TR2023010350A2 - INNOVATIVE, STABLE MICROBIAL PESTICIDE OIL DISPERSION (OD) FORMULATION - Google Patents

INNOVATIVE, STABLE MICROBIAL PESTICIDE OIL DISPERSION (OD) FORMULATION

Info

Publication number
TR2023010350A2
TR2023010350A2 TR2023/010350 TR2023010350A2 TR 2023010350 A2 TR2023010350 A2 TR 2023010350A2 TR 2023/010350 TR2023/010350 TR 2023/010350 TR 2023010350 A2 TR2023010350 A2 TR 2023010350A2
Authority
TR
Turkey
Prior art keywords
oil
formulation
viscosity
homogenization
added
Prior art date
Application number
TR2023/010350
Other languages
Turkish (tr)
Inventor
Guven İlker
Original Assignee
Agri̇kem Zi̇raat İlaçlari Endüstri̇ Ürünleri̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Filing date
Publication date
Application filed by Agri̇kem Zi̇raat İlaçlari Endüstri̇ Ürünleri̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Agri̇kem Zi̇raat İlaçlari Endüstri̇ Ürünleri̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Publication of TR2023010350A2 publication Critical patent/TR2023010350A2/en

Links

Abstract

Mevcut buluş, tarım ve halk sağlığı sektörlerinde kullanılmak üzere geliştirilen yeni bir mikrobiyal pestisit formülasyonunu ve üretim yöntemini içermektedir. Bu yenilikçi formülasyon, tarım ürünlerini zararlı organizmalara karşı korumak amacıyla etkili bir biyolojik mücadele yöntemi sunmaktadır. Geleneksel pestisitlerin çevresel etkileri göz önünde bulundurulduğunda, mevcut buluşun ana hedefi çevre dostu ve sürdürülebilir tarım uygulamalarını teşvik etmenin yanı sıra zararlı böceklere spesifik ve doğal düşmanlarının güvenliğini sağlamaktır. En az bir mikrobiyal aktif bileşen: Pestisit etkisini sağlayan mikroorganizmalar veya toksinleri içerir. Dispersanlar: Pestisit partiküllerinin homojen dağılmasını sağlayan maddeler. Kil bazlı reolojik katkı maddesi: Formülasyonun stabilitesini artıran ve viskozitesini kontrol eden madde. Selüloz türevi reolojik katkı maddesi: Formülasyonun fiziksel stabilitesini artıran ve dağılımını sağlayan madde. Emülsifiye edici ajanlar Sıvı fazın içindeki yağ damlacıklarının dağılmasını kolaylaştıran maddeler. Formülasyonun hazırlanması: Mikrobiyal pestisitler, dispersanlar, kil bazlı ve selüloz türevi reolojik katkı maddeleri, emülsifiye edici ajanlar gibi bileşenler belirli oranlarda karıştırılır. Homojenleştirme: Karışım homojen bir yapıya kavuşana kadar karıştırılır, yüksek hızlı değirmenler kullanılabilir. Surfactant Eklenmesi: Polimerik surfaktanlar, yağda çözünen yüzey aktif maddeler olarak eklenir ve karışım emülsiyon haline getirilir. Viskozite Arttırıcıların Eklenmesi: Füme silikalar ve agrimel BG4 vizkozite ajanları eklenir, viskozite arttırılır ve karışım homojen hale getirilir. Elde edilen formülasyon, mikrobiyal pestisitlerin etkili bir şekilde stabil bir formülasyonudur.The present invention involves a new microbial pesticide formulation and production method developed for use in the agricultural and public health sectors. This innovative formulation offers an effective biological control method to protect agricultural products against harmful organisms. Considering the environmental impacts of conventional pesticides, the main goal of the present invention is to promote environmentally friendly and sustainable agricultural practices, as well as to ensure the safety of specific and natural enemies of pests. At least one microbial active ingredient: Contains microorganisms or toxins that provide the pesticide effect. Dispersants: Substances that ensure homogeneous distribution of pesticide particles. Clay-based rheological additive: Substance that increases the stability of the formulation and controls its viscosity. Cellulose derived rheological additive: Substance that increases the physical stability of the formulation and ensures its dispersion. Emulsifying agents Substances that facilitate the dispersion of oil droplets in the liquid phase. Preparation of the formulation: Components such as microbial pesticides, dispersants, clay-based and cellulose-derived rheological additives, and emulsifying agents are mixed in certain proportions. Homogenization: The mixture is mixed until it reaches a homogeneous structure, high speed mills can be used. Surfactant Addition: Polymeric surfactants are added as oil-soluble surfactants and the mixture is emulsified. Addition of Viscosity Enhancers: Fumed silicas and agrimel BG4 viscosity agents are added, viscosity is increased and the mixture is made homogeneous. The resulting formulation is an effectively stable formulation of microbial pesticides.

Description

TARIFNAME YENILIKÇI, STABIL MIKROBIYAL PESTISIT OIL DISPERSIYON (0D) FORMULASYONU Teknik Alan Bulus, tarim ve halk sagligi sektöründe insektisit olarak kullanilan Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. Israelensis, Bacillus thuringiensis subsp. Kurstaki ve Bacillus thuringiensis subsp. tenebrionis mikroorganizmalarin tüm suslarinin biri ve/veya toksinleri, proteinleri, sporlari, generatif formu, vejetatif formu, lizojenik formu, litik formu, biomasini ve sekonder metobolitlerinin karisimlarini içeren, Ayçiçek Yagi, Susam Yagi, Pamuk Tohumu Yagi, Soya Yagi, Üzüm Çekirdegi Yagi, Ketentohumu Yagi, Kanola Yagi, Hardal Tohumu Yagi, Ceviz Yagi, Findik Yagi, Badem Yagi, Aspir Yagi, Misirözü Yagi, Kabak Çekirdegi Yagi, Keten Tohumu Yagi, Çörekotu Yagi, Susamotu Yagi, Quinoa Yagi, Chia Tohumu Yagi, Kanarya Çimeni Yagi ve Palm Yag, teker teker ve/veya karisimlari ile ticari olarak satilan harmanlanmis emülgatörler, adjuvanlar ve yüzey aktif maddeler yardimi ile yagda dagilabilen (Oil Dispersion) OD fomülasyonu ve üretim yöntemi ile ilgilidir. Teknigin Bilinen Durumu belirtilen mikroorganizmalarin biri ve/veya karisimlari kullanilarak islanabilir toz (wettable powder) WP, suda dagilabilen granül (water dispersible granules) WG, akici konsantre/süspansiyon konsantre (suspension concentrate) SC, ve suda çözünen konsantre (soluble concentrate) formülasyonlarinda bir çok ticari ürün vardir. FakatYagda dagilabilen (oil dispersion) OD fomülasyon tipinde teknik alanda bahsedilen mikrobiyal pestisitlerin yapilamadigi için olmadigi bilinmektedir. Oysaki OD teknolojisi, gelismis çevre dostu bir teknolojidir. Yaprak yüzeyine yapisma ve yayilma, yaprak dokularina nüfuz etme ve yayilma özelliklerini gelistirerek, yikanmayi ve buharlasmayi azaltir, aktif bilesenlerin stabilitesini ve etkinligini artirir. Yapraga tutunmayi ve yayilma alanini arttirir. Kaplama yüzey alanini arttirmasi, yagmurla yikanmaya karsi direnci arttirmasi, böcek yumurtalarinin hava ile temasini kesmesi, bitki bünyesine geçis ve yaprak dokulari içinde yayilma hizini artirmasi, yagmurdan ve günes isigindan daha az etkilendigi için uzun süreli etki sagladigi için teknigin bilinen durumunu asmaktadir. 0D formülasyonu sahip oldugu ileri teknoloji ve teknik bilgi gereksinimi nedeniyle son derece kompleks prosesler sonucunda meydana gelebilmektedir. Çesitli tarim kimyasallarinin verimli bir sekilde uygulanabilmesi için çesitli formulasyonlar gelistirilmistir. Bu formulasyonlar arasinda Oil Dispersion (OD) formulasyonlari, sivi pestisit ürünlerin tasiyici yag içinde dagitildigi bir tür formulasyon olarak yer almaktadir. OD formulasyonlari, uygulama sirasinda bitki yüzeyine yapisarak etkili bir sekilde emilir ve pestisit aktif bileseninin bitkide yayilmasini saglar. Ancak, OD formulasyonlarinin gelistirilmesi ve optimize edilmesi sirasinda bazi zorluklar ve teknik problemlerle karsilasilmaktadir. Bu zorluklar, formulasyonun etkinligi, stabilitesi ve çevresel uygunlugu üzerinde olumsuz etkiler yaratabilir. Bu zorluklar ve problemler asagida özetlenmistir: Emülsifikasyon ve Stabilite: Pestisit aktif maddesini tasiyan yagin su ile karismasi gerekmektedir. Emülsifikasyon sürecinin dogru bir sekilde gerçeklestirilmemesi veya stabil olmayan emülsiyonlarin olusmasi, formulasyonun etkinligini ve depolama stabilitesini olumsuz etkileyebilir. Viskozite Kontrolü: Formulasyonun viskozitesi, püskürtme sirasinda dogru dagilimin saglanmasi için önemlidir. Fazla yüksek viskozite, püskürtme sistemlerinde tikanmalara veya düzensiz uygulamalara neden olabilirken, düsük viskozite ise ürünün bitki yüzeyine yapismasini ve kaliciligini azaltabilir. Yüzey Aktif Madde Seçimi: Emülsifikasyon ve dagitim için uygun yüzey aktif maddelerin seçimi önemlidir. Yanlis yüzey aktif madde seçimi, formulasyonun kararliligini ve etkinligini olumsuz etkileyebilir. Kalicilik ve Yikama Etkisi: Formulasyonun bitki yüzeyinde kaliciligini saglamak ve yagmurlama sonrasi yikanmayi engellemek, formulasyonun etkinligini artirmak için önemlidir. Bu, dogru yüzey aktif maddelerin ve stabilizasyon yöntemlerinin seçilmesini gerektirir. Çevresel Etkiler ve Toksisite: Formulasyonun insan sagligina ve çevreye olan etkileri dikkate alinmalidir. Aktif bilesenin uygun seviyelerde kullanilmasi ve çevresel zarari en aza indirmek için gereken önlemler alinmalidir. Uygulama Kolayligi: Formülasyonun uygulama ekipmanlarina uygunlugu ve kullanim kolayligi önemlidir. Asiri viskozite veya düsük stabilite, püskürtme sistemlerini etkileyebilir ve kullanimi zorlastirabilir. Uyum ve Regülasyonlar: Formülasyonun yerel ve ulusal düzenlemelere uygun olmasi gerekmektedir. Belirli pestisit veya yüzey aktif maddeler, bazi bölgelerde kullanim Bu nedenle, OD formulasyonlarinin gelistirilmesi sirasinda yukarida belirtilen zorluklarin dikkate alinmasi ve bunlarin üstesinden gelmek için uygun yöntemlerin kullanilmasi önemlidir. Bununla birlikte, OD formülasyonlarinin hazirlanmasinda karsilasilan diger önemli teknik zorluk, bu ürünlerin piyasa uygulamalarina uygun olarak en az 2 yil boyunca raf stabilitesini saglamalari gereken bir durumdur. Bu süreçte, özellikle odaklanilmasi gereken ana sorunlar, ürünün ambalajinin üst kisminda meydana gelen yag fazinin ayrilmasi ve bu ürünlerin raf ömrünü olumsuz etkileyen Aktif Ingrediye (AI) ait maddelerin çökelmesidir. Bu zorluklar, OD formülasyonlarinin gelistirilmesi ve optimize edilmesi asamalarinda dikkate alinmasi gereken önemli faktörlerdir. Bu sekilde, ürünün raf ömrü ve performansi üzerinde olumsuz etkilere neden olabilecek potansiyel sorunlar önceden tanimlanabilir ve uygun çözümler gelistirilebilir. Bu nedenle, bulus, OD formülasyonlarinin raf stabilitesini artirmak ve piyasa gereksinimlerine uygun hale getirmek amaciyla özgün ve yenilikçi çözümler sunar. Bulusun Çözümünü Amaçladigi Teknik Problemler Bu bulusun amaci, tarim ve halk sagligi sektörlerinde kullanilan mikrobiyal pestisitlerin daha etkili ve çevre dostu bir sekilde uygulanabilmesi için yagda dagilabilen (oil dispersion) OD formülasyon tipini gelistirmektir. Mevcut pestisit formülasyonlarindaki eksikliklere çözüm sunarak, OD teknolojisinin avantajlarindan yararlanmayi amaçlamaktadir. Bu amaci gerçeklestirmek için OD formülasyonlarinin gelistirilmesi sirasinda karsilasilan teknik zorluklar ve problemler çözülmeye çalisilir. Emülsifikasyon, stabilite, viskozite kontrolü gibi faktörler üzerinde çalisilarak, OD formülasyonlarinin etkinligi, depolama stabilitesi ve çevresel uygunluk açisindan gelistirilmesi hedeIlenir. Ayrica, OD formülasyonlarinin raf stabilitesini artirmak ve piyasa gereksinimlerine uygun hale getirmek amaciyla özgün ve yenilikçi çözümler sunulur. Bu sayede, OD formülasyonlarin biyolojik etkinliginin artirilmasi, daha uzun süre biyolojik etkinliginin korunmasi saglanir. Bulusun açiklamasi Mevcut bulus, bir yag fazinda askiya alinmis en az bir mikrobiyal aktif bilesenden olusan yeni zirai kimyasal yag dispersiyon formülasyonlari ile ilgilidir. Mevcut bulus, tarimda nihai ürün olarak kullanilan zirai ilaç yag dispersiyon formülasyonlarinin hazirlanmasi sürecini kapsamaktadir. Mahsul zararlilarini kontrol altina almanin en etkili yolu, pestisitlerin uygun yönetim uygulamalarina uygun olarak uygulanmasidir. Mevcut bulusa göre, pestisitler, zararlilari kontrol etmek veya hafifletmek amaciyla mahsullere uygulanan mikrobiyal aktif bilesen (MAB) içerir. Pestisitler, kontrol ettikleri zararlilara göre siniflandirilabilir ve piyasada bulunan en yaygin pestisitler arasinda herbisitler, böcek öldürücüler, mantar ilaçlari ve akarisitler Pestisitler genellikle piyasada hem saf formda bulunur hem de tipik olarak bir veya daha fazla aktif madde ve tasiyicilar, adjuvanlar veya katki maddeleri gibi etkilerini artiran ve bunlarin uygulanmasini kolaylastiran ek inert maddelerden olusan zirai kimyasal formülasyonlara dahil edilir. Bu formülasyonlar dogrudan bitkilere uygulanabilir veya daha yaygin olarak, seyreltildikten ve sprey karisimi olusturulduktan sonra uygulanir. Kullanilacak formülasyon tipi öncelikle aktif maddelerin fizikokimyasal özelliklerine dayanarak tanimlanir ve sunlar olabilir: çözünür konsantre (SL), emülsifiye edilebilir konsantre (EC), suda emülsiyon (EW), süspansiyon konsantresi (SC), süspansiyon-emülsiyon (SE), mikro-emülsiyon (ME), yag dispersiyonu veya süspansiyon konsantresi (OD), dagilabilir konsantre (DC), kapsül süspansiyonu (CS), dagilabilir granüller (WG), islanabilir toz (WP), digerleri arasinda (Norma ABNT NBR 12679: 2004_Agrotoxicos e afins, Produtos tecnicos e fomulaçöes, Terminologia). Çesitli zirai kimyasal formülasyonlar, farkli kimyasal yapilara sahip çok çesitli aktif maddelerin varliginin sonucudur. Örnegin, suda çözünür bir aktif madde, su bazli bir SL'ye kolayca dahil edilebilirken, yüksek erime, suda çözünmeyen bir aktif madde genellikle bir SC formunda bulunur. Bu nedenle, zirai kimyasal formülasyonlar farklidir ve farkli ineit bilesenler içerebilir. Son zamanlarda, OD formülasyonlari, geleneksel SC'lere kiyasla alandaki agronomik performansa göre avantajlari nedeniyle sirketler ve formülatörler tarafindan çalismalara konu olmustur. Bir OD ve bir SC formülasyonu arasindaki temel fark, birincisinde aktif maddenin yagda askiya alinmasi, ikincisinde ise suda askiya alinmasidir. Formüle edilmis aktif maddeler genellikle OD'ler olarak da formüle edilmelerini saglayacak fizikokimyasal özellikler sergiler. Aralarindaki farkli performans, OD'lerin bilesimlerinde mineral veya bitkisel yag gibi bir yag ve sahada uygulandiginda penetrasyon adjuvanlari olarak isleV görebilen emülgatörler içermelerinden kaynaklanmaktadir. Penetrasyon adjuvanlari, AM'lerin bitki tarafindan emilimine yardimci olur ve bazi SC formülasyonlari durumunda, sprey karisimindaki formülasyonla birlikte kullanilir ve aktif maddenin agronomik etkinligini saglar. Bununla birlikte, OD formülasyonlarinin hazirlanmasindaki teknik bir zorluklar vardir çünkü yag fazindaki aktif madde süspansiyonu, sistemi stabilize etmek için dagitici ajanlar gerektirir. Süspansiyon isleminde, aktif madde parçaciklarinin boyutlarinin tipik olarak 1 ila 5 um arasinda azaltilmasi gerekir, çünkü aktiflerin yapraklar veya diger hedefler tarafindan emilim üzerinde maksimum aktiviteye sahip olmalari ve karisim sahaya püsküitüldügünde esit sekilde uygulanmalari gerekir. Bir formülasyonda partikül boyutunu küçültmek için en yaygin islem islak frezelemedir. Sivi formülasyonlarin frezelenmesi, hem endüstriyel hem de laboratuvar ölçeginde uygun degirmenlerde gerçeklestirilir. Dispersanlar, frezeleme sirasinda partikül yüzeyine adsorbe edilir, böylece birbirine yapismalari ve topaklasmalari önlenir. Dispersanlarin beklendigi gibi davranmadiginin bir göstergesi, frezeleme sirasinda formülasyonun viskozitesindeki büyük artistir, bu da Ilokülasyonun meydana geldigini ve islemin bu adimini uygulanabilir hale getirmedigini gösterir. Bu, bir OD formülasyonunda çok yaygin ve üstesinden gelinmesi zor bir olgudur, çünkü su bazli ortamlar için geleneksel dispersanlar yag fazinda ayni performansi göstermez. Bu nedenle, OD formülasyonlari için dispersanlarin seçimi, bu formülasyonun hazirlanmasi sürecinde Örnegin, BR9801492-7 patenti (Tarimsal yagda kararli pestisit dagilimi ve ayni islemi asit gruplarina sahip kopolimerlerden olusan susuz bilesim), OD formülasyonlarinda dispersan olarak kullanilabilecek polimerleri açiklamaktadir. Bununla birlikte, bu moleküller oldukça karmasiktir. Diger çözeltiler, uluslararasi patent açiklandigi gibi, amaçlanan dagilimi elde etmek için çok degerli katyon tuzlari kullanir, ancak yag formülasyonlarinda tuzlarin kullanilmasi stabilite sorunlarina yol açabilir. Bunlarin hazirlanmasina ek olarak, OD formülasyonlarinda bulunan bir diger teknik zorluk, piyasa uygulamalarina uygun olarak 2 yil olmasi gereken raf stabiliteleridir. Böyle bir durumda, ana sorunlar, paketin üst kismindaki yag fazinin ayrilmasi ve bu ürünlerin raf ömrünü azaltan Aktif ingredientlerin(AI)'larin çökelmesidir. Zirai kimyasal formülasyonlardaki çökeltme problemleri genellikle katki maddeleri veya reolojik degistiriciler kullanilarak en aza indirilebilir. Bu katki maddeleri, zirai kimyasal formülasyonun viskozitesini arttirir, daha fazla stabilite saglar ve daha uzun süre depolanmasina izin verir. Formülasyonlarin viskozitesini arttirdiklari için, reolojik katki maddeleri tipik olarak formülasyon isleminin sonunda eklenir. Bu katki maddeleri genellikle intumesanlar, anti-sedimantasyon ajanlari, askiya alma ajanlari veya koyulastiricilar olarak adlandirilir. SC formülasyonlari için reolojik katki maddeleri piyasada yaygin olarak bilinmektedir, ksantan zamki en yaygin kullanilanidir, ancak OD'ler için reolojik katki maddeleri hala teknik bir zorlugu temsil etmektedir. Son patent belgeleri bu amaçla yeni reoloj ik katki maddelerini ortaya koymaktadir. Örnegin, uluslararasi yayin W, bir polihidroksistearik süspansiyon formülasyonlarinin fiziksel stabilitesini arttirmak için kompozisyon ve yöntem) ile reaksiyona sokularak OD formülasyonlari için bir kalinlastiricinin hazirlanmasini açiklamaktadir. Bu buluslara ek olarak, dibenziliden sorbitol ve bunlarin türevleri, ABD patent basvurusu koyulastiricilar olarak tanimlanmistir. Bentonitler, attapulgitler ve yüksek yüzey alanina sahip silikalar ve selüloz türevleri gibi killerin, sulu zirai kimyasal formülasyonlarda koyulastirici olarak hareket ettigi bilinmektedir. Bununla birlikte, susuz zirai kimyasal formülasyonlarda kullanimi çok az kullanilmaktadir. ABD patent basvurularinda USZOl 10086760 (Sülfonilüre yagindaki süspansiyon konsantreleri ve Iluroksipir veya diger zirai kimyasallarla kombinasyonlar) ve U8, geleneksel bentonitler organik ortamlarla uyumlu olmadigindan, yag sistemleriyle uyumluluk sergilemek için sirasiyla organo-modifiye bentonitlerin ve kimyasal olarak aktive edilmis bentonitlerin kullanimi açiklanmaktadir. ABD patent basvurusu U8, OD formülasyonlarini kalinlastirmak için hint yagi ve bunlarin türevleri ile birlikte attapulgitlerin kullanilmasindan bahseder, ancak bir dezavantaji, anyonik yüzey aktif maddelerle iliskilendirildiginde söz konusu sistem tarafindan üretilen düsük stabilitedir. Ek olarak, mikrobiyal pestisitlerin, önceki icatlarin hiçbirinde OD formulasyonu bildirilmemistir. Söz konusu formulasyon piyasadaki diger tüm ürünlerden daha etkilidir. Bu nedenle, petrol fazinda asili duran en az bir aktif bilesen, dispersanlar, kil bazli bir reoloj ik katki maddesi, selüloz türevi bir reolojik katki maddesi ve emülsifiye edici ajanlardan olusan, istege bagli olarak yag fazinda çözünen en az bir aktif bilesenden olusan yeni zirai kimyasal yag dispersiyon formülasyonlari saglamak mevcut bulusun bir amacidir. Bu bulusun bir baska amaci, bu zirai kimyasal yag dispersiyon formülasyonlarinin zararlilari kontrol etmek için sprey karisimlarinda kullanilmasidir. Mikrobiyal pestisitler, hastalik ve zararlilarla mücadelede kullanilan biyolojik bir kontrol yöntemidir. Bu pestisitler, mikroorganizmalarin (bakteri, mantar, virüs vb.) dogal olarak ürettigi toksinleri veya patojenleri içerir. Bu pestisitler, tarim, bahçecilik ve halk sagligi alanlarinda kullanilir. Tarim ve bahçecilikte zararli böcekler, mantarlar ve diger hastalik etmenleriyle mücadelede etkilidirler. Örnegin, Bacillus thuringiensis (Bt) bakterisi, zararli böceklerin sindirim sistemine zarar veren toksinler üreterek etki gösterir. Bu bakteri, özellikle lepidoptera (kelebekler ve güveler) familyasindan böceklerin kontrolünde kullanilir. Mikrobiyal pestisitler, kimyasal pestisitlere göre birkaç avantaja sahiptir. Ilk olarak, dogal olarak ortamda bulunan mikroorganizmalarin ürettigi bilesenler oldugu için çevre dostudurlar. Ayrica, pestisitlere dirençli böcek ve hastalik etmenlerinin gelisimine karsi daha az olasilikla direnç gelistirebilirler. Bunun yani sira, insan sagligina ve diger canlilara daha az toksik etkileri oldugu bilinmektedir. Ancak, mikrobiyal pestisitlerin kullanimiyla ilgili bazi sinirlamalar da vardir. Uygulama ve depolama sartlarina dikkat edilmelidir ve dogru zamanda ve dogru miktarda uygulanmalari önemlidir. Ayrica, bazi mikrobiyal pestisitlerin etkili oldugu bazi zararlilar için etkisiz olabilecegi unutulmamalidir. Bacillus thuringiensis subsp. aizawai (Bt aizawai): Bacillus thuringiensis bakterisinin bir alt türüdür. Bu bakteri, dogal olarak toprakta bulunan bir mikroorganizmadir ve özellikle böcekleri öldüren toksinler üretme yetenegi ile bilinir. Bu toksinler, özellikle Lepidoptera (kelebekler ve güveler gibi) böcek türlerine karsi etkilidir. Bt aizawai, tarimsal ve bahçe uygulamalarinda biyolojik böcek kontrolü amaciyla kullanilan önemli bir araçtir. Bt aizawai'nin etki mekanizmasi Protein Üretimi: Bt aizawai, zararli böcekleri öldüren kristalize proteinler (Cry proteini) üretir. Bu proteinler, özellikle zararli tirtil böceklerinin sindirim sisteminde etki gösterir. Bt aizawai'nin ürettigi bazi Cry proteinlerinin örnekleri: CrylAa: Bu protein, tütün güvesi ve diger Lepidoptera türlerine karsi etkilidir. CrylAb: Pamuk güvesi gibi Lepidoptera türlerine karsi etkili bir protein olarak bilinir. CrylAc: Bu protein, tütün güvesi, pamuk güvesi ve diger bazi zararli türler üzerinde etkilidir. Crlea: Tütün yaprak kurdu ve diger Lepidoptera türlerini hedef alir. Cry2Aa: Bu protein, tütün güvesi, pamuk güvesi ve diger zararlilara karsi etkili olabilir Toksin Inhibisyonu: Bt aizawai'nin ürettigi Cry proteini, zararli böcegin midgut (bagirsak) hücrelerine alinir. Burada, toksinler hücre zarini delerek hücre içine girebilir. Hücre Içi Etki: Cry proteini, zararli böcegin midgut hücrelerinde özellikle alkalen sindirim sivisi içeren keseciklere baglanir. Bu baglanma, hücre zarinin parçalanmasina neden olur. Sindirim Sorunlari: Cry proteini, hücre içi alkalen sindirim sivisinin dengesini bozar. Bu durum, zararli böcegin sindirim sisteminde asiditeyi artirarak sindirimin düzgün bir sekilde gerçeklesmesini engeller. Besin Alimi Engeli: Hücre zarinin parçalanmasi ve sindirim sivisinin dengesinin bozulmasi, zararli böcegin besin alimini engeller. Bu da tirtilin açlik ve beslenme eksikligi nedeniyle ölmesine yol açar. Biyolojik Böcek Kontrolü: Bt aizawai, tarim alanlarinda zararli böcek popülasyonlarini kontrol etmek için kullanilan bir biyolojik mücadele ajanidir. Bu bakteri, böceklerin sindirim sisteminde etkili olan kristal toksinleri üretir. Bu toksinler, böceklerin bagirsaklarinda delikler açarak ölümlerine neden olurlar. Toksisite gösterdigi zararli böcekler; Tütün Güvesi (Heliothis Virescens),Pamuk Güvesi (Helicoverpa armigera),Misir Kulak Kurdu (Ostrinia nubilalis),Tütün Yaprak Kurdu (Spodoptera litura), Sebze Güvesi (Plutella xylostella), Pamuk Kurdu (Pectinophora gossypiella),Turunçgil Güvesi (Phyllocnistis citrella), Pamuk Bollworm (Helicoverpa zea), Tohum Kurdu (Helicoverpa assulta), Domates Güvesi (Tuta absoluta), Elma Güvesi (Cydia pomonella), Ayçiçegi Güvesi (Heliothis peltigera), Üzüm Güvesi (Lobesia botrana), Yaban Mersini Kurdu (Grapholita molesta), Patates Güvesi (Phthorimaea operculella), Kara Armut Kurdu (Cacoecimorpha pronubana), Turunçgil Buharli Güvesi (Diaphania perspectalis) ve Sürgün Güvesi (Euproctis chrysorrhoea) örnek verilebilir. Bacillus thuringiensis subsp. israelensis (Bt israelensis), Bacillus thuringiensis bakterisinin bir alt türüdür. Bu alt tür, özellikle Diptera (sivrisinekler ve kara sinekler gibi) böcek türlerine karsi etkili olan toksinler üretir. Bt israelensis'in ürettigi toksinler, bu böceklerin sindirim sisteminde etkili olarak ölümlerine neden olur. Bt israelensis, özellikle sucul bölgelerde, böcek üreme alanlarinda ve sivrisinek kontrolü gibi uygulamalarda kullanilir. Bu bakteri, sivrisineklerin larva evrelerindeki popülasyonlarini kontrol etmek için etkili bir biyolojik mücadele ajani olarak hizmet edebilir. Çevre dostu bir yaklasim sunar ve sucul ekosistemlerde kimyasal sivrisinek ilaçlarinin kullanimini azaltmaya yardimci olabilir. Bt israelensis'in etki mekanizmasi: Protein Üretimi: Bt israelensis, öldürücü etkisi olan toksinler üreten kristalize proteinler (Cry proteini) üretir. Bunun yani sira, sivrisinek ve kara sinek larvalarina karsi etkili olan Bti toksinleri de üretir. Toksik Alim: Sivrisinek veya kara sinek larvasi, sucul ortamdaki Bt israelensis sporlarini veya kristalize toksinlerini alir. Toksin Etkisi: Bt israelensis'in ürettigi toksinler, larvanin midgut (bagirsak) hücrelerine baglanir ve hücre zarini delerek içeri girer. Hücre Içi Etki: Toksinler, hücre zarini parçalar ve hücre içindeki alkalen sindirim siVisiyla etkilesime girer. Sindirim Sorunlari: Toksinler, sindirim siVisinin dengesini bozar, asiditeyi artirir ve sindirimin düzgün bir sekilde gerçeklesmesini engeller. Besin Alimi Engeli: Sindirim siVisinin dengesinin bozulmasi ve hücre zarinin parçalanmasi sonucunda larva besin alamaz hale gelir. Bu, açlik ve beslenme eksikligi nedeniyle larvanin ölmesine yol açar. Bacillus thuringiensis subsp. kurstaki (Bt kurstaki): Bacillus thuringiensis bakterisinin bir alt türüdür. Bu alt tür, özellikle Lepidoptera (kelebekler ve güveler gibi) böcek türlerine karsi etkili olan toksinler üretme yetenegine sahiptir. Bt kurstaki'nin ürettigi toksinler, bu böceklerin sindirim sisteminde etkili olarak ölümlerine neden Bt kurstaki'nin etki mekanizmasi: Kristalize Protein Üretimi: Bt kurstaki, zararli böceklere karsi etki gösteren kristalize proteinler (Cry proteini) üretir. Bu proteinler, böceklerin midgut (bagirsak) hücrelerinde etki gösterir. Toksin Inhibisyonu: Bt kurstaki'nin ürettigi Cry proteini, zararli böcegin midgut hücrelerine alinir. Burada, proteinler hücre zarini delerek hücre içine girebilir. Hücre Içi Etki: Cry proteini, zararli böcegin midgut hücrelerinde özellikle alkalen sindirim siVisi içeren keseciklere baglanir. Bu baglanma, hücre zarinin parçalanmasina neden olur. Sindirim Sorunlari: Cry proteini, hücre içi alkalen sindirim siVisinin dengesini bozar. Bu durum, zararli böcegin sindirim sisteminde asiditeyi artirarak sindirimin düzgün bir sekilde gerçeklesmesini engeller. Besin Alimi Engeli: Hücre zarinin parçalanmasi ve sindirim siVisinin dengesinin bozulmasi, zararli böcegin besin alimini engeller. Bu da tirtilin açlik ve beslenme eksikligi nedeniyle ölmesine yol açar. (Bt kurstaki), Lepidoptera böceklerine karsi etkili olan bazi Cry (crystal) proteinleri üretir. Bu proteinler, özellikle böceklerin sindirim sisteminde etkili olarak ölümlerine neden olurlar. Iste Bt kurstaki'nin ürettigi bazi Cry proteinlerinin örnekleri: CrylAa: Tütün güvesi ve diger Lepidoptera türlerine karsi etkili olan bir protein. CrylAb: Pamuk güvesi gibi Lepidoptera türlerine karsi etkilidir. CrylAc: Tütün güvesi, pamuk güvesi ve diger zararlilara karsi etkili bir protein. Crlea: Tütün yaprak kurdu ve diger Lepidoptera türlerine etki edebilir. Cry2Aa: Tütün güvesi, pamuk güvesi ve benzeri zararlilar üzerinde etkili bir protein. acillus thuringiensis subsp. kurstaki'nin etkili oldugu daha fazla Lepidoptera böcek türlerinin örnekleri: Tütün Güvesi (Heliothis virescens), Pamuk Güvesi (Helicoverpa armigera), Misir Kurdu (Ostrinia nubilalis), Tütün Yaprak Kurdu (Spodoptera litura), Sebze Güvesi (Plutella xylostella), Kara Armut Güvesi (Cacoecimorpha pronubana), Patates Yaprak Kurdu (Phthorimaea operculella), Üzüm Tirtili (Lobesia botrana), Turunçgil Güvesi (Diaphania perspectalis), Elma Güvesi (Cydia pomonella), Karnabahar Güvesi (Pieris rapae), Ayçiçegi Güvesi (Heliothis peltigera), Patlican Güvesi (Leucinodes orbonalis), Bezelye Kelebegi (Pieris brassicae), Narenciye Güvesi (Prays citri), Turunçgil Kabuklu Böcegi (Phyllocnistis citrella), Pamuk Yaprak Kurdu (Spodoptera littoralis), Pancar Yaprak Kurdu (Spodoptera eXigua), Bugday Sap Kurdu (Eurygaster integriceps), Yulaf Güvesi (Chilo suppressalis), Yaban Mersini Güvesi (Lasioptera vaccinii), Seftali Güvesi (Grapholita funebrana), Zeytin Sinegi (Prays oleae), Patates Kurdu (Leptinotarsa decemlineata) ve Kabak Güvesi (Diaphania indica) örnek verilebilir. Bacillus thuringiensis subsp. tenebrionis (Bt tenebrionis): Zararli Coleoptera (böcekler) familyasina ait türlerin larvalarina karsi etkili olan bazi proteinler üretir. Bu proteinler, böceklerin sindirim sistemi içinde öldürücü etki gösterir. I Bt tenebrionis'in ürettigi ana proteinleri ve etki mekanizmasi. Tenebrionin: Bt tenebrionis tarafindan üretilen temel proteinlerden biridir. Bu protein, zararli böceklerin midgut (bagirsak) hücrelerine zarar vererek sindirim sistemlerini etkiler. Cry Proteini: Bt tenebrionis suslari, diger Bacillus thuringiensis alt türleri gibi Cry (crystal) proteinleri üretir. Bu proteinler, böceklerin midgut hücrelerine baglanarak sindirim sistemini bozar ve ölümlerine yol açar. Alfa-Amylaz Inhibitörü: Bt tenebrionis'in ürettigi bazi suslar, böceklerin sindirim enzimlerinden biri olan alfa-amylazi inhibe eden proteinler üretebilir. Bu da böceklerin besin sindiriminin engellenmesine yol açar. Bulus, tarim ve halk sagligi sektöründe insektisit-akarisit ve fungisit olarak kullanilan Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. Israelensis, Bacillus thuringiensis subsp. Kurstaki, Bacillus licheniformis, Bacillus mycoides, Bacillus Pumilus, Bacillus sphaericus, Bacillus subtilis ve Bacillus thuringiensis subsp. tenebrionis, ve Trichoderma virens mikroorganizma olan bakteri, virüs, maya ve mantarlardan biri ve/veya toksinleri, proteinleri, sporlari, generatif, vejetatif, lizojenik formu, litik formu, biomasini ve sekonder metobolitlerinin karisimlarini içeren, Ayçiçek Yagi, Susam Yagi, Pamuk Tohumu Yagi, Soya Yagi, Üzüm Çekirdegi Yagi, Ketentohumu Yagi, Kanola Yagi, Hardal Tohumu Yagi, Ceviz Yagi, Findik Yagi, Badem Yagi, Aspir Yagi, Misirözü Yagi, Kabak Çekirdegi Yagi, Keten Tohumu Yagi, Çörekotu Yagi, Susamotu Yagi, Quinoa Yagi, Chia Tohumu Yagi, Kanarya Çimeni Yagi ve Palm Yag, teker teker ve/Veya karisimlari ile ticari olarak satilan harmanlanmis emülgatörler, adjuvanlar ve yüzey aktif maddeler yardimi ile yagda dagilabilen (Oil Dispersion) OD fomülasyonu ve üretim yöntemi ile ilgilidir. Sonuç olarak, mikrobiyal pestisitler, dogal kaynaklardan elde edilen ve zararlilarla mücadelede kullanilan etkili bir biyolojik kontrol yöntemidir. Bu pestisitlerin kullanimi, kimyasal pestisitlerin kullanimini azaltma ve sürdürülebilir tarim uygulamalarinin tesVik edilmesi açisindan önemlidir. FORMULASYONU" un endüstriyel üretim basamaklari, Ayçiçek Yagi, Susam Yagi, Pamuk Tohumu Yagi, Soya Yagi, Üzüm Çekirdegi Yagi, Ketentohumu Yagi, Kanola Yagi, Hardal Tohumu Yagi, Ceviz Yagi, Findik Yagi, Badem Yagi, Aspir Yagi, Misirözü Yagi, Kabak Çekirdegi Yagi, Keten Tohumu Yagi, Çörekotu Yagi, Susamotu Yagi, Quinoa Yagi, Chia Tohumu Yagi, Kanarya Çimeni Yagi ve Palm Yag, teker teker ve/Veya farkli oralarda en az 2 en fazla 21adet yukarida belirtilen yaglarin karisimlari kullanilarak mikrobiyal pestisit tabani total formulasyon "weight/weight" (agirlik/agirlik) orani olarak %55-75 olusturulur. Daha sonra Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. Israelensis, Bacillus thuringiensis subsp. Kurstaki ve Bacillus thuringiensis subsp. tenebrionis mikroorganizmalarin tüm suslarinin biri ve/Veya toksinleri, proteinleri, sporlari, generatif formu, vejetatif formu, lizojenik formu, litik formu, biomasini ve sekonder metobolitlerinin karisimlarini içeren biri ve/Veya karisimlari "weight/weight" (agirlik/agirlik) orani olarak %5-40 eklenerek reaktör- karistirici kap da, 5-60 dakika boyunca 50-2500 rpm de homojennisazyon saglayincaya kadar karistirilir. Karisim devam ederken Sand Mill ve Dyno Mill gibi degirmenler kullanilarak, yüksek hizda dönen bir rotor ve bir odacik içerisinde malzemeleri ögütmek ve dagitmak için kullanilan bir cihazdir. Degirmenin içinde yüksek yogunluklu kum veya boncuklar bulunur ve bu malzemeler, ürünün homoj enlestirilmesi ve dispersiyonunun saglanmasi için kullanilir. Hem sand mill hem de dyno mill gibi cihazlar ve degirmenler kullanilarak formulasyonun spesifik boyutlara ögütülmesi, homojen bir karisim elde edilmesi ve partikül boyutunun 1-80 mikrometre olana kadar 1-12 saat içerisinde mikrominimize islemlerine tabi tutulur. Ardindan Polimerik surfaktan olarak adlandirilan, yagda çözünen yüzey aktif maddelerden, Atlox 4916, Clariant Adprotek 1025, en az biri ve/Veya karisimlari "weight/weight" (agirlik/agirlik) orani saglanincaya kadar karistirilir. Bu tür surfaktanlar, hidrofobik (su itici) ve hidrofilik (su seven) gruplara sahip uzun Zincirli moleküllerden olusur ve genellikle polimerik yapilara sahiptirler. Polimerik surfaktanlar, yüzey gerilimini azaltir, emülsiyonlari stabilize eder, dagilabilirligi artirir ve suya karsi hassasiyeti düzenlerler. Sürfaktanlar, genellikle uzun hidrokarbon zincirlerinden olusan hidrofobik (su itici) bir kisim ile hidrofilik (su seven) bir kismi içerir. Hidrokarbon zincirleri genellikle yagli ya da alifatik yapilardir ve yag damlaciklarini çevreleyebilir. Hidrofilik kisim, genellikle polimer zincirleri, eter gruplari veya iyonik gruplar içerir. Formülasyonumuzda bu dengeyi saglamak için, Tween , Tergito, Tego Emulsifier, Polysorbate, Agnique, Polysorbate, IseluX ve Stepan-Mild serilerinin tek tek ve/veya saglanir. Son olarak da Füme silikalar, Agrimel BG4 vizkozite aj anlari tek tek veya karisim saglandiktan sonra nihai ürün elde edilir Bulusun sanayiye uygulanma biçimi Bu patent, tarim ve halk sagligi sektörlerinde önemli bir inovasyon sunmaktadir ve çesitli alanlarda genis uygulama potansiyeline sahiptir. Geleneksel tarim ve zararli organizma kontrol yöntemlerinin sinirlamalarini asmak ve çevresel sürdürülebilirligi artirmak amaciyla gelistirilmis olan bu formülasyon, asagidaki sekillerde sanayiye uygulanabilir: Tarim Sektörü: Patentte bulunan mikroorganizmalar ve bitkisel yaglarin kombinasyonu, tarim sektöründe entegre zararli yönetimi yaklasiminin gelistirilmesine yardimci olabilir. Bu formülasyon, böcekler, mantarlar ve diger zararli organizmalarla mücadelede etkili bir alternatif sunarak kimyasal insektisitlerin kullanimini azaltabilir. Ayrica, biyolojik çesitliligi koruyarak dogal düsmanlarin popülasyonunu aitirabilir ve böylece ekosistemin denge saglamasina destek olabilir. Halk Sagligi: Formülasyonun içerdigi mikroorganizmalarin bazilari, sivrisinekler gibi hastalik tasiyici böceklerin kontrolünde etkili olabilir. Bu da özellikle sitma, Zika virüsü ve diger vektör kaynakli hastaliklarin yayilmasini engellemede önemli bir araç olabilir. Biyolojik yöntemlerin kullanimi, halk sagligini olumsuz etkileyebilecek kimyasal bilesiklerin maruziyet riskini azaltabilir. Sürdürülebilirlik: Bitkisel yaglar ve mikroorganizmalarin kombinasyonu, tarimin çevresel etkilerini azaltma potansiyeline sahiptir. Kimyasal kalintilarin toprak ve su kaynaklarina sizma riskini düsürerek, çevre dostu bir yaklasim sunar. Bu da toprak verimliligini artirabilir ve uzun vadeli sürdürülebilir tarim uygulamalarina katkida bulunabilir. Direkt Uygulama: Patentte sunulan formülasyon, emülgatörler, adjuvanlar ve yüzey aktif maddeler yardimiyla yagda dagilabilen bir formda sunulmaktadir. Bu, uygulama esnasinda etkinligi artirabilir ve hedeIlenen yüzeylere daha homojen bir sekilde dagilmasini saglayabilir. Patentin tarim ve halk sagligi alanlarindaki genis uygulama potansiyeli, gelecekte daha saglikli ürünlerin yetistirilmesi ve insan sagliginin korunmasina yönelik sürdürülebilir çözümler sunma konusunda büyük bir firsat sunmaktadir. Bu inovasyon, gelecek nesillere daha saglikli ve güvenli bir çevre birakmak amaciyla sanayi ve arastirma kuruluslari için degerli bir kaynaktir. TR TR DESCRIPTION INNOVATIVE, STABLE MICROBIAL PESTICIDE OIL DISPERSION (0D) FORMULATION Technical Field The invention relates to Bacillus thuringiensis subsp., which is used as an insecticide in the agriculture and public health sectors. Aizawai, Bacillus thuringiensis subsp. Israelensis, Bacillus thuringiensis subsp. Kurstaki and Bacillus thuringiensis subsp. Sunflower Oil, Sesame Oil, Cottonseed Oil, Soybean Oil, Grape Seed Oil, containing one of all strains of tenebrionis microorganisms and/or mixtures of their toxins, proteins, spores, generative form, vegetative form, lysogenic form, lytic form, biomass and secondary metabolites. Linseed Oil, Canola Oil, Mustard Seed Oil, Walnut Oil, Hazelnut Oil, Almond Oil, Safflower Oil, Corn Oil, Pumpkin Seed Oil, Flaxseed Oil, Black Cumin Oil, Sesame Oil, Quinoa Oil, Chia Seed Oil, Canary Grass Oil and Palm Oil relates to the oil dispersion OD formulation and production method with the help of blended emulsifiers, adjuvants and surfactants, which are sold commercially individually and/or in their mixtures. The State of the Art consists of wettable powder WP, water dispersible granules WG, suspension concentrate SC, and water-soluble concentrate formulations using one and/or mixtures of the specified microorganisms. There are many commercial products. However, it is known that microbial pesticides mentioned in the technical field cannot be produced in oil dispersion OD formulation type. However, OD technology is an advanced environmentally friendly technology. By improving its adhesion and spreading properties on the leaf surface, penetrating and spreading into leaf tissues, it reduces washing and evaporation and increases the stability and effectiveness of the active components. It increases its adhesion to the leaf and its spreading area. It surpasses the known state of the art as it increases the coating surface area, increases resistance to rain washout, prevents insect eggs from coming into contact with the air, increases the speed of penetration into the plant body and spreads within leaf tissues, and provides a long-term effect as it is less affected by rain and sunlight. 0D formulation can be formed as a result of extremely complex processes due to its advanced technology and technical knowledge requirements. Various formulations have been developed to efficiently apply various agricultural chemicals. Among these formulations, Oil Dispersion (OD) formulations are a type of formulation in which liquid pesticide products are dispersed in carrier oil. OD formulations adhere to the plant surface during application and are absorbed effectively, allowing the active ingredient of the pesticide to spread throughout the plant. However, some difficulties and technical problems are encountered during the development and optimization of OD formulations. These difficulties can have negative effects on the effectiveness, stability and environmental suitability of the formulation. These difficulties and problems are summarized below: Emulsification and Stability: The oil carrying the pesticide active ingredient must mix with water. Failure to carry out the emulsification process correctly or the formation of unstable emulsions may negatively affect the effectiveness and storage stability of the formulation. Viscosity Control: The viscosity of the formulation is important to ensure correct distribution during spraying. While too high a viscosity may cause blockages in spray systems or irregular applications, low viscosity may reduce the adhesion and permanence of the product to the plant surface. Surfactant Selection: Selection of appropriate surfactants for emulsification and dispersion is important. Wrong surfactant selection may negatively affect the stability and effectiveness of the formulation. Persistence and Washing Effect: Ensuring the permanence of the formulation on the plant surface and preventing washing after raining is important to increase the effectiveness of the formulation. This requires choosing the right surfactants and stabilization methods. Environmental Effects and Toxicity: The effects of the formulation on human health and the environment should be taken into consideration. Necessary precautions should be taken to use the active ingredient at appropriate levels and minimize environmental damage. Ease of Application: Compatibility of the formulation with the application equipment and ease of use are important. Excessive viscosity or poor stability can affect spray systems and make use difficult. Compliance and Regulations: The formulation must comply with local and national regulations. Therefore, it is important to take into account the above-mentioned challenges when developing OD formulations and to use appropriate methods to overcome them. However, another important technical challenge encountered in the preparation of OD formulations is that these products must maintain shelf stability for at least 2 years in accordance with market practices. In this process, the main problems that need to be focused on are the separation of the oil phase occurring on the upper part of the product's packaging and the precipitation of Active Ingredient (AI) substances that negatively affect the shelf life of these products. These challenges are important factors to consider when developing and optimizing OD formulations. In this way, potential problems that may cause negative effects on the shelf life and performance of the product can be identified in advance and appropriate solutions can be developed. Therefore, the invention provides unique and innovative solutions to increase the shelf stability of OD formulations and make them suitable for market requirements. Technical Problems That the Invention Aims to Solve The purpose of this invention is to develop an oil dispersion OD formulation type in order to apply microbial pesticides used in the agriculture and public health sectors in a more effective and environmentally friendly manner. It aims to benefit from the advantages of OD technology by providing solutions to the deficiencies in existing pesticide formulations. To achieve this aim, technical difficulties and problems encountered during the development of OD formulations are tried to be solved. By studying factors such as emulsification, stability and viscosity control, it is aimed to improve OD formulations in terms of effectiveness, storage stability and environmental suitability. In addition, original and innovative solutions are offered to increase the shelf stability of OD formulations and adapt them to market requirements. In this way, the biological effectiveness of OD formulations is increased and their biological effectiveness is maintained for a longer period of time. Description of the invention The present invention relates to new agrochemical oil dispersion formulations consisting of at least one microbially active component suspended in an oil phase. The present invention covers the process of preparing pesticide oil dispersion formulations used as final products in agriculture. The most effective way to control crop pests is to apply pesticides in accordance with appropriate management practices. According to the present invention, pesticides contain microbial active ingredient (MAB) applied to crops to control or mitigate pests. Pesticides can be classified according to the pests they control, and the most common pesticides available on the market include herbicides, insecticides, fungicides, and acaricides. Pesticides are often found on the market in both pure form and compounds that enhance their effects, typically with one or more active ingredients and carriers, adjuvants, or additives. and are included in agrochemical formulations consisting of additional inert substances that facilitate their application. These formulations can be applied directly to plants or, more commonly, after dilution and creating a spray mixture. The type of formulation to be used is defined primarily based on the physicochemical properties of the active substances and can be: soluble concentrate (SL), emulsifiable concentrate (EC), emulsion in water (EW), suspension concentrate (SC), suspension-emulsion (SE), micro-emulsion ( ME), oil dispersion or suspension concentrate (OD), dispersible concentrate (DC), capsule suspension (CS), dispersible granules (WG), wettable powder (WP), among others (Norma ABNT NBR 12679: 2004_Agrotoxicos e afins, Produtos tecnicos e fomulaçöes, Terminologia). Various agrochemical formulations are the result of the presence of a wide variety of active substances with different chemical structures. For example, a water-soluble active can be easily incorporated into a water-based SL, whereas a high-melting, water-insoluble active is usually present in an SC form. Therefore, agrochemical formulations are different and may contain different ineit ingredients. Recently, OD formulations have been the subject of studies by companies and formulators due to their advantages in agronomic performance in the field compared to conventional SCs. The main difference between an OD and an SC formulation is that in the former the active ingredient is suspended in oil, while in the latter it is suspended in water. Formulated active ingredients often exhibit physicochemical properties that enable them to also be formulated as ODs. The different performance between them is due to the fact that ODs contain an oil such as mineral or vegetable oil in their composition and emulsifiers that can act as penetration adjuvants when applied in the field. Penetration adjuvants aid the absorption of AMs by the plant and, in the case of some SC formulations, are used together with the formulation in the spray mixture and ensure the agronomic effectiveness of the active substance. However, there is a technical difficulty in preparing OD formulations because the active ingredient suspension in the oil phase requires dispersing agents to stabilize the system. In the suspension process, the sizes of active ingredient particles need to be reduced, typically between 1 and 5 µm, because the actives need to have maximum activity on absorption by leaves or other targets and be applied evenly when the mixture is sprayed onto the field. The most common process to reduce particle size in a formulation is wet milling. Milling of liquid formulations is carried out in suitable mills on both industrial and laboratory scale. Dispersants are adsorbed to the particle surface during milling, preventing them from sticking together and agglomerating. An indication that dispersants are not behaving as expected is the large increase in the viscosity of the formulation during milling, which indicates that loculation has occurred and makes this step of the process not feasible. This is a very common and difficult phenomenon to overcome in an OD formulation because conventional dispersants for water-based media do not perform as well in the oil phase. Therefore, the selection of dispersants for OD formulations was made during the preparation of this formulation. For example, the BR9801492-7 patent (Anhydrous composition consisting of copolymers with acid groups for stable pesticide distribution in agricultural oil and the same process) describes polymers that can be used as dispersants in OD formulations. However, these molecules are quite complex. Other solutions use polyvalent cation salts to achieve the intended dispersion, as described in the international patent, but using salts in oil formulations can lead to stability problems. In addition to their preparation, another technical challenge found in OD formulations is their shelf stability, which should be 2 years in accordance with market practices. In such a case, the main problems are the separation of the oil phase at the top of the package and the precipitation of active ingredients (AIs), which reduces the shelf life of these products. Precipitation problems in agrochemical formulations can often be minimized by using additives or rheological modifiers. These additives increase the viscosity of the agrochemical formulation, providing greater stability and allowing it to be stored for longer periods. Rheological additives are typically added at the end of the formulation process because they increase the viscosity of formulations. These additives are often called intumescents, anti-sedimentation agents, suspending agents or thickeners. Rheological additives for SC formulations are widely known on the market, xanthan gum being the most widely used, but rheological additives for ODs still represent a technical challenge. Recent patent documents reveal new rheological additives for this purpose. For example, international publication W describes the preparation of a thickener for OD formulations by reacting a polyhydroxystearic suspension with the composition and method for improving the physical stability of the formulations. In addition to these discoveries, dibenzylidene sorbitol and their derivatives have been identified as thickeners in a US patent application. Clays such as bentonites, attapulgites, and high surface area silicas and cellulose derivatives are known to act as thickeners in aqueous agrochemical formulations. However, its use in anhydrous agrochemical formulations is little used. US patent applications USZOl 10086760 (Suspension concentrates in sulfonylurea oil and combinations with Iluroxypyr or other agrochemicals) and U8 describe the use of organo-modified bentonites and chemically activated bentonites, respectively, to demonstrate compatibility with oil systems, as conventional bentonites are not compatible with organic environments. US patent application U8 mentions the use of attapulgites in combination with castor oil and their derivatives to thicken OD formulations, but a disadvantage is the low stability produced by that system when associated with anionic surfactants. Additionally, OD formulation of microbial pesticides has not been reported in any of the previous inventions. The formulation in question is more effective than any other product on the market. Therefore, new agrochemicals consisting of at least one active ingredient suspended in the oil phase, dispersants, a clay-based rheological additive, a cellulose-derived rheological additive and emulsifying agents, optionally soluble in the oil phase, are used. It is an object of the present invention to provide oil dispersion formulations. Another object of this invention is to use these agrochemical oil dispersion formulations in spray mixtures to control pests. Microbial pesticides are a biological control method used to combat diseases and pests. These pesticides contain toxins or pathogens naturally produced by microorganisms (bacteria, fungi, viruses, etc.). These pesticides are used in agriculture, horticulture and public health. They are effective in combating harmful insects, fungi and other disease factors in agriculture and horticulture. For example, the Bacillus thuringiensis (Bt) bacterium works by producing toxins that damage the digestive system of harmful insects. This bacterium is used to control insects, especially those from the lepidoptera (butterflies and moths) family. Microbial pesticides have several advantages over chemical pesticides. First of all, they are environmentally friendly because they are components produced by microorganisms naturally found in the environment. They may also be less likely to develop resistance to the development of pesticide-resistant insects and disease agents. In addition, it is known to have less toxic effects on human health and other living things. However, there are some limitations to the use of microbial pesticides. Application and storage conditions should be taken into consideration and it is important that they are applied at the right time and in the right amount. Additionally, it should not be forgotten that some microbial pesticides are effective but may be ineffective for some pests. Bacillus thuringiensis subsp. aizawai (Bt aizawai): It is a subspecies of the bacterium Bacillus thuringiensis. This bacterium is a microorganism naturally found in soil and is particularly known for its ability to produce toxins that kill insects. These toxins are particularly effective against insect species such as Lepidoptera (butterflies and moths). Bt aizawai is an important tool used for biological insect control in agricultural and horticultural applications. Mechanism of action of Bt aizawai Protein Production: Bt aizawai produces crystallized proteins (Cry protein) that kill harmful insects. These proteins act especially in the digestive system of harmful caterpillars. Examples of some Cry proteins produced by Bt aizawai: CrylAa: This protein is effective against tobacco moth and other Lepidoptera species. CrylAb: It is known as a protein effective against Lepidoptera species such as the cotton moth. CrylAc: This protein is effective on tobacco moth, cotton moth and some other harmful species. Crlea: Targets tobacco leafworm and other Lepidoptera species. Cry2Aa: This protein can be effective against tobacco moth, cotton moth and other pests. Toxin Inhibition: Cry protein produced by Bt aizawai is taken into the midgut (intestinal) cells of the harmful insect. Here, toxins can penetrate the cell membrane and enter the cell. Intracellular Effect: Cry protein binds to vesicles containing alkaline digestive fluid, especially in the midgut cells of the harmful insect. This binding causes the cell membrane to break down. Digestive Problems: Cry protein disrupts the balance of intracellular alkaline digestive fluid. This situation increases the acidity in the digestive system of the harmful insect, preventing proper digestion. Food Uptake Obstacle: Disintegration of the cell membrane and disruption of the digestive fluid balance prevent the harmful insect from taking in nutrients. This causes the caterpillar to die due to hunger and lack of nutrition. Biological Pest Control: Bt aizawai is a biological control agent used to control pest populations in agricultural fields. This bacterium produces crystal toxins that act on the digestive system of insects. These toxins cause their death by opening holes in the intestines of insects. Harmful insects that show toxicity; Tobacco Moth (Heliothis Virescens), Cotton Moth (Helicoverpa armigera), Corn Earworm (Ostrinia nubilalis), Tobacco Leafworm (Spodoptera litura), Vegetable Moth (Plutella xylostella), Cotton Moth (Pectinophora gossypiella), Citrus Moth (Phyllocnistis citrella) , Cotton Bollworm (Helicoverpa zea), Seedworm (Helicoverpa assulta), Tomato Moth (Tuta absoluta), Apple Moth (Cydia pomonella), Sunflower Moth (Heliothis peltigera), Grape Bollworm (Lobesia botrana), Blueberry Bollworm (Grapholita molesta) , Potato Moth (Phthorimaea operculella), Black Pear Weevil (Cacoecimorpha pronubana), Citrus Vapor Moth (Diaphania perspectalis) and Shoot Moth (Euproctis chrysorrhoea) can be given as examples. Bacillus thuringiensis subsp. israelensis (Bt israelensis) is a subspecies of the bacterium Bacillus thuringiensis. This subspecies produces toxins that are particularly effective against insect species Diptera (such as mosquitoes and blackflies). The toxins produced by Bt israelensis act in the digestive system of these insects, causing their death. Bt israelensis is used especially in aquatic areas, insect breeding grounds and in applications such as mosquito control. This bacterium may serve as an effective biological control agent to control populations of mosquitoes in their larval stages. It offers an environmentally friendly approach and can help reduce the use of chemical mosquito repellents in aquatic ecosystems. Mechanism of action of Bt israelensis: Protein Production: Bt israelensis produces crystallized proteins (Cry protein) that produce toxins with lethal effect. In addition, it also produces Bti toxins that are effective against mosquito and black fly larvae. Toxic Intake: Mosquito or black fly larva ingests Bt israelensis spores or crystallized toxins from the aquatic environment. Toxin Effect: The toxins produced by Bt israelensis bind to the midgut (intestinal) cells of the larva and penetrate the cell membrane. Intracellular Effect: Toxins break down the cell membrane and interact with the alkaline digestive fluid inside the cell. Digestive Problems: Toxins disrupt the balance of digestive fluid, increase acidity and prevent digestion from occurring properly. Food Intake Obstacle: As a result of the imbalance of the digestive fluid and the breakdown of the cell membrane, the larva becomes unable to take in nutrients. This leads to the death of the larva due to starvation and lack of nutrition. Bacillus thuringiensis subsp. kurtaki (Bt derstaki): A subspecies of the bacterium Bacillus thuringiensis. This subspecies is capable of producing toxins that are particularly effective against insect species of Lepidoptera (such as butterflies and moths). The toxins produced by Bt Kürttaki act in the digestive system of these insects, causing their death. Mechanism of action of Bt Kürttaki: Crystallized Protein Production: Bt Kürttaki produces crystallized proteins (Cry protein) that are effective against harmful insects. These proteins act in the midgut cells of insects. Toxin Inhibition: Cry protein produced by Btkurtaki is taken into the midgut cells of the harmful insect. Here, proteins can penetrate the cell membrane and enter the cell. Intracellular Effect: Cry protein binds to vesicles containing alkaline digestive fluid, especially in the midgut cells of the harmful insect. This binding causes the cell membrane to break down. Digestive Problems: Cry protein disrupts the balance of intracellular alkaline digestive fluid. This situation increases the acidity in the digestive system of the harmful insect, preventing proper digestion. Food Uptake Obstacle: Disintegration of the cell membrane and disruption of the digestive fluid balance prevent the harmful insect from taking in nutrients. This causes the caterpillar to die due to hunger and lack of nutrition. (Btkurtaki) produces some Cry (crystal) proteins that are effective against Lepidoptera insects. These proteins are especially effective in the digestive system of insects and cause their death. Here are some examples of Cry proteins produced by Btkurtaki: CrylAa: A protein that is effective against the tobacco moth and other Lepidoptera species. CrylAb: It is effective against Lepidoptera species such as cotton moth. CrylAc: A protein effective against tobacco moth, cotton moth and other pests. Crlea: It can affect tobacco leafworm and other Lepidoptera species. Cry2Aa: A protein effective against tobacco moth, cotton moth and similar pests. acillus thuringiensis subsp. Examples of more Lepidoptera insect species that kurtaki is effective on: Tobacco Moth (Heliothis virescens), Cotton Moth (Helicoverpa armigera), Corn Weevil (Ostrinia nubilalis), Tobacco Leafworm (Spodoptera litura), Vegetable Moth (Plutella xylostella), Black Pear Moth (Cacoecimorpha pronubana), Potato Leafworm (Phthorimaea operculella), Grape Armyworm (Lobesia botrana), Citrus Moth (Diaphania perspectalis), Apple Moth (Cydia pomonella), Cauliflower Moth (Pieris rapae), Sunflower Moth (Heliothis peltigera), Eggplant Moth (Leucinodes orbonalis), Pea Butterfly (Pieris brassicae), Citrus Moth (Prays citri), Citrus Scab Beetle (Phyllocnistis citrella), Cotton Leafworm (Spodoptera littoralis), Beet Leafworm (Spodoptera eXigua), Wheat Stalkworm (Eurygaster integriceps) ), Oat Moth (Chilo suppressalis), Blueberry Moth (Lasioptera vaccinii), Peach Moth (Grapholita funebrana), Olive Fly (Prays oleae), Potato Weevil (Leptinotarsa decemlineata) and Zucchini Moth (Diaphania indica) can be given as examples. Bacillus thuringiensis subsp. tenebrionis (Bt tenebrionis): It produces some proteins that are effective against the larvae of species belonging to the harmful Coleoptera (insect) family. These proteins have a lethal effect in the digestive system of insects. I Main proteins produced by Bt tenebrionis and its mechanism of action. Tenebrionin: It is one of the main proteins produced by Bt tenebrionis. This protein affects the digestive systems of harmful insects by damaging their midgut cells. Cry Protein: Bt tenebrionis strains, like other Bacillus thuringiensis subspecies, produce Cry (crystal) proteins. These proteins bind to the midgut cells of insects, disrupting their digestive system and causing their death. Alpha-Amylase Inhibitor: Some strains of Bt tenebrionis can produce proteins that inhibit alpha-amylase, one of the digestive enzymes of insects. This prevents insects from digesting food. The invention is Bacillus thuringiensis subsp., which is used as insecticide-acaricide and fungicide in agriculture and public health sectors. Aizawai, Bacillus thuringiensis subsp. Israelensis, Bacillus thuringiensis subsp. In the course, Bacillus licheniformis, Bacillus mycoides, Bacillus Pumilus, Bacillus sphaericus, Bacillus subtilis and Bacillus thuringiensis subsp. tenebrionis, and Trichoderma virens microorganisms and/or their toxins, proteins, spores, generative, vegetative, lysogenic form, lytic form, biomass and mixtures of their secondary metabolites. Sunflower Oil, Sesame Oil, Cottonseed Oil. , Soybean Oil, Grape Seed Oil, Linseed Oil, Canola Oil, Mustard Seed Oil, Walnut Oil, Hazelnut Oil, Almond Oil, Safflower Oil, Corn Seed Oil, Pumpkin Seed Oil, Flaxseed Oil, Black Cumin Oil, Sesame Oil, Quinoa Oil, Chia Seed Oil, Canary Grass Oil and Palm Oil are related to oil dispersion OD formulation and production method with the help of blended emulsifiers, adjuvants and surfactants, which are sold commercially individually and/or in their mixtures. As a result, microbial pesticides are an effective biological control method obtained from natural sources and used to combat pests. The use of these pesticides is important in reducing the use of chemical pesticides and promoting sustainable agricultural practices. FORMULATION Industrial production steps of "Sunflower Oil, Sesame Oil, Cottonseed Oil, Soybean Oil, Grape Seed Oil, Linseed Oil, Canola Oil, Mustard Seed Oil, Walnut Oil, Hazelnut Oil, Almond Oil, Safflower Oil, Corn Seed Oil, Pumpkin Oil" Microbial pesticide base total formulation using Seed Oil, Flaxseed Oil, Black Cumin Oil, Sesame Oil, Quinoa Oil, Chia Seed Oil, Canary Grass Oil and Palm Oil, mixtures of the oils mentioned above, one by one and/or at least 2 and at most 21 in different places. It is formed as a "weight/weight" ratio of 55-75% and/or all strains of Bacillus thuringiensis subsp. Israelensis, Bacillus thuringiensis subsp. Kurstaki and Bacillus thuringiensis subsp. One and/or mixtures containing toxins, proteins, spores, generative form, vegetative form, lysogenic form, lytic form, biomass and mixtures of secondary metabolites are added to the reactor-mixer vessel by adding 5-40% as a "weight/weight" ratio. It is mixed at 50-2500 rpm for 5-60 minutes until homogenization is achieved. It is a device used to grind and distribute materials within a chamber and a rotor rotating at high speed, using mills such as Sand Mill and Dyno Mill while the mixing continues. There are high density sand or beads inside the mill and these materials are used to ensure homogenization and dispersion of the product. Using devices and mills such as sand mills and dyno mills, the formulation is ground to specific sizes, a homogeneous mixture is obtained, and it is subjected to microminimization processes within 1-12 hours until the particle size is 1-80 micrometers. Then, at least one of the oil-soluble surfactants called polymeric surfactants, Atlox 4916, Clariant Adprotek 1025, and/or their mixtures are mixed until the "weight/weight" ratio is achieved. Such surfactants consist of long chain molecules with hydrophobic (water-repellent) and hydrophilic (water-loving) groups and generally have polymeric structures. Polymeric surfactants reduce surface tension, stabilize emulsions, increase dispersibility and regulate sensitivity to water. Surfactants contain a hydrophobic (water-repellent) part and a hydrophilic (water-loving) part, usually consisting of long hydrocarbon chains. Hydrocarbon chains are generally oily or aliphatic structures and can surround oil droplets. The hydrophilic part usually contains polymer chains, ether groups or ionic groups. To ensure this balance in our formulation, Tween, Tergito, Tego Emulsifier, Polysorbate, Agnique, Polysorbate, IseluX and Stepan-Mild series are supplied individually and/or. Finally, after fumed silicas and Agrimel BG4 viscosity agents are added individually or as a mixture, the final product is obtained. Application of the invention to industry. This patent offers an important innovation in the agriculture and public health sectors and has wide application potential in various fields. This formulation, which was developed to overcome the limitations of traditional agricultural and pest control methods and increase environmental sustainability, can be applied to industry in the following ways: Agricultural Sector: The combination of microorganisms and vegetable oils contained in the patent can help develop an integrated pest management approach in the agricultural sector. This formulation can reduce the use of chemical insecticides by providing an effective alternative to combat insects, fungi and other harmful organisms. Additionally, by preserving biodiversity, it can reduce the population of natural enemies and thus support the balance of the ecosystem. Public Health: Some of the microorganisms contained in the formulation may be effective in controlling disease-carrying insects such as mosquitoes. This can be an important tool in preventing the spread of malaria, Zika virus and other vector-borne diseases. The use of biological methods can reduce the risk of exposure to chemical compounds that may adversely affect public health. Sustainability: The combination of vegetable oils and microorganisms has the potential to reduce the environmental impacts of agriculture. It offers an environmentally friendly approach by reducing the risk of chemical residues leaking into soil and water resources. This can increase soil fertility and contribute to long-term sustainable agricultural practices. Direct Application: The formulation presented in the patent is presented in an oil-dispersible form with the help of emulsifiers, adjuvants and surfactants. This can increase effectiveness during application and ensure more homogeneous distribution on targeted surfaces. The wide application potential of the patent in the fields of agriculture and public health offers a great opportunity to provide sustainable solutions for growing healthier products and protecting human health in the future. This innovation is a valuable resource for industry and research institutions in order to leave a healthier and safer environment to future generations.TR TR

Claims (1)

ISTEMLER 1. Formülasyonun temelinde, çesitli bitkisel yaglarin etkin bir sekilde kullanildigi bir yaklasim yer alir; ayçiçek yagi, susam yagi, pamuk tohumu yagi, soya yagi, üzüm çekirdegi yagi, ketentohumu yagi, kanola yagi, hardal tohumu yagi, ceviz yagi, findik yagi, badem yagi, aspir yagi, misirözü yagi, kabak çekirdegi yagi, keten tohumu yagi, çörekotu yagi, susamotu yagi, quinoa yagi, chia tohumu yagi, kanarya çimeni yagi ve palm yagi gibi en az 2 ve en fazla 21 farkli bitkisel yagin karisimlari kullanilarak, mikrobiyal pestisit tabani total formulasyon "weight/weight" (agirlik/agirlik) orani olarak %55-75 araliginda olusturulur. . Patent isteminin bir diger odak noktasi, mikrobiyal pestisit tabanina dahil edilen etken maddelerdir; Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. tenebrionis mikroorganizmalarin tüm suslarinin biri ve/Veya toksinleri, proteinleri, sporlari, generatif formu, vejetatif formu, lizojenik formu, litik formu, biomasini ve sekonder metobolitlerinin karisimlarini içeren biri ve/Veya karisimlari "weight/weight" (agirlik/agirlik) orani olarak %5-40 eklenerek reaktör-karistirici kap da, 5-60 dakika boyunca 50-2500 rpm de homojennisazyon saglayincaya kadar karistirilir ve burada teknik madde yani mikro organizma toz veya siVi olabilir. . Karisimin homojenlestirilmesi, düsük hizli homojenlestirme cihazlariyla baslar, Reaktör-karistirici kap içinde, Bacillus amyloliquefaciens, Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. Israelensis gibi mikroorganizmalar, yüksek hizda 5-60 dakika boyunca 50-2500 rpm arasinda homojennisazyon saglanincaya kadar karistirilir, bu asama, bilesenlerin etkin bir sekilde bir araya gelmesini saglar ve homojen bir mikrobiyal pestisit tabaninin olusmasini temin eder. . Formülasyonun fiziksel özelliklerini iyilestirmek için, ögütme islemi kullanilir, Sand Mill ve Dyno Mill gibi yüksek hizli ögütme cihazlari, yüksek yogunluklu kum veya boncuklar yardimiyla malzemeleri ögütür ve dagitir, degirmen içerisindeki malzeme, ürünün homojenlestirilmesi ve dispersiyonunun saglanmasi amaciyla kullanilir, formülasyonun partikül boyutunun 1-80 mikrometre araligina kadar optimize edilmesi, bu asamanin temel hedeIlerindendir. . Polimerik surfaktanlar, formülasyonun emülsiyon stabilitesini artirmak ve suya karsi hassasiyetini düzenlemek amaciyla kullanilir, Atlox 4916, Croda Atlox 4862, Dow Coming 57 Additive, BASF Loxiol G 40, Evonik Tego Sorb 831, Clariant Adprotek 1025 gibi yagda çözünen yüzey aktif maddeleri, formülasyona %0.5-10 agirlik/ agirlik oraninda eklenir bu surfaktanlar; polimerik yapilara sahip hidrofobik ve hidrofilik gruplar içeren moleküllerden olusur, karisim, 2-6 saat boyunca 50-2500 rpm araliginda karistirilarak emülsiyon stabilitesi saglanincaya kadar homoj enlestirilir. . Homojenlestirme isleminin son asamasinda, Füme silikalar ve Agrimel BG4 gibi Vizkozite aj anlari eklenir, bu ajanlar, formülasyonun Viskozitesini düzenler ve ürünün stabilitesini artirir; tek tek veya karisim olarak %0.5-8 agirlik/agirlik oraninda eklenen Vizkozite aj anlari, 2-6 saat boyunca 50-2500 rpm araliginda karistirilarak homojen bir nihai ürün elde edilir, yenilikçi, Stabil Mikrobiyal Pestisit Oil Dispersiyon (OD Formulasyonu, tarim sektöründe yenilikçi ve etkili bir mikrobiyal pestisit formülasyonunun endüstriyel üretimini sunmaktadir; tarim ürünlerinin verimini artirmayi ve çevresel etkileri minimize etmeyi amaçlayan bu formülasyon, tarim endüstrisine büyük potansiyel sunmaktadir.1. The basis of the formulation is an approach in which various vegetable oils are used effectively; sunflower oil, sesame oil, cottonseed oil, soybean oil, grape seed oil, linseed oil, canola oil, mustard seed oil, walnut oil, hazelnut oil, almond oil, safflower oil, corn oil, pumpkin seed oil, linseed oil, By using mixtures of at least 2 and at most 21 different vegetable oils such as black cumin oil, sesame oil, quinoa oil, chia seed oil, canary grass oil and palm oil, the microbial pesticide base is calculated as the total formulation "weight/weight" ratio. It is formed between 55-75%. . Another focus of the patent claim is the active ingredients included in the microbial pesticide base; Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. tenebrionis microorganisms and/or one containing toxins, proteins, spores, generative form, vegetative form, lysogenic form, lytic form, biomass and mixtures of secondary metabolites and/or mixtures as "weight/weight" ratio % 5-40 is added and mixed in the reactor-mixer vessel at 50-2500 rpm for 5-60 minutes until homogenization is achieved, and the technical substance, that is, the microorganism, can be powder or liquid. . Homogenization of the mixture begins with low-speed homogenization devices. In the reactor-mixer vessel, Bacillus amyloliquefaciens, Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. Microorganisms such as israelensis are mixed at high speed between 50-2500 rpm for 5-60 minutes until homogenization is achieved, this step ensures that the components come together effectively and ensures the formation of a homogeneous microbial pesticide base. . To improve the physical properties of the formulation, the grinding process is used, high-speed grinding devices such as Sand Mill and Dyno Mill grind and disperse the materials with the help of high-density sand or beads, the material in the mill is used to ensure homogenization and dispersion of the product, the particle size of the formulation is 1-80 Optimizing it down to the micrometer range is one of the main goals of this stage. . Polymeric surfactants are used to increase the emulsion stability of the formulation and regulate its sensitivity to water. Oil-soluble surfactants such as Atlox 4916, Croda Atlox 4862, Dow Coming 57 Additive, BASF Loxiol G 40, Evonik Tego Sorb 831, Clariant Adprotek 1025 are added to the formulation at 0.5%. These surfactants are added at a ratio of -10 w/w; It consists of molecules containing hydrophobic and hydrophilic groups with polymeric structures. The mixture is homogenized by mixing between 50-2500 rpm for 2-6 hours until emulsion stability is achieved. . In the final stage of the homogenization process, Viscosity agents such as Fumed silicas and Agrimel BG4 are added, these agents regulate the Viscosity of the formulation and increase the stability of the product; Viscosity agents added individually or as a mixture at a rate of 0.5-8% w/w are mixed at 50-2500 rpm for 2-6 hours to obtain a homogeneous final product. The innovative, Stable Microbial Pesticide Oil Dispersion (OD Formulation), innovative in the agricultural sector and offers the industrial production of an effective microbial pesticide formulation; this formulation, which aims to increase the yield of agricultural products and minimize environmental impacts, offers great potential to the agricultural industry.
TR2023/010350 2023-08-24 INNOVATIVE, STABLE MICROBIAL PESTICIDE OIL DISPERSION (OD) FORMULATION TR2023010350A2 (en)

Publications (1)

Publication Number Publication Date
TR2023010350A2 true TR2023010350A2 (en) 2023-11-21

Family

ID=

Similar Documents

Publication Publication Date Title
USRE49311E1 (en) Bacillus thuringiensis RTI545 compositions and methods of use for benefiting plant growth and controlling plant pests
Gupta et al. Biopesticides: An ecofriendly approach for pest control
CA2881307C (en) Pyrethroid formulations
AL-Ahmadi Pesticides, anthropogenic activities, and the health of our environment safety
CN100586282C (en) Insecticidal composition containing chlorantraniliprole and monosultap
CN101384174A (en) Insecticidal and miticidal mixtures of bifenthrin and cyano-pyrethroids
CN1332610C (en) Pesticide microemulsion
US20210145011A1 (en) Pesticidal compositions with improved physical characteristics
ES2940332T3 (en) Use of a chicory extract as a fungicide
CN104430477A (en) Pesticide composition containing fluensulfone and neonicotinoid insecticide
CN106999529A (en) Composition and method for luring mosquito and repellent sand fly
CN104430357A (en) Bactericide composition containing coumoxystrobin with synergistic effect
CA2722040C (en) Novel pyriproxyfen compositions
CN103651552B (en) Ultra-low-volume liquor containing chlorfenapyr
CN106376567B (en) A kind of nematicidal composition containing fluopyram and its application
CN105410013A (en) Insecticide-pesticide mixture preparation
CN106962396A (en) One kind is new to kill nematode Recompounded pesticide and its application
CN104381294B (en) A kind of insecticide acaricide composition containing sulfur-phosphor and Envidor
TR2023010350A2 (en) INNOVATIVE, STABLE MICROBIAL PESTICIDE OIL DISPERSION (OD) FORMULATION
CN104351238B (en) Pesticide composition containing picoxystrobin and pyrethroids, preparation and application thereof
CN110250186A (en) Synergetic pesticide composition containing pyridine quinazoline
CA3096436A1 (en) Pesticidal compositions with improved physical characteristics
BR102014004519A2 (en) compositions containing the entomopathogenic fungus metarhizium anisopliae isolate jab 68 and use of the compositions
CN109169709A (en) It is a kind of for preventing and treating the synergistic composition of Cruciferous Vegetable Pests
Chorol et al. Biopesticides: Eco-friendly, Biodegradable and A Key to Sustainable Agriculture