意,由於受 到突出部側表面調整方位力調整方位的液晶分子,對施加 的電壓(這些液晶分子的遲延較不會因施加電壓而改變)較 無反應,因此顯示對比度可能會降低。因此,較好是所決 定的突出部的大小、高度和數量不會使顯示品質惡化。 本發明,的液晶顯示裝置是,例如,用於每個圖像元件區 、包括像TFT的轉換元件的主動矩陣式裝置。其中包括如上 86289 -19 - 200410026 所述開口的電極,是連接至轉換元件的圖像元件電極,另 -個電極是至少與複數個圖像元件電極相反的反電極。 【實施方式】 現在將參照該等附圖來說明本發明的具體實施例。 具體貫施例1 首先,將說明的是本發明的液晶顯示裝置之電極結構及 其功能。本發明的液晶顯示裝置具有所需的顯示特性,因 此適合當作主動矩陣式液晶顯示裝置使用。現在將針對使 用薄膜電晶體(TFT)之主動矩陣式液晶顯示裝置來說明本 毛明〈較佳具體貫施例。本發明不限於該裝置,也可以使 用MIM結構的主動矩陣式液晶顯示裝置來替代。甚至,者 本發明具體實施例針對傳送型液晶顯示裝置描述的時候: 本發明也不限制於該裝置,仍可以將於稍後描述的反射型 液晶顯示裝置或甚至傳送反射型液晶顯示裝置來替代使用。 請注意,在本說明書中,對應到「圖像元件」(其為最小 的顯示單元)的液晶顯示裝置區域將稱為「圖像元件區」。 在彩色液晶顯示裝置中’ R、qb「圖像元件」將對應到 一個「像素」。在主動矩陣式液晶顯示裝置中,圖像元件 區係由-圖像兀件電極以及_位於該圖像元件電極對面的 反%極疋義而成。在被動矩陣式液晶顯示裝置中,圖像元 件區被足義為一個以對準成條狀圖案的行電極之一穿過也 疋對準成條狀圖案的列電極之—、與行電極呈垂直的區域 。在具黑矩陣的對準中’嚴格地說,圖像元件區係根據預 期的顯示狀態於其上施加電壓的每個區域的一部份,其會 86289 -20 - 200410026 對應該黑矩陣的開孔。 現在將參考圖1八及1B說明根據本發明具體實施例!之液 晶顯π裝置100之圖像元件區Ρί、?2和?3其中之一的結構。 在後面的說明中,為簡化起見,會省略彩色濾光片及黑矩 陣。再者,在後面的圖式中,每個具有與液晶顯示裝置 中相應兀件實質相同功能的元件將會以相同的元件符號來 表π,並且不會於下面作進一步的說明。圖1Α為從該基板 法線万向看去的平面圖,圖1Β則為沿著圖1Α之直線1Β_1Β, 〈剖面圖。圖1Β所示的係於整個液晶層中未存在有施加電 壓時的狀態。 「Μ液晶顯示裝置! 〇 〇包括一主動矩睁式基板(後面將稱為 「丁FT基板」)l〇0a、一反基板(後面將稱為「彩色濾光片基 板」)io〇b,以及一位於TFT基板100a與反基板1〇讥之間的 液晶層30。該液晶層30的液晶分子3〇a具有負介電各向異性 ,並對準成與垂直對準膜(未顯示)表面垂直,如圖1B所示 ,在未透過垂直對準膜於整個液晶層3〇上施加電壓時,會 在TFT基板i〇0a及接近液晶層3〇的反基板1〇讥兩者的其中 —個表面上形成一垂直對準層。這個狀態被描述為呈垂直 對準的液晶層30。不過,請注意,視垂直對準膜的種類以 及所使用的液晶材料的種類而定,在呈垂直對準的液晶層 30中的液晶分子30a可能會與該垂直對準膜表面(該基板的 〇面)法線之間呈現出稍微傾斜的現象。一般來說,垂直對 卞係疋義為一種孩等液晶分子的軸(亦稱為「軸方向」)與該 垂直對準膜的表面形成約85〇或更大角度的狀態。 86289 200410026 液晶顯示裝置100的TFT基板100a包括一透明基板(例如 ,玻璃基板)11以及一圖像元件電極14,位在透明基板”的 表面上。反基板l〇〇b包括一透明基板(例如,破璃基板)2i 以及一反電極2 2,位在透明基板21的表面上。液晶層3 〇的 方位’會根據圖像元件電極14和反電極22之間施加的電壓 針對各個圖像元件區而改變,因此對準為透過液晶層3〇彼 此相反。利用通過液晶層3 〇的偏極化或光量會隨液晶層3 〇 方位改變的現象,可產生顯示。 TFT基板l〇0a其中包括複數個開放區ι5,該區不與由傳導 性薄膜(例如,ITO薄膜)構成的圖像元件電極〗4重疊(開放區 1 5沒有圖像元件電極丨4)。 開放區15對準成其個別中心形成正方形晶格,以及圖像 兀件電極14的一部份i4a,實質上由四個開放區15環繞,該 開放區的個別中心位於形成一單元晶格的四個晶格點上。 由開放區15包圍的圖像元件電極14的部份14a,將稱為「單 元實體部份」。圖像元件電極14(有傳導性薄膜存在的部份) 的每個實體部份包括許多的單元實體部份14a。換句話說, 圖像兀件電極14包括複數個單元實體部份14a,當作次要圖 像元件電極。複數個單元實體部份14a基本上是由單一連續 的傳導性薄膜所組成。 複數個圖像元件區對準成矩陣圖案。因此,圖像元件區 係定期對準成列方向和與列方向垂直的行方向。列方向和 行万向將稱為圖像元件(圖像元件區)的 通常’列方向和行方向彼此成垂直。甚至,在==施 86289 -22 - 200410026 例中,每個圖像元件區(圖像元件)具有包含—長邊和一短邊 的般糖圓矩形的形狀。因此,圖像元件區以列方向和行 万向對準時具有不同的間距(稱為「圖像Tt件間距」)。 、在一圖像元件區中,圖像元件電極14的許多單元實體部 f14a&任一週期對準方向排成一排。在說明範例中,單元 實體部份14a如圖1A所示對準成行方向D!,其中顯示以列 方向D2彼此眺連的二個圖像元件區p 1、μ和η。 一在說明範例中’單元實體部份14a有呈一般圓形的形狀。 母個開放區1 5都具有大致呈星形的形狀,其在四個侧邊的 中心處有包含四重旋轉軸的四分之一弧形側邊(邊緣)。每個 ㈣區15通常至少與—些眺連的開放區15相連。 開放區15具有實質上相同的形狀和實質上相同的大小。 母個位在由開放區15形成的單元晶格中的單元實體部份 T,都具有大致上呈圓形的形狀。單元實體部份14a具有 /、貝上相同的形狀和貫質上相同的大小。纟圖像元件區中 ,此田比連的單元實體部份14a連接在—起,形成實質上當作 早-傳導性薄膜使用的實體部份⑽像元件電極14)。 當在該圖像元件電極14(其具有如上所述的結構)與該反 電極22之間施加電壓之後,便會在單元實㈣域…(也就 是開放區15的邊緣部分)的周圍產生-傾斜電場,從而產生 複數個各具有放射狀傾斜方位的液晶域。液晶域在每個對 應到開放區1 5的區域〆义另1加机+ 飞以及母個對應到單元實體部份14a的 區域產生。No uneven display. In particular, in order to achieve the desired response characteristics (4x, B; not e1 also said, high-speed response), controlling the tilt of the orientation of the liquid crystal molecules must be responded to many liquid crystal molecules, and this requires The open area scoop ... face% (total length of the relevant edge portion) is too large to do it. It is a good response when the open area is formed when the liquid crystal domain of the ancient corpse, ^, and 1 inch ten thousand bits is fixed. It can suppress the mouthwash (non-uniform display) even if the total area of the open area is increased. Happening). When the plurality of openings such as the soil and soil have substantially the same shape, and have the same size on f, and constitute at least one unit lattice with rotationally symmetrical alignment, for each unit lattice, an extremely high Symmetry to align several liquid crystal domains, which can improve the viewing angle dependence of display quality. When the shape of each of at least some of the plurality of open regions (usually those constituting the unit crystal talent) is rotationally symmetrical, the stability of the radial tilt orientation of the liquid crystal domain formed in the open regions can be increased. For example, the shape of each open area (as viewed from the normal direction of the substrate) is preferably circular or polygonal (eg, square). Please note that depending on the shape (aspect ratio) of the image element, a shape that is not rotationally symmetric (such as an ellipse) can also be used. In order to stabilize the radial oblique orientation of the liquid crystal domain formed in the open region, it is preferable that the liquid crystal domain formed in the open region has a general circular shape. In other words, the shape of the open region can be designed such that the liquid crystal domain formed in the open region has a general circular shape. As mentioned above, when the liquid crystal domain is formed in the open area and the unit solid part, the orientation adjustment structure can be provided on another substrate to correspond to the 86289 -18-200410026 liquid crystal domain to be formed to stabilize all the liquid crystal domains. Emissions can only be formed in the unit's realm, Qiu Yaoba,, .... Ren Yan, also, just at Leopard ¥ Only with the mouth of the H-knife Ye Jing domain to provide orientation adjustment έ 士 诘 to achieve a practically sufficient degree of stability (stress resistance). From the viewpoint of productivity, the best adjustment of Fang Qishe, the applied azimuth force conforms to the shape; constructs the radial oblique azimuth. The flow ΓΓ used in this type of azimuth adjustment structure forms a radial shape. The process of adjusting the azimuth force of the tilt bearing is simple. Although the azimuth-adjusting structure is better provided for the mother-early solid part, in fact, a sufficient degree of azimuth stability is still visible in some cases (for example, the number of unit solid parts and related settings), The azimuth adjustment structure is provided only for certain unit solid parts to obtain this. This is because the radial tilt orientation formed in the liquid crystal layer of the liquid crystal display device of the present invention is essentially continuous. Furthermore, in order to improve the resistance to stress, in each of the open regions, there is provided a protruding portion having one side surface and applying the azimuth adjustment force to the liquid crystal molecules of the liquid crystal layer in the same direction as the tilt electric field azimuth adjustment direction. It is preferable that Shao has the same cross-sectional shape on the substrate plane as the shape of the open area, and has the same rotational symmetry as the shape of the open area. However, it should be noted that since the liquid crystal molecules whose orientation is adjusted by the azimuth force on the side surface of the protrusions are less responsive to the applied voltage (the delay of these liquid crystal molecules is less likely to be changed by the applied voltage), the display contrast may decrease. Therefore, it is preferable that the size, height, and number of the determined protrusions do not deteriorate the display quality. The liquid crystal display device of the present invention is, for example, an active matrix type device including a TFT-like conversion element for each image element region. These include the electrodes described above 86289 -19-200410026, which are image element electrodes connected to the conversion element, and the other electrode is a counter electrode at least opposite to the plurality of image element electrodes. [Embodiment] Specific embodiments of the present invention will now be described with reference to the drawings. Specific Example 1 First, the electrode structure and function of the liquid crystal display device of the present invention will be described. The liquid crystal display device of the present invention has desired display characteristics, and is therefore suitable for use as an active matrix liquid crystal display device. The present preferred embodiment will now be described with reference to an active matrix liquid crystal display device using a thin film transistor (TFT). The present invention is not limited to this device, and an active matrix liquid crystal display device with a MIM structure may be used instead. Even when a specific embodiment of the present invention is described with respect to a transmissive liquid crystal display device: The present invention is not limited to the device, and a reflective liquid crystal display device or even a transflective liquid crystal display device described later can be replaced instead. use. Note that in this specification, the area of the liquid crystal display device corresponding to the "image element" (which is the smallest display unit) will be referred to as the "image element region". In a color liquid crystal display device, the "R, qb" picture element "corresponds to one" pixel ". In an active matrix type liquid crystal display device, the image element region is defined by an image element electrode and an opposite electrode located opposite to the image element electrode. In a passive matrix liquid crystal display device, the image element area is defined as one of the row electrodes aligned in a stripe pattern, and one of the row electrodes aligned in a stripe pattern, and the row electrode Vertical area. In the alignment with the black matrix, 'strictly speaking, the image element area is a part of each area to which a voltage is applied according to the expected display state, which will be 86289 -20-200410026 corresponding to the opening of the black matrix. hole. A specific embodiment according to the present invention will now be described with reference to FIGS. 18 and 1B! The liquid crystal element area 100 of the crystal display π device 100? 2 and? Structure of 3 of them. In the following description, the color filter and the black matrix will be omitted for simplicity. Furthermore, in the following drawings, each element having substantially the same function as the corresponding element in the liquid crystal display device will be represented by the same element symbol, and will not be described further below. FIG. 1A is a plan view viewed from the normal direction of the substrate, and FIG. 1B is a cross-sectional view taken along line 1B_1B of FIG. 1A. The state shown in FIG. 1B is a state when no voltage is applied to the entire liquid crystal layer. "M liquid crystal display device! 〇OO includes an active moment-open substrate (hereinafter referred to as" D-FT substrate ") 100a, a reverse substrate (hereinafter referred to as" color filter substrate ") io〇b, And a liquid crystal layer 30 between the TFT substrate 100a and the counter substrate 100A. The liquid crystal molecules 30a of the liquid crystal layer 30 have negative dielectric anisotropy and are aligned perpendicular to the surface of the vertical alignment film (not shown). As shown in FIG. 1B, the entire liquid crystal is not transmitted through the vertical alignment film. When a voltage is applied to the layer 30, a vertical alignment layer is formed on one of the surfaces of both the TFT substrate 100a and the counter substrate 10a close to the liquid crystal layer 30. This state is described as the liquid crystal layer 30 being vertically aligned. However, please note that depending on the type of the vertical alignment film and the type of liquid crystal material used, the liquid crystal molecules 30a in the vertically aligned liquid crystal layer 30 may be aligned with the surface of the vertical alignment film (the substrate's 〇 surface) between the normals appear slightly inclined. In general, the vertical alignment is a state in which the axis of a liquid crystal molecule (also referred to as an "axis direction") forms an angle of about 85 ° or more with the surface of the vertical alignment film. 86289 200410026 The TFT substrate 100a of the liquid crystal display device 100 includes a transparent substrate (for example, a glass substrate) 11 and an image element electrode 14 on the surface of the transparent substrate. The anti-substrate 100b includes a transparent substrate (for example , Broken glass substrate) 2i and a counter electrode 22 are located on the surface of the transparent substrate 21. The orientation of the liquid crystal layer 30 will be based on the voltage applied between the image element electrode 14 and the counter electrode 22 for each image element The area is changed, so the alignment is opposite to each other through the liquid crystal layer 30. By using the phenomenon that the polarization or the amount of light passing through the liquid crystal layer 30 changes with the orientation of the liquid crystal layer 30, a display can be produced. The TFT substrate 100a includes A plurality of open areas 5 that do not overlap the image element electrode 4 made of a conductive film (eg, an ITO film) (the open area 15 has no image element electrode 4). The open area 15 is aligned so as to The individual centers form a square lattice, and a portion i4a of the image element electrode 14 is substantially surrounded by four open regions 15, and the individual centers of the open regions are located at four lattice points forming a unit lattice. . The image from the open region 15 surrounding the element electrode part 14a 14, and will be called "unit portion entity." Each solid portion of the picture element electrode 14 (the portion where the conductive film is present) includes a plurality of unit solid portions 14a. In other words, the image element electrode 14 includes a plurality of unit solid portions 14a as the secondary image element electrodes. The plurality of unit solid portions 14a are basically composed of a single continuous conductive film. The plurality of image element regions are aligned in a matrix pattern. Therefore, the image element regions are regularly aligned in a column direction and a row direction perpendicular to the column direction. The column direction and the row direction will generally be referred to as a picture element (picture element area). The column direction and the row direction are perpendicular to each other. Furthermore, in the examples of == Shi 86289 -22-200410026, each image element area (image element) has the shape of a sugar round rectangle containing-a long side and a short side. Therefore, the image element regions have different pitches when they are aligned in the column and row directions (referred to as "image Tt element pitch"). In a picture element area, many unit solid parts f14a & of the picture element electrode 14 are arranged in a row in any periodic alignment direction. In the illustrated example, the unit solid portion 14a is aligned in a row direction D! As shown in FIG. 1A, in which two image element regions p1, μ, and η which are viewed from each other in a column direction D2 are displayed. -In the illustrative example, the 'unit solid portion 14a has a generally circular shape. Each of the female open regions 15 has a substantially star shape, and at the center of the four side edges has a quarter-arc side edge (edge) including a quadruple rotation axis. Each bay area 15 is usually connected to at least some open open areas 15. The open regions 15 have substantially the same shape and substantially the same size. The unit solid portions T in the unit lattice of the unit lattice formed by the open region 15 have a substantially circular shape. The unit solid portion 14a has the same shape and the same size on the surface. In the image element area, the field solid element 14a of this field is connected together to form a solid part image element electrode 14) which is used as an early-conductive film. When a voltage is applied between the image element electrode 14 (which has the structure as described above) and the counter electrode 22, it will generate around the real area of the unit ... (that is, the edge portion of the open area 15)- The oblique electric field generates a plurality of liquid crystal domains each having a radial oblique orientation. The liquid crystal domain is generated in each of the areas corresponding to the open area 15 and an additional machine + fly and the area corresponding to the unit physical part 14a are generated.

應注意,在本發明且辦余> A I 以爲她例中,以列方向D2彼此毗連 86289 -23 - 200410026 勺圖像元件’在資料被寫入所有圖像元件(也就是說,一個 圖框)〃月間,文到相反極性電壓的驅動,如圖2所示。參見 到圖2,一極性電壓施加到圖像元件區P1和P3(圖像元件區 、 」'表示)液曰曰層3 〇的同時,不同(相反)極性的電壓施 加到圖像71件區P2(圖像元件區α「-」號表示)的液晶層30 換句話說,在每個圖框中,施加到一圖像元件區液晶層 :的電壓極性,不同於施加到另-圖像元件區液晶層30的 電壓極性,其中該另一圖像元件區以與單元實體部份14a的 對準方向(仃方向D1)垂直的方向(列方向D2),與該第一圖 像元件區她連。 現在將苓考圖3 A及圖3B來說明上述以傾斜電場形成液 曰曰域的機制。圖3A及圖3B所示的各係圖1B的液晶層3〇被施 加私壓心後的不意圖。圖3 A概略說明根據施加至液晶層 的電壓,液晶分子30a方位剛開始改變(初始〇N狀態)的狀態 。圖3B概略說明根據施加的電壓,液晶分子3〇a方位先改變 後又變穩足的狀態。圖3 A及圖3B中的曲線:EQ代表的是等位 如圖1B所示,當圖像元件電極14及反電極22具相同電位 時(也就是,並未於整個液晶層3〇施加電壓的狀態),每個圖 像兀件區中的液晶分子30a都會被對準成垂直於該等基板 11及21的表面。 §在整個液晶層30中施加電壓後,便會產生圖3A中等位 線EQ(垂直於電力線)所示的電位梯度。該等等位線Eq係平 行於該液晶層3 0 (其係位於該圖像元件電極14之實體部分 86289 -24 - 200410026 14a及反電極22之間)中的單元實體部份丨“及反電極u的 表面,並JL會在對應該圖像元件電極14之開放區的區域 中彺下降。在開放區15的邊緣部分eg(開放區丨5的周圍部分 及其内部,包含其邊界在内)上方的該液晶層3〇中,產生由 該等等位線EQ之傾斜部分所表示的傾斜電場。應注意,在 本發明具體實施例中’以列方向的彼此眺連的兩個圖像元 件’ Μ反電極電壓的驅動’因此等位線叫在圖像元件間 的開放區15内劇降,藉此等位線EQ沒有繼續穿過這些圖像 會有 刀矩作用在且备今兩女 杜/、貝,丨兒各向異性的液晶分子3“之 二:該等液晶分子3〇a的轴方向引導成平行該等等位 ,爾垂直於電力線)。所以,圖3A中右邊邊緣部細上方 的液晶分子他會朝順時針方向傾斜(旋轉),而左邊邊緣部 份EG上方的液晶分子3 、逯 ra3A6^--S ^ 曰朝反時針万向傾斜(旋轉),如 ^料示。m等邊緣 會朝向與該等位線叫的對應部分平行。万的“刀子 現在將參考圖4A至圖4D更詳細地說 日 中的方位變化。 〇 ^ ’夜日η为子3 0a 當在該液晶層30令產生電場之後 具負介電各向異性的液晶分子30a之上有一力矩作用在 導成與等位線EQ平行。如圖4 ,將其抽万向$ 分子他的輛方向之等位線 自屋生由垂直於液晶 該等液晶分子㈣順時針方向:二電力場之後’發生促使 晶分子30a朝反時針方向傾斜的 矩口使该寺液 日7職率是相等的。所以 86289 -25 - 200410026 ’對位於該對彼此相 相對足千仃板狀電極之間的液晶層30而 言,會有部分的液晶八;μ #、, 、 從日日刀子3〇a係雙到順時針方向的力矩作用 ’以及會有部分的立# 曰 八匕履日曰刀子30a係雙到反時針方向的力 矩作用。因此,並灰_1U ^ r 卫典法非㊉順利地根據施加於整個液晶層 30的電壓而轉換成預期的方位。 曰 如圖3A所不,當在本發明的液晶顯示裝置⑽之開放區 15的邊緣部分EG處產生由傾斜於該等液晶分子⑽的轴方 向(傾斜電場)之等位線叫的一部份所表示的電場之後,該 等液晶分子1會朝只要最小的旋轉便能使其平行該等位 線EQ的方向傾斜(圖中所示的範例為反時針方向),如圖4β 所:。、對位於已經產生由垂直於該等液晶分子術的轴方向 〈等位、、泉EQ所表不的電場區域中的液晶分子心來說,复合 與位於該等等位線EQ的傾斜部份中的液晶分子30a朝相二 的方向傾斜,因此如圖4C所示,其方位與位於該等等位線 EQ的傾斜部份中的液晶分子3〇a的方位係連續的(一致)。如 圖4D所示,當電場使得等位線EQ形成連續的凹形/凸形圖 案時,位於該等位線EQ的平面部份中的液晶分子3〇a會被方 位成與由位於該等位線EQW鄰近傾斜部份中的液晶分子 3〇a所足義的方位方向一致。本文所使用的「位於該等位線 EQ」的語意是指「位於該等位線£(^所表示的電場中」。 該等液晶分子30a的方位變化(從該等等位線£卩的傾斜部 份中的液晶分子開始)會如上述般的方式進行並達到穩定 的狀態,圖3B所示的即為其示意圖。位於開放區丨5之中心 部分附近的液晶分子3 0 a會實質相等地受到位於該開放區 86289 -26 - 200410026 :5《相對邊緣部分阳處的液晶分子3〇a之個別方位的影響 ’所以會維持其方位垂直於該等等位線EQ。遠離開放區^ 的Z夜曰曰分子30在接近邊緣部份即處受到其他液晶分子3〇a 万位的影響傾斜’藉此形成對稱於開放區15中心SA的傾斜 万位。從垂直於液晶顯示裝置100顯示平面的方向(與基板 11和21面垂直的方向)看過去的方位,是液晶分子儿的軸方 向以放射狀朝向開放區15中心(未顯示)的狀態。在本說明書 中,此種方位將稱作「放射狀傾斜方位」。再者,該液晶 ^王現出以單一軸為基準之放射狀傾斜方位的區域則稱 作「液晶域」。 液晶分子30a呈現放射狀傾斜方位的液晶域,也在對應到 貫質上由開放區15包圍的單元實體部份14a之區域形成。位 於對應到單元實體部份14a區域的液晶分子3〇a,在開放區 15的各邊緣部份EG受到液晶分子3〇a方位的影響,因此呈現 以單元實體部份14a中心SA(對應到開放區丨5形成的單元晶 格的中心)。 在單兀實體邵份14a中形成的液晶域的放射狀傾斜方位 ’以及在開放區1 5中形成的放射狀傾斜方位,會彼此連續 ’而且都與在開放區1 5邊緣部份EG的液晶分子3〇a的方位一 致。在開放區1 5中形成的液晶域的液晶分子3〇a方位,為向 上延伸的錐形(朝向基板1 〇〇b),在單元實體部份1々a中形成 的液晶域的液晶分子30a方位,為向下延伸的錐形(朝向基 板100a)。如上所述,在開放區15内形成的液晶域中的放射 狀傾斜方位與在該單元實體部份14a内形成的液晶域中的 86289 -27 - 200410026 放射狀傾斜方位,係彼此連續的。所以,在其間的邊界處 並不會構成向錯線(方位缺陷),因而可以避免因為出現向錯 線而導致顯示品質下降。 請注意,開放區1 5之中心部分附近的液晶層3〇中可能並 未施加足夠的電壓,所以開放區15之中心部分附近的液晶 層3 0並典去用以進行顯示。換言之,即使開放區1 $之中心 部分附近的液晶層30的放射狀傾斜方位受到某種程度的干 k (例如即使中心軸偏離開放區1 5的中心),仍不會降低顯 示品質。因此,只要至少對應到單元實體部份i4a的區域 形成液晶域,就可以在每個圖像元件區獲得連續的液晶分 子並實現廣視角特性以及高顯示品質。 為改良所有方位角中的視角依存性(其為—項液晶顯示 裝置的顯示品質),被方位於各種方位角方向中的液晶分子 30a之存在機率較佳的係在每個圖像元件區中具有旋轉對 稱性,更佳的係具有軸對稱性。因此,最好是液晶域在每 個圖像兀件區中都對準成高度對稱。在本具體實施例中, :兀實體部份Ua駿方向(行方向叫排成—排,因此具有 =轉對稱和對等的軸對稱。因此,每個對應到單元實體部 份14a的液晶域也對準成旋轉對稱和對等的轴對稱。 如上述參考圖Μ及圖3B的部分,本發明的液晶顯示裝置 的圖像元件電極14包括複數個單元實體部份i4p ❹都由複數個開放區⑼斤圍繞, 的液晶層30中產生由且m 日在圖像兀件區内 電場厂、 由具有傾斜邵分之等位線EQ所表示的 晶層3G中具負介電各向異性的液晶分子術 86289 -28 - 200410026 (當未存在有施加電壓時,其係呈垂直對準)會隨著位於當作 觸發信號之等位線EQ的傾斜部份中的液晶分予3〇a的方位 變化而改變其方位方向。因&,具獻放射狀傾斜方位的 液晶域會形成於開放區15以及單元實體部份⑷中。根據施 加於整個液晶層中的電壓’ ?文變該液晶域中液晶分子的方 位便能夠進行顯示。 。以下將描逑本具體實施例液晶顯示裝置丨〇〇的圖像元件 電極14的|元實體部份14a的形狀(從基板法線方向看去)和 對準以及液晶顯示裝置100的^丁基板1〇(^的開放區15。 硬晶顯示裝置的顯示特性會因為該等液晶分子的方位 (光學各向異性)的關係,而呈現出方位角依存性。為降低顯 示特徵中的方位角依存性,較佳的係以實質相等的機率將 該等液晶分子方位於所有的方位角中。更佳的係能夠以實 質相等的機率將每個圖像元件區中的液晶分子方位於所有 的方位角中。 所以,單元實體部份14a較佳的形狀係形成於每個圖像元 件區中的液晶域能夠以實質相等的機率使對應到單元實體 部份14a的每個液晶域中的液晶分子3〇a朝向所有的方位角 。更明確地說,較佳的係,單元實體部份14a的形狀都具有 相對於延伸穿過每個單元實體部份中心的對稱軸(法線方 向)的旋轉對稱性(更佳的係對稱於至少一個二重旋轉軸)。 此外,由於只有對應到開放區丨5形成的液晶域部份包含 在圖像兀件區中並對顯示有幫助,因此最好是包含在圖像 凡件區的液晶域部份(片段)集合中的液晶分子有實質相等 86289 -29 - 200410026 的機率朝向所有方位角。因A,最好是開放區15的形狀及 對準此夠使液晶域片段以互補方式共同形成液晶域。特別 疋取好開放區1 5的形狀有旋轉對稱而且開放區1 5能夠對 •r成_有旋輅對稱。請注意,由於在開放區1 $形成的液晶 域有一部份位於圖像元件區之外,因此開放區15可能很難 對準成使液晶域片段以互補方式共同形成液晶域。然而, 二要朝向不同万位角的液晶域片段每個集合的液晶分子, 存在有從轉對稱(更好是軸對稱)的機率,就足以降低顯示特 性的方位角依存性。 現在將參考圖5A至圖5C說明將圍繞一般圓形單元實體 部份14a的一般星形的開放區15,如圖丨八所示對準於正;^ 晶格中時,該等液晶分子3(^的方位。 圖5A至圖5C所示的各係從該基板的法線方向看去時該 等液晶分子30a的方位示意圖。在顯示著以該基板法線方向 看去的液晶分子30a的方位的圖式中(例如圖沾及5c),橢圓 形的液晶分子30a的黑色斑點端表示的係該液晶分子3〇a被 傾斜成讓該端比另一端更接近其上具有圖像元件電極丨斗的 基板 明 此種表示方式同樣適用於後面的圖式中。下面將說 圖 1A所示的圖像元件區中的單一單元 日曰格(其係由四個 開放區15所構成的)。圖5A至圖5C之個別對角線的剖面圖分 別對應到圖1B、圖3A及圖3B,而下面的說明同樣會參考圖 1B、圖3A及圖3B。 當圖像元件電極14及反電極22具相同電位時(即並未於 整個液晶層30施加電壓時的狀態),該等液晶分子3〇a的方 86289 -30 - 200410026 K方向會受到仏於各丁J7丁基板1 〇〇a某一侧的垂直對準層(未 顯示)以及較接近該液晶層3 〇的反基板〗〇〇b所調整,而呈現 垂直對準,如圖5A所示。 當在整個液晶層30中施加電場以便產生如圖3八之等位線 EQ所表π的電場之後,便會有一力矩作用在具負介電各向 異性的液晶分子30a之上,用以將其軸方向引導成平行該等 位線EQ。如上述的圖4A及圖4B所示,對處於由垂直於其分 子軸的等位線EQ所表示之電場下的液晶分子3〇a來說,並未 唯一足義出该等液晶分子3〇a應該朝哪個方向傾斜(旋轉) (圖4 A) ’所以並不容易發生方位變化(傾斜或旋轉)。相反地 ’對處於由傾斜於其分子軸的等位線Eq下的液晶分子3〇a 來說,則唯一定義出傾斜(旋轉)的方向,所以很容易發生方 位义化所以’如圖5 B所示’該等液晶分子3 〇 a會從液晶分 子30a分子軸傾斜於該等等位線EQ之位置處的開放區15的 邊緣部份開始傾斜。然後,週遭的液晶分子3〇a便會跟著傾 斜以便與遠開放區丨5邊緣部扮處已經傾斜的液晶分子川a 的方位一致,如圖4C所述。接著,該等液晶分子3〇a的軸方 向便會呈現如圖5C般的穩定狀態(放射狀傾斜方位)。 如上所述,當開放區1 5的形狀具旋轉對稱性時,在施加 電壓後,該圖像元件區中的液晶分子3〇a便會從該開放區15 的邊緣邵份開始朝該開放區1 5的中心依序傾斜。因此便會 產生種方位’其中在該開放區1 5中心(來自各邊緣部分的 液曰曰分子30a的個別的方位調整力量於此處達到平衡狀態) 附近的液晶分予30a會保持與該基板平面成垂直的對準,而 86289 31 200410026 週遭的液晶分子30a則會以該開放區1 5中心附近的液晶分 子3 0a為基準以放射圖案的方式傾斜,其傾斜程度會隨著遠 離該開放區1 5中心而逐漸地增加。 對應到由對準成正方形晶格圖案的一般星形開放區1 5所 圍繞的一般圓形的單元實體部份14a區域中的液晶分子30a 也會跟著傾斜,使符合已經由各開放區1 5邊緣部份產生 的傾斜電場所傾斜的液晶分子3 0 a的方位。因此便會產生一 種方"U ’其中在该單元貫體邵份14 a中心(來自各邊緣部分 的液晶分子30a的個別的方位調整力量於此處達到平衡狀 態)附近的液晶分子30a會保持與該基板平面成垂直的對準 ,而週遭的液晶分子30a則會以該單元實體部份14a中心附 近的液晶分子30a為基準以放射圖案的方式傾斜,其傾斜程 度會隨著遠離該單元實體部份14a中心而逐漸地增加。 呈 、w ·η i日日% τ的欣尚为、亍3〇a都句 放射狀傾斜方位)都被對準成正方形晶格圖案時,個別朝 方向的液晶分子30a就存在有具有旋轉對稱性的機率,因说 便能夠實現高品質的顯示而不會有任何視角上的 冢。為降低具放射狀傾斜方位之液晶域的視角依存性,鬆 液晶域較佳的係且右合淨Α 〜 、 门又、疋^r對稱性(較佳的係對稱甘 至少一個二重旋韓逢 ; 轴)。 更佳的係對稱於至少-個四重旋轉 =等液晶分子30&的放射狀傾斜方位來說 或圖6C所示的反時針咬順 圖61 位都會比圖6A所示的簡易、“《螺旋圖案的放射狀傾斜方 的間易放射狀傾斜方位要來得穩定。螺 86289 -32 200410026 旋方位不同於一般的扭轉方位(該等液晶分子3 〇 a的方位方 向會隨著該液晶層3 0的厚度而呈現螺旋式變化)。在螺旋方 位中,該等液晶分子30a在一微小區域中的方位方向實質上 並不會隨著該液晶層30的厚度而變化。換句話說,在任何 厚度的液晶層3 G的橫斷面中(在與層平面平行的平面中)的 方位是如圖6B或圖6C所示,且沿著液晶層%的厚度實質上 /又有任何扭轉 '交形。但若將液晶域視為一個整體來看,則 有若干程度的扭轉變形。 當使用將對掌性試劑加人具負介電各向異性之向列液晶 材料中而獲得的材料時,在施加電壓#在時,該等液晶分 子3〇a便會分別如圖6B或圖化所示呈現出以該開放區15及 該單元實體部份14a為基準的反時針或順時針螺旋圖案的 放射狀i、斜方位。而究竟會呈現反時針或順時針螺旋圖案 則係取決於所使用的對掌性試劑種類。因此,冑由在有施 加電壓存在時控制開放區15中的液晶層3〇,使其變成螺旋 圖案的放射狀傾斜方位,㈣,以垂直㈣基板平面之其 它液晶分子3〇a為基準的放射狀傾斜液晶分子3〇a之螺旋圖 案的万向便能夠在所有的液晶域中保持固^不冑,因此便 能夠實現均勻的顯示而不會顯示出不均勻的結果。因為在 垂直7、▲基板平面之液晶分子3〇a附近的螺旋圖案的方向 相當地明確’所以亦能夠改良施加電壓於整個液晶層30之 後的響應速度。 再者,當添加大量的對掌性試劑之後,該等液晶分子30a 的方位便曰如@力的扭轉方位般地隨著該液晶層3〇的厚 86289 200410026 度而改炎其螺旋圖案。在該等液晶分子3〇a的方位並不會隨 著該液晶層30的厚度而改變其螺旋圖案的方位中,被方位 成垂直或平行於該偏光板之偏光軸的液晶分子3〇a對於入 射光並不會造成相位差,因此穿透過具此種方位之區域的 入射光對於透射率並不會造成任何的影響。相反地,在該 等液晶分子3〇a的方位會隨著該液晶層3〇的厚度而改變其 螺旋圖案的方位中,被方位成垂直或平行於該偏光板之偏 光軸的液晶分子30a則會對入射光造成相位差,並且亦會使 用到光學旋轉力,因此穿透過具此種方位之區域的入射光 對於透射率將會造成影響。因此便能夠獲得一種能夠產生 高亮度顯示的液晶顯示裝置。 圖1A所tf的範例中,每個單元實體部份14&都為一般的圓 形形狀而母個開放區1 5則都為一般的星形形狀,其中此 等單元實體部份14a及此等開放區15都係設置在一正方形 日曰格圖木中。但是,單元實體部份丨4a的形狀以及開放區U 的形狀和對準都不限於上述範例。 圖7A和圖7B是平面圖,分別說明具有不同形狀的個別開 放區1 5和單元實體部份丨4a的液晶顯示裝置} 〇〇八和丨〇〇b。 如圖7A和圖7B所示的液晶顯示裝置1〇〇八和1〇〇B的開放 區15和單元實體部份14,分別與圖1A的液晶顯示裝置1〇〇 的開放區和單元實體部份有些微地扭曲。液晶顯示裝置 100A與100B的開放區15及單元實體部份14a都具有一二重 旋轉軸(並不具有四重旋轉軸),並且經過規律的對準後,構 成長矩形的單元晶格。在液晶顯示裝置1〇〇八與1〇〇;6中,開 86289 -34- 200410026 放區1 5為被扭曲的星形形狀,而單元實體部份14a則為一般 的橢圓形形狀(被扭曲的圓形形狀)。圖7 A和圖7B所示的液 晶顯示裝置1〇〇A和100B仍具有高的顯示品質和預期的視 角特性。 此外,如圖8A和圖8B所示的液晶顯示裝置1〇〇c^pl〇〇D 兩者仍具有鬲的顯示品質和預期的視角特性。 在液晶顯示裝置100C和100D中,一般十字形狀的開放區 15設置成正方形圖案,因此每個單元實體部份14&具有一般 正方形的形狀。當然,這些圖案可被扭曲因而構成長矩形 單元晶格。如上所述,另外藉由規律對準該等一般矩形(包 含正方形及長方形)的單元實體部份14a,亦可獲得具高顯 示品質及預期視角特性的液晶顯示裝置。 不過’開放區15及/或單元實體部份14a的形狀較佳為圓 形或橢圓形’而非矩形,如此方能使該放射狀傾斜方位更 穩定。咸信具有圓形或橢圓形之開孔及/或單元實體部份的 放射狀傾斜方位會更穩定,這係因為開放區丨5的邊緣會更 為連纟買(平順),如此該等液晶分子3〇a的方位方向能夠以更 連續(平順)的方式進行變化。 考慮到如上所述液晶分子3 〇 a方位方向的連續性,也可預 期有如圖9所示的液晶顯示裝置1 〇〇E。圖9的液晶顯示裝置 100E是圖8B液晶顯示裝置1〇〇D的變形,其中單元實體部份 14a上開放區15的每一側都是弧形。在液晶顯示裝置1〇〇£中 ’開放區1 5和單元實體部份丨4a都具有四重旋轉軸並且設置 成正方形晶格圖案(具有四重旋轉軸)。另外,可將該開放區 86289 -35 - 200410026 15的單兀實體部份i4a的形狀扭曲成一具有二重旋轉軸的 形狀,並且可將此等單元實體部份14a設置成長矩形的晶格 (其具有二重旋轉軸),如圖7A及圖7B所示。 施加於在該開放區1 5内形成的液晶域中的電壓會低於施 加方;在為貝體邯14 a内形成的另一液晶域中的電壓。因此, 舉例來祝,在正常的黑色模式顯示中,形成在該開放區工$ 内的液晶域會比較暗。因此,最好圖像元件區内的單元實 體部份14a的面積比要高一點,而開放區15的面積比要低一 點0 在本發明的液晶顯示裝置中,圖像元件電極14包括複數 個:元實體部份14a,藉此可以根據圖像元件區的形狀和大 】等適田對準圖像兀件區中複數個單元實體部份1.在圖 像元件區實現穩定的放射狀傾斜方位,不需受到圖像元件 =的形狀及大小等的限制。相較之下,如果圖像元件電極 只包括-個單元實體部份,可能就無法根據圖像元件區的 形狀和大小等實現穩定的放射狀傾斜方位。如果圖像元件 區有圓形或正方形形狀,口 , ^ /、包括一個早兀實體部份的圖像 元件電極便不是問題。作 、、 ^ 仁疋例如,如果當圖像元件區是 K於能夠產生彩色顯示的曰 、 W,夜日日顯不裝置中而且圖像元件區 具有大長寬比的長矩形形 抑一、 乂形狀時,早兀實體部份便需要具有 大長寬比的形狀,此時 一 7 了此就供法貫現穩定的放射狀傾斜 万位。此夕卜,例如,當圖像元件區的尺寸很大時,單元膏 體邵份就需要有大的尺 /、 Τ 在廷種情況下,只由在單元奮 體部份周圍產生的傾钭心 早兀男 /、斜电%可能無法獲得穩定的方位。 86289 -36- 200410026 此外,在本發明的液晶顯示裝置中,複數個單元實體部 份14a在每個圖像元件區中以預定方向對準(排成一排),舉 例來說如圖1A所示,相較於單元實體部份對準成兩排以上 的情況,如此可增加單元實體區域14a的面積比,且相對於 圖像元件區的總面積(有效孔徑比),可增加貢獻給顯示的面 積比。接下來’將參考圖1 〇來說明原因。 如圖10所示,液晶顯示裝置10肫包括問匯流排線(掃描線) 41,以列方向D2彼此平行延伸,還包括來源匯流排線(信號 線)42,以行方向D1彼此平行延伸。每個閘匯流排線(掃描 線)41以電連接到提供給各圖像元件區的TFT(未顯示)的閘 極黾極,母個來源匯流排線(信號線)42則以電連接到丁的 來源電極。此外,TFT的汲極電極以電連接到圖像元件電極 14。該液晶顯示裝置1 ooe另包括儲存電容線43。 在液晶顯示裝置100E中,許多單元實體部份14a在各圖像 元件區中對準成一排,圍繞單元實體區域14a的開放區15的 一邵份與閘匯流排41或來源匯流排42重疊,且該部份位於 圖像元件區之外。因此,每個複數個開放區丨5,至少有一 部份位在圖像元件區之外。 當複數個單元實體部份14a對準成兩排以上時,在每個圖 像兀件區中會存在一個由單元實體部份丨4a包圍的開放區 15,而且這類開放區15是完全位於圖像元件區之内。例如 ’在比較級範例的液晶顯示裝置1 〇〇〇中,當單元實體部份 1 4a對準成兩排以上如圖1 1所示時,在每個圖像元件區中就 會存在一個由單元實體部份1 4a包圍的開放區1 5,而且這類 86289 -37 - 200410026 開放區15是完全位於圖像元件區之内。接著,圖像元件區 中的開放區15的面積比增加,因此降低單元實體部份…的 面積比。 相較之下,當複數個單元實體部份⑷在每個圖像元件區 中排成一列如圖10所示時,每個複數個開放區_至少合 有一部份位於圖像元件區之外,因此可以降低圖像元件; 中開放區15的面積比並增加單元實體部份⑷的面積比,從 而改良孔徑比。 ^現在’將參考使用特足規格的液晶顯示裝置所取得的資 料,更詳細地描述可以如何改良孔徑比。該液晶顯示裝置 的規格如下所示··顯示區的對角線長度是15英吋,單元膏 體部份Ua具有包含狐形隅角部份的―般正方 圖和圖1 0所示),閘g泥排線的寬度和來源匯流排線上的 光阻隔層的見度均為】2 μπ1,單元實體部份14a之間的間隔 是8.5 μιη。以下將比較單元f體部份i4a排成一列時液晶顯 7裝置的透射率與單元實體部份14a排成兩列時液晶顯示 裝置的透射率。與單元實體部份14a排成兩列時的透射率相 車乂田單元貪胆邯份1排成一列時的透射率有改進,用於 SXGA (1280 X 1024個像素)時提升6%,用於υχ(}Α (16⑽X 1200個像素)時提升9%、用於QXGA (2〇48 X η%個像素) 時提升11%。因此’藉由在每圖像元件區中使複數個單元 實體部份14a排成—列來改良孔徑比的效果,在高畫質液晶 顯示裝置時特別明顯。 請注意,在圖像元件|極14與閘匯流排線41或來源匯流 86289 -38- 200410026 排線42重疊(在圖〗〇所示)的結構中,最好在匯流排線上所形 成的絕緣膜(例如,一有機絕緣膜)的厚度能夠儘可能的厚, 而且圖像元件電極14形成於其上,才能降低這些匯流排線 的影響。 多見圖12, S」指示由開放區15和單元實體部份i4a形 成的正方形單元晶格之間的間隙長度(以下稱為「侧留間隔 S」)。侧留間隔s必須等於或大於預定長度,才能產生獲得 穩足的放射狀傾斜方位所需的傾斜電場。 雖然侧留間隔s是以列方向D2和行方向D1定義,但在本 具體實施例中,只有沿著列方向D2彼此毗連的圖像元件才 會受到如圖2所示圖框中相反極性的電壓驅動。因此,相較 万、心著列方向D2彼此毗連的圖像元件不會受到相反極性電 壓驅動的情況,這種方式可以獲得足夠的調整方位力,即 使列方向D2的侧留間隔8被縮小也—樣。這是因為當沿著列 万向D2彼此毗連的圖像元件受到相反極性電壓驅動時,可 產生相當強的傾斜電場。下面將參考圖13A和圖13B來說明 圖13A概略說明當施 逐至列万向D2上彼此毗連 的兩個圖像元件區内的 ^It should be noted that in the present invention and AI > AI considers her example, the column direction D2 is adjacent to each other 86289 -23-200410026. The image elements are written in the data to all the image elements (that is, a frame ) During the month, the drive to the opposite polarity voltage is shown in Figure 2. Referring to FIG. 2, while a polar voltage is applied to the image element regions P1 and P3 (the image element region, “” indicates) the liquid layer 30, a voltage of a different (opposite) polarity is applied to the 71 element region of the image. The liquid crystal layer 30 of P2 (indicated by the "-" sign of the image element region). In other words, in each frame, the voltage polarity applied to the liquid crystal layer of one image element region is different from that applied to the other-image The voltage polarity of the liquid crystal layer 30 in the element region, wherein the other image element region is in a direction (column direction D2) perpendicular to the alignment direction (垂直 direction D1) of the unit solid portion 14a and the first image element region. She even. 3A and 3B will be used to explain the above-mentioned mechanism for forming a liquid domain by an inclined electric field. Each of the liquid crystal layers 30 shown in FIGS. 1A and 3B shown in FIGS. 3A and 3B is not intended. FIG. 3A schematically illustrates a state where the orientation of the liquid crystal molecules 30a has just started to change (initial ON state) according to the voltage applied to the liquid crystal layer. FIG. 3B schematically illustrates a state where the orientation of the liquid crystal molecules 30a changes first and then becomes stable according to the applied voltage. The curves in FIG. 3A and FIG. 3B: EQ stands for equipotential as shown in FIG. 1B, when the image element electrode 14 and the counter electrode 22 have the same potential (that is, no voltage is applied to the entire liquid crystal layer 30). State), the liquid crystal molecules 30a in each image element region will be aligned perpendicular to the surfaces of the substrates 11 and 21. § When a voltage is applied throughout the liquid crystal layer 30, a potential gradient as shown in the middle bit line EQ (vertical to the power line) in FIG. 3A is generated. The equal bit line Eq is parallel to the unit solid part in the liquid crystal layer 30 (which is located between the solid part 86289 -24-200410026 14a and the counter electrode 22 of the image element electrode 14) and the counter part The surface of the electrode u and JL will drop in the area corresponding to the open area of the image element electrode 14. At the edge portion of the open area 15 (the surrounding portion of the open area 5 and its interior, including its boundary) ) In the liquid crystal layer 30 above, a tilted electric field indicated by the tilted portion of the equal bit line EQ is generated. It should be noted that in the specific embodiment of the present invention, two images which are viewed from each other in the column direction The element 'M counter-electrode voltage' is driven by the isoline falling sharply in the open area 15 between the image elements, whereby the isoline EQ does not continue through these images and will have a knife moment acting on it. Women ’s and women ’s anisotropic liquid crystal molecules 3 ”bis: the axis direction of the liquid crystal molecules 30a is guided parallel to the equivalent position, and is perpendicular to the power line). Therefore, in FIG. 3A, the liquid crystal molecules above the right edge are tilted (rotated) clockwise, while the liquid crystal molecules 3 and 3ra3A6 ^-S ^ above the left edge EG are tilted counterclockwise. (Rotation), as shown in ^. An edge such as m will be oriented parallel to the corresponding part of the bit line. Wan's "knife will now refer to the change in the azimuth of day and time in more detail with reference to Figs. 4A to 4D. A moment acts on the liquid crystal molecule 30a to be parallel to the equipotential line EQ. As shown in Fig. 4, the isoline in the direction of the car is drawn from the direction of the molecule. Hourly direction: After the second electric field, the occurrence of the moment that causes the crystal molecules 30a to tilt in the counterclockwise direction makes the 7th rate of the temple day equal. Therefore, 86289 -25-200410026 'the pair is relatively close to each other As for the liquid crystal layer 30 between the plate-shaped electrodes, there will be a part of the liquid crystal; μ #,,, from the Japanese-Japanese knife 30a series to the clockwise torque effect 'and there will be a part of the vertical # Knife 30a is a double-to-counterclockwise moment of action. Therefore, the Weidian method must be converted into the desired orientation according to the voltage applied to the entire liquid crystal layer 30. No. 3A, when used in the liquid crystal display device of the present invention After the electric field represented by a part called the equipotential line inclined to the axial direction (inclined electric field) of the liquid crystal molecules 产生 is generated at the edge portion EG of the discharge region 15, the liquid crystal molecules 1 will be rotated toward a minimum It can be tilted in a direction parallel to the bit line EQ (the example shown in the figure is counterclockwise), as shown in Figure 4β :, located in the direction of the axis that has been generated by perpendicular to the liquid crystal molecules For the liquid crystal molecules in the electric field region represented by the bit, spring, and EQ, the liquid crystal molecules 30a that are compounded and located in the inclined portion of the bit line EQ are inclined in the two-phase direction, so as shown in FIG. 4C Its orientation is continuous (consistent) with the orientation of the liquid crystal molecules 30a located in the inclined portion of the isopotential line EQ. As shown in FIG. 4D, when the electric field causes the isopotential line EQ to form a continuous concave / In the convex pattern, the liquid crystal molecules 30a located in the plane portion of the bit line EQ will be oriented to the orientation defined by the liquid crystal molecules 30a located in the inclined portion adjacent to the bit line EQW. The direction is the same. As used in this article, the phrase "EQ on the bit line" It means “located in the electric field represented by the bit lines” (^). The orientation change of the liquid crystal molecules 30a (starting from the liquid crystal molecules in the inclined portion of the bit lines) will be as described above. The method is carried out and reaches a stable state, as shown in FIG. 3B is a schematic diagram. The liquid crystal molecules 3 0 a located near the central part of the open area 丨 5 will be substantially equally affected by the open area 86289 -26-200410026: 5 " The relative orientation of the liquid crystal molecules 30a at the opposite edge portion is positive, so it will maintain its orientation perpendicular to the bit line EQ. Z, which is far away from the open area, is said that the molecule 30 is received near the edge portion. The influence of the other liquid crystal molecules 30a-million is inclined, thereby forming a tilt-million-position symmetrical to the center SA of the open region 15. When viewed from a direction perpendicular to the display plane of the liquid crystal display device 100 (a direction perpendicular to the substrate 11 and 21 planes), the axial direction of the liquid crystal molecules is radially toward the center of the open area 15 (not shown). In this specification, such an orientation will be referred to as a "radial tilt orientation". In addition, the area where the liquid crystal display appears with a radial tilt direction based on a single axis is referred to as a "liquid crystal domain". The liquid crystal domain in which the liquid crystal molecules 30a exhibit a radial oblique orientation is also formed in a region corresponding to the unit solid portion 14a surrounded by the open region 15 on the substrate. The liquid crystal molecules 30a located in the region corresponding to the unit solid portion 14a, and the edge portions EG of the open region 15 are affected by the orientation of the liquid crystal molecules 30a. Therefore, the center SA (corresponding to the open) of the unit solid portion 14a is presented. The center of the unit lattice formed by region 5). The radial tilt orientation of the liquid crystal domain formed in the elementary entity Shao 14a 'and the radial tilt orientation formed in the open region 15 will be continuous with each other' and both are consistent with the liquid crystal of the EG at the edge portion of the open region 15 The orientation of molecule 30a is the same. The orientation of the liquid crystal molecules 30a of the liquid crystal domain formed in the open region 15 is an upwardly extending cone (toward the substrate 100b), and the liquid crystal molecules 30a of the liquid crystal domain formed in the unit solid portion 1々a The orientation is a downwardly extending cone (toward the substrate 100a). As described above, the radial tilt orientation in the liquid crystal domain formed in the open region 15 and the 86289 -27-200410026 radial tilt orientation in the liquid crystal domain formed in the unit solid portion 14a are continuous with each other. Therefore, a misalignment (azimuth defect) is not formed at the boundary therebetween, and thus it is possible to avoid a reduction in display quality due to misalignment. Note that the liquid crystal layer 30 near the center portion of the open area 15 may not be applied with a sufficient voltage, so the liquid crystal layer 30 near the center portion of the open area 15 is used for display. In other words, even if the radial tilt direction of the liquid crystal layer 30 near the center portion of the open area 1 $ is subject to a certain degree of dry k (for example, even if the central axis deviates from the center of the open area 15), the display quality is not degraded. Therefore, as long as a liquid crystal domain is formed in a region corresponding to at least the unit solid part i4a, continuous liquid crystal molecules can be obtained in each image element region, and wide viewing angle characteristics and high display quality can be realized. In order to improve the viewing angle dependence in all azimuth angles (which is the display quality of a liquid crystal display device), the probability of existence of the liquid crystal molecules 30a located in various azimuth angle directions is better in each image element area With rotational symmetry, the better system has axial symmetry. Therefore, it is preferable that the liquid crystal domains are aligned to be highly symmetrical in each image element region. In this specific embodiment, the Ua direction of the physical entity portion (the row direction is called a row-row, so it has = rotational symmetry and equivalent axial symmetry. Therefore, each corresponds to the liquid crystal domain of the unit entity portion 14a. It is also aligned to be rotationally symmetric and equivalent axisymmetric. As described above with reference to FIG. M and FIG. 3B, the image element electrode 14 of the liquid crystal display device of the present invention includes a plurality of unit solid portions i4p. A negative dielectric anisotropy in the crystal layer 3G represented by the electric field plant in the image element region and the crystal layer 3G represented by the inclined equipotential line EQ is generated in the liquid crystal layer 30 surrounded by Liquid crystal molecular technique 86289 -28-200410026 (when no voltage is applied, it is aligned vertically) will be divided into 30a with the liquid crystal located in the inclined part of the equipotential line EQ as the trigger signal The orientation changes to change its orientation. Because of &, the liquid crystal domain with a radial tilt orientation will be formed in the open area 15 and the solid part of the cell. According to the voltage applied to the entire liquid crystal layer, the liquid crystal will change. Orientation of liquid crystal molecules in the domain Displaying ... The shape of the element element 14a of the image element electrode 14 of the liquid crystal display device of the present embodiment (see the substrate normal direction) and alignment, and the liquid crystal display device 100 will be described below. The open area 15 of the substrate is 10 °. The display characteristics of the hard crystal display device will show azimuth dependence due to the orientation (optical anisotropy) of the liquid crystal molecules. In order to reduce the display characteristics, The better azimuth dependence is to place the liquid crystal molecules in all azimuth angles with a substantially equal probability. The better is to align the liquid crystal molecules in each image element region with a substantially equal probability. Located in all azimuths. Therefore, the preferred shape of the unit solid portion 14a is that the liquid crystal domain formed in each image element region can make each liquid crystal domain corresponding to the unit solid portion 14a with a substantially equal probability. The liquid crystal molecules 30a are oriented in all azimuths. More specifically, in the preferred system, the shape of the unit solid portion 14a is symmetrical with respect to the center of each unit solid portion. (Normal direction) rotation symmetry (better symmetrical to at least one double rotation axis). In addition, since only a part of the liquid crystal domain corresponding to the open area 5 is included in the image element area and The display is helpful, so it is better that the liquid crystal molecules contained in the set of liquid crystal domain parts (fragments) in the image area have a probability that is substantially equal to 86289 -29-200410026 toward all azimuths. Because of A, it is best to be open The shape and alignment of the region 15 is sufficient for the liquid crystal domain fragments to form a liquid crystal domain in a complementary manner. In particular, the shape of the open region 15 is rotationally symmetric and the open region 15 can be symmetric with respect to r. Please note that since the liquid crystal domain formed in the open area 1 $ is partially outside the image element area, it may be difficult to align the open area 15 so that the liquid crystal domain segments together form the liquid crystal domain in a complementary manner. However, there is a chance that the liquid crystal molecules of each set of liquid crystal domain fragments that face different tens of thousands of angles will turn from symmetry (preferably axisymmetric), which is enough to reduce the azimuth dependence of the display characteristics. 5A to 5C, the general star-shaped open region 15 surrounding the general circular unit solid portion 14a will now be aligned as shown in FIG. 8; when the liquid crystal molecules 3 are in the lattice, (Azimuth orientation. Each of the systems shown in FIGS. 5A to 5C is a schematic diagram of the orientation of the liquid crystal molecules 30a when viewed from the normal direction of the substrate. The display of the liquid crystal molecules 30a viewed from the substrate normal direction is shown. In the azimuthal pattern (for example, FIG. 5c), the black speckled end of the oval-shaped liquid crystal molecule 30a indicates that the liquid crystal molecule 30a is tilted so that the end is closer to the other end than the other side with the image element electrode.丨 The substrate of the bucket shows that this representation method is also applicable to the following drawings. The single unit in the image element area shown in FIG. 1A will be described below (it is composed of four open areas 15). The cross-sectional views of the individual diagonal lines of FIGS. 5A to 5C correspond to FIGS. 1B, 3A, and 3B, respectively, and the following description will also refer to FIG. 1B, FIG. 3A, and FIG. 3B. The state when the electrodes 22 have the same potential (that is, when the voltage is not applied to the entire liquid crystal layer 30) ), The directions of the liquid crystal molecules 3〇a 86289 -30-200410026 in the K direction will be affected by the vertical alignment layer (not shown) on one side of each substrate J7D substrate 100a and closer to the liquid crystal layer 3 〇Anti-substrate 〖〇〇b is adjusted to show vertical alignment, as shown in Figure 5A. After the electric field is applied in the entire liquid crystal layer 30 so as to generate the electric field π shown by the isoline EQ of Fig. 3, Then, a moment acts on the liquid crystal molecules 30a with negative dielectric anisotropy to guide the axial direction of the liquid crystal molecules 30a parallel to the bit lines EQ. As shown in FIG. 4A and FIG. 4B described above, For the liquid crystal molecules 30a under the electric field represented by the equipotential line EQ of its molecular axis, it is not unique enough to indicate in which direction the liquid crystal molecules 30a should tilt (rotate) (Fig. 4A) '' Therefore, it is not easy to change the orientation (tilt or rotation). On the contrary, for the liquid crystal molecules 30a located at the equipotential line Eq inclined to the molecular axis, the direction of tilt (rotation) is uniquely defined. Therefore, orientation orientation is easy to occur. 30a starts to tilt from the edge portion of the open region 15 where the molecular axis of the liquid crystal molecule 30a is inclined to the position line EQ. Then, the surrounding liquid crystal molecules 30a will follow to tilt away from the far open region.丨 The orientation of the tilted liquid crystal molecules Chuan a at the edges is the same, as shown in Figure 4C. Then, the axial direction of the liquid crystal molecules 30a will show a steady state as shown in Figure 5C (radial tilted orientation As mentioned above, when the shape of the open area 15 is rotationally symmetrical, the liquid crystal molecules 30a in the image element area will start from the edge of the open area 15 toward the surface after the voltage is applied. The centers of the open areas 15 are tilted in order. Therefore, a kind of azimuth will be generated. Among them, the center of the liquid crystal near 30a will remain at the center of the open area 15 (the individual azimuth adjustment force of the liquid molecule 30a from each edge portion is reached here). The plane is aligned vertically, and the liquid crystal molecules 30a around 86289 31 200410026 will be tilted in a radiation pattern based on the liquid crystal molecules 30a near the center of the open area 15, and the degree of inclination will gradually increase as they move away from the open area. 1 5 center and gradually increase. The liquid crystal molecules 30a in the region of the generally circular unit solid portion 14a surrounded by the general star-shaped open regions 15 aligned in a square lattice pattern will also be tilted accordingly, so that the The orientation of the liquid crystal molecules 3 0 a inclined by the inclined electric field generated at the edge portion. Therefore, a formula "U" in which the liquid crystal molecules 30a in the vicinity of the center of the unit 14a (the individual orientation adjustment forces of the liquid crystal molecules 30a from each edge portion reach equilibrium here) will be maintained Aligned perpendicularly to the substrate plane, and the surrounding liquid crystal molecules 30a will be tilted in a radiation pattern based on the liquid crystal molecules 30a near the center of the unit solid portion 14a, and the degree of tilt will increase as it moves away from the unit entity The portion 14a gradually increases in the center. When Xin Shangwei, w · η i,% τ, and 亍 30a (radial tilt orientation) are aligned in a square lattice pattern, the liquid crystal molecules 30a in the individual directions have rotational symmetry. The probability of sex, because it is said to be able to achieve high-quality display without any maze in perspective. In order to reduce the viewing angle dependence of the liquid crystal domain with a radial oblique orientation, the loose liquid crystal domain is better and the symmetry A ~, the gate, and the 疋 ^ r symmetry Every; axis). The better symmetry is at least one quadruple rotation = equal to the radial tilt orientation of the liquid crystal molecules 30 & or the counterclockwise bite shown in Fig. 6C will be easier than the one shown in Fig. 6A. The radial and oblique orientation of the radial oblique side of the pattern must be stable. The spiral orientation 86289 -32 200410026 is different from the general twist orientation (the orientation of the liquid crystal molecules 30a will follow the orientation of the liquid crystal layer 30. Thickness changes in a spiral manner). In the spiral orientation, the azimuth direction of the liquid crystal molecules 30a in a minute region does not substantially change with the thickness of the liquid crystal layer 30. In other words, at any thickness The orientation of the cross-section of the liquid crystal layer 3 G (in a plane parallel to the layer plane) is as shown in FIG. 6B or 6C, and there is substantially / against any twisted 'crossing' along the thickness of the liquid crystal layer%. However, if the liquid crystal domain is considered as a whole, there is a certain degree of twisting deformation. When using a material obtained by adding a nematic liquid crystal material with negative dielectric anisotropy to a palm reagent, it is applied in Voltage # 在 时 , 此 液The molecule 30a will show the radial i and oblique orientation of the counterclockwise or clockwise spiral pattern based on the open area 15 and the unit solid portion 14a as shown in Figure 6B or figure. Presenting a counterclockwise or clockwise spiral pattern depends on the type of palmity reagent used. Therefore, the liquid crystal layer 30 in the open region 15 is controlled by the presence of an applied voltage to make it a radial pattern of a spiral pattern. The oblique orientation, ㈣, the omnidirectional radial pattern of the spiral pattern of the liquid crystal molecules 30a, which is based on other liquid crystal molecules 30a perpendicular to the plane of the substrate, can remain solid in all liquid crystal domains. Uniform display can be achieved without displaying non-uniform results. Since the direction of the spiral pattern near the liquid crystal molecules 30a perpendicular to the plane of the substrate 7 and ▲ is quite clear, it is also possible to improve the applied voltage to the entire liquid crystal layer 30 The response speed after that. Furthermore, after adding a large amount of the counteracting reagent, the orientation of the liquid crystal molecules 30a follows the twisted orientation of the @force as the thickness of the liquid crystal layer 3086 86289. 200410026 degrees to change its spiral pattern. In the orientation of the liquid crystal molecules 30a does not change the orientation of its spiral pattern with the thickness of the liquid crystal layer 30, it is oriented perpendicular or parallel to the polarizing plate. The liquid crystal molecules 30a of the polarization axis do not cause a phase difference to the incident light, so the incident light passing through a region with such an orientation does not have any effect on the transmittance. On the contrary, in these liquid crystal molecules 3 The orientation of 〇a will change the orientation of its spiral pattern with the thickness of the liquid crystal layer 30. The liquid crystal molecules 30a oriented perpendicular or parallel to the polarization axis of the polarizing plate will cause a phase difference to the incident light, and Optical rotation force is also used, so the incident light passing through the area with this orientation will affect the transmittance. Therefore, a liquid crystal display device capable of producing a high-brightness display can be obtained. In the example of tf shown in FIG. 1A, each of the unit solid portions 14 & has a general circular shape and the female open regions 15 have a general star shape. Among these unit solid portions 14a and these The open areas 15 are all arranged in a square grid. However, the shape of the unit solid part 4a and the shape and alignment of the open area U are not limited to the above examples. FIGS. 7A and 7B are plan views illustrating liquid crystal display devices having individual open regions 15 and cell solid portions 4a of different shapes, respectively, and 〇〇〇 and 〇〇〇b. The open area 15 and the cell entity portion 14 of the liquid crystal display device 100 and 100B shown in FIGS. 7A and 7B are respectively the open area and the cell entity portion of the liquid crystal display device 100 of FIG. 1A. The portions are slightly twisted. The open area 15 and the unit solid portion 14a of the liquid crystal display devices 100A and 100B have a double rotation axis (not having a quadruple rotation axis), and after regular alignment, a rectangular unit lattice is formed. In the liquid crystal display devices 108 and 100; 6, Kai 86289 -34- 200410026, the area 15 is a twisted star shape, and the unit solid part 14a is a general oval shape (distorted Round shape). The liquid crystal display devices 100A and 100B shown in FIGS. 7A and 7B still have high display quality and desired viewing angle characteristics. In addition, both the liquid crystal display device 100c ^ pl00D shown in FIGS. 8A and 8B still have a display quality of 预期 and an expected viewing angle characteristic. In the liquid crystal display devices 100C and 100D, the generally cross-shaped open area 15 is provided in a square pattern, and therefore each unit solid portion 14 & has a generally square shape. Of course, these patterns can be distorted to form a long rectangular unit lattice. As described above, by regularly aligning the unit solid portions 14a of these general rectangles (including squares and rectangles), a liquid crystal display device with high display quality and desired viewing angle characteristics can also be obtained. However, the shape of the 'open region 15 and / or the unit solid portion 14a is preferably circular or elliptical' rather than rectangular, so that the radial inclined orientation can be made more stable. Xianxin has round or oval openings and / or radial inclined orientation of the solid part of the unit will be more stable. This is because the edges of the open area 5 will be more smoothly bought (smooth), so these liquid crystals The orientation of the molecule 30a can be changed in a more continuous (smooth) manner. Considering the continuity in the azimuth direction of the liquid crystal molecules 30a as described above, a liquid crystal display device 100E as shown in FIG. 9 is also expected. The liquid crystal display device 100E of FIG. 9 is a modification of the liquid crystal display device 100D of FIG. 8B, in which each side of the open area 15 on the unit solid portion 14a is curved. In the liquid crystal display device 100 £, the 'open area 15 and the unit solid part 4a both have a quadruple rotation axis and are arranged in a square lattice pattern (having a quadruple rotation axis). In addition, the shape of the single solid part i4a of the open area 86289 -35-200410026 15 can be twisted into a shape with a double axis of rotation, and the unit solid part 14a can be set into a rectangular lattice (which With dual rotation axis), as shown in Figures 7A and 7B. The voltage applied to the liquid crystal domain formed in the open region 15 will be lower than the voltage applied to the liquid crystal domain; the voltage in the other liquid crystal domain formed in the shell body 14a will be lower. Therefore, for example, in the normal black mode display, the liquid crystal domain formed in the open area is relatively dark. Therefore, it is preferable that the area ratio of the unit solid portion 14a in the image element region is higher, and the area ratio of the open region 15 is lower. In the liquid crystal display device of the present invention, the image element electrode 14 includes a plurality of : Meta-physical part 14a, which can be based on the shape and size of the image element area], and so on. Shida aligns a plurality of unit solid parts in the image element area. 1. Stable radial tilt in the image element area The orientation need not be limited by the shape and size of the image element =. In contrast, if the image element electrode includes only one unit solid part, it may not be possible to achieve a stable radial tilt orientation according to the shape and size of the image element region. If the image element area has a circular or square shape, it is not a problem that the image element electrode includes an early solid part. For example, if the image element area is K and W, which can produce a color display, night and day are not displayed in the device, and the image element area has a large rectangular shape with a large aspect ratio. In the case of the 乂 shape, the solid part of the early part needs to have a shape with a large aspect ratio. At this time, the method can be used to realize a stable radial tilt of tens of thousands. In addition, for example, when the size of the image element area is large, the unit paste must have a large ruler. In the case of this type, only the dumping generated around the unit's body part is necessary. Premature heart /% oblique electricity may not be able to obtain a stable orientation. 86289 -36- 200410026 In addition, in the liquid crystal display device of the present invention, a plurality of unit solid portions 14a are aligned (arranged in a row) in a predetermined direction in each image element region, as shown in FIG. 1A for example. Compared with the case where the unit solid parts are aligned in more than two rows, this can increase the area ratio of the unit solid area 14a, and increase the contribution to the display relative to the total area of the image element area (effective aperture ratio). Area ratio. Next, the reason will be explained with reference to FIG. As shown in FIG. 10, the liquid crystal display device 10 ′ includes interposed bus lines (scanning lines) 41 extending parallel to each other in a column direction D2, and further includes source bus lines (signal lines) 42 extending parallel to each other in a row direction D1. Each gate bus line (scanning line) 41 is electrically connected to a gate electrode of a TFT (not shown) provided to each image element area, and the source bus bar (signal line) 42 is electrically connected to Source electrode for Ding. In addition, the drain electrode of the TFT is electrically connected to the image element electrode 14. The liquid crystal display device 1 ooe further includes a storage capacitor line 43. In the liquid crystal display device 100E, many unit solid portions 14a are aligned in a row in each image element area, and a portion of the open area 15 surrounding the unit solid area 14a overlaps the gate bus 41 or the source bus 42. And this part is located outside the image element area. Therefore, at least a part of each of the plurality of open areas is located outside the image element area. When a plurality of unit solid portions 14a are aligned in two or more rows, there will be an open area 15 surrounded by the unit solid portions 4a in each image element area, and such open areas 15 are completely located Within the image element area. For example, in the comparative example liquid crystal display device 1000, when the unit solid part 14a is aligned in two or more rows as shown in FIG. 11, there will be one by each image element area. The open area 15 surrounded by the unit solid part 14a, and the open area 15 of this type 86289 -37-200410026 is located completely within the image element area. Next, the area ratio of the open area 15 in the image element area is increased, so that the area ratio of the unit solid part ... is decreased. In contrast, when a plurality of unit solid parts are arranged in a row in each image element area as shown in FIG. 10, each of the plurality of open areas_at least one part is located outside the image element area Therefore, it is possible to reduce the image element; the area ratio of the middle open region 15 and increase the area ratio of the unit solid part ⑷, thereby improving the aperture ratio. ^ Now ', we will describe in more detail how the aperture ratio can be improved with reference to the information obtained by using a full-size liquid crystal display device. The specifications of this liquid crystal display device are as follows: The diagonal length of the display area is 15 inches, and the unit paste portion Ua has a general square diagram including a fox-shaped corner portion, as shown in FIG. 10, The width of the mud line of the gate g and the visibility of the light blocking layer on the source bus line are both 2 μπ1, and the interval between the unit solid portions 14a is 8.5 μm. The transmittance of the liquid crystal display device when the body part i4a of the unit f is aligned in one row is compared with the transmittance of the liquid crystal display device when the unit solid part 14a is arranged in two rows. The transmittance when the two rows are aligned with the unit solid part 14a. The transmittance of the Putian unit is improved when the first row is 1 row. It is increased by 6% when used for SXGA (1280 X 1024 pixels). 9% increase in υχ (} Α (16⑽X 1200 pixels) and 11% increase when used in QXGA (2084 X η% pixels). Therefore, 'by making multiple unit entities in each image element area The part 14a is arranged in a row to improve the aperture ratio effect, which is particularly obvious in high-definition liquid crystal display devices. Please note that the image element | pole 14 and the gate bus line 41 or source bus 86289 -38- 200410026 row In the structure in which the lines 42 overlap (shown in FIG. 0), it is preferable that the thickness of the insulating film (for example, an organic insulating film) formed on the bus line is as thick as possible, and the image element electrode 14 is formed on Only in this way can the influence of these busbars be reduced. See more in Figure 12, S "indicates the length of the gap between the square unit lattice formed by the open area 15 and the unit solid part i4a (hereinafter referred to as" side retention interval S ”). The side separation interval s must be equal to or greater than the predetermined length in order to produce The tilting electric field required to obtain a stable radial tilt orientation. Although the side-spacing interval s is defined by the column direction D2 and the row direction D1, in this specific embodiment, only the images adjacent to each other along the column direction D2 The element will be driven by the voltage of the opposite polarity in the frame shown in Figure 2. Therefore, compared to the case where the image elements adjacent to each other in the centering direction D2 are not driven by the voltage of the opposite polarity, this method can obtain Sufficient adjustment of the azimuth force, even if the side separation interval 8 in the column direction D2 is reduced. This is because when the image elements adjacent to each other in the column direction D2 are driven by the opposite polarity voltage, a relatively strong tilt can be generated The electric field will be described below with reference to FIG. 13A and FIG. 13B. FIG.

勺硬日日層時所產生的等位線Eq,圖 13B則概略說明當施加 M 壓至列方向D2上彼此毗連的 兩個圖像元件區复中々一一 、叼 内的液晶層的同時還施加v兩 壓至兩個圖像元件區 ^ 等位線EQ。 —個區域内的液晶層時所產生的 如圖1 3 A所示,當相间 、極性電壓施加在兩個毗連的圖像 86289 39 200410026 位線EQ形成連 元件區内的液晶層時,所產生的電場會使等 續的申央凹下/中央凸起的圖案。 相較之下,如圖1 3β所示,杏相押 、 田相反極性的電壓施加在兩個 田比連圖像元件區的液晶;去 虎叩滑時,代表兩個圖像元件區產生的 電場的等位線Ε 〇不合i表綠 ^ e , 曰連、,、男,而是在開放區15急劇下降。因 此’在開放區1 5的邊緣部价,#許B 口 —— 1刀 也就疋在早兀貫體部份14a的 周圍’形成陡山肖的電位梯户 私1邠度,因而所產生的傾斜電場的電 力比圖1 3 A顯示的情況要大。 如上所述,當沿著列方向〇2彼此她連的圖像元件是受到 相反極性電壓驅動時,可以獲得足夠的調整方位力,即使 列万向D2的侧留間隔s被縮小也一樣。因此,即使當在列方 向D2上彼此毗連的兩個圖像元件電極14間的距離被縮小, 仍可以形成足夠穩定的放射狀傾斜方位來增加孔徑比。 八他貝驗也疋利用如上所示具有特定規格的液晶顯示裝 置來進行(液晶顯示裝置顯示區的對角線長度是15英吋,單 兀貝體邯份14a具有包含弧形隅角部份的一般正方形的形 狀,閘匯流排線的寬度和來源匯流排線上的光阻隔層的寬 度均為12 μΠ1,單元實體部份14a之間的間隔是8.5 μηι)。明 確地說,就是將比較在列方向D2上彼此毗連的圖像元件受 到相反極1生電壓驅動的情況與他們不是受到才目反極性電壓 驅動的h況。在列方向D2上彼此毗連的圖像元件不是受到 相反極性電壓驅動的情況中,實現穩定的放射狀傾斜方位 斤耑的圖像元件電極14間的最小距離是8 $卜,也就是等 於每個圖像元件區中單元實體部份14a之間的距離。相較之 86289 -40 - 200410026 :在列方向D2上彼此毗連的圖I元件受到相反極性電题 力勺^ /兄中,即使列万向D2上彼此田比連的圖像元件電極 14間的距g減少到3 μιη,仍彳以獲得穩定的放射狀傾斜方 位0 杜冬八肢實施例中,雖然行方向⑴上彼此田比連的圖像元 件不是受到相反極性的電壓驅動,如圖14Α所示(所謂的「來 源線反轉驅動配置」)’但是當列方向D2上彼此0tb連的圖像 元件受到相反極性的電壓驅動時,仍能充份地改良孔徑比 v然而’ $ 了要得到其他有利的結果例如像抑制閃燦的效 果,以相反極性電壓驅動列方向〇2上彼此毗連的圖像元件 時,最好每η列(其中11是1或以上的整數)的圖像元件(也就是 行万向D1上每η個圖像元件),便使施加電壓的極性反轉。 換句話說,在每個圖框中,最好是施加在相同行的圖像元 件區中液晶層的電壓極性,每η列便反轉一次。 例如,如圖14Β所示,施加電壓的極性每2列的圖像元件 即反轉一次,也就是行方向叫上的每2個圖像元件(所謂的 「2Η點反轉驅動配置」)。另外,如圖14C所示,施加電壓 的極性在每一列的圖像元件上都反轉一次,也就是行方向 D1上的每一個圖像元件(所謂的「點反轉驅動配置」)。如 果當列方向D2上彼此毗連的圖像元件受到反電極的電壓驅 動時’行方向D1上彼此®比連的圖像元件也受到反電極的電 壓驅動’如圖14 C所示’就可以縮短行方向d 1上彼此紕連 的圖像元件電極14間的間距,藉此進一步改良孔徑比。 現在’將描述單元貫體部份14 a的形狀與放射狀傾斜方位 86289 •41 -The equipotential line Eq generated when the hard sun layer is scooped, and FIG. 13B schematically illustrates that when the M pressure is applied to the two image element regions adjacent to each other in the column direction D2, the liquid crystal layer in the first and second layers is simultaneously restored. Apply two pressures to the two image element regions ^ isoline EQ. The generated liquid crystal layer in one region is shown in Figure 1A. When phase-to-phase and polar voltages are applied to two adjacent images, 86289 39 200410026 bit line EQ forms a liquid crystal layer in the connected element region. The electric field will cause the continuity of Shenyang's concave / central convex pattern. In contrast, as shown in Fig. 1 3β, the voltage of the opposite polarity of Apricot phase and field is applied to the liquid crystal of the two image element areas; when it is removed, it represents the voltage generated by the two image element areas. The isoline E 0 of the electric field does not correspond to iigreen ^ e, or even,, and male, but drops sharply in the open area 15. Therefore, 'the price at the edge of the open area 15, # 许 B 口 —— 1 knife will be around the early Wuguan body part 14a' to form a steep hillside potential ladder household 1 degree, so the resulting The electric power of the inclined electric field is larger than that shown in Fig. 13A. As described above, when the image elements connected to each other along the column direction O2 are driven by voltages of opposite polarities, a sufficient adjustment azimuth force can be obtained, even if the side separation interval s of the column universal D2 is reduced. Therefore, even when the distance between the two image element electrodes 14 adjacent to each other in the column direction D2 is reduced, a sufficiently stable radial tilt orientation can be formed to increase the aperture ratio. The octopus test is also performed using a liquid crystal display device with a specific specification as shown above (the diagonal length of the display area of the liquid crystal display device is 15 inches, and the monolithic shellfish 14a has a curved corner portion The shape of the general square, the width of the gate bus line and the width of the light blocking layer on the source bus line are 12 μΠ1, and the interval between the unit physical parts 14a is 8.5 μηι). To be clear, it is to compare the case where the picture elements adjacent to each other in the column direction D2 are driven by the opposite pole voltage and the case where they are not driven by the reverse polarity voltage. In the case where the image elements adjacent to each other in the column direction D2 are not driven by voltages of opposite polarities, the minimum distance between the image element electrodes 14 that achieves a stable radial tilt orientation is 8 $, which is equal to each The distance between the unit solid portions 14a in the image element area. Compared to 86289 -40-200410026: Figure I elements adjacent to each other in the column direction D2 are subject to the opposite polarity problem ^ / brother, even if the image element electrodes 14 that are field-connected to each other on the column universal D2 The distance g is reduced to 3 μm, and still obtains a stable radial tilt orientation. In the Du Dong eight-limb embodiment, although the image elements connected to each other in the row direction are not driven by voltages of opposite polarities, as shown in FIG. 14A As shown (the so-called "source line inversion driving configuration") ', but when the image elements connected to each other in the column direction D2 by 0 tb are driven by voltages of opposite polarity, the aperture ratio v can still be improved sufficiently. However,' $ 了 要When other advantageous results are obtained, such as the effect of suppressing flicker, and driving the image elements adjacent to each other in the column direction with opposite polarity voltages, it is better to have image elements every n columns (where 11 is an integer of 1 or more). (That is, every n image elements on the line universal D1), the polarity of the applied voltage is reversed. In other words, in each frame, it is preferable that the polarity of the voltage applied to the liquid crystal layer in the image element area of the same row is inverted every n columns. For example, as shown in FIG. 14B, the polarity of the applied voltage is reversed once every two columns of image elements, that is, every two image elements in the row direction (the so-called "two-point inversion driving configuration"). In addition, as shown in FIG. 14C, the polarity of the applied voltage is reversed once for each image element in the column, that is, each image element in the row direction D1 (so-called "dot inversion driving configuration"). If the image elements adjacent to each other in the column direction D2 are driven by the voltage of the counter electrode, 'the image elements connected to each other in the row direction D1 are also driven by the voltage of the counter electrode' as shown in FIG. 14C, which can be shortened. The pitch between the image element electrodes 14 connected to each other in the row direction d 1 further improves the aperture ratio. Now ’will describe the shape and radial inclination of the unit through-body part 14a 86289 • 41-

^UUH-IUUZO ^UUH-IUUZO 的穩定性之間的關係 率值之間的關係。 、及單元貫體部份14 a的形狀與透射 本發明的發明者揭示一 、,、汗咒中發現,當單元實體部 ,”獅S)的間隔保持固定不變時,若單元實體部份 的3形狀越接近圓形或橢圓形的時候,方位毅性就越高 :疋因為當早兀實體部份14a的形狀越接近圓形或一橢圓 ^候’放射狀傾斜方位中的液晶分子3〇a的方位方向的 連、纟買性就越高。 外返發現到’當單元實體部份14a的形狀越接近矩形, /如像正万形或長矩形時,透射率就越高。這是因為當例 “隔S值保持峡不變時,若單元實體部份⑷的形狀越 接:長方%,實體部份的面積比就會增加,因此增加了受 =電極產生的電場所直接影響到的液晶層面積(該面積由 ”基板法線万向垂直的平面定義),因此增加有效的孔徑比。 所以,I兀實體部份14a的形狀可根據預期的方位穩定性 和預期的透射率來決定。 例如,§單兀實體邵份丨4a具有包含一般弧形隅角部份的 :般正方形的形狀時,如圖9和圖1〇所示,就有可能實現相 回阿的万位穩定性和相當高的透射率。當然,當單元實體 刀14a具有包含一般弧形隅角邵份的一般矩形的形狀時 ’也可獲得類似的效果。應注意,由於製造流程上的限制 、’因此嚴格來說傳導性膜所形成的單元實體部份14a的隅角 #份不可能是弧形,但是可改為是鈍的多角形的形狀(由複 焱個超過9〇。的角所構成的形狀),且隅角部份可具有此微 86289 -42 - 200410026 扭曲的弧形(例如,橢圓的一部份)或扭曲的多角形,而不是 四刀之的孤形或正多用形(例如,正多邊形的一部份)。另 外’隅角部份可以是組合曲線和鈍角的形狀。此處使用的 詞囊「一般弧形」,可表示這些形狀之中的任何一種。應 >王意’由於類似的流程相關理由,如圖1A所示的一般圓步 的單元實體部份14a的形狀,可以是多角形或是扭曲的形狀 ,而不是嚴格的圓形。 考慮到回應速度,單元實體部份14a的形狀可以是圖以所 示的液晶顯示裝置100F中的形狀。在圖15所示的液晶顯示 裝置卿中,圖像元件電極14的單元f體部份14a的形狀" 是帶有銳角隅角的扭曲正方形。應注意,此處所使用帶有 銳角的隅角是指具有角度小於9 〇。的隅角或圓角。 當單元實體部份14a具有銳角隅角部份的時候,如圖以所 不,產生傾斜電場的邊緣部份的總長度會增加,因此傾斜 電場可作用.在更多的液晶分子30a上。因此,為回應電場, 剛開始傾斜的液晶分子30a的數量會增加,從而減少在敕個 圖像元件區上形成放射狀傾斜方向所需的時間*。因:, 改良了電壓施加在液晶層3 0上的回應速戶。 此外,當單元實體部份14a具有含銳角 一 户』嗎月的形狀時,相 較於單元實體部份14a的形狀是一般阊y + 、 取U形或一般矩形形狀 的情況,液晶分子3 0 a朝向各特定方位垒、 , 用万向的存在機率會 增加(或減少)。換句話說,液晶分子3〇^ UUH-IUUZO ^ UUH-IUUZO The relationship between the stability The relationship between the rate values. And the shape and transmission of the unit through-body part 14 a The inventor of the present invention revealed that the unitary body part, "the lion S), when the interval of the unit entity part is kept constant, if the unit entity part The closer the shape of 3 to a circle or ellipse, the higher the orientation resilience: because the closer the shape of the early solid part 14a is to a circle or an ellipse, the liquid crystal molecules in a radially inclined orientation 3 〇a, the higher the azimuth direction, the higher the buyability. It was found that 'the closer the shape of the unit solid portion 14a is to a rectangle, such as a regular or long rectangle, the higher the transmittance. This It is because when the value of "S" is kept constant, if the shape of the solid part of the unit is more connected: the rectangular%, the area ratio of the solid part will increase, so the electric field generated by the electrode is directly increased. The area of the liquid crystal layer is affected (the area is defined by the "substrate normal normal plane"), so the effective aperture ratio is increased. Therefore, the shape of the solid part 14a can be based on the expected azimuth stability and the expected transmission Rate to determine. For example, § When Shaofen 丨 4a has a generally square shape including a generally curved corner portion, as shown in Fig. 9 and Fig. 10, it is possible to achieve 10,000-dimensional stability and relatively high transmittance. Of course, a similar effect can also be obtained when the unit solid blade 14a has a generally rectangular shape including a generally curved corner portion, and it should be noted that due to limitations in the manufacturing process, 'thereby strictly speaking the formation of a conductive film The corner part # of the unit solid part 14a cannot be arc-shaped, but it can be changed to a blunt polygonal shape (a shape formed by a plurality of corners exceeding 90 °), and the corner part May have this micro 86289 -42-200410026 twisted arc (for example, part of an ellipse) or twisted polygon, instead of the four-knife solitary or regular multipurpose (for example, part of a regular polygon) In addition, the 'corner part' can be a combination of curved and obtuse shapes. The term "general arc" used herein can mean any of these shapes. Application > Wangyi 'For similar process related reasons, the shape of the unit solid portion 14a of the general round step shown in FIG. 1A may be a polygonal shape or a twisted shape, rather than a strictly circular shape. In consideration of the response speed, the shape of the unit solid portion 14a may be the shape in the liquid crystal display device 100F shown in the figure. In the liquid crystal display device shown in FIG. 15, the shape of the cell f body portion 14a of the picture element electrode 14 is a twisted square with acute corners. It should be noted that a sharp angle with an acute angle as used herein means having an angle less than 90. Corners or rounded corners. When the unit solid portion 14a has an acute-angled corner portion, as shown in the figure, the total length of the edge portion generating the oblique electric field will increase, so the oblique electric field can act on more liquid crystal molecules 30a. Therefore, in response to the electric field, the number of liquid crystal molecules 30a that are initially tilted will increase, thereby reducing the time required to form a radial tilt direction on one image element region *. Because: The response speed of voltage applied to the liquid crystal layer 30 is improved. In addition, when the unit solid portion 14a has a shape containing an acute angle, the liquid crystal molecules 30 are compared with the case where the shape of the unit solid portion 14a is generally 阊 y +, U-shaped or generally rectangular. a Toward each specific azimuth barrier, the probability of existence with a universal joint will increase (or decrease). In other words, the liquid crystal molecule 30

Ua朝向特定方位角方 向的存在機率中,可採行高方向性。 因此’當在具有線性 偏光入射至液晶層30的偏光板的液晶 /、衣置的早兀實體 86289 -43 - 200410026 部份14a中採用銳角隅角時,可能可以降低液晶分子3〇a垂 直或水平朝向偏光板極轴的存在機率,也就是不提供相位 差給入射光的液晶分子30a。因此,有可能改良光線透射率 並實現較明亮的顯示。 如上所述的具體實施例1的液晶顯示裝置的對準方式,可 採用本技藝中已知的垂直對準型液晶顯示裝置的相同對準 方式,並可以利用已知的製造方法生產,但以下兩點除外 ,第一,圖像元件電極14包括複數個以兩個週期對準方向 其中足一排成一列的單兀實體部份14a,其中圖像元件為週 期對準,第二,以另一週期對準方向彼此毗連的圖像元件 由相反的電極電壓驅動。 一般來說,作為垂直排層的垂直對準膜(未顯示)係位於每 一個圖像元件電極14及較接近該液晶層30的反電極22的其 中一側上,以便垂直對準該等具有負介電各向異性的液晶 分子。 該液晶材料可能是一具有負介電各向異性的向列液晶材 料。在該具有負介電各向異性的向列液晶材料中添加雙色 染料之後便可獲得主客型的液晶顯示裝置。主客型的液晶 顯示裝置並不需要偏光板。 具體實施例2 現在將參考圖16A及圖1 6B說明根據本發明具體實施例2 的液晶顯示裝置200之其中一個圖像元件區的結構。再者, 在後面的圖式中,每個與液晶顯示裝置1〇〇中相應元件具有 實質相同功能的元件將會以相同的元件符號來表示,並且 86289 -44 - 200410026 不會於下面作進-步的說明。圖1 6 A為從該基板法線方向看 去的平面目,目16B則為沿著圖16八之直線16Β_16Β,之剖面 圖圖1 6Β所tf的係於整個液晶層中未存在有施加電壓時的 狀態。 如圖16Α和圖16Β所示,液晶顯示裝置2〇〇不同於圖丨八和 圖1 Β所不的具體實施例1中的液晶顯示裝置1 00,其中丁FT 基板20〇a在圖像元件電極14的開放區^中包括一突出部 。哭出部40的表面上有一垂直對準膜(未顯示)。 孩哭出部40沿著該基板n平面的剖面一般星形剖面,也 就疋與開放區1 5的形狀相同,如圖丨6 a所示。請注意,相鄰 的哭出邵40係互相連接的,因此可以一般圓形的圖案完全 包圍每個單元實體部份14a。該突出部4〇沿著垂直該基板11 平面的剖面一般梯形形狀,如圖16B所示。明確地說,其剖 面具有平行该基板平面的頂面40t,以及一與該基板平面 主銳角Θ (< 90。)傾斜的側表面4〇s。因為具備該垂直對準膜 (未顯示)以覆蓋該突出部4〇的關係,所以該突出部4〇的側表 面40s具有一方位調整力量,其方向與該液晶層儿之液晶分 子3 0 a的傾斜電場所造成的方位調整方向相同,因而可用以 穩定該放射狀傾斜方位。 現在將參考圖17A至圖17D、圖18A及圖18B來說明該突出 部4 0的功能。 首先將參考圖ΠA至圖17D來說明該等液晶分子30a之方 位與具垂直對準力之表面結構之間的關係。 如圖17A所示,由於該具垂直對準力之表面(一般為垂直 86289 -45 - 200410026 對準fe的表面)的万位調整力量的 ϋ ^+ 係,水平面中的液晶分 子j〇a會被對準成垂直該表面。去細 ,〇 ^ ^ ^ ^ 工由垂直对準的液晶分子 30a犯加由垂直薇硬晶分子3〇a > 袖万向 < 寺位線EQ所表示 的黾場後,促使琢液晶分子3(^朝順 /、寺針万向傾斜的力矩以 及促使該液晶分子3〇a朝反時針太 卞万向傾斜的力矩便會以相Ua has a high probability of existence in a specific azimuth direction. Therefore, when an acute angle is used in a liquid crystal // clothing early entity 86289 -43-200410026 part 14a having a linearly polarized light incident on the polarizing plate of the liquid crystal layer 30, the liquid crystal molecules 3a may be reduced vertically or There is a probability that the horizontal direction is toward the polar axis of the polarizing plate, that is, the liquid crystal molecules 30a that do not provide a phase difference to the incident light. Therefore, it is possible to improve light transmittance and realize a brighter display. The alignment method of the liquid crystal display device of the specific embodiment 1 as described above can adopt the same alignment method of the vertical alignment type liquid crystal display device known in the art and can be produced by a known manufacturing method, but the following Except for two points, first, the image element electrode 14 includes a plurality of single solid parts 14a aligned in two rows in a direction aligned with two cycles, in which the image elements are aligned periodically, and second, the other The image elements adjacent to each other in a periodic alignment direction are driven by opposite electrode voltages. Generally, a vertical alignment film (not shown) as a vertical layer is located on one side of each of the image element electrodes 14 and the counter electrode 22 closer to the liquid crystal layer 30 so as to vertically align the Liquid crystal molecules with negative dielectric anisotropy. The liquid crystal material may be a nematic liquid crystal material having negative dielectric anisotropy. A host-guest type liquid crystal display device can be obtained by adding a dichroic dye to the nematic liquid crystal material having negative dielectric anisotropy. The host-guest LCD device does not require a polarizing plate. Embodiment 2 The structure of one of the image element regions of a liquid crystal display device 200 according to Embodiment 2 of the present invention will now be described with reference to FIGS. 16A and 16B. Moreover, in the following drawings, each element having substantially the same function as the corresponding element in the liquid crystal display device 100 will be represented by the same element symbol, and 86289 -44-200410026 will not be made below. -Step description. Figure 16A is a plan view seen from the normal direction of the substrate, and head 16B is a straight line 16B_16B along the straight line of Figure 16B. The cross-section of Figure 16B is that the applied voltage does not exist in the entire liquid crystal layer. State. As shown in FIG. 16A and FIG. 16B, the liquid crystal display device 200 is different from the liquid crystal display device 100 in the specific embodiment 1 which is not shown in FIG. 8 and FIG. 1B, in which the FT substrate 200a is in the image element. The open region ^ of the electrode 14 includes a protrusion. A vertical alignment film (not shown) is formed on the surface of the crying portion 40. The section of the crying section 40 along the n-plane of the substrate is generally a star-shaped section, that is, the shape is the same as that of the open region 15 as shown in FIG. 6a. Please note that the adjacent Cryout Shao 40 series are connected to each other, so each unit solid portion 14a can be completely surrounded by a generally circular pattern. The protruding portion 40 is generally trapezoidal in cross section along a plane perpendicular to the substrate 11, as shown in FIG. 16B. Specifically, its cross-section has a top surface 40t parallel to the substrate plane, and a side surface 40s inclined from the main acute angle Θ (< 90 °) of the substrate plane. Because the vertical alignment film (not shown) is provided to cover the relationship of the protruding portion 40, the side surface 40s of the protruding portion 40 has an orientation adjusting force, and its direction is in accordance with the liquid crystal molecules of the liquid crystal layer 30a. The direction of azimuth adjustment caused by the tilted electric field is the same, so it can be used to stabilize the radial tilted azimuth. The function of the protruding portion 40 will now be described with reference to Figs. 17A to 17D, Figs. 18A and 18B. First, the relationship between the orientation of the liquid crystal molecules 30a and the surface structure having a vertical alignment force will be explained with reference to FIGS. 11A to 17D. As shown in FIG. 17A, due to the 位 ^ + system of the tens of thousands of adjustment forces of the surface with vertical alignment force (generally vertical 86289 -45-200410026 aligned with fe), the liquid crystal molecules j〇a in the horizontal plane will Is aligned perpendicular to the surface. After thinning, 〇 ^ ^ ^ ^ The vertical alignment of the liquid crystal molecules 30a is added to the vertical field of the hard crystal molecules 30a > sleeve universal < temple bit line EQ to promote the formation of liquid crystal molecules 3 (^ 朝 顺 /, the moment that the temple needle is tilted in the universal direction and the moment that causes the liquid crystal molecule 30a to tilt counterclockwise in the universal direction will be phase-shifted.

同的機率作用於該液晶分子3〇 F 、 上。所以,對位於平行板對 準中的一對反電極之間的液晶層丄 曰屬利而吕,會有部分的液晶 分子3〇a係受到順時針方向的力矩作用,以及會有部分的並 它液晶分子30a係受到反時針方向的力矩作用。因此,並無 法非常順利地根據施加於整個潘曰 U/夜日日層30的電壓而轉換成為 其方位。 當經由與-傾斜表面呈垂直料的液晶分子術施加由 水平等位線EQ所表示的電場後’如圖17B所示,該液晶分 子30a便會朝只要較小的旋轉便能使其平行該電位線£〇的 万向傾斜(圖中所示的範例為順時針方向)。接著,如圖17C 所示,其它與水平面成垂直對準之相鄰的液晶分子3〇a便會 與位於該傾斜表面中的液晶分子3〇a朝相同的方向(順時針 方向)傾斜,因此其方位便會和與該傾斜表面呈垂直對準的 液晶分子3 0 a的方位連續(一致)。 如圖17D所示,對於具有凹形/凸形部且其剖面包含一連 串梯形之表面來說,位於頂面的液晶分子3〇a及位於底面的 液晶分子30a會被方位成與由位於該表面的傾斜部份中的 其它液晶分子30a所調整的方位方向一致。 在本具體實施例的液晶顯示裝置中,由該表面結構(突出 86289 -46 - 200410026 邯)所施加的方位調整力量的方向會對準傾斜電場所施加 的方位調整力量的方向,因而可穩定該放射狀傾斜方位。 圖1 8 A及圖1 8B所示的各係圖1 6B的液晶層30於施加電厚 存在時的狀態示意圖。圖1 8 A概略說明根據施加至液晶層3 〇 的電壓,液晶分子30a方位剛開始改變(初始〇N狀態)的狀態 。圖18B概略說明根據施加的電壓,液晶分子3〇a方位先改 變後又變穩定的狀態。圖1 8 A及圖1 8B中的曲線EQ代表的是 等位線。 如圖16B所示,當圖像元件電極14及反電極22具相同電位 時(也就是,並未於整個液晶層3 〇施加電壓時的狀態),每個 圖像元件區中的液晶分子30a都會被對準成垂直於該等基 板11及2 1的表面。與位於該突出部4〇的側表面4〇s中的垂直 對準膜(未顯示)接觸的液晶分子3(^便會被對準成垂直於該 侧表面40s,而位於該侧表面4〇s附近的液晶分子3〇a側會因 為與週遭的液晶分子30a互相作用(其如同彈性連續性般都 係其本質)的關係而呈現出如圖所示傾斜方位。 當在整個液晶層30中施加電壓後,便會產生圖18A中等位 線EQ所示的電位梯度。該等等位線EQ係平行於該液晶層 30(其係位於該圖像元件電極14之實體部及反電極22之間) 中的貫ta邯及反電極22的表面,並且會在對應該圖像元件 電極14之開放區15的區域中往下降,因而便會在開放區15 的邊緣邵分(開放區15的㈣冑分及其内#,包含其邊界在 内)EG上万的孩液晶層3〇的每個區域中產生由該等等位線 EQ之傾斜部分所表示的傾斜電場。 86289 -47 - 200410026 如上所述,由太居彳貝斜電場的關係,圖丨8 A中右邊邊緣部 份EG上方的液晶分子3〇a會朝順時針方向傾斜(旋轉),而左 邊邊緣部份EG上万的液晶分子3〇a則會朝反時針方向傾斜 (旋轉),如圖18A的箭頭所示,以便平行該等等位線£卩。因 此,該傾斜電場所施加的方位調整力量便會與位於每個邊 緣部分EG的侧表面40s所施加的方位調整力量相同。 如上所述,該方位的變化會從位於該等等位線£卩之傾斜 部份中的液晶分子3〇a開始,然後達到圖丨8B所示的穩定的 方位狀態。位於開放區1 5之中心部分附近(也就是,位於該 突出部40的頂面40t之中心部分附近)的液晶分子3〇a會實質 相等地受到位於該開放區1 5之對面邊緣部分]£〇處的液晶 分子3 0 a之個別方位的影響,所以會維持其方位垂直於該等 等位線EQ。遠離開放區15之中心(該突出部4〇的頂面4〇t)的 液晶分子3 0a則會因文到位於較近的邊緣部分EG處的其它 液晶分子30a的方位的影響而傾斜,從而形成一對稱於該開 放區15之中心SA(該突出部40的頂面40t)的傾斜方位。在對 應至由該等開放區1 5及該等突出部4〇包圍)的單元實體部 k 14 a的區域中,也會形成對稱於該單元實體部份1 * a之中 心SA的傾斜方位。 如上所述’在具體實施例2在液晶顯示裝置2〇〇中,會如 同在具體實施例1的液晶顯示裝置1 〇〇中一樣,對應該等開 放區15及遠等單元貫體邵份14a的區域也會形成各具放射 狀傾斜方位的液晶域。由於具有突出部4〇才能以一般圓形 的圖案完全包圍每個單元實體部份14 a,因此每個液晶域會 86289 -48 - 200410026 在對應到由突出部40包圍的一般圓形的區域中形成。此外 ,開放區15中提供的突出部侧表面1來使開放區15邊 緣邵觸附近的液晶分子30a以如同傾斜電場所施加的調 整万位力的相同万向傾斜’藉此較放射狀傾斜方位。 當然’該傾斜電場所施加的方位調整力量僅有在 壓存在時方能產生作用,其強度則係取決於該電場的強产 (該施加電壓的位準)。所以,當該電場強度很小時(即 施加電壓很低時),該傾斜電場所施加的方位調整力量:非 常弱’此時當施壓㈣液晶面板時,該放射狀傾斜方位便 可能會因為液晶材料的、、拿氟上$ ^ l a 竹的子動而瓦解。當該放射狀傾斜方位 瓦解《後便供法遂原,p余非施加—非常強的電I,足以產 生-傾斜電場來施加—非常強的方位調整力量。相反地,The same probability acts on the liquid crystal molecules 30F ,. Therefore, for the liquid crystal layer between a pair of counter electrodes aligned in a parallel plate, it is considered to be advantageous. Some of the liquid crystal molecules 30a are subject to a clockwise moment, and some of the The liquid crystal molecules 30a are subjected to a counterclockwise moment. Therefore, it cannot be converted into its orientation very smoothly according to the voltage applied to the entire Pan Yue U / night-day-layer 30. When an electric field represented by a horizontal equipotential line EQ is applied via liquid crystal molecules that are perpendicular to the -slanted surface, as shown in FIG. 17B, the liquid crystal molecules 30a will be aligned in parallel with a small rotation. Potential line is tilted universally (the example shown in the figure is clockwise). Then, as shown in FIG. 17C, other adjacent liquid crystal molecules 30a aligned perpendicular to the horizontal plane will tilt in the same direction (clockwise) as the liquid crystal molecules 30a located on the inclined surface, so The orientation will be continuous (consistent) with the orientation of the liquid crystal molecules 3 0 a that are vertically aligned with the inclined surface. As shown in FIG. 17D, for a surface having a concave / convex portion and a cross-section including a series of trapezoids, the liquid crystal molecules 30a on the top surface and the liquid crystal molecules 30a on the bottom surface are oriented so as to be located on the surface. The azimuth direction adjusted by the other liquid crystal molecules 30a in the inclined portion is the same. In the liquid crystal display device of this embodiment, the direction of the azimuth adjustment force applied by the surface structure (protruding 86289 -46-200410026) is aligned with the direction of the azimuth adjustment force applied by the inclined electric field, so that the Radial tilt orientation. Each of the liquid crystal layers 30 shown in FIG. 18A and FIG. 18B is a schematic view of the state of the liquid crystal layer 30 of FIG. 16B when an applied thickness is present. FIG. 18A schematically illustrates a state where the orientation of the liquid crystal molecules 30a has just started to change (initial ON state) according to the voltage applied to the liquid crystal layer 30. Fig. 18B schematically illustrates a state where the orientation of the liquid crystal molecules 30a changes first and then stabilizes according to the applied voltage. The curve EQ in Figure 18A and Figure 18B represents the isoline. As shown in FIG. 16B, when the image element electrode 14 and the counter electrode 22 have the same potential (that is, the state when a voltage is not applied to the entire liquid crystal layer 30), the liquid crystal molecules 30a in each image element region Will be aligned perpendicular to the surfaces of the substrates 11 and 21. The liquid crystal molecules 3a that are in contact with a vertical alignment film (not shown) located in a side surface 40s of the protruding portion 40 are aligned perpendicular to the side surface 40s and are located on the side surface 40. The 30a side of the liquid crystal molecules near s will show an inclined orientation as shown in the figure due to the interaction with the surrounding liquid crystal molecules 30a (which is its essence like elastic continuity). When in the entire liquid crystal layer 30 After the voltage is applied, the potential gradient shown in the medium bit line EQ of FIG. 18A is generated. The bit line EQ is parallel to the liquid crystal layer 30 (which is located in the solid part of the image element electrode 14 and the counter electrode 22). The surface of the counter electrode 22 and the counter electrode 22 will fall in the area corresponding to the open area 15 of the image element electrode 14, and will be divided at the edge of the open area 15 (the open area 15 ㈣ 胄 分 和 内 #, including its boundaries) In each of the regions of the EG liquid crystal layer 30, an inclined electric field represented by the inclined portion of the equal bit line EQ is generated. 86289 -47-200410026 As mentioned above, the relationship between the oblique electric field of the Taijuan scallop, right in Fig. 8A The liquid crystal molecules 30a above the edge portion EG will tilt (rotate) clockwise, while the liquid crystal molecules 30a on the left edge portion EG will tilt (rotate) counterclockwise, as shown in Figure 18A. The arrows indicate so as to parallel the equipotential lines. Therefore, the azimuth adjustment force applied by the inclined electric field is the same as the azimuth adjustment force applied by the side surface 40s located at each edge portion EG. As described above, The change of the orientation will start from the liquid crystal molecules 30a located in the inclined portion of the equipotential line, and then reach the stable orientation state shown in FIG. 8B. It is located near the center portion of the open area 15 ( That is, the liquid crystal molecules 3a located near the center portion of the top surface 40t of the protruding portion 40 are substantially equally affected by the individual liquid crystal molecules 30a located at the opposite edge portion of the open area 15]. The effect of orientation will maintain its orientation perpendicular to the equal bit line EQ. The liquid crystal molecules 3 0a far from the center of the open area 15 (the top surface 40t of the protrusion 40) will be closer to each other due to the text. Other part at the edge of EG The orientation of the crystal molecules 30a is tilted to form a tilted orientation symmetrical to the center SA of the open area 15 (the top surface 40t of the protrusion 40). In the area of the unit solid part k 14 a surrounded by the part 40), an inclined orientation symmetrical to the center SA of the unit solid part 1 * a will also be formed. As described above, in the specific embodiment 2 in the liquid crystal display device 2000, as in the specific embodiment 1, the liquid crystal display device 100 corresponds to the open area 15 and the remote unit 14a. The liquid crystal domains with radial inclined orientations will also be formed in the regions. Since the protruding portion 40 can completely surround each unit solid portion 14 a in a generally circular pattern, each liquid crystal domain will 86289 -48-200410026 correspond to the generally circular area surrounded by the protruding portion 40. form. In addition, the protruding side surface 1 provided in the open area 15 causes the liquid crystal molecules 30a near the edges of the open area 15 to be tilted in the same universal direction as the adjustment force of the tens of thousands applied by the inclined electric field, thereby tilting more radially. . Of course, the azimuth adjustment force applied by the inclined electric field can only work when pressure is present, and its strength depends on the strong production of the electric field (the level of the applied voltage). Therefore, when the electric field strength is very small (that is, when the applied voltage is very low), the orientation adjustment force applied by the inclined electric field is very weak. At this time, when the LCD panel is pressed by pressure, the radial inclined orientation may be caused by the liquid crystal. The material of the bamboo, which took $ ^ la on bamboo, disintegrated. When the radial tilted azimuth disintegrates, "therefore, it is supplied to the law, p is not applied-a very strong electric I, enough to generate-tilted electric field to apply-very strong azimuth adjustment force. Instead,

不論該施加電壓A材,v ^L 呢土為何,必疋會施加由該突出部40之側表面 '產生的万Ui]整力’而且因為先前技術中所熟知的該 對準艇的疋準效應」的關係,其強度會非常地強。所以 即使及θθ材料的產生浮動且該放射狀傾斜方位已經瓦解 ’在該突出部40的側表面4〇s附近中的液晶分子3〇a仍然可 維持與該放射狀頻斜方位相同的方位方向。所以,一但該 液晶材料的浮動顼參# μ、 力見冢彳τ止心後,便可輕易地還原該放射狀 傾斜方位 因此,具體實施例2的液晶顯示裝置2〇〇除了且有且骨#膏 施例1的液晶顯示裝f〗〇fU/7 i 、/'二/、 衣且100的優點之外,還有很強地抗應力 的優點。因此,洁EJ雜-^ 士城 使阳頒7F叙置200可適用於經常要承受應力 的裝置’例如像時常攜帶外出的PC和PDA。 “ 86289 -49 - 200410026 當哭出邵40是由具有高透明度的介電材料所製成時,所 獲得的好處為,可改良對於對應到開放區丨5區域中形成的 液晶域的貢獻。當突出部40是由不透明的介電材料所製成 時,所獲得的好處為,可避免因突出部4〇的側表面4〇s的關 係由位於傾斜方位的液晶分子3 〇a的遲延所導致的光漏門 題。是否使用透明的介電材料或不透明的介電材料可取決 於,例如液晶顯示裝置的應用。不論是在哪種情形中,使 用感光樹脂都會具有能夠簡化為對應該等開放區丨5之突出 部40進行圖案化的步騾的優點。為獲得足夠的方位調整力 ,當孩液晶層30的厚度約為3 μηι時,該突出部4〇的高度較 佳的係介於約0.5 μπι至約2 μιη範圍之間。一般來說,該突 出邵40的鬲度較佳係介於該液晶層3〇厚度的約ι/6至約 範圍之間。 如上所述,液晶顯示裝置200包括位於圖像元件電極14 的開放區1 5中的突出部4〇,而且突出部4〇的侧表面以與 液晶層30液晶分子30a的傾斜電場所施加的調整方位力相 同的方向來施力調整方位。現在將參見圖19A至i9c說明以 與傾斜電場所施加的調整方位力㈣的方向來施力調整方 位的侧表面40s的較佳條件。 圖19A至圖19C所示的分別係液晶顯示裝置200A、200B 及200C之剖面示意圖。圖19八至圖丨9〇對應到圖18八。液晶 顯示裝置200A、200B及200C在開放區15中都具有一突出部 ,不過就作為單一結構的整個突出部4〇與其對應的開放區 15之間的位置關係方面來說,則不同於液晶顯示裝置200。 86289 -50 - 200410026 在上述的液晶顯示裝置200中,該作為單—結構的突出部 4 0係形成該開放區1 5足中’而且該突出部4 〇的底面小於令 開放區15,如圖18A所示。在圖19A所示的液晶顯示裝置 200A中,哭出邵40A的底面與開放區15對準。在圖ΐ9β所示 的液晶顯示裝置200B中,突出部40B的底面大於開放區15 ,因此會覆蓋由開放區1 5包圍的實體部份(傳導性薄膜)的— 部份。實體部份不是在任一突出部40、4〇A和4〇8的側表面 40s上形成。因此,如該等個別圖式所示,該等等位線eq 在貫體部之上貫質上係為走平的線,並且於開放區1 5中下 降。所以,如同液晶顯示裝置200的突出部4〇般,液晶顯示 裝置200A的突出部40A的側表面4〇s以及液晶顯示裝置 200B的哭出部40B的側表面4〇s都會施加方位調整力量,其 方向都會與該傾名牛電場所施力口白勺方位言周整力制方向相^ ’因而可穩定該放射狀傾斜方位。 相反地,在圖19C所示的液晶顯示裝置2〇〇c中,突出部 4〇C的底面大於該開放區15,因此會有—部份延伸至該開放 區15上方區域中的實體部形成於該突出部慨的侧表面他 之中。由於形成於該侧表面4〇3中的部分實體部的影響,在 該等等位線EQ中會出現脊狀部分。等位線叫的脊狀部份相 對於下降至開放區15内的等位線EQ的其他部份的脊狀部 份有-頻度。這表示已產生的傾斜電場的方向與使液晶分 子朝向放射狀傾斜方位的傾斜電場方向相反。所以,為 使得該側表面40s的方位調整力具有與該傾斜電場所施加 的方位調整力量相同的方向,該實體部(傳導性薄膜)最好不 86289 -51 - 200410026 要形成於側表面40s中。 接著’將參考圖20說明該突出部40沿著圖1 6A之直線 20A-20A’之剖面結構。 由於如圖1 6 A所形成的突出部4〇可以一般圓形的圖案完 全圍繞每個單元實體部份14a,如上所述,因此就會在如圖 20所示的突出部40上形成用來連接相鄰單元實體部份14a 的部份(分支邵扮從圓形部份向四個方向延伸)。因此,在沈 積傳導性薄膜為圖像元件電極1 4的實體部份的步驟中,很 有可能在突出部40上發生不連續的問題或在製造流程的後 處理中發生分層的問題。 有鑑於此,在圖21A及圖2 1B所示的液晶顯示裝置2〇〇D中 會形成彼此不相關的哭出部40D,讓每個突出部40D都被完 全包含於開放區1 5之中,以便在該基板丨丨的平坦表面中形 成欲作為實體部的傳導膜,因而可消除發生不連續或分層 的可能性。雖然该等哭出邵40D並未以一般圓形的圖案完全 包圍每個單元貫體邵份14a,但是會形成對應每個單元實體 部份14a的一般圓形液晶域,並且可如上述範例般地穩定該 單元實體部份14a的放射狀傾斜方位。 於該開放區15中形成突出部4〇所獲得的放射狀傾斜方位 %疋S後所產生的效果並不僅限於上述的開放區丨5的圖案 ,其同樣適用於具體實施例丨中所述之開放區丨5的各種圖 末中的任-種圖案’以獲得上述的效果。& 了使突出部4〇 施加足夠的力以獲得可對抗應力的穩定方位,最好突出部 4〇的圖案(從基板法線方向所看到的圖案)儘可能地覆蓋較 86289 200410026 多的液晶層30區域。因此,突出部4〇如果例如利用具有圓 形單元實體部份14a的正像圖案就會比利用具有圓形開放 區1 5的負像圖案,獲得更多穩定效果的方位。 具體實施例3 根據本%明具I男知例3的液晶顯示裝置不同於圖1 a和 圖1B所示的具體實施例i的液晶顯示裝置1〇〇,前者中的反 基板包括調整方位的結構。 圖22A至圖22E概略說明具有調整方位結構28的反基板 300b。具有實質上與上述液晶顯示裝置相同功能的每個元 件都將以相同的參考數字標示並且將不作更進一步描述。 如圖22A至圖22E所示的調整方位結構28可用來使液晶 層3〇的液晶分子30a朝向放射狀傾斜方位。應注意,如圖22a 至圖22D以及如圖22E所示的調整方位結構28,就液晶分子 3 〇a將傾斜的方向而言是不同的。 以如圖22A到圖22D所示的調整方位結構28使液晶分子 傾斜的方向,會與在對應至圖像元件電極14的單元實體部 h 1 4a(苓見,例如,圖} a和圖j B)的區域中形成的各液晶域 的放射狀傾斜方位的方位方向對準。相較之下,以如圖22£ 所示的調整方位結構28使液晶分子傾斜的方向,會與在對 應土圖像兀件電極14的開放區參見,例如,圖和圖1B) 的區域中形成的各液晶域的放射狀傾斜方位的方位方向 準。 如圖22A所tf的調整方位結構28係由反電極22的開口 22a 以及相對於開口 22&的圖像元件電極(圖22a中未顯示;择夂 86289 -53 - 200410026 見,例如,圖1 A) 1 4的單元實體部份1 4a所構成。垂直對準 膜(未顯示)由較靠近液晶層30的反基板300b的某一面提供。 調整方位結構28只在施加電壓存在時才施加調整方位的 力。由於調整方位結構28只用來施力調整方位至以TFT基板 1 00a電極結構形成的放射狀傾斜方位的每個液晶域中的液 晶分子上,因此開口 22a的大小會小於TFT基板100a所提供 的開放區1 5,也會小於由開放區丨5包圍的單元實體部份1 “ (參見例如圖1A)。例如,只要利用小於或等於開放區15或 單元實體部份14a—半的面積即可獲得足夠的效果。當所提 供的反電極22的開口 22與圖像元件電極14的單元實體部份 14a的中央部份相對時,液晶分子的方位連續性會增加,並 有可此修正放射狀傾斜方位中心軸的位置。 如上所述’當使用只在施加電壓存在時才施力調整方位 的結構來當作調整方位結構的時候,實質上表示液晶層3 〇 的所有液晶分子30a會在未存在有施加電壓時採取垂直對 準。因此,當使用一般黑色模式時,實質上是在黑色顯示 中/又有光漏發生,藉此實現有預期對比率的顯示。 但是,在未存在有施加電壓時,不會施加調整方位的力 ,因此不會形成放射狀傾斜方位。此外,當施加低的電壓 時,只會有弱的調整方位力,因此當在液晶面板上施加相 當大的應力後可能會看到殘留影像。 如圖22B至圖22D的每個調整方位結構28不論是否有施 加電壓的存在都會施加調整方位的力,因此可在任何顯示 灰1¾處獲得%定的放射狀傾斜方位並能夠抿抗高的應力。 86289 -54- 200410026 第一,如圖22B所示的調整方位結構如括—突出部⑽ ,位於反電極22之上,並突出到液晶層3〇中。雖然突出-部 別在材料上並沒有特別的限制,但突出部咖使用例如像 樹脂的介電材料很容易地就可以提供。垂直對準膜(未 由較靠近液晶層30的反基板3_的某—面提供。突出部奶 藉由其表面的結構可使液晶分子3〇a朝向放射狀傾斜方位 (使用垂直對準力)。最好能夠使用會受熱變形的樹脂材料: 如此-來在經過圖案化之後的加熱處理,便可非常輕易地 形成具有如圖22B所示之微凸剖面的突出部饥。且有各頂 點(例如,球體的一部份)的微凸剖面的突出部饥或料突 出邵可提供修正放射狀傾斜方位的中央位置的預期效果。 圖22C所v的5周整万位結構28被提供當做具有面對液晶 層^◦的水平對準力的表面,其中該液晶層在反電極叫也 忒疋說,在比較靠近基板21的反電極以的一侧上)之下形成 的介電層23t的開口(或町部份)…中提供。所提供的垂 直對準膜24可覆蓋比較靠近液晶層30的反基板3_的1 ’同時留下-個區域對應到未被覆蓋的開口仏,因此開口 仏中的表面當作水平對準表面使用。另—方面,水平對準 膜25只可由如圖22D的開口23a提供。 /22D中的水平對準膜可藉由,例如,—次提供垂直對準 ” 土反基板300b的整個表面,然後選擇性地以紫外線光 :在開口 23a的垂直對準膜24的一部份上,藉此減少其垂 '皆準力:周整方位結構28所需的水平方位力不需要高到 斤產生的頂先傾斜月度與用於丁N型液晶顯示裝置的對準 86289 200410026 膜一樣小。例如,45。或以下的預先傾斜角就夠了 如圖22C和圖22D所示,在開口23a的水平女γ主 、、 」」卞万位表面上, 液晶分子30a被激勵為與基板面成水平。因 、、 μ凡履晶分子3〇a 所形成的方位與周遭在垂直對準膜24上垂 2坷早的夜晶分 子30a的方位連續,藉此取得如圖所示的放射狀傾斜方位。 放射狀傾斜方位僅可藉由選擇性地在反電極22平面上浐 供一水平方位表面(例如,電極表面或水平對準膜)且不在反 電極22平面上提供凹下的部份(該部份由在介電層D中的 開口形成)來取得。但是,放射狀傾斜方位可利用凹下部份 的表面結構使其更穩定。 最好例如使用色彩過濾層或色彩過濾層的防護層當作介 電層23,形成比較靠近液晶層3〇的反基板3〇讣表面的凹下 邯份,因為它不會加入任何柬西至流程中。在圖22c和圖 22D所示的結構中,光效率—點也不會減少,因為沒有區域 k過哭出邯22b在整個液晶層3〇上施加電壓,如圖22八的結 構所示。 在如圖22E所示的調整方位結構28中,一個凹下部份使用 介電層23的開口 23a形成於較接近液晶層30的反基板3〇〇b 的一側上,如同在圖22D所示的調整方位28結構中一樣,並 且水平對準膜2 6只在凹下部份的底部形成。若不形成水平 對準膜26 ’反電極22的表面可暴露出來如圖22C所示。 具有調整方位結構如上所述的液晶顯示裝置3〇〇顯示於 圖23A和圖23B中。圖23A為平面圖,而圖23B則為沿著圖 23A之直線23B-23B1的剖面圖。 86289 -56 - 200410026 該液晶顯示裝置300包括TFT基板l〇〇a,具有包括單元實 體邵份〗4 a和開放區1 5的圖像元件電極1 4,以及包括該反基 板300b,具有調整方位結構28。TFT基板l〇0a的結構不限於 此處所述的結構,而可以是上述的任何其他結構。此外, 當即使未存在有施加電壓仍會施力調整方位的結構(圖22β 至圖22D以及圖22E)將用來當作調整方位的結構28時,如圖 22B至圖22D的調整方位結構28可以用圖22A所示的結構取 代。 在液晶顯示裝置300的反基板30〇b提供的調整方位結構 28之中,相對於圖像元件電極14的單元實體部份14a的區域 中心附近提供的調整方位結構28是屬於圖22B至圖22D其 中之一的結構,而相對於圖像元件電極14的開放區〗5的區 域中心附近提供的調整方位結構28是屬於圖22E所示的結 構。 藉由這類設置,在整個液晶層30上存在有施加電壓時, 也就是說施加電壓存在於圖像元件電極丨4和反電極22之間 時,圖像元件電極14的單元實體部份14a所形成的放射狀傾 斜方位的方向會與由調整方位結構28所形成的放射狀傾斜 方位的方向一致,藉此使放射狀傾斜方位穩定。其示意圖 顯示於圖24A至圖24C中。圖24A所示的係未存在有施加電 壓的狀態,圖24B所示的係在施加電壓之後,方位剛開始改 變時的狀態(初始ON狀態);以及圖24c所示的則係電壓施加 期間的穩定狀態。 如圖24A所示,即使未存在有施加電壓時,由該調整方位 86289 <7, 200410026 結構(如圖22 B至圖22D) 2 8所施加的方位調整力仍然會作 用於其附近的液晶分子30a之上,因而可形成一放射狀傾斜 當開始施加電壓時,便會(由TFT基板1 〇〇a的電極結構)產 生如圖24B所示之等位線EQ所代表的電場,並且會在對應 該開放區1 5的每個區域以及對應該實體部份丨4a的每個區 域中形成液晶分子30a呈現放射狀傾斜方位的液晶域,而且 該液晶層30會達到如圖24C所示之穩定狀態。在每個液晶域 中的液晶分子30a的傾斜方向,與在對應區中提供的調整方 位結構28所施加的調整方位力使液晶分子3〇a傾斜的方向 一致。 當施加應力於穩定狀態的液晶顯示裝置3〇〇時,該液晶層 3〇的放射狀傾斜方位會一度瓦解,不過當應力被移除之後 ,便可還原該放射狀傾斜方位,這係因為單元實體部份14& 和調整方位結構28的方位調整力作用於該等液晶分子3〇a 之上的緣故。所以,便可避免因為應力而發生的殘影。當 來自調整方位結構28的調整方位力過強的時候,由於放射 狀傾斜方位,即使未存在有施加電壓仍會發生延遲,因此 顯示對比度會減少。但是,纟自調整方位結構28的調整方 仏力不而要很強,因為只需要有穩定由單元實體部份⑷形 成的放射狀傾斜方位且修正其中央軸位置的效果即可。因 此’只需要有不會導致這種程度的遲延而使顯示惡化的調 整方位力就足夠了。 例如,當使用如圖22B所示的突出部22b時,每個突出部 86289 58 200410026 22b的直徑可以為約15 μηι,高度(厚度)約} μηι,而單元實 骨至邛伤1 4 a的直位可以為約3 〇卜⑽至約3 5 ,如此即可獲得 足夠的调整方位力並抑制由於實際層面的遲延所導致對比 度降低的問題。 圖25Α和圖25Β說明包括調整方位結構的另一液晶顯示 裝置400。 液晶顯示裝置400在相對於71?丁基板1〇〇a的開放區15的區 域中不具有調整方位結構。應該在相對於開放區1 5的區域 中形成的圖22E所示的調整方位結構28的形成,會增加製造Regardless of the applied voltage A material, v ^ L, it will certainly apply the 'force of ten thousand Ui] generated by the side surface of the protrusion 40 and because of the alignment of the alignment boat well known in the prior art Effect "relationship will be very strong. Therefore, even if the θθ material floats and the radial tilt orientation has disintegrated, the liquid crystal molecules 30a in the vicinity of the side surface 40s of the protrusion 40 can still maintain the same azimuth direction as the radial frequency tilt orientation. . Therefore, once the floating reference material # μ of the liquid crystal material and the force of seeing Tsukasa τ stop the heart, the radial tilted orientation can be easily restored. Therefore, the liquid crystal display device 200 of the specific embodiment 2 is In addition to the advantages of the liquid crystal display device f # fU / 7 i, / ′ 二 /, clothes and 100 of bone #paste Example 1, it also has the advantage of strong resistance to stress. Therefore, Jie EJ Miscellaneous Shicheng Shiyang 7F 200 is suitable for devices that are often subject to stress, such as PCs and PDAs that are often carried out. "86289 -49-200410026 When Cry Out Shao 40 is made of a dielectric material with high transparency, the benefit obtained is that it can improve the contribution to the liquid crystal domain formed in the region corresponding to the open region. 5 When the protruding portion 40 is made of an opaque dielectric material, the advantage obtained is that the side surface 40s of the protruding portion 40 can be prevented from being caused by the delay of the liquid crystal molecules 30a in an inclined orientation. The question of light leakage. Whether to use transparent or opaque dielectric materials can depend on, for example, the application of liquid crystal display devices. No matter in which case, the use of photosensitive resins can be simplified to correspond to such open The advantages of the patterned step 40 of the protruding portion 40 in region 5. In order to obtain sufficient orientation adjustment force, when the thickness of the liquid crystal layer 30 is about 3 μm, the height of the protruding portion 40 is preferably between In the range of about 0.5 μm to about 2 μm. In general, the degree of the protrusion of the protrusion 40 is preferably between about / 6 and about 6 in the thickness of the liquid crystal layer 30. As described above, the liquid crystal display Device 200 includes a bit The protruding portion 40 in the open region 15 of the image element electrode 14 and the side surface of the protruding portion 40 are forced to adjust the orientation in the same direction as the adjusting orientation force applied by the inclined electric field of the liquid crystal layer 30 liquid crystal molecules 30a. 19A to i9c will now be described with respect to the direction of the azimuth adjustment force applied by the tilted electric field to adjust the direction of the azimuth side surface 40s of the preferred conditions. FIGS. 19A to 19C are respectively a liquid crystal display device 200A Schematic cross-sections of 200, 200B, and 200C. Figures 19A to 9B correspond to Figure 18A. The liquid crystal display devices 200A, 200B, and 200C all have a protruding portion in the open area 15, but they serve as the entire protruding portion of a single structure. In terms of the positional relationship between 40 and its corresponding open area 15, it is different from the liquid crystal display device 200. 86289 -50-200410026 In the above-mentioned liquid crystal display device 200, the protruding portion 40 which is a single structure is 40 series. The open area 15 is formed in the middle of the foot, and the bottom surface of the protruding portion 40 is smaller than the open area 15, as shown in FIG. 18A. In the liquid crystal display device 200A shown in FIG. 19A, the bottom surface and the open area of Shao 40A are cried. 15 In the liquid crystal display device 200B shown in FIG. 9β, the bottom surface of the protruding portion 40B is larger than the open area 15, so it will cover a portion of the solid portion (conductive film) surrounded by the open area 15. The solid portion It is not formed on the side surface 40s of any of the protrusions 40, 40A, and 40. Therefore, as shown in the individual diagrams, the iso-bit lines eq are qualitatively walked on the body. It is a flat line and descends in the open area 15. Therefore, like the protruding portion 40 of the liquid crystal display device 200, the side surface 40s of the protruding portion 40A of the liquid crystal display device 200A and the crying portion of the liquid crystal display device 200B The side surface of 40B will apply azimuth adjustment force for 40s, and its direction will be in accordance with the azimuth direction of the forceful mouth of the well-known cattle electric field, so that the radial inclined azimuth can be stabilized. Conversely, in the liquid crystal display device 200c shown in FIG. 19C, the bottom surface of the protruding portion 40C is larger than the open area 15, so there will be a solid portion extending partially into the area above the open area 15. In the side surface of the protrusion. Due to the influence of a part of the solid portion formed in the side surface 403, a ridge portion appears in the bit line EQ. The ridge portion called the contour line has a frequency of-with respect to the ridge portion of the other portion of the contour line EQ falling into the open area 15. This means that the direction of the generated oblique electric field is opposite to the direction of the oblique electric field that orients the liquid crystal molecules toward the radial oblique orientation. Therefore, in order that the azimuth adjustment force of the side surface 40s has the same direction as the azimuth adjustment force applied by the inclined electric field, the solid part (conductive film) is preferably not formed in the side surface 40s-86289 -51-200410026. . Next, the cross-sectional structure of the protruding portion 40 along the line 20A-20A of FIG. 16A will be described with reference to FIG. Since the protruding portion 40 formed as shown in FIG. 16A can completely surround each unit solid portion 14a in a generally circular pattern, as described above, it will be formed on the protruding portion 40 shown in FIG. The part connecting the solid part 14a of the adjacent unit (the branch is extended from the circular part in four directions). Therefore, in the step where the deposited conductive film is a solid part of the image element electrode 14, it is likely that a discontinuity problem may occur on the protruding portion 40 or a problem of delamination may occur in the post-processing of the manufacturing process. In view of this, in the liquid crystal display device 2000D shown in FIGS. 21A and 21B, a crying portion 40D that is not related to each other is formed, so that each protruding portion 40D is completely contained in the open area 15. In order to form a conductive film to be a solid part in the flat surface of the substrate, the possibility of discontinuity or delamination can be eliminated. Although these crying out Shao 40D does not completely surround each unit body Shao 14a in a generally circular pattern, it will form a generally circular liquid crystal domain corresponding to each unit solid part 14a, and can be like the above example The radial inclination of the solid portion 14a of the unit is stabilized. The effect obtained by forming the radial inclination azimuth% 疋 S of the protruding portion 40 in the open area 15 is not limited to the pattern of the open area 5 described above, and it is also applicable to those described in the specific embodiment 丨Any of the patterns in the various figures at the end of the open area 5 'to obtain the above-mentioned effect. & In order to apply sufficient force to the protruding portion 40 to obtain a stable orientation against stress, it is best that the pattern of the protruding portion 40 (pattern viewed from the direction of the substrate normal) covers as much as possible than 86289 200410026. Area of the liquid crystal layer 30. Therefore, if, for example, a positive image pattern having a circular unit solid portion 14a is used for the protruding portion 40, a more stable effect orientation is obtained than a negative image pattern having a circular open region 15 is used. Specific Embodiment 3 The liquid crystal display device according to the present example 3 is different from the liquid crystal display device 100 of the specific embodiment i shown in FIG. 1 a and FIG. 1B. The reverse substrate in the former includes structure. 22A to 22E schematically illustrate the counter substrate 300b having the azimuth adjusting structure 28. Each element having substantially the same function as the above-mentioned liquid crystal display device will be designated with the same reference numeral and will not be described further. The orientation adjusting structure 28 shown in Figs. 22A to 22E can be used to orient the liquid crystal molecules 30a of the liquid crystal layer 30 toward a radial inclined orientation. It should be noted that the azimuth adjusting structure 28 as shown in FIGS. 22a to 22D and 22E is different in terms of the direction in which the liquid crystal molecules 30a will tilt. The direction in which the liquid crystal molecules are tilted by the azimuth structure 28 as shown in FIGS. 22A to 22D is different from that in the unit solid portion h 1 4a (see, for example, FIG.} A and FIG. J corresponding to the image element electrode 14. The azimuth directions of the radial tilt azimuths of the respective liquid crystal domains formed in the region B) are aligned. In contrast, the direction in which the liquid crystal molecules are tilted with the azimuth structure 28 as shown in FIG. 22 £ will be seen in the open area corresponding to the soil image element electrode 14, for example, in the area of the figure and FIG. 1B). The azimuth directions of the radially inclined azimuths of the formed liquid crystal domains are accurate. The azimuth adjustment structure 28 shown in FIG. 22A is composed of an opening 22a of the counter electrode 22 and an image element electrode opposite the opening 22 (not shown in FIG. 22a; select 夂 86289 -53-200410026. See, for example, FIG. 1A ) 1 4 is composed of a unit solid part 1 4a. A vertical alignment film (not shown) is provided from one side of the counter substrate 300b closer to the liquid crystal layer 30. The azimuth-adjusting structure 28 applies the azimuth-adjusting force only when an applied voltage is present. Because the azimuth adjustment structure 28 is only used to force the azimuth adjustment to the liquid crystal molecules in each of the liquid crystal domains in the radial tilt orientation formed by the electrode structure of the TFT substrate 100a, the size of the opening 22a will be smaller than that provided by the TFT substrate 100a. The open area 15 will also be smaller than the unit solid portion 1 "(see, for example, Figure 1A) surrounded by the open area 丨 5. For example, as long as the area is less than or equal to the open area 15 or the unit solid portion 14a—half the area A sufficient effect is obtained. When the opening 22 of the provided counter electrode 22 is opposed to the central portion of the unit solid portion 14a of the image element electrode 14, the azimuthal continuity of the liquid crystal molecules will increase, and the radial shape can be corrected accordingly. The position of the central axis of the tilted azimuth. As described above, when the structure for adjusting the azimuth is applied only when a voltage is applied as the azimuth adjusting structure, substantially all of the liquid crystal molecules 30a of the liquid crystal layer 30 When there is applied voltage, vertical alignment is adopted. Therefore, when the general black mode is used, it is substantially a black display / light leakage occurs, thereby achieving expectations. Display of the ratio. However, when no voltage is applied, the force for adjusting the orientation is not applied, so no radial tilt orientation is formed. In addition, when a low voltage is applied, only a weak force for adjusting the orientation is obtained. After a considerable amount of stress is applied to the liquid crystal panel, an afterimage may be seen. As shown in each of the orientation adjustment structures 28 in FIGS. 22B to 22D, the orientation adjustment force is applied regardless of the presence of a voltage, so it can be used in any display. Obtained a fixed radial azimuth orientation at the position of 1¾ and can resist high stress. 86289 -54- 200410026 First, the azimuth adjustment structure as shown in FIG. 22B is shown in brackets-projection ⑽, which is located on the counter electrode 22, And protrudes into the liquid crystal layer 30. Although the protrusion-section is not particularly limited in material, the protrusion section can be easily provided using a dielectric material such as resin. A vertical alignment film (not made by It is provided near one side of the anti-substrate 3_ of the liquid crystal layer 30. The structure of the protruding portion of the milk can make the liquid crystal molecules 30a face a radial tilt (using a vertical alignment force). It is enough to use a resin material that can be deformed by heat: so-after heat treatment after patterning, a protrusion with a slightly convex cross section as shown in Fig. 22B can be formed very easily. And there are vertices (for example, a sphere) The part of the micro-convex section of the micro-convex section can be expected to provide the desired effect of correcting the radial position of the central position of the tilt. The 5-week full digit structure 28 shown in FIG. 22C is provided as having a facing liquid crystal Layer with a horizontal alignment force on the surface, in which the liquid crystal layer is formed on the opposite side of the counter electrode called on the side of the counter electrode on the substrate 21, the opening of the dielectric layer 23t (or Machi part) ... provided. The provided vertical alignment film 24 can cover 1 'of the opposite substrate 3_ which is relatively close to the liquid crystal layer 30 while leaving an area corresponding to the uncovered opening 仏, so the opening 仏The surface is used as a horizontally aligned surface. On the other hand, the horizontal alignment film 25 can be provided only by the opening 23a as shown in Fig. 22D. The horizontal alignment film in / 22D can be provided by, for example, one-time vertical alignment "of the entire surface of the anti-substrate 300b, and then optionally with ultraviolet light: a portion of the vertical alignment film 24 in the opening 23a In order to reduce the vertical force, the horizontal azimuth force required by the azimuth structure 28 does not need to be as high as the top tilt produced by the moon. It is the same as that used for the alignment of N-type LCD display devices. 86289 200410026 film For example, a pre-tilt angle of 45 ° or less is sufficient. As shown in FIG. 22C and FIG. 22D, the liquid crystal molecules 30a are excited to be aligned with the substrate on the horizontal female main surface of the opening 23a. The surface is level. Because of the orientation formed by the crystal molecules 30a and μ, the orientations of the nocturnal crystal molecules 30a that hang from the vertical alignment film 24 in the surroundings are continuous, thereby obtaining a radial tilted orientation as shown in the figure. The radial tilt orientation can only be achieved by selectively providing a horizontal orientation surface (eg, an electrode surface or a horizontal alignment film) on the counter electrode 22 plane and not providing a recessed portion (the part on the counter electrode 22 plane) Part is obtained by openings in the dielectric layer D). However, the radial tilt orientation can be made more stable by the surface structure of the concave portion. It is better to use, for example, a color filter layer or a protective layer of the color filter layer as the dielectric layer 23 to form a concave portion near the surface of the anti-substrate 30 讣, which is relatively close to the liquid crystal layer 30, because it does not add any Cambodian to In the process. In the structures shown in FIG. 22c and FIG. 22D, the light efficiency-dot will not decrease, because there is no region k that overburdens 22b to apply a voltage across the entire liquid crystal layer 30, as shown in the structure of FIG. 22A. In the azimuth adjustment structure 28 shown in FIG. 22E, a recessed portion is formed on the side of the opposite substrate 300b closer to the liquid crystal layer 30 using the opening 23a of the dielectric layer 23, as shown in FIG. 22D. The adjustment orientation 28 shown is the same in the structure, and the horizontal alignment film 26 is formed only at the bottom of the concave portion. If the horizontal alignment film 26 'is not formed, the surface of the counter electrode 22 may be exposed as shown in FIG. 22C. The liquid crystal display device 300 having the orientation-adjusting structure as described above is shown in Figs. 23A and 23B. Fig. 23A is a plan view, and Fig. 23B is a sectional view taken along line 23B-23B1 of Fig. 23A. 86289 -56-200410026 The liquid crystal display device 300 includes a TFT substrate 100a, an image element electrode 14 including a unit entity 4a and an open area 15, and an anti-substrate 300b including an adjustment orientation. Structure 28. The structure of the TFT substrate 100a is not limited to the structure described here, but may be any other structure described above. In addition, when a structure (FIG. 22β to FIG. 22D and FIG. 22E) that adjusts the orientation even when no voltage is applied will be used as the orientation adjustment structure 28, as shown in FIG. 22B to FIG. 22D, the orientation adjustment structure 28 It may be replaced with the structure shown in FIG. 22A. Among the adjustment structure 28 provided by the counter substrate 300b of the liquid crystal display device 300, the adjustment structure 28 provided near the center of the area of the unit solid portion 14a of the image element electrode 14 belongs to FIGS. 22B to 22D. One of the structures, and the azimuth adjustment structure 28 provided near the center of the area with respect to the open area 5 of the image element electrode 14 is a structure shown in FIG. 22E. With this type of arrangement, when an applied voltage is applied to the entire liquid crystal layer 30, that is, when the applied voltage is present between the image element electrode 4 and the counter electrode 22, the unit solid portion 14a of the image element electrode 14 The direction of the formed radial tilt azimuth will be the same as the direction of the radial tilt azimuth formed by the adjustment azimuth structure 28, thereby stabilizing the radial tilt azimuth. The schematic diagrams are shown in Figs. 24A to 24C. The system shown in FIG. 24A does not have a voltage applied state, and the system shown in FIG. 24B has a state (initial ON state) when the orientation has just started to change after the voltage is applied; and the system shown in FIG. 24c during the voltage application stable state. As shown in FIG. 24A, even when no applied voltage is present, the orientation adjustment force applied by the structure 86289 < 7, 200410026 (as shown in FIGS. 22B to 22D) 2 8 will still act on the nearby liquid crystal. Above the molecule 30a, a radial tilt can be formed. When the voltage is applied, the electric field represented by the isopotential line EQ shown in FIG. 24B will be generated (the electrode structure of the TFT substrate 100a), and it will In each region corresponding to the open region 15 and each region corresponding to the solid part 4a, a liquid crystal domain in which the liquid crystal molecules 30a exhibit a radially inclined orientation is formed, and the liquid crystal layer 30 will reach a level as shown in FIG. 24C. stable state. The tilting direction of the liquid crystal molecules 30a in each liquid crystal domain is consistent with the tilting direction of the liquid crystal molecules 30a by the adjustment azimuth force applied by the adjustment orientation structure 28 provided in the corresponding region. When stress is applied to the steady-state liquid crystal display device 300, the radial tilt orientation of the liquid crystal layer 30 will collapse once, but after the stress is removed, the radial tilt orientation can be restored. This is because the unit The reason that the azimuth adjustment force of the solid part 14 & azimuth adjustment structure 28 acts on the liquid crystal molecules 30a. Therefore, the afterimage caused by the stress can be avoided. When the azimuth adjusting force from the azimuth adjusting structure 28 is too strong, since the radial tilt azimuth causes a delay even if there is no applied voltage, the display contrast is reduced. However, the adjustment method of the self-adjusting azimuth structure 28 is not only very strong, because it only needs to have the effect of stabilizing the radial tilt azimuth formed by the solid part of the unit and correcting the position of its central axis. Therefore, it is only necessary to have an adjustment azimuth force that does not cause such a degree of delay to deteriorate the display. For example, when the protrusions 22b shown in FIG. 22B are used, the diameter of each protrusion 86289 58 200410026 22b may be about 15 μηι, and the height (thickness) is about} μηι. The upright position can be about 30 ⑽ to about 3 5. In this way, sufficient azimuth force can be obtained and the problem of lowering the contrast caused by the delay of the actual layer can be suppressed. 25A and 25B illustrate another liquid crystal display device 400 including an orientation adjustment structure. The liquid crystal display device 400 does not have an orientation adjustment structure in an area of the open area 15 with respect to the 71A substrate 100a. The formation of the azimuth-adjusting structure 28 shown in FIG. 22E, which should be formed in an area 15 to the open area, increases manufacturing

流程的困難度。因此,為了提升生產力,最好只使用圖22A 至圖22D所示的其中一種調整方位結構28。特別是,較佳使 用圖22B的調整方位結構28,因為它能夠以簡單的流程生產 出來。 即使在對應至開放區1 5的區域中沒有提供調整方位結構 如同在液晶顯TF裝置400中一般,實質上仍可獲得與液晶顯 示裝置300相同的放射狀傾斜方位,如圖26A至圖26c大致 上’、、、員示’並且其應力阻力也在可實施的程度。 具有週整方位結構的液晶顯示裝置的範例如圖27a、圖 27B和圖27C所示。圖da、圖27B和圖27C都是剖面圖,概 略就明具有調整方位結構的液晶顯示裝置500。圖27A所示 的係未存在有施加電壓的狀態;圖27B所示的係在施加電壓 之後’方位剛開始改變時的狀態(初始〇N狀態);以及圖27c 所不的則係電壓施加期間的穩定狀態。 液晶顯示裝置500在TFT基板200a的開放區】5中包括如圖 86289 -59 - 200410026 16B所示的突出部40。液晶顯示裝置5〇〇另包括圖22B所示 的哭出邵22b,作為相對於圖像元件電極丨4的單元實體部份 14a的區域中心附近提供的調整方位結構28。 在液晶顯示裝置500中,放射狀傾斜方位受到突出部4〇 的側表面40s施加的調整方位力以及突出部22b表面施加的 調整方位力而變穩定。由於如上所述的突出部4〇和突出部 2 2 b的表面結構施加的調整方位力使放射狀傾斜方位在不 論是否施加電壓的情況下都能夠穩定,如此一來液晶顯示 I置5 0 0就會有預期的應力阻力。 在使用如圖22B所示從反電極22突出至液晶層3〇的突出 部22b當作調整方位結構28的情況下,液晶層3〇的厚度可由 突出部22b定義。換句話說,突出部22b可當作控制單元間 隙(液晶層3 0的厚度)的襯塾。 圖28A和圖2 8B說明一液晶顯示裝置6〇〇,具有也當作襯 墊的哭出部22b。圖28A為從該基板法線方向看去的平面圖 ’圖28B則為沿著圖28A之直線28B-28B,之剖面圖。 如圖28A和圖28B所示,在液晶顯示裝置6〇〇中,液晶層 3〇的厚度由當作調整方位結構28相對於圖像元件電極丨斗的 單元貝邛伤14 a的區域中心附近提供的突出部2 2匕所定義 。這類對準的優點為不需要個別提供一個襯墊來定義液晶 層3 0的厚度,因此可簡化製造流程。 在說明範例中,突出部22b具有如圖28B所示含侧表面 22bl的截斷的錐形形狀,其中該側表面與基板2丨的基板面 呈小於90。的銳角㊀傾斜。當侧表面22Μ與基板面呈小於9〇。 86289 -60 - 200410026 的角度傾斜時,突出部22b的側表面22b 1具有與用於液晶層 ^ 〇的液晶分子3 0 a的傾斜電場所施加的調整方位力方向一 致的調整方位力,因此可用來穩定放射狀傾斜方位。 如圖29A至圖29C中概略說明,利用具有用來當作襯墊的 笑出部22b的液晶顯示裝置600,也可獲得放射狀傾斜方位 ’如同液晶顯示裝置300和400—般。 雖然在圖28B的範例中突出部22b具有與基板面呈小於 90角傾斜的侧表面22b 1,但是突出部22b可另外具有與基 板面呈90◦角或大於90。角傾斜的斜面22Μ。為了放射狀傾 斜方位的穩定性,最好侧表面22bl的傾斜角度實質上不超 過9 0 ’更好疋說|亥傾斜角度能小於9 q。。即使傾斜角度超 過9〇。,只要該角度接近90。(只要該角度實質上不超過90。) ,鄰近哭出邵22b側表面22bl的液晶分子3〇a仍會以實質上 與基板平行的方向傾斜,因此採取與邊緣部份液晶分子3〇a 的傾斜方向一致的放射狀傾斜方位,而且僅有些微的扭曲 。但疋,如果突出邵22b侧表面22bl的傾斜角度實質上超過 90如圖所不,哭出邵22b的侧表面221^將具有用於液晶 層30的液晶分子30a的傾斜電場所施加的調整方位力的相 反万向的碉整方位力,因此放射狀傾斜方位可能會不穩定。 也當作襯墊使用的突出部22b並不限於具有截斷錐形形 狀的突出部,如圖28A和圖28B所示。例如,突出部2几可 具有如圖3 1所示的形狀,如此一來與基板面垂直的平面上 的剖面,會呈現橢圓的一部份(也就是說,類似像橢圓的球 體一部份的形狀)。在如圖31中所示的突出部22b中,當側 86289 -61 - 200410026 表面22bl與基板面的傾斜角度(錐形角度)沿著液晶層3〇的 厚度改變時,不論是否沿著液晶層3 〇的厚度,侧表面22b i 的傾斜角度都會小於90◦。因此,具有這類形狀的突出部22b 可適用於當作穩定放射狀傾斜方位的突出部。 與上方及下方基板(TFT基板和反基板)接觸、還當作定義 液曰曰層j 0厚度的襯塾使用的如上所述的突出部2 2 b,在製造 液晶顯示裝置的流程中,可在上方基板或下方基板上形成 。一旦上方和下方基板彼此依附在一起,不論它是在上方 或下方基板上形成,突出邯22b都將與兩個基板相接觸,且 當作襯塾和調整方位結構使用。 不是所有在相對於單元實體部份14a的區域中提供的突 出部22b都當作襯墊使用。藉由形成一些高度比當作襯墊的 其他哭出邵22b要低的突出部22b,可以抑制光漏的發生。 圖32、圖33和圖34分別說明包括調整方位結構的其他液 晶顯示裝置600A、600B和600C。圖32、圖33和圖34中所示 的各個液晶顯示裝置600A、600B和600C都包括在相對於圖 像元件電極1 4的單元實體部份1 4a的區域中作為調整方位 結構的突出部22b。 在圖32的液晶顯示裝置600A中,每個位於儲存電容線^ 上的單元貫體邵份14a,都比其他單元實體部份14a略小 點。在圖33的液晶顯示裝置600B中,每個位於儲存電容綠 4 J上的單元貫體部份14 a,都比其他單元實體部份1 * a略大 —點。圖像元件電極14的複數個單元實體部份14 a,在久固 像元件區中不需要具有相同的大小。由於在不透明元件上 ^6289 -62 - 2U0410026 單元實體部份!4a中形成的液晶域使得儲存電容線4 傳送型液晶顯示裝置中的顯示有任何貢獻,它不是傳送型 /夜晶顯示裝置’因此不需要在不透明元件上單元膏體部产 14神形成夠狀的放射狀傾斜方位,而且這類單元膏〇 份⑷的形狀及/或大小可能與其他單元實體部份⑷不同。 U如S圖34的液晶顯示裝置6⑽c中’每個位於儲存電容 7上的單元Λ目这部份14a都具有像桶子的形狀(具有—般 ?瓜形隅角部份的—般矩形),同時其他單元實體部份14a: 有一般星形的形狀。 雖然以上顯示了 一些位於儲存電容線43上的單元實體部 份14a的範例,但可以相對於圖像元件區總面積增加用來顯 不的面積的比例,並藉由採用位於不透明元件上的區域使 儲存電客線43儘可能地被開放區15佔據的對準來改良亮度。 ϋ光板和相位板的設置 所謂的「垂直對準型液晶顯示裝置」(其包含一液晶層, 在無施加電壓存在時,該液晶層中之具負介電各向異性的 液晶分子會呈垂直對準)能夠以各種顯示模式來顯示影像 。舉例來說,除了雙折射模式(在此楔式中係藉由電場來控 制該液晶層的雙折射,以便顯示影像)之外,垂直對準型液 晶顯示裝置還可使用於光學旋轉模式,或是使用於光學旋 轉模式及雙折射模式之組合顯示模式中。藉由在上述任一 種液晶顯示裝置之該對基板(例如該TFT基板及該反基板) 的外側(遠離該液晶層3 0的一側)上配備一對偏光板便能夠 獲得一雙折射模式的液晶顯示裝置。再者,必要時亦可配 86289 -63 - 200410026 備一相位差補償器(一般為相位板)。更進一步地說,藉由一 般圓形偏光便能夠獲得一高亮度的液晶顯示裝置。 根據本發明,可利用高度連續性穩定地形成具有放射狀 傾斜方位的液晶域。因此,可以進一步地改良具有廣視角 特性的傳統液晶顯不裝置的顯示品質。 此外,在每個圖像元件區中,複數個單元實體部份以第 一預足方向排成一列,因此可以增加圖像元件區内單元眚 體邯份的面積比,因而改良孔徑比。 再者,與單兀實體邵份對準的第一預定方向不同的第二 了員疋万向,以該方向彼此毗連的圖像元件會受到與每個圖 框極性相反的電壓的驅動。因此,有可能在以第二預定方 向彼此她連的圖像元件之間’產生—個具有陡山肖電位斜度 ”斜電場。因而’即使使用有短的内部電極距離與高孔 |比的對準,仍有可能形成夠穩定的放射狀傾斜方位。 如上所述,本發明所提供的液晶顯示裝置,具有廣視角 特性、高的顯示品質和高的孔徑比而且能夠產生明亮的顯 雖然已經以較佳的具體實施例對本發明作說明,但是, 習本技術的人士將會瞭解可以各種方式對此處所揭示㈣ l仃1W文’並且可假設出除上面已經明確提出且說明的 具體實施例之外的各種具體實施例。因此,本申嗜安希於 :隨附的申請專利範圍來涵蓋屬於本發明之真實精:二 ~内的所有修改情形。 【圖式簡單說明】 86289 -64 - 200410026 圖1 A及圖1 B概略顯示根據本發明具體實施例1之液晶顯 不裝置100的一圖像元件區結構,其中圖1A為平面圖,而圖 1 B則為沿著圖1A之線1B _丨B f的剖面圖。 圖2概略顯示以液晶顯示裝置丨〇〇的列方向對彼此毗鄰的 圖像元件區施加不同電極電壓的狀態。 圖3 A及圖3B概略顯示施加電壓後該液晶顯示裝置1〇〇之 液晶層30,其中圖3A為方位剛開始改變時的狀態示意圖 (初始ON狀怨),而圖3B則為穩定狀態示意圖。 圖4A至圖4D所示的各係電力線與液晶分子方位之間的 關係示意圖。 圖5A至圖5C概略顯示從基板法線方向檢視液晶顯示裝 jl 1 0 0時的液晶分子的方位。 圖6A至圖6C概略顯示液晶分子的示範放射狀傾斜方位。 圖7A和圖7B是平面圖,概略說明根據本發明具體實施例 1的其他液晶顯示裝置1 〇〇A和1 。 圖8A和圖8B是平面圖,概略說明根據本發明具體實施例 1的其他液晶顯示裝置1 〇 〇 C和1 〇 〇 d。 圖9是-平面圖,概略說明根據本發明具體實施织的其 他液晶顯示裝置100E。 圖是-平面圖,概略說明根據本發明具體實施例i的其 他液晶顯示裝置100E。 液 圖11是一平面圖 圖12是一平面圖 晶顯示裝置的圖像元件電極。 1 丨'日日賴7J7裝: ’概略說明根據本發明具體實施 ^6289 -65 - 200410026 圖13A概略顯示當以列方向對彼此毗鄰的兩個圖像元件 區施加相同的電極電壓時所產生的等位線EQ。 圖1 3 B概略頭示當以列方向對彼此毗鄰的兩個圖像元件 區施加不同的電極電壓時所產生的等位線EQ。 圖14A、圖14B和圖14C說明用於本發明具體實施例}液晶 顯示裝置的驅動方法。 圖15是一平面圖,概略顯示根據本發明具體實施例丨的其 他液晶顯示裝置100F。 圖16A及圖16B概略顯示根據本發明具體實施例2之液晶 顯示裝置200的一圖像元件區結構,其中圖16A為平面圖, 而圖16B則為沿著圖16A之線16B-16B,的剖面圖。 圖1 7 A 土圖1 7 D顯示的係液晶分子3 〇 a之方位與具垂直對 準力之表面結構之間的關係示意圖。 圖18A及圖18B顯示存在有施加電壓時該液晶顯示裝置 2〇〇之液晶層30,其中圖1 8A為方位剛開始改變時的狀態示 意圖(初始ON狀態),而圖18B則為穩定狀態示意圖。 圖19A至圖19C分別為具體實施例2之液晶顯示裝置200A 、200B及200C的剖面示意圖,各圖在開孔與突出部之間具 有不同的位置關係。 圖2 0為沿著圖1 6 A之線2 0 A - 2 0 A ’的液晶顯示裝置2 0 0之 剖面示意圖。 圖21 A及圖21B概略顯示液晶顯示裝置2〇〇d的一圖像元 件區結構,其中圖21 A為平面圖,而圖21 B則為沿著圖21 A 之線21B-21B·的剖面圖。 86289 -66 - 200410026 圖22A至圖22E概略說明 300b 〇 包括調整方位結構2 8的反基板 圖23 A及圖23B概略顯示根據本發明具體實施例3之液晶 顯示裝置300的-圖像元件區結構,其中圖2从為平面圖, 而圖23B則為沿著圖23A之線23B-23B,的剖面圖。 圖24A至圖24C為液晶顯示裝置3〇〇之其中一個圖像元件 區之剖面示意圖,其中圖24A所示的係未存在有施加電壓的 «,圖24輯示的係方位剛開始改變時的狀態(初始〇N狀 態),而圖24C所示的則係穩定狀態。 圖25A及圖25B概田各顯示根據本發明具體實施例3之另一 液晶顯示裝置400的一圖像元件區結構,其中圖μ為平面 圖,而圖25B則為沿著圖2SA之線25b_25B,的剖面圖。 圖26A至圖26C為液晶顯示裝置4〇〇之其中一個圖像元件 區之剖面示意圖’其中圖26A所示的係未存在有施加電壓的 狀態’圖2 6 B所示的係方位剛開始改變時的狀態(初始〇 N狀 態),而圖26C所示的則係穩定狀態。 圖27A至圖27C為根據本發明具體實施例3的另一液晶顯 示裝置500之其中一個圖像元件區之剖面示意圖,其中圖 27A所示的係未存在有施加電壓的狀態,圖27B所示的係方 位剛開始改變時的狀態(初始〇N狀態),而圖27C所示的則係 穩定狀態。 μ 圖28A及圖28B概略顯示包括一作為襯墊使用的突出部 的液晶顯示裝置600,其中圖28八為平面圖,而圖28b則為 沿著圖28人之線288-288,的剖面圖。 86289 -67- 200410026 圖29A至圖29C J汰曰^ — 、'、日日頬示裝置600之其中一個圖像元件 區之剖面示意圖,其中圖29 狀態,圖29B所示的#打_ 未存在有施力口電壓的 系万位剛開始改變時的狀態(初始Ο N狀 怨),而圖29C所不的則係穩定狀態。 圖3 0為一剖面圖,概略雄日3 jl古 各說明具有一側表面的突出部,其 傾斜角相對於基板實質上超過9〇。。 圖3 1為一剖面圖,概略說各 凡月田作俄墊使用不同的突出部。 圖3 2疋一平面圖’概略說明根 、、 很艨本發明具體實施例;3的其 他液晶顯示裝置600A。 明具體實施例3的其 圖33是一平面圖,概略說明根據本發 他液晶顯示裝置600B。 本發明具體實施例3的其 圖34是一平面圖,概略說明根據 他液晶顯示裝置600C。 【圖式代表符號說明】 11 基板 14 圖像元件電極 15 開放區域 21 玻璃基板 22 反電極 23 介電層 24 垂直對準膜 25 水平對準膜 26 水平對準膜 28 調整方位的結構 86289 -68 - 200410026 30 液晶層 40 突出部 41 閘匯流排線 42 來源匯流排線 43 儲存電容線 100 液晶顯不裝置 200 液晶顯不裝置 300 液晶顯不裝置 400 液晶顯不裝置 500 液晶顯不裝置 600 液晶顯示裝置 1000 液晶顯示裝置 100A 液晶顯不裝置 100a TFT基板 100B 液晶顯不裝置 100b 反基板 100C 液晶顯示裝置 100D 液晶顯TF裝置 100E 液晶顯不裝置 100F 液晶顯示裝置 14a 單元實體部份 200a TFT基板 200A 液晶顯不裝置 200B 液晶顯示裝置 86289 -69 - 200410026 200C 液晶顯不裝置 200D 液晶顯不裝置 22a 開口 22b 突出部 23a 開口 300b 反基板 30a 液晶分子 40A 突出部 40B 突出部 40C 突出部 40D 突出部 40s 侧表面 40t 頂面 600A 液晶顯不裝置 600B 液晶顯示裝置 600C 液晶顯不裝置 D1 行方向 D2 歹1J方向 PI 元件區域 P2 元件區域 P3 元件區域 EQ 等位線 EG 邊緣部分 SA 中心 IB 線 IB' 線 86289 -70 -The difficulty of the process. Therefore, in order to improve productivity, it is better to use only one of the orientation adjustment structures 28 shown in FIGS. 22A to 22D. In particular, the azimuth adjusting structure 28 of Fig. 22B is preferably used because it can be produced in a simple process. Even if the orientation adjustment structure is not provided in the area corresponding to the open area 15 as in the liquid crystal display TF device 400, substantially the same radial tilt orientation as that of the liquid crystal display device 300 can be obtained, as shown in Figs. 26A to 26c. And the stress resistance is also implementable. Examples of the liquid crystal display device having the azimuth structure are shown in Figs. 27a, 27B, and 27C. Figs. Da, 27B, and 27C are cross-sectional views, and a liquid crystal display device 500 having an azimuth adjustment structure is schematically shown. The system shown in FIG. 27A does not have a voltage applied state; the system shown in FIG. 27B has a state immediately after the orientation is changed (initial ON state); and the system shown in FIG. 27c does not have a voltage application period. Steady state. The liquid crystal display device 500 includes a protruding portion 40 as shown in Figs. 86289-59-200410026 16B in the open area of the TFT substrate 200a. The liquid crystal display device 500 further includes a cryout frame 22b shown in FIG. 22B as an azimuth adjustment structure 28 provided near the center of the area of the unit solid portion 14a with respect to the image element electrode 4a. In the liquid crystal display device 500, the radial tilt orientation is stabilized by the adjustment azimuth force applied by the side surface 40s of the protrusion 40 and the adjustment azimuth force applied by the surface of the protrusion 22b. As described above, the azimuth adjustment force exerted by the surface structure of the protruding portion 40 and the protruding portion 2 2 b enables the radial tilted orientation to be stable regardless of whether a voltage is applied. Thus, the liquid crystal display is set to 5 0 0 There will be expected stress resistance. In the case where the protruding portion 22b protruding from the counter electrode 22 to the liquid crystal layer 30 as shown in FIG. 22B is used as the adjustment orientation structure 28, the thickness of the liquid crystal layer 30 can be defined by the protruding portion 22b. In other words, the protruding portion 22b can serve as a lining for the gap between the control units (thickness of the liquid crystal layer 30). 28A and 28B illustrate a liquid crystal display device 600 having a crying portion 22b also serving as a spacer. Fig. 28A is a plan view seen from the direction of the normal line of the substrate; Fig. 28B is a cross-sectional view taken along line 28B-28B of Fig. 28A. As shown in FIG. 28A and FIG. 28B, in the liquid crystal display device 600, the thickness of the liquid crystal layer 30 is determined by adjusting the position of the azimuth structure 28 relative to the image element electrode. The area is near the center of the region 14a. The provided protrusions are defined by 2 2 daggers. The advantage of this type of alignment is that there is no need to separately provide a pad to define the thickness of the liquid crystal layer 30, and thus the manufacturing process can be simplified. In the illustrative example, the protruding portion 22b has a truncated conical shape including a side surface 22bl as shown in FIG. 28B, where the side surface is less than 90 from the substrate surface of the substrate 21b. Acute angle ㊀ tilted. When the side surface 22M and the substrate surface are less than 90. 86289 -60-200410026 When the angle is inclined, the side surface 22b 1 of the protruding portion 22b has an adjustment azimuth force in the same direction as the adjustment azimuth force applied by the inclined electric field of the liquid crystal molecules 3 0 a for the liquid crystal layer ^ 〇 To stabilize the radial tilt. As schematically illustrated in Figs. 29A to 29C, even with the liquid crystal display device 600 having the laughing portion 22b as a pad, a radial tilt orientation can be obtained as well as the liquid crystal display devices 300 and 400. Although the protruding portion 22b has a side surface 22b 1 inclined at an angle of less than 90 degrees from the substrate surface in the example of Fig. 28B, the protruding portion 22b may additionally have an angle of 90 ° or more from the substrate surface. Angle inclined slope 22M. For the stability of the radial tilting azimuth, it is preferable that the tilting angle of the side surface 22bl does not substantially exceed 9 0 ′. It is better to say that the tilting angle can be less than 9 q. . Even if the tilt angle exceeds 90 °. , As long as the angle is close to 90. (As long as the angle does not substantially exceed 90.), the liquid crystal molecules 30a adjacent to the side surface 22bl of the cry 22b will still be tilted in a direction substantially parallel to the substrate, so the The radial direction of the tilt is uniform, and only slightly twisted. However, if the tilt angle of the side surface 22bl of the protruding Shao 22b is substantially more than 90 as shown in the figure, the side surface 221 of the Shao 22b will have the adjustment orientation applied by the tilted electric field of the liquid crystal molecules 30a for the liquid crystal layer 30 The force is opposite to the normal azimuth force, so the radial tilt orientation may be unstable. The projection 22b also used as a gasket is not limited to a projection having a truncated cone shape, as shown in Figs. 28A and 28B. For example, the protrusion 2 may have a shape as shown in FIG. 31, so that a cross section on a plane perpendicular to the substrate surface will show a part of an ellipse (that is, a part like a sphere like an ellipse) shape). In the protruding portion 22b as shown in FIG. 31, when the inclination angle (tapered angle) of the side 86289 -61-200410026 surface 22bl and the substrate surface changes along the thickness of the liquid crystal layer 30, whether or not along the liquid crystal layer The thickness of 30 and the angle of inclination of the side surface 22b i will be less than 90 °. Therefore, the protruding portion 22b having such a shape can be suitably used as a protruding portion that stabilizes the radial inclined orientation. The protrusions 2 2 b as described above, which are in contact with the upper and lower substrates (TFT substrates and counter substrates) and are also used as a liner to define the thickness of the liquid layer j 0, may be used in the process of manufacturing a liquid crystal display device. It is formed on the upper substrate or the lower substrate. Once the upper and lower substrates are attached to each other, whether it is formed on the upper or lower substrate, the protruding handle 22b will be in contact with the two substrates and used as a lining and orientation adjustment structure. Not all of the protrusions 22b provided in the area opposite to the unit solid portion 14a are used as pads. By forming some protrusions 22b having a height lower than that of other crying out 22b as a pad, the occurrence of light leakage can be suppressed. 32, 33, and 34 illustrate other liquid crystal display devices 600A, 600B, and 600C including an orientation adjustment structure, respectively. Each of the liquid crystal display devices 600A, 600B, and 600C shown in FIG. 32, FIG. 33, and FIG. 34 includes a protrusion 22b as an azimuth adjustment structure in an area of the unit solid portion 14a with respect to the image element electrode 14 . In the liquid crystal display device 600A of FIG. 32, each of the unit body portions 14a located on the storage capacitor line ^ is slightly smaller than the other unit solid portions 14a. In the liquid crystal display device 600B of FIG. 33, each of the unit body portions 14a located on the storage capacitor green 4J is slightly larger than the other unit body portions 1 * a by a point. The plurality of unit solid portions 14a of the image element electrode 14 need not have the same size in the long-term image element region. Because the liquid crystal domains formed in the ^ 6289 -62-2U0410026 unit solid part on the opaque element! 4a make the storage capacitor line 4 any contribution to the display in the transmission type liquid crystal display device, it is not a transmission type / night crystal display device 'therefore It is not necessary to produce a radial tilted orientation of the unit paste on the opaque element, and the shape and / or size of this unit paste may be different from other unit solid parts. In the liquid crystal display device 6⑽c shown in FIG. 34, the portion 14a of each cell Λ on the storage capacitor 7 has a barrel-like shape (having a rectangular shape with a corner like a melon-shaped corner). At the same time, the other unit solid part 14a: has a general star shape. Although the above shows some examples of the unit solid portion 14a located on the storage capacitor line 43, the proportion of the area for display can be increased relative to the total area of the image element area, and by using the area on the opaque element Alignment of the stored electric passenger line 43 as much as possible by the open area 15 improves brightness. The arrangement of the calender plate and the phase plate is called a "vertical alignment type liquid crystal display device" (which includes a liquid crystal layer. When no voltage is applied, the liquid crystal molecules with negative dielectric anisotropy in the liquid crystal layer are vertical. (Alignment) can display images in various display modes. For example, in addition to the birefringence mode (in this wedge type, the birefringence of the liquid crystal layer is controlled by an electric field in order to display an image), the vertical alignment type liquid crystal display device can also be used in an optical rotation mode, or It is used in the combined display mode of optical rotation mode and birefringence mode. By providing a pair of polarizing plates on the outside of the pair of substrates (such as the TFT substrate and the counter substrate) (the side away from the liquid crystal layer 30) of any of the above-mentioned liquid crystal display devices, a birefringent mode can be obtained. Liquid crystal display device. Furthermore, if necessary, 86289 -63-200410026 can be equipped with a phase difference compensator (usually a phase plate). Furthermore, a high-brightness liquid crystal display device can be obtained by general circularly polarized light. According to the present invention, a liquid crystal domain having a radial inclined orientation can be formed stably with high continuity. Therefore, the display quality of a conventional liquid crystal display device having a wide viewing angle characteristic can be further improved. In addition, in each image element area, a plurality of unit solid parts are arranged in a row in the first pre-footing direction, so the area ratio of the body mass in the image element area can be increased, thereby improving the aperture ratio. Furthermore, the second member orientation, which is different from the first predetermined direction aligned with the elementary entity Shao Fen, is that the image elements adjacent to each other in this direction are driven by a voltage opposite to the polarity of each frame. Therefore, it is possible to 'generate a “slope electric field with a steep hill-shaft potential slope” between the image elements connected to each other in the second predetermined direction. Therefore,' even if a short internal electrode distance and a high hole ratio are used, Alignment, it is still possible to form a sufficiently stable radial tilt orientation. As mentioned above, the liquid crystal display device provided by the present invention has wide viewing angle characteristics, high display quality and high aperture ratio, and can produce bright display. The present invention will be described with preferred specific embodiments, however, those skilled in the art will understand that the disclosure herein can be performed in various ways, and it can be assumed that specific embodiments other than those explicitly mentioned and described above can be assumed. Various specific embodiments other than this. Therefore, the application of this application is as follows: The scope of the attached application patent covers all the modifications belonging to the true essence of the present invention: [2] [Simple illustration of the drawing] 86289 -64- 200410026 FIG. 1A and FIG. 1B schematically show an image element region structure of a liquid crystal display device 100 according to a specific embodiment 1 of the present invention, in which FIG. 1A is a plan view and FIG. 1B It is a cross-sectional view taken along line 1B _ 丨 B f in FIG. 1A. FIG. 2 schematically shows a state in which different electrode voltages are applied to adjacent image element regions in the column direction of the liquid crystal display device 〇〇. FIG. 3 A and FIG. 3B schematically shows the liquid crystal layer 30 of the liquid crystal display device 100 after the voltage is applied, wherein FIG. 3A is a schematic diagram of a state immediately after the orientation is changed (initial ON-like complaint), and FIG. 3B is a schematic diagram of a steady state. Figure 4D is a schematic diagram showing the relationship between the power lines of various systems and the orientation of liquid crystal molecules. Figures 5A to 5C schematically show the orientation of liquid crystal molecules when the liquid crystal display device is viewed from the direction of the substrate normal. Figures 6A to 6C An exemplary radial tilt orientation of liquid crystal molecules is schematically shown. FIGS. 7A and 7B are plan views schematically illustrating other liquid crystal display devices 100A and 1 according to Embodiment 1 of the present invention. FIGS. 8A and 8B are plan views schematically illustrating Other liquid crystal display devices 100C and 100d according to Embodiment 1 of the present invention. Fig. 9 is a plan view schematically illustrating another liquid crystal display device 100E woven according to the embodiment of the present invention. The drawing is-flat A plan view schematically illustrates another liquid crystal display device 100E according to a specific embodiment i of the present invention. FIG. 11 is a plan view and FIG. 12 is a plan view of an image element electrode of a crystal display device. 1 丨 'Ririlai 7J7 package:' Overview Description of a specific implementation according to the present invention ^ 6289 -65-200410026 Fig. 13A schematically shows an equipotential line EQ generated when the same electrode voltage is applied to two image element regions adjacent to each other in a column direction. Fig. 1 3B Schematic head The equipotential lines EQ generated when different electrode voltages are applied to two adjacent image element regions adjacent to each other in a column direction are shown in FIGS. 14A, 14B and 14C. Driving method. FIG. 15 is a plan view schematically showing another liquid crystal display device 100F according to a specific embodiment of the present invention. 16A and 16B schematically show an image element region structure of a liquid crystal display device 200 according to a specific embodiment 2 of the present invention, in which FIG. 16A is a plan view, and FIG. 16B is a cross section taken along line 16B-16B of FIG. 16A. Illustration. The relationship between the orientation of the liquid crystal molecules 30a and the surface structure with vertical alignment is shown in Fig. 17A and Fig. 17D. 18A and 18B show a liquid crystal layer 30 of the liquid crystal display device 2000 when a voltage is applied, in which FIG. 18A is a schematic diagram of a state immediately after an orientation is changed (initial ON state), and FIG. 18B is a schematic diagram of a steady state . 19A to 19C are schematic cross-sectional views of liquid crystal display devices 200A, 200B, and 200C of Embodiment 2 respectively, and each of the drawings has a different positional relationship between an opening and a protruding portion. FIG. 20 is a schematic cross-sectional view of a liquid crystal display device 2 0 0 along a line 20 A-2 0 A ′ of FIG. 16 A. 21A and 21B schematically show an image element region structure of the liquid crystal display device 200d, in which FIG. 21A is a plan view, and FIG. 21B is a cross-sectional view taken along line 21B-21B · of FIG. 21A . 86289 -66-200410026 Figs. 22A to 22E schematically illustrate 300b. 〇Inverted substrate including azimuth adjustment structure 28. Figs. 23A and 23B schematically show the structure of the image element region of the liquid crystal display device 300 according to the third embodiment of the present invention. 2 is a plan view, and FIG. 23B is a cross-sectional view taken along line 23B-23B of FIG. 23A. 24A to 24C are schematic cross-sectional views of one of the image element regions of the liquid crystal display device 300, in which the system shown in FIG. 24A does not have the «applied voltage, and the orientation of the system shown in FIG. 24 when the orientation of the system has just started to change State (initial ON state), and the state shown in FIG. 24C is a stable state. FIG. 25A and FIG. 25B each show an image element region structure of another liquid crystal display device 400 according to Embodiment 3 of the present invention, wherein FIG. Μ is a plan view, and FIG. 25B is a line 25b_25B along FIG. 2SA. Section view. FIGS. 26A to 26C are schematic cross-sectional views of one of the image element regions of the liquid crystal display device 400, where the system shown in FIG. 26A does not have a state of applied voltage, and the orientation of the system shown in FIG. 2B has just begun to change. Time (initial ON state), and the state shown in FIG. 26C is a steady state. 27A to 27C are schematic cross-sectional views of one image element region of another liquid crystal display device 500 according to Embodiment 3 of the present invention, in which the state shown in FIG. 27A does not have a voltage applied, and FIG. 27B shows The state at the time when the orientation of the system is initially changed (initial ON state), and the system shown in FIG. 27C is a stable state. Figs. 28A and 28B schematically show a liquid crystal display device 600 including a projection used as a pad, of which Fig. 28 is a plan view, and Fig. 28b is a sectional view taken along line 288-288 of Fig. 28. 86289 -67- 200410026 Figs. 29A to 29C J ^ ^, ", one of the image element areas of the sun-dial display device 600 is a schematic cross-sectional view, in which the state of Fig. 29, and # 打 _ shown in Fig. 29B do not exist The state with the force application voltage at the beginning of the change (initial 0 N-like grievances), and what is not shown in Figure 29C is a steady state. FIG. 30 is a cross-sectional view, and the outline of the male and female 3 jl ancients each has a protrusion on one surface, and the inclination angle thereof is substantially more than 90 with respect to the substrate. . Figure 31 is a cross-sectional view, which outlines that each Yuetian field uses different protrusions for Russian mats. Fig. 3 is a plan view of a liquid crystal display device 600A according to the embodiment of the present invention; FIG. 33 is a plan view for explaining the third embodiment, and schematically illustrates a liquid crystal display device 600B according to the present invention. FIG. 34 is a plan view of Embodiment 3 of the present invention, and schematically illustrates another liquid crystal display device 600C. [Illustration of Representative Symbols] 11 substrate 14 image element electrode 15 open area 21 glass substrate 22 counter electrode 23 dielectric layer 24 vertical alignment film 25 horizontal alignment film 26 horizontal alignment film 28 structure for adjusting orientation 86289 -68 -200410026 30 Liquid crystal layer 40 Projection 41 Gate bus line 42 Source bus line 43 Storage capacitor line 100 LCD display device 200 LCD display device 300 LCD display device 400 LCD display device 500 LCD display device 600 LCD display Device 1000 liquid crystal display device 100A liquid crystal display device 100a TFT substrate 100B liquid crystal display device 100b reverse substrate 100C liquid crystal display device 100D liquid crystal display TF device 100E liquid crystal display device 100F liquid crystal display device 14a unit solid part 200a TFT substrate 200A liquid crystal display 200B LCD display device 86289 -69-200410026 200C LCD display device 200D LCD display device 22a opening 22b protrusion 23a opening 300b reverse substrate 30a liquid crystal molecule 40A protrusion 40B protrusion 40C protrusion 40D protrusion 40s side surface 40t Top 600A LCD display device 600B LCD display device 600C LCD display device D1 row direction D2 歹 1J direction PI element area P2 element area P3 element area EQ equipotential line EG edge portion SA center IB line IB 'line 86289 -70-

Claims (1)

200410026 拾、申請專利範圍: 1. 一種液晶顯示裝置,包括: 一第一基板; 一弟—基板,以及 一液晶層,位於該第一基板和該第二基板之間,其 中·· 複數個圖像元件區,各由位在接近該液晶層的第一基 板某一側上的第一電極以及位在第二基板上透過居間 的液晶層與該第一電極相對的第二電極所定義; 該第一電極包括,在該複數個圖像元件區的每一區内 ,複數個以第一方向設置的單元實體部份,藉此該液晶 層在該第一電極和該第二電極之間未存在有施加電壓 時採取垂直對準,並藉由在複數個單元實體部份周圍產 生的傾斜電場而在第一電極的複數個單元實體部份中 形成複數個液晶域,以回應在第一電極和第二電極之間 施加的電壓,該複數個液晶域之每一個都採取放射狀傾 斜方位; 該複數個圖像元件區被設置成一矩陣圖案,該圖案包 括以不同於炫第一方向的第二方向延伸的複數個列,以 及以該第一方向延伸的複數個行;以及 施加在該複數個圖像元件區中第一圖像元件區液晶 層上的電壓極性,不同於施加在該複數個圖像元件區中 第一圖像兀件區液晶層上的電壓極性,該第二圖像元件 區在每一圖框中與第—圖像元件區屬於同一列,並屬於 86289.DOC 鄭近第一圖像元件區所屬行的一行 2·如申請專利範圍第1項之浚曰% 一# 傻“丰r 如裝置,其中複數個圖 像兀件£中母一區的形狀,並产 "長度万向由第_方向定羞 ,而寬度方向由第二方向定義。 3 如申請專利範圍第丨項之液日 H ! 〜不衣置,其中施加在屬 於複數個圖像元件區並φ — y 、、 〃中一仃的複數個圖像元件區中 的液晶層的電壓極性,在每 社母圖框中,每η列(其中:^為工 或以上的整數)反轉一次。 4.如申請專利範圍第1項之液晶顯示裝置,其中施加在第 -圖像S件區液晶層上的電I極性,不同於施加在第三 圖:象元件區的電壓極性’第三圖像元件區在每一圖框中 與弟-圖像元件區屬於相同的行,且屬於鄰近第—圖像 元件區所屬列的一列。 5·如申请專利職第}项之液晶顯示裝置,其中每—個複 數個單元實體部份的形狀都具有旋轉對稱。 6·如申請專利範圍第5项之液晶顯示裝置,其中每—個複 數個單元實體部份都具有一般圓形的形狀。 如申明專利範圍第5項之液晶顯示裝置,其中每—個複 數個單元實體部份都具有帶有一般弧形隅角部份的一 般矩形的形狀。 8·如申請專利範圍第5項之液晶顯示裝置,其中每—個複 數個單70實體邵份都具有帶有銳角隅角的形狀。 9·如申請專利範圍第丨項之液晶顯示裝置,其中該第二基 86289.DOC -2 - 200410026 板包括,在對應到至少複數個液晶域之一的區域中,— 施加調整方位力的調整方位結構,至少在存在有施加電 壓時’用於使至少一液晶域中的液晶分子朝向放射狀傾 斜的方位。 ' 10. 如申請專利範圍第9項之液晶顯示裝置,其中鄰近至少 一液晶域中心的區域中提供有調整方位結構。 11. 如申請專利範圍第9項之液晶顯示裝置,其中調整方位 結構施加調整方位的力,用於使液晶分子即使在未存在 有施加電壓時仍能朝向放射狀傾斜方位。 12. 如申請專利範圍第11項之液晶顯示裝置,其中該調整方 位結構是從第二基板突出至液晶層的一第一突出部。 .如申μ專利範圍弟12項之液晶顯示裝置,其中該液晶層 的厚度由從第二基板突出至液晶層的第一突出部所定 義。 14. 如申請專利範圍第1項之液晶顯示裝置,其中: 該第一基板包括複數個不與第一電極重疊的開放區 ;以及 ‘在弟一電極和弟二電極間施加一電壓時,液晶層在 傾斜電場旁的複數個開放區中形成複數個额外的液晶 域,每一個額外的液晶域都採取放射狀傾斜方位。 15. 如申請專利範圍第14項之液晶顯示裝置,其中至少一些 複數個開放區實質上具有相同的形狀和實質上相同的 大小,因此形成對準為具有旋轉對稱的複數個單元晶 格0 16.200410026 如申叫專利範圍第丨5項之液晶顯示裝置,其中至少一些 複潋個開放區的每一個的形狀都具有旋轉對稱。 18. 如申明專利範圍第丨5項之液晶顯示裝置,其中至少一些 I數個開放區的每一個都具有一般圓形的形狀。 如申凊專利範圍第14項之液晶顯示裝置,進一步包括一 第一大出邙,位於第一基板的每一個複數個開放區内, 其中該哭出邵的側表面,針對液晶層的液晶分子施加與 傾斜電%旁的方位調整方向相同的調整方位力。 19.如申請專利範圍第1項之液晶顯示裝置,其中·· 該第-基板進-纟包括複數個轉換元#,分別提供給 複數個圖像元件區;以及 該第一電極包括複數個圖像元件電極,分別提供給複 數個圖像元件區,並分別由轉換元件轉換,且該第二電 極至少是一與複數個w像元件f極相反的反t極。% ^6289200410026 Patent application scope: 1. A liquid crystal display device, including: a first substrate; a brother-substrate, and a liquid crystal layer, located between the first substrate and the second substrate, where a plurality of pictures The image element regions are each defined by a first electrode located on one side of the first substrate near the liquid crystal layer and a second electrode located on the second substrate opposite to the first electrode through the intervening liquid crystal layer; the The first electrode includes, in each of the plurality of image element regions, a plurality of unit solid portions arranged in a first direction, whereby the liquid crystal layer is not disposed between the first electrode and the second electrode. When there is applied voltage, vertical alignment is adopted, and a plurality of liquid crystal domains are formed in the plurality of unit solid portions of the first electrode by the inclined electric field generated around the plurality of unit solid portions in response to the first electrode. A voltage applied between the first electrode and the second electrode, each of the plurality of liquid crystal domains adopts a radial inclined orientation; the plurality of image element regions are arranged in a matrix pattern, and the pattern includes Including a plurality of columns extending in a second direction different from the first direction, and a plurality of rows extending in the first direction; and applied to the first image element region liquid crystal layer in the plurality of image element regions The polarity of the voltage is different from the polarity of the voltage applied to the liquid crystal layer of the first image element region of the plurality of image element regions. The second image element region is the same as the first image element region in each frame. Belongs to the same column and belongs to a row of 86289.DOC Zheng Jin's first image element area. 2. As described in the scope of the patent application No. 1 %% # Silly "Feng r" such as a device, in which a plurality of image elements The shape of the middle mother's first area, and the length and length direction is determined by the _ direction, and the width direction is defined by the second direction. 3 As for the liquid day H of the patent application item 丨 H ~ ~ clothing, where The polarity of the voltage applied to the liquid crystal layer in the plurality of image element regions belonging to the plurality of image element regions and φ — y,, 仃 is in each η column (where: ^ is Integer or more). 4. If applying for special In the liquid crystal display device of the range item 1, the polarity of the electric I applied to the liquid crystal layer of the first image element region is different from that of the third image: the voltage polarity of the image element region. A picture frame belongs to the same row as the brother-image element area, and belongs to a column adjacent to the column belonging to the-image element area. 5. If a liquid crystal display device according to item} of the patent application, each of which is plural The shape of the unit solid part has a rotational symmetry. 6. If the liquid crystal display device of the fifth item of the patent application, each of the plurality of unit solid parts has a generally circular shape. For example, the fifth item of the patent scope is declared. In the liquid crystal display device, each of the plurality of unit solid portions has a generally rectangular shape with a generally curved corner portion. 8. The liquid crystal display device according to item 5 of the scope of patent application, wherein each of the plurality of individual 70 physical parts has a shape with an acute angle. 9. The liquid crystal display device according to item 丨 of the patent application range, wherein the second base 86289.DOC -2-200410026 includes, in an area corresponding to at least one of the plurality of liquid crystal domains,-applying adjustment for adjusting the azimuth force The azimuth structure is used to at least align the liquid crystal molecules in the at least one liquid crystal domain toward a radial inclined orientation at least when there is an applied voltage. '10. The liquid crystal display device according to item 9 of the patent application, wherein an azimuth adjusting structure is provided in a region adjacent to the center of at least one liquid crystal domain. 11. The liquid crystal display device according to item 9 of the patent application, wherein the azimuth adjusting structure applies a force for azimuth adjustment so that the liquid crystal molecules can tilt toward a radial direction even when no applied voltage is present. 12. The liquid crystal display device according to item 11 of the application, wherein the adjustment orientation structure is a first protruding portion protruding from the second substrate to the liquid crystal layer. The liquid crystal display device according to claim 12, wherein the thickness of the liquid crystal layer is defined by the first protruding portion protruding from the second substrate to the liquid crystal layer. 14. The liquid crystal display device according to item 1 of the patent application scope, wherein: the first substrate includes a plurality of open areas that do not overlap with the first electrode; and 'the liquid crystal is applied when a voltage is applied between the first electrode and the second electrode. The layer forms a plurality of additional liquid crystal domains in a plurality of open regions next to the inclined electric field, and each additional liquid crystal domain adopts a radial inclined orientation. 15. For the liquid crystal display device of the scope of application for patent No. 14, at least some of the plurality of open areas have substantially the same shape and substantially the same size, so a plurality of unit lattices aligned to have rotational symmetry are formed. 16.200410026 For example, the application claims a liquid crystal display device of item 5 of the patent, in which the shape of each of at least some of the plurality of open areas has rotational symmetry. 18. The liquid crystal display device according to claim 5 of the patent, wherein each of the at least some of the plurality of open areas has a generally circular shape. For example, the liquid crystal display device of claim 14 of the patent scope further includes a first large output, which is located in each of the plurality of open areas of the first substrate. An azimuth adjustment force in the same direction as the azimuth adjustment direction next to the tilt electric% is applied. 19. The liquid crystal display device according to item 1 of the patent application scope, wherein the first substrate includes a plurality of conversion elements # provided to a plurality of image element regions, and the first electrode includes a plurality of images. The image element electrodes are respectively provided to a plurality of image element regions and are respectively converted by the conversion element, and the second electrode is at least an inverse t pole opposite to the f poles of the plurality of w image elements. % ^ 6289
TW092117124A 2002-06-24 2003-06-24 Liquid crystal display device TWI275886B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183427A JP4030362B2 (en) 2002-06-24 2002-06-24 Liquid crystal display

Publications (2)

Publication Number Publication Date
TW200410026A true TW200410026A (en) 2004-06-16
TWI275886B TWI275886B (en) 2007-03-11

Family

ID=31179651

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092117124A TWI275886B (en) 2002-06-24 2003-06-24 Liquid crystal display device

Country Status (4)

Country Link
JP (1) JP4030362B2 (en)
KR (1) KR100507586B1 (en)
CN (1) CN1239951C (en)
TW (1) TWI275886B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091229A (en) * 2004-09-22 2006-04-06 Sharp Corp Liquid crystal display
JP4604645B2 (en) * 2004-10-22 2011-01-05 セイコーエプソン株式会社 Liquid crystal display device and electronic device
JP2007133054A (en) * 2005-11-09 2007-05-31 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
KR101430610B1 (en) * 2006-09-18 2014-09-23 삼성디스플레이 주식회사 Liquid crystal display panel and method for manufacturing the same.
JP2011215480A (en) * 2010-04-01 2011-10-27 Stanley Electric Co Ltd Liquid crystal display device
KR102132778B1 (en) * 2013-10-25 2020-07-13 삼성디스플레이 주식회사 Liquid crystal display device
KR102129569B1 (en) * 2013-11-26 2020-07-03 삼성디스플레이 주식회사 Liquid crystal display device

Also Published As

Publication number Publication date
JP2004029241A (en) 2004-01-29
CN1239951C (en) 2006-02-01
JP4030362B2 (en) 2008-01-09
CN1477428A (en) 2004-02-25
KR20040000344A (en) 2004-01-03
TWI275886B (en) 2007-03-11
KR100507586B1 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
TWI232330B (en) Liquid crystal display device
TWI258617B (en) Liquid crystal display device
TW573194B (en) Liquid crystal display device
US7292300B2 (en) Liquid crystal display with radially-inclined liquid crystal in unit solid portions arranged in a single direction
TW200537179A (en) Liquid crystal display device
TWI307425B (en) Liquid crystal display device
TWI437331B (en) Liquid crystal display device
JP2002122886A (en) Liquid crystal display device and its defect correcting method
JP4056314B2 (en) Liquid crystal display
JP2003228073A (en) Liquid crystal display device
JP3642488B2 (en) Liquid crystal display
TW200410026A (en) Liquid crystal display device
JP4347144B2 (en) Liquid crystal display
JP4111929B2 (en) Liquid crystal display
US20100149474A1 (en) Liquid crystal display device
JP5890650B2 (en) Liquid crystal display element
JP2005227464A (en) Liquid crystal display device
JP4215562B2 (en) Liquid crystal display
JP2008003372A (en) Liquid crystal display device
JP4275049B2 (en) Liquid crystal display
JP4703145B2 (en) Liquid crystal display
JP4212410B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees