TR202008309T2 - MULTI-PROCESS FLUE GAS TREATMENT SYSTEM AND CONTROL METHOD - Google Patents

MULTI-PROCESS FLUE GAS TREATMENT SYSTEM AND CONTROL METHOD

Info

Publication number
TR202008309T2
TR202008309T2 TR2020/08309 TR202008309T2 TR 202008309 T2 TR202008309 T2 TR 202008309T2 TR 2020/08309 TR2020/08309 TR 2020/08309 TR 202008309 T2 TR202008309 T2 TR 202008309T2
Authority
TR
Turkey
Prior art keywords
activated carbon
flue gas
equipment
flow rate
desorption
Prior art date
Application number
TR2020/08309
Other languages
Turkish (tr)
Inventor
Ye Hengdi
Liu Yanfei
Yang Bentao
Liu Changqi
Fu Xuming
Wei Jinchao
Original Assignee
Zhongye Changtian International Engineering Coltd
Filing date
Publication date
Application filed by Zhongye Changtian International Engineering Coltd filed Critical Zhongye Changtian International Engineering Coltd
Publication of TR202008309T2 publication Critical patent/TR202008309T2/en

Links

Abstract

Buluş sok işlemli baca gazı arıtma sistemi ve kontrol yöntemini kapsar. Baca gazı arıtma sistemi bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemini (2) ve ayrıca her bir işleme karsılık gelen baca gazı arıtma ekipmanını (110, 120); her baca gazı arıtma ekipmanı (110, 120), aktifleştirilmiş karbon merkezi desorpsiyon ve aktivasyon altsistemine (2), aktiflestirilmis karbon tasıma altsistemi (3) vasıtasıyla bağlıdır. Ana kontrol ünitesi, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akış hızını temsil etmek için tüm proseslerin karsılık gelen proses kontrol üniteleri tarafından gönderilen aktif karbon sirkülasyon akış hızlarının toplamını kullanır (2) ve ana kontrol ünitesi, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde (2) bir bant kantarı (26), besleme ekipmanı (22) ve boşaltma ekipmanının (24) verilen frekansını ayarlamak için bir aktivasyon alt sistemi kontrol ünitesini (102) kontrol eder, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki (2) aktif karbon sirkülasyon akış hızı, esasen her işlemdeki baca gazı saflaştırma ekipmanının (110, 120) aktif karbon sirkülasyon akış hızlarının toplamına eşittir.The invention covers the shock process flue gas purification system and control method. The flue gas treatment system includes an activated carbon central desorption and activation subsystem (2) as well as the flue gas treatment equipment (110, 120) corresponding to each process; Each flue gas treatment equipment (110, 120) is connected to the activated carbon central desorption and activation subsystem (2) via the activated carbon transport subsystem (3). The main control unit uses the sum of the activated carbon circulation flow rates sent by the corresponding process control units of all processes to represent the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2), and the main control unit uses the activated carbon central desorption and activation A belt weigher (26) in the subsystem (2) controls an activation subsystem control unit (102) to adjust the given frequency of the feeding equipment (22) and discharge equipment (24), thus enabling the activated carbon in the central desorption and activation subsystem (2). ) activated carbon circulation flow rate is essentially equal to the sum of the activated carbon circulation flow rates of the flue gas purification equipment (110, 120) in each process.

Description

TARIFNAME ÇOK ISLEMLI BACA GAZI ARITMA SISTEMI VE KONTROL YÖNTEMI BULUSUN ALANI Mevcut bulus, gaz aritma teknolojileri alani ve özellikle çok islemli baca gazi aritma sistemi ve bunun kontrol edilmesi için bir yöntem ile ilgilidir. BULUSUN ARKA PLANI Çelik endüstrisi tüm ulusal ekonominin bir omurga endüstrisidir. Ekonominin gelismesine katkida bulunmasina ragmen, çelik endüstrisi ciddi bir hava kirliligi sorununa neden olmaktadir. Baca gazlari, sinterleme, peletleme, koklastirma, demir üretimi, çelik üretimi ve çelik haddeleme gibi çelik endüstrisinin çesitli islemlerinde üretilir. Her islemde bosaltilan baca gazi, toz, SOg, NOx vb. gibi çok sayida kirletici içerir. Havaya bosaltildiktan sonra, kirli baca gazi sadece çevreyi kirletmekle kalmaz, ayni zamanda insan sagligini da tehdit eder. Bu nedenle, aktif karbon baca gazi aritma teknolojisi genellikle çelik endüstrisinde kullanilir, burada baca gazi adsorpsiyonu için baca gazi aritma ekipmanina yerlestirilir, böylece her islemde bosaltilan baca gazi üzerinde bir aritma islemi gerçeklestirilir. Çelik endüstrisinin mevcut aktif karbon baca gazi aritma teknolojisi, baca gazi aritma sistemine asagidakileri içeren bir baca gazi aritma sistemine uygulanir: her islemde saglanan bir baca gazi aritma ekipmani (1) ve birçok aktif karbon desorpsiyon ve aktivasyon alt sistemi (2), burada her aktif karbon desorpsiyon ve aktivasyon alt sistemi (2) sirasiyla her bir baca gazi aritma cihazi (1) ile karsilik gelen bir aktif karbon tasiina alt sistemi (3) ile iletisim halindedir. Sekil 1'de gösterildigi gibi, aktif karbon baca gazi aritma cihazi (1), bir besleme cihazi (11), bir adsorpsiyon kulesi (12), bir bosaltma cihazi (13), bir tampon kutusu (14) ve bir bosaltma cihazi (15); aktif karbon desorpsiyon ve aktivasyon alt sistemi (2), bir tampon kutusu (21), bir besleme ekipmani (22), bir desorpsiyon kulesi (23) ve bir bosaltma ekipmani (24) içerir. Sistemin çalismasi sirasinda, aktif karbon, besleme Cihazi (11) vasitasiyla adsorpsiyon kulesine (12) girer ve adsorpsiyon kulesinde (12) aktiflestirilmis bir karbon katmani olusturur; ayni zamanda, kirleticiler içeren bir ham baca gazi (17) da sürekli olarak adsorpsiyon kulesine (12) girer ve ham baca gazindaki (17) kirleticiler, adsorpsiyon kulesinde (12) aktif karbon tarafindan adsorbe edildikten sonra, temiz bir baca gazi (16) desarj için elde edilir. Kirleticileri adsorbe eden kirli aktif karbon, bosaltma cihazi (13) vasitasiyla tampon bölmesine (14) bosaltilir, daha sonra tampon bölmesinin (14) altinda bulunan bosaltma cihazi ( 15) vasitasiyla aktif karbon tasima alt sistemine (3) bosaltilir, ve daha sonra kirli aktif karbon, aktiflestirilmis karbon tasima alt sistemi (3) vasitasiyla karsilik gelen aktif karbon desorpsiyon ve aktivasyon alt sisteminin (2) tampon kutusuna (21) tasinir. Daha sonra, kirli aktif karbon, tampon bölmesinin (21) altinda saglanan besleme ekipmani (22) vasitasiyla desorpsiyon kulesine (23) salinir ve temiz aktif karbon, desorpsiyon ve aktivasyon yoluyla elde edilir ve bosaltma ekipmani (24) tarafindan bosaltilir. Temiz aktif karbon, aktif karbon tasima altsistemi (3) tarafindan ilgili baca gazi aritma ekipmaninin (l) besleme cihazina (1 l) tasinir ve daha sonra baca gazi saflastirmasi için tekrar adsorpsiyon kulesine (12) girerek baca gazi saflastirma ekipmaninin (1) ve aktif karbon desorpsiyon ve aktivasyon alt sisteminin (2) bire bir baca gazi saflastirilmasim ve aktif karbon geri dönüsümünü gerçeklestirir. Pratik uygulamada, çelik endüstrisindeki her baca gazi bosaltma isleminde bir dizi baca gazi aritma ekipmani ve bir dizi aktif karbon desorpsiyon ve aktivasyon alt sistemi bulunur. Çok sayida baca gazi aritma ekipmani ve aktif karbon desorpsiyon ve aktivasyon alt sistemleri, her islemde üretilen kirli baca gazinin aritilmasini saglamak için ayni anda çalisir. Bununla birlikte, bir çelik isletmesindeki her bir islemin ölçegi ve üretilen baca gazi miktari birbirinden farkli oldugundan, baca gazinin optimal bir satlastirma etkisini elde etmek için, farkli ölçeklerdeki islemler, ölçeklerle eslesen bir baca gazi aritma ekipmani gerektirir, bu da çelik isletmesinde farkli tipte baca gazi aritma ekipmanlarinin temin edilmesine neden olabilir ve birlesik yönetimi gerçeklestiremez. Ayrica, her baca gazi aritma ekipmani için bagimsiz bir aktif karbon desorpsiyon ve aktivasyon alt sisteminin saglanmasi gerekir, bu da baca gazi aritmasinin genel yapisinin çelik bacada çok fazla aktif karbon desorpsiyon ve aktivasyon alt sisteminin saglanmasina neden olabilir ve çelik isletmesindeki sistem karmasik hale gelir; ayrica, her islemde üretilen baca gazinin bagimsiz olarak islenmesi gerekir, bu da baca gazi saflastirma sisteminin çalisma verimliligini düsürebilir. Bu nedenle, verimli bir baca gazi aritma sistemi gerçeklestirmek aciliyet konusudur. BULUSUN ÖZETI Mevcut bulus, çok islemli bir baca gazi aritma sistemi ve bunun kontrol edilmesi için bir yöntem sunar, böylece mevcut baca gazi aritma sisteminin düsük isletme verimliligi sorununu Bulusun birinci yönünde mevcut basvuru, asagidakileri içeren çok islemli bir baca gazi aritma sistemi sunar: bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi, bir aktif karbon tasima alt sistemi ve her bir isleme karsilik gelen baca gazi aritma ekipmani, burada baca gazi aritma ekipmanlarinin her biri, sirasiyla aktif karbon tasima alt sistemi araciligiyla aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine baglanir; Burada aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi sunlari içerir: bir desorpsiyon kulesi; desorpsiyon kulesine giren kirli aktif karbonun akis hizini kontrol etmek için yapilandirilmis besleme ekipmani; desorpsiyon kulesinde aktif hale getirilen aktif aktif karbonu desarj etmek üzere yapilandirilmis bosaltma ekipmanlari; bosaltma ekipmanindan bosaltilan aktif karbonun eleninesi için yapilandirilmis eleme ekipmani; eleme ekipmani tarafindan elenen aktiflestirilmis aktif karbonu toplamak için yapilandirilmis bir aktiflestirilmis aktif karbon kutusu; her bir isleme karsilik gelen baca gazi saflastirrna ekipmaninin bir çikis ucu ile besleme ekipmani arasinda saglanan ve her bir islemde baca gazi saflastirma ekipmanindan bosaltilan kirli aktif karbonu toplamak üzere yapilandirilmis bir ana aktif karbon kutusu; ana aktif` karbon kutusu ve besleme ekipmani arasinda saglanan ve ana aktif` karbon kutusundaki kirli aktif karbonu desorpsiyon kulesine tasimak üzere yapilandirilmis bir kayis kantari; ve ana aktif karbon kutusunun üzerinde saglanan ve yeni aktif karbonu ana aktif karbon kutusuna eklemek üzere yapilandirilan yeni bir aktif karbon takviye ekipmani. Opsiyonel olarak, çok islemli baca gazi aritma sistemi ayrica sunlari içerir: aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminde saglanan sinterleme islemine karsilik gelen bir baca gazi aritma cihazi ve aktiflestirilmis aktif karbon kutusunun altinda bulunan bir malzeme dagitim ekipmani; sinterleme islemine karsilik gelen baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbon, aktif karbon tasima alt sistemi ve besleme ekipmani yoluyla desorpsiyon kulesine yüklenir. Malzeme dagitim ekipmani sunlari içerir: aktiflestirilmis aktif karbonu her bir isleme dagitmak için yapilandirilmis olan bir islemde n sayida bosaltma ekipmani ve aktiflestirilmis aktif karbonu bir sinterleme islemine dagitmak için yapilandirilmis bir sinterleme islemi bosaltma ekipmani. Bulusun ikinci yönünde mevcut basvuru, çok asamali bir baca gazi aritma sisteminin kontrol edilmesi için asagidaki adimlari içeren bir yöntem sunar: islem n'deki zaman tni'ye karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin Wxnrimi belirlenmesiislem n'deki zaman tni'ye karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin belirlenmesi; buradaki 11, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tni : t-Tni, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; islem n'deki baca gazi saflastirma ekipmaninm aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin Wxnnm) (on) mevcut zamanda (t) belirlenmesi; konveyör kantarinin bosaltma akis hizinin (Wc), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXÜ) göre ayarlanmasi ve WC = on oldugunda ilgili konveyör kantarinin bir çalisma frekansi fc'nin elde edilmesi; ve Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinin fp'nin, konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrolün gerçeklestirilmesi. Istege bagli olarak, zamana karsilik gelen islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi Wxmmi asagidaki adimlarda belirlenir: Asagidaki formül ile islem n'de üretilen ham baca gazinin toplam miktarina (Vn) göre zaman tni'ye karsilik gelen ham baca gazindaki 502 ve NOX toplam akis hizinin hesaplanmasi: WSii(liii):Vn < Csn/ l 06 Burada Wsnu...) ham baca gazindaki (n) islemindeki zamana karsilik gelen (kg / h) birimindeki toplam 807_ akis hizidir; Wmamm islemindeki zamana karsilik gelen ham baca gazindaki kg / saat birimindeki toplam NOK akis hizidir;Cs.. "n" isleminde mg / Nm3 birimindeki zaman tnj'ye karsilik gelen ham baca gazindaki 802 konsantrasyonudur; ve CN.] mg / Nm3 birimindeki n islemindeki zamana karsilik gelen ham baca gazindaki NOX konsantrasyonudur; islem n'deki baca gazi satlastirma ekipmaninin aktif karbon sirkülasyon akis hizinianiçm) , asagidaki formülle ham baca gazindaki SO; ve NOX toplam akis hizina göre zaman tni'ye karsilik gelen sekilde hesaplanmasi: Wxn(im)=Ki< WSii(luii+K2 < WNn(tiii] Buradaki WXiiUiii) islem n'deki baca gazi aritma ekipmaninin kg / saat birimindeki ilgili zamandaki aktive edilmis karbon sirkülasyon akis hizi; K1, 15-21 araliginda bir ilk katsayidir; ve K2, 3 ~ 5 araliginda ikinci bir katsayidir. Istege bagli olarak, mevcut zamanda t karsilik gelen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi on, asagidaki adimlarda belirlenir: Islem n'deki baca gazi satlastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin WXnUni) on mevcut t zamanda asagidaki formülle belirlenmesi; WXFZ Wxnnna) : Z WXnÜ-Tni) Buradaki t, simdiki zamandir ve Tni, baca gazi satlastirma ekipmaninin, i prosesindeki aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif` karbonu dagittigi zamandir. Istege bagli olarak, mevcut zamanda t karsilik gelen aktif karbon inerkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi WXO, asagidaki adimlarda belirlenir: Takviye akis hizinin (Wsupp) yeni aktiI` karbon takviye ekipmanini ana aktif karbon bölmesine takviye etmek için yeni aktif karbon takviye ekipmanini kontrol etmek üzere belirlenmesi ve yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun desteklenmesi; Islem n'deki baca gazi satlastirma ekipmaninin aktif karbon sirkülasyon akis hizina Wxmm) göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin (on) ve takviye akis hizinin (Wsupp) mevcut t zamanda asagidaki formülle belirlenmesi; WXO : Z WxnoýTM) + WWW Opsiyonel olarak, yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun takviye akis hizi (Wsupp), asagldaki adimlarda belirlenir: Aktive edilmis karbon merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine aktive edilmis karbon yükleme miktarinin (QO) asagidaki formüle göre aktive edilmis karbon merkezi desorpsiyon ve aktivasyon altsisteminin aktive edilmis karbon sirkülasyon akis hizina (WXO) göre belirlenmesi: QÜ:WX(iX To Burada (QO), aktif karbonun aktiflestirilmis merkezi merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine kg birimindeki yükleme miktaridir; ve (TU), aktif karbonun desorpsiyon kulesinde, h biriminde 4 ~ 8 araliginda kalma süresidir; Aktif karbon inerkezi desorpsiyon ve aktivasyon alt sistemindeki aktif aktif karbon kutusunun gerçek aktif karbon miktarinin (Qaetual) saptanmasi; Aktif karbon yükleme miktari Q) ve gerçek aktif karbon miktarina göre eleme ekipmani tarafindan elendikten sonra aktif karbonun aktif karbon miktari kaybinin (Qioss) (QiOSSZQo-Qacmai) formülüne göre belirlenmesi; ve Yeni aktif karbon takviye ekipmaninin takviye edilmis aktif karbon miktarinin (Qsupp) kaybolan aktif karbon miktarina (Qioss) esit olmasi ve yeni aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun ilave akis hizinin (Wsupp) ayarlanan süreye göre birim zamanda takviye edilmis aktif karbon miktarina (Qgupp) göre belirlenmesi, ve istege bagli olarak, aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki besleme ekipmaninin verilen frekansi (fg) ve bosaltma ekipmaninin verilen frekansinin (fp), asagidaki asamalarda konveyör kantarinin çalisma frekansina (fc) göre ayarlanmasi: Konveyör kantarinin bosaltma akis hizinin (Wc) WC = Kc < fe, besleme ekipmaninin bosaltma akis hizinin (Wg) WG = Kg < fg ve bosaltma ekipmaninin bosaltma akis hizinin (Wp) WP = Kp < fp olarak belirlenmesi, burada Ko, Kg ve Kp'nin hepsi sabittir; Besleme ekipmani, bosaltma ekipmani ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin kayis kantarlarinin bosaltma akis hizlarinin kontrol edilmesi, böylece WGZW FZWCZWXÜ saglanir; Yukaridaki formüle göre, besleme ekipmaninin verilen frekansinin (fg) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladiginin elde edilmesi: E=E böylece besleme ekipmaninin verilen frekansinin (fg) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansinin (fc) ayarlanmasi; ve Bosaltma ekipmaninin verilen frekansinin (fp) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladiginin elde edilmesi: E:Eböylece desarj ekipmaninin verilen frekansinin (fp) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansinin (fc) ayarlanmasi. Bulusun üçüncü yönüne göre basvuru, çok asamali bir baca gazi aritma sisteminin kontrol edilmesi için asagidaki adimlari içeren bir yöntem sunar: Islem n'deki zaman tni'ye karsilik gelen bir baca gazi sailastirma ekipmaninin aktif karbon dolasim akis hizinin WXoi simdiki zamana karsilik gelen bir sinterleme isleminde t belirlenmesi, ve islem n'deki baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizinin Wxmm) belirlenmesi; buradaki 11, çok islemli baca gazi satlastirma sistemindeki her islemin sira numarasidir; tnFI-Tni, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; Islemdeki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina WXnÜiii) göre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin WXni WXO asagidaki formülle sinterleme isleminde belirlenmesi: WXiizz WXiiU-Tiii] + WXÜI Konveyör kantarinin bosaltma akis hizinin (WC), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi ilgili konveyör kantarinin bir çalisma frekansi fc'nin elde edilmesi WC:WXu-WX01 _; ve Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansmm fp'nin, konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrolün gerçeklestirilmesi. Istege bagli olarak, yöntem ayrica sunlari içerir: Sinterleme prosesi bosaltina ekipmaninin bosaltma akis hizinin (Wunioadi) sinterleme prosesinde ve formül Wunioadi : WXOl < j içindeki baca gazi satlastirma ekipmaninin aktif karbon dolasim debisine göre belirlenmesi, burada j, 0.9 ila 0.97 araliginda bir katsayidir; ve islem n'deki bosaltma ekipmaninin bosaltma akis hizi WXUI (Wunioadz) kontrolünün düzenegi tarafindan Bulusun dördüncü yönünde basvuru, çok asamali bir baca gazi aritma sisteminin kontrol edilmesi için asagidaki adimlari içeren bir yöntem sunar: Islem n'deki zaman tni'ye karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin WXm simdiki zamana karsilik gelen bir sinterleme isleminde t belirlenmesi, ve islem n'deki baca gazi aritina ekipmaninin aktif karbon sirkülasyon akis hizinin WXuLIm) belirlenmesi ve yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun destek akis hizinin belirlenmesi; burada 11, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tni=t-Tni, Tm, baca gazi aritma ekipmaninin i isleminde aktif karbon inerkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; Islemdeki baca gazi saflastirrna ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina Wx..(in.) göre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin WxUi (WXO) ve takviye akis hizinin (Wsupp) asagidaki fonnülle sinterleme isleminde belirlenmesi: WXO : g WXnü-Tni) + WWW) _i_ WXÜI Konveyör kantarinin bosaltma akis hizinin (Wc), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi ilgili konveyör kantarinin bir çalisma frekansi fc'nin elde edilmesi WC:WXii-WXm ; ve Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinin fp'nin, konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi saIlastirmasi üzerindeki kontrolün gerçeklestirilmesi. Çok islemli baca gazi aritma sisteminde ve bulusun uygulamalarina göre ayni kontrol yönteminde, sistem bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi, bir aktif karbon tasima alt sistemi ve her bir isleme karsilik gelen baca gazi aritma ekipmanlari içerir, burada her baca gazi aritma ekipmani, aktiIlestirilmis karbon tasima alt sistemi yoluyla sirasiyla aktif karbon merkezi analiz aktivasyon alt sistemine baglanir, her bir isleme karsilik gelen baca gazi saflastirma ekipmani tarafindan bosaltilan kirli aktif karbon, sirasiyla ana aktif karbon kutusuna aktarilir. aktif karbon merkezi desorpsiyon ve aktivasyon altsisteminden sonra desorpsiyon kulesi tarafindan desorbe edilir ve aktive edilir. Elde edilen aktiflestirilmis aktif karbon daha sonra aktiflestirilmis karbonun geri dönüsümünü gerçeklestirmek için her bir islemin baca gazi aritma ekipmanina tasinir. Her islemde baca gazi aritma ekipmaninda saglanan bir proses kontrol ünitesi, ilgili baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizini bir ana kontrol ünitesine gönderir, ana kontrol ünitesi tüm islemlere karsilik gelen aktif karbon sirkülasyon akis hizlarinin toplamini kullanir ve aktif` karbon merkezi desorpsiyon ve aktivasyon altsisteminin aktif karbon dolasim debisini temsil eder ve aktif karbon merkezi desorpsiyon ve aktivasyon altsisteminde saglanan bir aktivasyon altsisteini kontrol birimini kontrol eder, böylece konveyör kantarinin ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki besleme ekipmaninin ve bosaltma ekipmaninin verilen frekansini ayarlar, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki aktif karbon sirkülasyon akis hizi, esasen her islemdeki baca gazi saflastirma ekipmanlarinin aktif karbon sirkülasyon akis hizlarinin toplamina ve adsorpsiyon kisminin ve çok islemli baca gazi saflastirma sisteminin desorpsiyon kismi elde edilir, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi ile her birinin baca gazi satlastirma ekipmaninin aktif karbon sirkülasyon akis hizi arasinda bir denge saglanir ve süreç ve çalisma verimliligini artirilir. ÇIZIMLERIN KISA AÇIKLAMASI Bulusun düzenlemelerinin teknik çözümlerini daha açik bir sekilde göstermek için, düzenlemeler sanatinin tarifinde gerekli çizimler asagida kisaca tanitilacaktir. Görünüse göre, asagidaki açiklamadaki çizimler bulusun sadece bazi düzenlemeleridir ve baska çizimler de yaratici çizimler olmadan bu çizimlere göre teknikte siradan tecrübeli kisilerce elde edilebilir. Sekil 1, önceki teknigin baca gazi aritma sisteminin yapisal bir temsilidir; Sekil 2, bulusun l. uygulamasina göre çok islemli bir baca gazi aritma sisteminin yapisal bir temsilidir; Sekil 3, bulusun 1. uygulamasina göre çok islemli bir baca gazi aritma sisteminin bir blok diyagramidir; Sekil 4, bulusun 2. uygulamasina göre çok islemli bir baca gazi aritma sisteminin yapisal bir temsilidir; Sekil 5, bulusun 2. uygulamasina göre çok islemli bir baca gazi aritma sisteminin bir blok diyagramidir; Sekil 6, bulusun uygulamasina göre çok islemli bir baca gazi aritma sisteminin yönteminin bir akis diyagramidir; Sekil 7, baca gazi saflastirma ekipmaninin aktiIlestirilmis karbon sirkülasyon akis hizini, bulusun uygulamasina göre her islemde belirlemek için bir yöntemin bir akis diyagramidir; Sekil 8, bulusun düzenlemesine göre takviye edilmis yeni aktif karbonun takviye akis hizini belirlemek için bir yöntemin bir akis diyagramidir; Sekil 9, bulusun bir diger uygulamasina göre çok islemli bir baca gazi aritma sisteminin yönteminin bir akis diyagramidir; Sekil 10, bulusun bir diger uygulamasina göre çok islemli bir baca gazi aritma sisteminin yönteminin bir akis diyagramidir. Sekillerdeki referans numaralari: l-Baca Gazi Aritma Ekipmanlari, ll-Besleme Cihazi, 12-Adsorpsiyon Kulesi, 13-Tahliye Cihazi, l4-Tamp0n Kutusu, lS-Bosaltma Cihazi, 16-Baca Gazi Ari, l7-Ham Baca Gazi, 2-Aktif Karbon Merkezi Desorpsiyon ve Aktivasyon Alt Sistemi, 21-Tanipon Kutusu, 22-Besleme Ekipmani, 23-Desorpsiyon Kulesi, 24-Tahliye Ekipmanlari, -Ana Aktif Karbon Kutusu, 26-K0nveyör Kantari, 27-Eleme Ekipmanlari, 28-Aktif Karbon Kutusu, 29-Yeni Aktif Karbon Yardimci Ekipmanlar, -Malzeme Dagitim Ekipmanlari, 201-Sinterleme Islemi Bosaltma Ekipmani, 202-Proses Bosaltma Ekipmanlari, 3-Aktif Karbon Tasima alt sistemi, 110-Proses l Baca Gazi Aritma Ekipmanlari, llI-Proses l Besleme Cihazi, 112-Proses 1 Adsorpsiyon Kulesi, 113-Proses 1 Tahliye Cihazi, 114-Proses l Tampon Kutusu, llS-Proses l Bosaltma Cihazi, llö-Proses 1 Temiz Baca Gazi, ll7-Proses 1 Ham Baca Gazi, llS-Proses 1 Aktif Karbon Kutusu, l20-Proses 2 Baca Gazi Aritma Ekipmanlari, l2l-Proses 2 Besleme Cihazi, 122-Proses 2 Adsorpsiyon Kulesi, 123-Proses 2 Tahliye Cihazi, l24-Proses 2 Tampon Kutusu, 125-Proses 2 Bosaltma Cihazi, 126-Proses 2 Temiz Baca Gazi, 127-Proses 2 Ham Baca Gazi, 128-Proses 2 Aktif Karbon Kutusu, lû-Bilgisayar Alt Sistemi, 100-Ana Kontrol Ünitesi, 1011- Proses 1'in Kontrol Ünitesia lOZ-Aktivasyon Alt Sistem Kontrol Ünitesi, 103-Sinterleme Proses Kontrol Ünitesi, lO4-Yeni Aktif Karbon Takviyesi Kontrol Ünitesi, 4-Sinterleme Isleminde Baca Gazi Aritma Ekipmanlari, 4l-Sinterleme Sürecinde Besleme Cihazi, 42-Sinterleme lsleminde Adsorpsiyon Kulesi, 43-Sinterleme Sürecinde Tahliye Cihazi, 44-Sinterleme Isleminde Ham Baca Gazi, 45-Sinterleme lsleminde Baca Gazi Arindirma. AYRINTILI AÇIKLAMALAR Sekil 2, bulusun l. uygulamasina göre olan çok islemli bir baca gazi aritma sisteminin yapisal bir temsilidir; ve Sekil 3, bulusun l. uygulamasina göre çok islemli baca gazi aritma sisteminin bir blok diyagramidir. Sekil 2'ye atfen, bulusun uygulamasina göre çok islemli baca gazi aritma sistemi sunlari içerir: bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2), bir aktif karbon tasima alt sistemi (3) ve her bir isleme karsilik gelen baca gazi aritma ekipmanlari, burada her baca gazi saflastirma ekipmani, sirasiyla aktif karbon tasima alt sistemi (3) yoluyla aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) ile baglanir. Bu düzenlemede, bir demir ve çelik tesisinde baca gazi aritma verimliligini arttirmak için, bütün tesiste aktiIlestirilmis bir karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) saglanir ve her islemde saglanan baca gazi aritma ekipmani, sirasiyla ayni aktifkarbon merkezi desorpsiyon ve aktivasyon alt sistemi (2), yani bir-çok yapisal iliski olusur. Örnegin, sekil 2'de gösterildigi gibi çok islemli baca gazi aritma sisteminde, islem 1'in bir baca gazi aritma cihazi (110) ve islem 2'nin bir baca gazi aritma cihazi (120), sirasiyla aktif karbon merkezi desorpsiyonlu bir seri yapi olusturur ve aktiflestirilmis karbon tasima altsistemi (3) yoluyla aktiflestirme alt sistemi (2) ve her baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbon, sirasiyla aktif karbon merkezi desorpsiyon ve aktivasyon altsistemine (2) iletilir ve sirasiyla aktif hale getirme ve aktivasyondan sonra aktif karbon elde edilir ve ardindan sirasiyla her islemde baca gazi aritma ekipmanina iletilir, böylece aktif karbonun geri dönüsümünü gerçeklestirir. Sekil 2'nin sadece örnek olarak islem l'in baca gazi aritma cihazi (110), islem 2'nin baca gazi aritma cihazi (120) ile aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) arasindaki iliskiyi gösterdigi unutulmamalidir. Bununla birlikte, bir demir ve çelik tesisinin üretim sürecine göre, baca gazlari üreten çok sayida islem mevcut olabilir, bu nedenle çok islemli baca gazi aritma sistemi, çok sayida isleme karsilik gelen çok sayida baca gazi aritma ekipmani içerebilir. Bu düzenlemede, sadece çok islemli baca gazi aritina sisteminin islem l'deki bir baca gazi aritma ekipmanini (110) ve islem 2'nin bir baca gazi aritma ekipmanini (120) içerdigi bir örnek ile gösterilmistir. Her baca gazi saflastirma ekipmani ile aktif karbon merkezi desorpsiyon ve aktivasyon alt Sistemi (2) arasinda aktif karbonun geri dönüsümünü gerçeklestirmek için, bir aktif karbon tasima alt sistemi (3) dagitim için kullanilir. Bir demir ve çelik tesisinde, bitisik iki baca gazi aritma ekipmani arasindaki mesafe uzun oldugundan ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2), her baca gazi aritma ekipmani, farkli baca gazi aritma ekipmani ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) farklidir. Aktif karbonun verimli bir sekilde teslim edilmesini ve geri dönüstürülmesini saglamak için, bir kayis veya konveyör yoluyla iletim modu uzun mesafeli durumlar için geçerli olmayabilir. Bu nedenle, bu düzenlemede, bir kayis ve bir konveyöre ek olarak, tüm tesiste konveyör veya kayis temin edilmesini, zemin alanini arttinnayi ve tüm tesisin yapisal düzenini etkilemeyi önleyen bir motorlu tasit da teslim edilmek üzere seçilebilir, ve ayrica, aktif karbonun uzun mesafeli tasima verimliligini arttirir. Özellikle, aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) sunlari içerir: geri dönüsüm için aktif aktif karbon elde etmek üzere her bir isleme karsilik gelen baca gazi saflastirma ekipmani tarafindan bosaltilan kirli aktif karbonu desorbe etmek ve etkinlestirmek için yapilandirilmis bir desorpsiyon kulesi (23); desorpsiyon kulesinin (23) bir giris ucunda temin edilen ve her bir isleme karsilik gelen baca gazi saflastirma ekipmani tarafindan bosaltilan brüt kirli aktif karbonu belirli bir frekans veya akis hizinda belirli bir frekans veya akis hizinda yüklemek üzere yapilandirilmis bir besleme ekipmani (22) desorpsiyon kulesinin (23) desorpsiyon ve aktivasyon sikligina eslestirilmesi; desorpsiyon kulesinin (23) bir çikis ucunda temin edilen ve aktif karbon tasima alt sistemi (3) araciligiyla her bir isleme karsilik gelen baca gazi aritma ekipmanlarinin giris ucu ile baglantili olan ve aktif aktif desorbe edilmis ve aktif hale getirilmek üzere yapilandirilmis bir bosaltma ekipmani (24) desorpsiyon kulesi (23) tarafindan aktif karbon tasima alt sistemine (3) belirli bir frekans veya akis hizinda ve böylece aktiflestirilmis aktif karbonun her islemde baca gazi aritma ekipmanina iletilmesi; her isleme ve besleme ekipmanina karsilik gelen baca gazi aritma ekipmaninin bir çikis ucu arasinda saglanan ve her bir islemde baca gazi aritma ekipmanindan bosaltilan kirli aktif` karbonu toplamak üzere yapilandirilmis bir ana aktif karbon kutusu (25); ve bir koveyör kantari (26), ana aktif karbon bölmesi (25) ve besleme ekipmani (22) arasinda saglanmis ve ana aktif karbon bölmesinde (25) toplanan tüm kirli aktif karbonu aktif karbon tasima alt sistemine (3) iletmek üzere yapilandirilmistir, ve böylece kirli aktif karbonu, besleme ekipmaninin (22) üzerinde saglanan tampon bölmesine (21) yüklenmistir, buradaki besleme ekipmani (22), tampon bölmesinin (21) desorpsiyon kulesi (23) ile iletisimini gerçeklestirir, böylece kirli aktif karbon, belirli bir akis hizina veya frekansina göre besleme ekipmani (22) yoluyla desorpsiyon kulesine (23) yüklenebilir. Islem 1'in baca gazi aritma cihazi (110) sunlari içerir: islem 1'in bir besleme cihazi (111), islem 1'in bir adsorpsiyon kulesi (112), islem 1'in bir desarj cihazi (113), islem 1'in bir tampon kutusu ve islem 1'in konveyör kantari (119). Baca gazi aritma ekipmaninin çalismasi sirasinda, islem 1'in aktif karbon kutusu (118), aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) tarafindan verilen aktiflestirilmis aktif karbonu yükleyecek sekilde yapilandirilir ve daha sonra aktif aktif karbon, aktif karbona tasinir ve alt sisteme (3), proses 1'in koveyör kantari (119) yoluyla tasinir. Baca gazi aritma ekipmaninin yüksekligi büyük oldugundan, aktiflestirilmis aktif karbonu düsük bir pozisyonda proses l tamponuna yüksek bir pozisyonda tasimak için aktif karbon tasima alt sistemi (3) olarak bir konveyör seçilebilir. Islem 1'in tampon bölmesinde depolanan aktitlestirilmis aktif karbon, islem 1'in besleme cihazi (111) vasitasiyla islem 1'in adsorpsiyon kulesine (112) girer, ve ayni zamanda, islem l'in ham baca gazi (117) de islem 1'in adsorpsiyon kulesine (112) girer. Islem l'in ham baca gazinda (117) tasinan kirleticiler, islem 1'in adsorpsiyon kulesinde (112) aktiflestirilmis aktif karbon tarafindan adsorbe edildikten sonra, bosaltim için islem 1'iii temiz bir baca gazi (116) elde edilir. Kirleticileri adsorbe eden kirli aktif karbon, geçici depolama için proses l'in desarj cihazi (113) vasitasiyla proses 1'in tampon haznesine (114) bosaltilir ve proses 1'in tampon haznesinde (114) depolanan kirli aktif karbon belirli bir miktara ulastiginda, islem 1'deki bosaltma cihazi (115), kirli aktif karbonu aktif karbon tasima alt sistemine (3) bosaltir. Burada, tasima miktarini ve hizini arttirmak için, aktif karbon tasima alt sistemi (3) olarak bir motorlu tasit seçilebilir, böylece kirlenmis aktif karbonu ana aktif karbon kutusuna (25) kirlenmis aktif karbonun desorbe edilmesini ve aktiflestirilmesini bekledigi yere tasimak için aktif karbon tasima alt sistemi (3) kullanilabilir. Benzer sekilde islem 2'in baca gazi aritma cihazi (120) sunlari içerir: islem 2'in bir besleme bir tampon kutusu (124), islem 2'in bir bosaltma cihazi (125) , islem 2'in aktiflestirilmis bir karbon bölmesi (128) ve islem 2'in konveyör kantari (129). Islem 2'nin baca gazi aritma ekipinaninin (120), islem 2'nin temiz baca gazini (126) elde etmek için islem 2'nin ham baca gazi saflastinnasi (117) üzerinde islem ltin baca gazi aritma ekipmani (110) ile aynidir ve burada tekrarlanan bir açiklama yapilmayacaktir. Sekil 3'te gösterildigi gibi, çok islemli baca gazi aritma sistemindeki her alt sistem ve ekipman üzerinde kesin kontrol gerçeklestirmek ve çalisma verimliligini artirmak için, bu düzenlemeye göre çok islemli baca gazi aritma sistemi ayrica bir bilgisayar alt sistemi (10) içerir. Bilgisayar alt sistemi (10) asagidakileri içerecek sekilde yapilandirilmistir: bir ana kontrol ünitesi (100); aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon altsisteminde saglanan ve aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki (2) her bir yapinin çalisma durumunu kontrol etmek ve çalisma parametrelerini ayarlamak için yapilandirilmis bir aktivasyon alt sistemi kontrol ünitesi (102); ve her islemin baca gazi aritina ekipmaninda saglanan ve karsilik gelen baca gazi aritma ekipmanindaki her bir yapinin çalisma durumunu kontrol etmek ve çalisma parametrelerini ayarlamak için yapilandirilmis bir proses kontrol ünitesi. Ana kontrol ünitesi (100), aktivasyon alt sistemi kontrol ünitesi (102) ve islem kontrol ünitesi ile çift yönlü veri iletimi gerçeklestirmek ve aktivasyon alt sistemi kontrol ünitesini (102) kontrol etmek üzere yapilandirilinistir ve proses kontrol ünitesi, verilerin hesaplanmasi ve analiz edilmesi, böylelikle tüm çok islemli baca gazi aritma sistemi üzerinde birlestirilmis ve hassas kontrolün gerçeklestirilmesi ve baca gazi aritmasinin verimliliginin arttirilmasiyla ilgili talimatlari yürütmek üzere yapilandirilmistir. Özellikle, pratik uygulamada, her islemdeki islem kontrol ünitesi asagidaki islevlere sahiptir: baca gazi saflastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizinin WXiium) mevcut zamana (tm) karsilik gelen mevcut proseste belirlenmesi; ve mevcut islemde baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizinin WXnHni) ana kontrol ünitesine (100) gönderilmesi; burada 11, çok islemli baca gazi satlastirma sistemindeki her islemin sira numarasidir; tm = t-Tnij i karsilik gelen verinin gönderildigi zamandir, ve Tni, baca gazi aritma ekipmaninin, i zamaninda, karsilik gelen kirli aktif karbonu i islemindeki aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine ilettigi zamandir. Bu düzenlemede, her islemdeki islem kontrol ünitesi karsilik gelen baca gazi aritma ekipmanindaki aktif` karbon akis hizini ana kontrol ünitesine (100), böylece ana kontrol ünitesi (100), baca gazi aritma ekipmaninin aktif karbon akis hizina göre tüm islemlerde, baca gazi aritma ekipmaninin çalisma durumunu ilgili islemde ayarlamak üzere hesaplayabilir ve analiz edebilir, böylece genel çok islemli baca gazi aritma sisteminin çalisma verimliligini maksimuma Bu nedenle, Sekil 7'de gösterildigi gibi, ilgili isleme n karsilik gelen islem kontrol ünitesi, baca gazi saflastirma ekipmaninin su andaki yönteme göre zamana karsilik gelen baca gazi sailastirma ekipmaninin aktif karbon sirkülasyon akis hizini Wxnumi belirler: S21: tm- zamanina karsilik gelen ham baca gazindaki toplam 802 ve NOX akis hizi, asagidaki formülde n isleminde üretilen ham baca gazinin toplam Vn miktarina göre hesaplanir: wsiinzvn < Cs../l 06 Wnuçimi=Vnx CNN/106 Burada Ws..(i..nhain baca gazindaki (n) islemindeki zamana karsilik gelen (kg / h) birimindeki toplam 802 akis hizidir; WNnumiVn, Nm3/ s biriminde zaman tni'ye karsilik gelen ham baca gazinin toplam miktaridir; Cs.. n islemindeki zamana karsilik gelen ham baca gazindaki kg / saat birimindeki toplam NOX akis hizidir; CNJi"n" isleminde mg / Nm3 birimindeki zaman tni'ye karsilik gelen ham baca gazindaki SO2 konsantrasyonudur; ve mg / Nm3 birimindeki n islemindeki zamana karsilik gelen ham baca gazindaki NOX konsantrasyonudur; Bir demir ve çelik tesisinde üretilen kirletieilerin ana bilesenleri toz, SO; ve NOX, ayrica az miktarda VOC, dioksin ve agir metallerdir. Ancak, her islemin bir toz ayirma fonksiyonu ve miktari vardir, SO; ve NOX disindaki kirleticilerin küçük olmasi dolayisiyla baca gazi aritma ekipmani esas olarak baca gazindaki 802 ve NOX'i uzaklastirmayi amaç-lamaktadir. Sonuç olarak, teorik olarak gereken aktif karbon miktari, adsorpsiyon kulesine giren baca gazinda tasinan 802 ve NOX miktarina göre tahmin edilebilir, böylece doymus adsorpsiyon veya yetersiz adsorpsiyon olmadan optimal adsorpsiyon etkisi elde edilir; 822: tni süreine karsilik gelen islem n'deki baca gazi saflastirrna ekipmaninin aktif karbon sirkülasyon akis hizi Wxmni), asagidaki formülle ham baca gazindaki 802 ve NOX toplam akis hizina göre hesaplanir: WxnuinFKi x Wsmerz < WWW) Buradaki Wxnmi islem n'deki baca gazi aritma ekipmaninin kg / saat birimindeki ilgili zamandaki aktive edilmis karbon sirkülasyon akis hizi; K1, 15-21 araliginda bir ilk katsayidir; ve K2, 3 ~ 5 araliginda ikinci bir katsayidir. Aktif karbon, adsorpsiyon kulesinde bir akis durumunda oldugu ve baca gazinin da bir akis durumunda oldugu için, adsorpsiyon kulesindeki aktif karbonun, adsorpsiyon kulesine, baca gazina giren baca gazini en uygun sekilde adsorbe edebilmesi için aktif karbonun ve baca gazinin akis durumunun belirli bir orantili iliskiyi karsilamasi gerekir, yani, baca gazi saflastirma ekipmamndaki aktif karbon dolasim debisi ile 802 ve NOX toplam akis hizi arasinda belirli bir orantili iliski vardir. Her islemdeki islem kontrol ünitesi, mevcut islemdeki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizini Wxuit.,.isirasiyla ana kontrol ünitesine (100) gönderir, örnegin, proses 1'in kontrol ünitesi (1011), proses 1'in baca gazi sailastirrna ekipmaninin (110) aktif karbon sirkülasyon akis hizini WXiini) ana kontrol ünitesine (100) gönderir; islem 2'nin kontrol ünitesi (1012), islem 2'nin baca gazi aritma ekipmaninin (120) aktif karbon sirkülasyon akis hizini Wxmziiana kontrol ünitesine (100) gönderir; ve islem n'nin kontrol ünitesi (101n), islem n'nin baca gazi saflastirma ekipmaninin aktif karbon akis hizini Wxi.(t..i)ana kontrol birimine (100) gönderir. Ana kontrol ünitesi (100), islem süresinde baca gazi aritma ekipmaninin aktive edilmis karbon akis hizini Wxmn.) , ve tüm islemlerde baca gazi saflastirma ekipinaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizini WXnttni) (Wxn) belirler. Dolasan miktar (on), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon miktaridir ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin Çalisma durumu ve çalisma parametreleri teorik degere göre tam olarak kontrol edilebilir. Özellikle de ana kontrolü ünitesi (100) ile islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin Wx.in..i)Wx0'in mevcut t zamanda asagidaki formülle belirlenmesi; WXFZ Wxnnun = 2 WXnÜ-Tni) Buradaki t, simdiki zamandir ve Tni, baca gazi satlastirma ekipmaninin, i prosesindeki aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif` karbonu dagittigi zamandir, bu da aktif karbon tasima alt sistemi (3) tarafindan saglanir. Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi WXO, her islemdeki baca gazi saflastinna ekipmaninin aktif karbon sirkülasyon akis hizlarinin toplamidir. Bununla birlikte, her bir islem kontrol biriminin baca gazinin aktif karbon sirkülasyon miktarini belirledigi zamandan ziyade, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) teorik aktif karbon sirkülasyon akis hizinin hesaplandigi t zamanidir ve her bir islemde aritma ekipmani isler ve verileri gönderir. Bunun nedeni, baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbonun aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine (2) ve farkli bir zamanda aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine (2) farkli islemlerde farkli olmasi nedeniyle kirli aktif karbonun verilmesi için gereken sürenin belirli bir zaman almasi gerektigidir. Ayrica, üretim prosesinde her islem tarafindan üretilen baca gazi miktari ve kirleticilerin konsantrasyonu zaman zaman degisir, bu da baca gazi aritma ekipmanindaki aktif karbon sirkülasyon akis hizinin farkli zamanlarda degismesine neden olabilir, bu nedenle mevcut zamanda (t), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde (2) alinan kirli aktif karbonun sadece ilgili islemde baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbon oldugunu garanti eder, yani aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) tarafindan alinan kirli aktif karbonun dolasim debisi, karsilik gelen baca gazi aritma ekipmaninda aktif karbonun gerçek aktif karbon dolasim debisidir. Etkinlestirme alt sistemi kontrol ünitesi (102) tarafindan simdiki zamanda (tni) elde edilen aktif` karbon sirkülasyon akis hizi, ancak teslim süresi Tni'den sonra ilgili islemle, yani çok islemli baca gazi aritma sistemi üzerindeki hassas kontrolün Tni zaman dilimi ile ertelenmelidir. Böylece isletme verimliligi düsürülecek ve elde edilen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi (WXO) yanlis olacaktir. Örnegin, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) teorik aktif` karbon sirkülasyon akis hizinin hesaplandigi simdiki zaman t: 10:00, islem l'deki baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbonun aktif karbon merkezi desorpsiyona ve aktivasyon alt sistemine iletildigi zaman TU, islem 1'in kontrol biriminin (1011), islem 1'deki baca gazi saIlastirma ekipmaninin aktif karbon akis hizini WXini.) , t" = 9:30*a karsilik gelen ana kontrol birimine (100) göndermesi gerekir. Bir diger örnekte, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) teorik aktif karbon sirkülasyon akis hizinin hesaplandigi simdiki zaman t: 14:20, islem 2'deki baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbonun aktif karbon merkezi desorpsiyona ve aktivasyon alt sistemine iletildigi zaman T2,, islem 2'in kontrol biriminin (1012), islem 1'deki baca gazi sarlastirrna ekipmaninin aktif karbon akis hizini Wxmzi) , t2i = 13:40'a karsilik gelen ana kontrol birimine (100) göndermesi gerekir. Bu nedenle, çok islemli baca gazi aritma sisteminin çalisma verimliligini ve aktivasyon alt sistemi kontrol ünitesi (102) tarafindan elde edilen verilerin dogrulugunu, yani baca gazi aritma ekipmaninin aktif karbon dolasimli akis hizinin Wxmmidogrulugunu garanti etmek için her bir islemde, elde edilen verilerin mevcut zamanda t aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizini (Wxu) temsil ettigi sekilde, her birinde baca gazi sailastirma ekipmaninin aktif karbon sirkülasyon akis hizini elde etmesi gerekir ve teslim süresi (Tni) tarafindan ilerletilen mevcut zamana t karsilik gelen zamanda islem, yani baca gazi saflastirina ekipmaninin aktive edilmis karbon dolasim debisi, mevcut zamana t karsilik gelen her bir islem WXuüýTm) kullanilarak dönüstürülür. Ana kontrol ünitesi 100, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizini WXO belirledikten sonra, konveyör kantarinin 26 bosaltma akis hizinin, bosaltma akis hizini ayarlamak için verilere göre ayarlanmasi gerekir, konveyör kantarinin (26) bosaltma akis hizina göre desorpsiyon kulesinin (23) bosaltma donanimi (22) ve bosaltma ekipmani (24), böylece bant kantarinin (26) bosaltma akis hizini, besleme ekipmaninin (22) bosaltma akis hizini ve bosaltma islemini yapar, bosaltma ekipmaninin (24) akis hizi, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) teorik aktif karbon dolasimli akis hizina esittir ve çok islemli baca gazi aritma sisteminin hassas bir sekilde kontrol edilmesinin etkisini saglar. Pratik çalismada, konveyör kantarinin (26) gerçek çalisma frekansi tam olarak kontrol edilemeyebilir. Bu nedenle, her islemin baca gazi aritina ekipmaninin aktif karbon sirkülasyon akis hizini, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) aktif karbon sirkülasyon akis hiziyla ayni hale getirmek için, tüm çoklu prosesin çalismasini senkronize edin baca gazi aritma sistemi ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) tarafindan verilen aktiflestirilmis aktif karbon miktarinin, baca gazi miktarini adsorbe etmek için her islemde baca gazi aritma ekipmanini desteklemek için yetersiz oldugundan ve etkisi azalir veya aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) tarafindan verilen aktif aktif karbon miktari çok büyüktür, bu da her islemdeki baca gazi aritma ekipmaninin doymus durumda ve aktif aktif karbonun tasmasina neden olabilir göründügünde, konveyör kantarinin (26) bosaltma akis hizinin (WC) kontrol edilmesi gerekir, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (on) esit olacaktir. Özellikle, aktivasyon alt sistemi kontrol ünitesi 102, konveyör kantarinin (26) bosaltma akis hizini (Wc), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlar, böylece konveyör kantarinin (26) bosaltma akis hizi kadeineli olarak aktive edilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) aktive edilmis karbon sirkülasyon akis hizina ve WC : WXÜ belirlendiginde konveyör kantarinin (26) karsilik gelen çalisma frekansina (fe) esittir. Çalisma frekansi (fc), konveyör kantarinin 26 teorik çalisma frekansi, yani çok islemli baca gazi aritina sisteminin çalismasini senkronize etmek için bir çalisma frekansidir. Daha sonra, ana kontrol ünitesi (100) konveyör kantarinin (26) çalisma frekansini (fc) elde eder ve aktivasyon alt sistemi kontrol ünitesine (102) bir ayarlama talimati gönderir, burada aktivasyon alt sistemi kontrol ünitesinin (102) besleme ekipmaninin 22 verilen frekansini (fg) ve bosaltma ekipmaninin (24) verilen frekansini (fp) ayarlamasini saglar, böylece çok islemli baca gazi aritma sistemi üzerindeki kontrolü gerçeklestirir. Spesifik olarak, bu düzenlemede, ana kontrol ünitesi (100) elde edilen verilere göre verileri analiz eder ve hesaplar ve ilgili operasyonu gerçeklestirmek için aktivasyon alt sistemi kontrol ünitesini (102) kontrol etmek için sonuca göre bir kontrol talimati üretir. Bu nedenle, besleme ekipmaninin (22) verilen frekansini (fg) ve desarj ekipmaninin (24) verilen frekansini (fp) konveyör kantarinin (26) çalisma frekansina (fc) göre hassas bir sekilde ayarlamak için, ana kontrol ünitesi ( 100) asagidaki adimlari uygulayacak sekilde konfigüre edilir : 861: Bant kantarinin bosaltma akis hizi (WC), WC : KC < fc, besleme ekipmaninin bosaltma akis hizi (WG), WG : Kg X fg ve bosaltma ekipmaninin bosaltma akis hizi (Wp) olarak Wp : Kp < fp, buradaki KC, Kg ve Kp, konveyör kantarinin (26) genisligi, besleme ekipmaninin (22) çikis genisligi, bosaltma ekipmaninin (24) çikis genisligi, elektrik motorunun parametreleri, frekans dönüstürücü ve aktif karbonun özgül agirligi vb. ile iliskili sabitlerdir. Kayis kantari (26), besleme ekipmani (22) ve bosaltma ekipmani (24), bir malzeme vermek için bir elektrik motoru tarafindan tahrik edilen malzeme besleme cihazlari oldugundan, elektrik inotoru bir frekans dönüstürücü ve elektrik motorunun dönüs hizi ile tahrik edilir kayis dönüstürücüsünün (26), besleme ekipmaninin (22) ve bosaltma ekipinaninin (24) malzeme tasima akis hizi, elektrik motorunun dönme hizi, yani bosaltma akisi ile orantili olacak sekilde frekans dönüstürücünün çalisma frekansi tarafindan elektrik motorunun dönüs hizi ile orantili olarak belirlenir. 862: Besleme ekipmani, bosaltma ekipmani ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin kayis kantarlarinin bosaltma akis hizlarinin ayni olacak sekilde kontrol edilmesi ve böylece WGzWPZWCZWXO olmasi saglanir. Yukaridaki girise göre, her islemin baca gazi aritma ekipinaninin aktif karbon sirkülasyon akis hizini, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) aktif karbon sirkülasyon akis hiziyla ayni hale getirmek ve böylece tüm çok islemli baca gazi aritma sisteminin senkron çalismasini gerçeklestirmek için, kayis kantarinin (26) bosaltma akis hizinin, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) teorik aktif karbon sirkülasyon akis hizina (WXÜ) göre ayarlanmasi gerekir, ve daha sonra besleme ekipmaninin (22) bosaltma akis hizinin ve desorpsiyon kulesinin (23) bosaltma ekipmaninin (24) kayis kantarinin (26) bosaltma akis hizina göre ayarlanmasi gerekir, böylece bant kantarinin (26) bosaltma akis hizi (WC), besleme ekipmaninin (22) bosaltma akis hizi (WG) ve bosaltma ekipmaninin (24) bosaltma akis hizi (WP), aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizina (on) esittir. 863: Yukaridaki formüle göre, besleme ekipmaninin verilen frekansinin (fg) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladiginin elde edilmesi: E:E böylece besleme ekipmaninin verilen frekansinin (fg) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansinin (fc) ayarlanmasi saglanabilir; ve Bosaltma ekipmaninin verilen frekansinin (fp) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladigi elde edilir: E :E böylece desarf ekipmaninin verilen frekansinin (fg) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansinin (fc) ayarlanmasi saglanabilir. Besleme ekipmaninin (22) verilen frekansi fg, bosaltma ekipmaninin (24) verilen frekansi fp ve kayis kantarinin (26) çalisma frekansi fc arasindaki oransal iliskiye göre, fg ve fp fc'ye esit olarak ayarlanabilir, böylece pratik çalismada, kayis kantarinin (26) bosaltma akis hizinin (Wc), besleme ekipmaninin (22) bosaltma akis hizinin (WG) ve bosaltma ekipmaninin (24) bosaltma akis hizinin (WP) teorik olarak aktif karbon dolasim akisina esit olmasi garanti edilebilir, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (on) orani, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi (WXÜ) ile baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizi arasinda bir denge garanti edilebilir, böylece tüm çok isleinli baca gazi aritma sisteminin senkron bir çalismasini ve optimum çalisma verimliligini garanti eder. Desorpsiyon kulesi (23) tarafindan desorbe edildikten ve aktive edildikten sonra, kirli aktif karbonun agirligi degisecek ve aktiflestirilmis aktif karbonun bosaltilmasi sirasinda biraz aktif karbon bosa gidecek, böylece bosaltma akisi arasinda bir denge saglamak için besleme ekipmaninin (22) orani ve bosaltma ekipmamnin (24) desorpsiyon kulesinde (23) bosaltma akis hizinin, aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine (2) yeni aktif karbon ilave edilmesi gerekir. Bu düzenlemede, takviye edilmis yeni aktif karbonun takviye noktasi, aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) üzerinde bulunur, yani, bu düzenlemeye göre aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) ayrica asagidakileri içerir: ana aktif karbon bölmesinin (25) üzerinde saglanan yeni bir aktif karbon takviye ekipmani (29). Bu düzenlemede, yeni aktif karbonun takviye edilmesi için ekipman ana aktif karbon bölmesinde (25) temin edilmektedir, bunun nedeni, ana aktif karbon bölmesinin (25) her isleminde baca gazi aritma ekipmanindan bosaltilan kirli aktif karbonu alacak sekilde yapilandirilmis olmasidir. tüm bitki ve alindiktan sonra, tüm kirli aktif karbon birlestirilmis bir sekilde desorpsiyon kulesine (23) desorpsiyon ve aktivasyon için iletilir ve elde edilen aktif aktif karbon her islemin baca gazi aritma ekipmanina birlesik olarak iletilir, böylece aktif karbonun geri dönüsümü gerçeklesir. Ana aktif karbon kutusu (25) tüm kirli aktif karbonu alir ve baca gazi adsorpsiyonu ve dagitimi sirasinda her islemde baca gazi aritma ekipmaninin aktif karbonunun toplam kaybi hassas bir sekilde belirlenebilir, böylece aktif karbon, ana aktif karbon kutusunda (25) takviye edilir. Aksine, aktif karbon her islemde baca gazi aritma ekipmaninda bagimsiz olarak desteklenirse, her seferinde sadece dogru miktarda yeni aktif karbon saglanamaz, ayni zamanda sistemin genel çalisma verimliligi de etkilenir. Yeni aktif karbon takviye ekipmaninda (29) bir takviye edilmis yeni aktif karbon kontrol ünitesi (104) bulunmaktadir. Ilave edilen yeni aktif karbon kontrol ünitesi (104), ana kontrol ünitesi (100) ile çift yönlü veri iletimi gerçeklestirir ve yeni aktif karbon takviye ekipmanini (29) ana aktif karbon bölmesine (25) ana kontrol ünitesinden talimatlarina (100) göre belirli bir frekansta takviye etmek üzere yapilandirilir. Ana aktif karbon bölmesine (25) yeni aktif karbon girerse, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon dolasimi miktari (on) degistirilecek,bu nedenle, (on) hesaplanirken her islemdeki baca gazi satlastirma ekipmaninin sadece aktif karbon sirkülasyon akis hizinin degil, ayni zainanda ana aktif karbon bölmesine (25) ilave edilen yeni aktif karbonun aktif` karbon akis hizinin dikkate alinmasi gerekir. Spesifik olaraka bu düzenlemede, Çok islemli baca gazi satlastirma sisteminin ana kontrol ünitesi (100) karsilik gelen aktif` karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizini (on) su adimlarda belirler: S41: Takviye akis hizinin (Wsupp) yeni aktif karbon takviye ekipmanini ana aktif` karbon bölmesine takviye etmek için yeni aktif karbon takviye ekipmanini kontrol etmek üzere belirlenir ve yeni bir aktif karbon takviye ekipmani ile takviye edilmis yeni aktif karbonunun desteklenir; Bu düzenlemede, yeni aktif karbon takviye ekipmaninin (29) takviye edilmis yeni aktif karbonunun takviye akis hizi (Wsupp), takviye edilmis yeni aktif karbon kontrol ünitesi (104) tarafindan belirlenir. Aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) tüm kirli aktif karbon üzerinde birlesik desorpsiyon ve aktivasyon gerçeklestirir ve her prosese elde edilen aktif aktif karbonu birlesik olarak iletir. Ayrica, her islemde baca gazi aritma ekipiiianinda aktif karbon eleme kaybi saglanmaz ve bunun yerine, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde (2) aktif eleme kaybi ve aktif karbon saglanir. Bu nedenle, aktif karbonun eleme kaybinin veri dogrulugu garanti edilir ve genel sistemin çalisma verimliligi arttirilir. Bu düzenlemede, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) ayrica sunlari içerir: bosaltma ekipmaninin (24) altinda bulunan bir eleme ekipmani (27) ve eleme ekipmaninin (27) altinda bulunan aktiflestirilmis bir aktif karbon kutusu (28). Eleme ekipmani (27), aktiflestirilmis aktif` karbon bölmesinde (28) depolamak için hedef tanecikli aktiflestirilmis aktif` karbon ve aktiflestirilmis aktif karbonda aktiflestirilmis aktif` karbon elde etmek üzere desorpsiyon kulesi (23) tarafindan desorbe edilmis ve aktif' hale getirilmis aktif karbonun elenmesi için yapilandirilmistir ve çöp kutusu (28), her islemde baca gazi aritma ekipmaninin ihtiyaç duydugu aktif karbon kaynagi olacaktir. Bu düzenlemede, eleme ekipmani (27) bir çalkalama süzgeei veya bir eleme fonksiyonuna sahip olan ve bu düzenlemede spesifik olarak sinirli olmayan baska bir ekipman olabilir. Pratik islemde, eleme ekipmani (27) aktif karbonun desorbe edildigini elediginde, az miktarda kayip meydana gelebilir ve bu kayip her bir islemde baca gazi aritma ekipmaninin baca gazi adsorpsiyonu sirasinda olusan aktif karbon kaybini, teslimat sirasinda aktif karbon kaybi, desorpsiyon kulesinde (23) aktif karbon kaybi ve eleme ekipmaninda (27) aktif karbon kaybi (27) içerebilir. Dolayisiyla, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde (2) saglanan eleme ekipmaninin (27) neden oldugu aktif karbon kaybinin, çok islemli baca gazi sailastirmasinin çalismasinda tüketilen tüm aktif karbonun toplami olacagi görülebilir. Burada tüketilen aktif karbona göre, ana aktif karbon haznesinde (25) takviye edilecek yeni aktif karbon miktari, kesin ve hizli bir sekilde belirlenebilir, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi (WXO) ile her islemin baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi arasinda bir denge garanti edilebilir, böylece tüm çok islemli baca gazi aritma sisteminin senkronize çalismasini ve optimum çalisma verimliligini garanti eder. Bu nedenle, Sekil 8'de gösterildigi gibi, birim zamanda yeni aktif karbon takviye ekipmaninin (29) takviye edilmis yeni aktif karbonunun takviye akis hizini (Wsupp) kesin olarak belirlemek için, bu düzenlemedeki aktivasyon alt sistemi kontrol ünitesi (102) asagidaki yöntemi ve adimlari kullanir: S411: Aktive edilmis karbon merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine aktive edilmis karbon yükleme miktarinin (QÜ) asagidaki formüle göre aktive edilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizina (WXO) göre belirlenmistir: QÜ:WXUX To Burada (QO), aktif karbonun aktiflestirilmis merkezi merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine kg biriinindeki yükleme miktaridir; (TO), aktif karbonun desorpsiyon kulesinde, h biriminde 4 ~ 8 araliginda kalma süresidir; Bu düzenlemede, aktif karbon kaybi, desorpsiyon kulesine giren tüm kirli aktif karbon miktari ile bosaltilan aktif karbon miktari arasindaki fark araciligiyla belirlenir. Bu nedenle, mevcut zamanda t desorpsiyon kulesinin aktif karbon yükleme miktari QO'in aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) ve desorpsiyon kulesinde kirli aktif karbonun kalis süresine (TO) göre belirlenmesi 8412: Aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki aktif aktif karbon kutusunun gerçek aktif karbon miktari (Qacmai) saptanir; 8413: Eleme ekipmani tarafindan elendikten sonra aktif karbonun aktif karbon miktari kaybi (Qloss), desorpsiyon kulesinin aktif karbon yükleme miktarina (QO) ve formül ile aktiflestirilmis aktif karbon miktarina (Qactual) göre belirlenirQgm : Q0 7 Qmm ; Aktivasyon alt sistemi kontrol ünitesi (102), mevcut zamana karsilik gelen aktif aktif karbon kutusunun gerçek aktif karbon miktarini (Qactual) tespit eder ve daha sonra çok islemli baca gazi aritma sisteminin bir döngü çalismasi sirasinda tüm aktif karbon miktari kaybini desorpsiyon kulesinde (23) aktif karbon yükleme miktarina (QO) göre belirlenir. 8414: Yeni aktif karbon takviye ekipmaninin takviye edilmis aktif karbon miktari (Qsupp) kaybolan aktif karbon miktarina (Qioss) esit olacak sekilde ve yeni aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun ilave akis hizi (Wsupp) ayarlanan süreye göre birim zamanda takviye edilmis aktif karbon miktarina (Qsupp) göre belirlenir. Eleme ekipmanindan (27) sonra üretilen kayip aktif karbon miktari Qloss, yeni aktif karbon takviye ekipmani (29) tarafindan destekleneeek yeni aktif karbon miktari olacaktir. Bu nedenle, kaybedilen aktif karbon miktarini (Qloss) bir karsilastirma ölçütü olarak alarak, yeni aktif karbon takviye ekipmani (29), kaybedilen aktif karbon miktarina (Qloss) göre takviye edilmis aktif karbon miktarini (Qsupp) belirlemek için takviye edilmis yeni aktif karbon kontrol ünitesi (104) tarafindan kontrol edilir. Ilave miktar belirlendikten sonra, birim zamanda takviye edilmis yeni aktif karbonun takviye akis hizi (Wsupp) belirlenebilir. Takviye akis hizi (Wsupp) yeni aktif karbon takviye ekipmaninin (29) takviye edilmis yeni aktif karbonunun tespit edilmesinden sonra, takviye edilen yeni aktif karbon kontrol ünitesi (104), yeni aktif karbonu ana aktif karbon kutusuna uygun sekilde takviye etmek için yeni aktif karbon takviye ekipmanini takviye akis hizina (Wsupp) göre kontrol eder. S42: Islem n'deki baca gazi saIlastiirna ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi aktive edilmis karbon sirkülasyon akis hizinin (WXO) ve takviye akis hizinin Wx,.(tm)(Wsupp) mevcut t zamanda Ana aktif karbon kutusu (25), her bir islemde baca gazi aritma ekipmanindan bosaltilan kirli aktif karbonu ve yeni eklenen yeni aktif karbonu içerdiginden, yukaridaki aktif karbon dolasim debisi, teorik aktif karbon dolasim debisi, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) belirlenir. Aktif karbon kaybi, mevcut döngüde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi 2 tarafindan üretilir ve daha sonra, bir sonraki döngüye karsilik gelen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbOn sirkülasyon akis hizi her islemde baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizinin toplamina esittir. Dolayisiyla, bu düzenlemede, aktif karbonun eleme kaybini birlestirerek ve yeni aktif karbon takviyesini birlestirerek, kayip ve takviye miktarinin dogrulugunun garanti edilebilecegi görülebilir ve çalisma süresi maksimum düzeyde azaltilabilir, böylece çok islemli baca gazi saflastirma sisteminin çalisma verimliligini arttirir. Yukaridaki teknolojiden, bulusun düzenlemesine göre çok islemli baca gazi aritma sisteminin bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2), bir aktif karbon tasima alt sisteini (3) ve asagidakilere karsilik gelen baca gazi aritma ekipmanlarini içerdigi görülebilir, burada her baca gazi aritma ekipmani, aktiflestirilmis karbon tasima alt sistemi (3) yoluyla sirasiyla aktif karbon merkezi analiz aktivasyon alt sistemine (2) baglanir, her bir isleme karsilik gelen baca gazi saflastirma ekipmani tarafindan bosaltilan kirli aktif karbon, sirasiyla ana aktif karbon kutusuna (25) aktarilir. aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminden (2) sonra desorpsiyon kulesi (23) tarafindan desorbe edilir ve aktive edilir. Elde edilen aktiflestirilmis aktif karbon daha sonra aktiflestirilmis karbonun geri dönüsümünü gerçeklestirmek için her bir islemin baca gazi aritma ekipmanina tasinir. Her islemde baca gazi aritma ekipmaninda saglanan bir proses kontrol ünitesi, ilgili baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizini bir ana kontrol ünitesine gönderir, ana kontrol ünitesi tüm islemlere karsilik gelen aktif karbon sirkülasyon akis hizlarinin toplamini kullanir ve aktif karbon merkezi desorpsiyon ve aktivasyon altsisteminin aktif karbon dolasim debisini temsil eder ve aktif karbon merkezi desorpsiyon ve aktivasyon altsisteminde saglanan bir aktivasyon altsistemi kontrol birimini kontrol eder, böylece konveyör kantarinin ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki besleme ekipmaninin ve bosaltma ekipmaninin verilen frekansini ayarlar, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki aktif karbon sirkülasyon akis hizi, esasen her islemdeki baca gazi saflastirma ekipmanlarinin aktif karbon sirkülasyon akis hizlarinin toplamina ve adsorpsiyon kisminin ve çok islemli baca gazi saflastirma sisteminin desorpsiyon kismi elde edilir, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi (WXO) ile her birinin baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi arasinda bir denge saglanir ve süreç ve çalisma verimliligini artirilir. Sekil 4, bulusun 2. uygulamasina göre olan çok islemli bir baca gazi aritma sisteminin yapisal bir temsilidir; ve Sekil 5, bulusun 2. uygulamasina göre çok islemli baca gazi aritma sisteminin bir blok diyagramidir. Sekil 4 ve Sekil 5'te gösterildigi gibi, bulusun 2. uygulamasina uygun olan çok islemli baca gazi aritma sistemi, sistemin ayrica bir sinterleme islemine uygulanabilmesi bakimindan yukaridaki uygulamadan farklidir. Bir demir ve çelik tesisinde, sinterleme isleminde üretilen baca gazi diger islemlerde üretilen gazdan çok daha fazladir. Sinterleme isleminde üretilen baca gazi miktari, demir ve çelik tesisinin toplam baca gazi miktarinin% 70'i kadardir. Bu nedenle, baca gazi saflastirmasinin çalisma verimliligini arttirmak için sinterleme islemi ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) birlikte saglanir, yani, çok islemli baca gazi aritma sistemi ayrica aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde (2) saglanan sinterleme islemine karsilik gelen bir baca gazi aritma ekipmani içerir. Bu düzenlemede, sinterleme isleminde baca gazi saflastinna ekipmani (4) tarafindan bosaltilan kirli aktif karbonun, geçici depolama için ana aktif karbon bölmesine (25) tasinmasina gerek yoktur; bunun yerine, desorpsiyon ve aktivasyon için dogrudan desorpsiyon kulesine (23) aktarilabilir. Sinterleme isleminde üretilen baca gazi çok fazla oldugundan ve sinterleme islemi demir ve çelik tesisinin ölçegine göre 1 numarali sinterleme ve 2 numarali sinterleme içerebilir. Bu düzenlemede, baca gazi saflastirmasinin çalisma verimliligini arttirmak için karsilik gelen iki aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) saglanabilir. Bu düzenlemede, bir örnek olarak, bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2), sinterleme isleminde (4) bir baca gazi aritma ekipmani ve diger islemlerde çok sayida baca gazi aritma ekipmani saglanmistir. Sinterleme islemindeki (4) baca gazi aritma ekipmaninin yapisi, Sekil 2'de gösterilen her bir islemin baca gazi aritma ekipmanininki ile aynidir. Spesifik olarak, sinterleme isleinindeki baca gazi aritma ekipmani (4) sunlari içerir: sinterleme islemindeki (41) bir besleme cihazi, sinterleme islemindeki (42) bir adsorpsiyon kulesi ve sinterleme islemindeki (43) bir bosaltma Cihazi. Sinterleme prosesinde baca gazi aritma ekipmaninin (4) sinterleine prosesi temiz baca gazini (45) elde etmek için sinterleme prosesi ham baea gazi (44) üzerinde baca gazi saflastirmasi gerçeklestirdigi prosedür, proses 1'deki baca gazi aritma ekipmani (110) ile aynidir, ilgili prosedür için 1. uygulamanin içerigine atifta bulunulabilir ve burada tekrarlanan bir açiklama yapilmayacaktir. Sinterleme islemindeki baca gazi aritma ekipmani (4), ana kontrol ünitesi (100) ile çift yönlü veri iletimi gerçeklestirmek üzere yapilandirilmis bir sinterleme islemi kontrol ünitesi (103) ile donatilmistir ve sinterleme isleminde baca gazi aritma ekipmaninin (4) çalisma durumunu kontrol etmek ve ana kontrol ünitesinden (100) bir talimata göre çalisma parametrelerini, Vb. ayarlamak üzere yapilandirilmistir. Çok islemli baca gazi saflastirma sistemine bir sinterleme islemi ilave edildikten sonra, sinterleme isleminde baca gazi satlastirma ekipmaninin (4) aktif karbon sirkülasyon akis hizi ve her islemde baca gazi saflastinna ekipmaninin aktif karbon sirkülasyon akis hizi aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon dolasim debisi (WXO) hesaplanirken ayni anda düsünülmelidir. Pratik uygulamada, bir baca gazi sailastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizinin WxÜi mevcut zamana (t) karsilik gelen bir sinterleme isleminde belirlenmesi için bir sinterleme islemi kontrol ünitesi (103) gereklidir; ve aktif karbon akis hizi WXni ana kontrol biriinine (100) gönderilir. Sinterleme isleminde baca gazi satlastirma ekipmaninin (4) aktif karbon sirkülasyonu akis hizi WXm , yukaridaki düzenlemede saglanan yönteme istinaden baca gazindaki toplam 802 ve NOX akis hizina göre belirlenebilir ve tekrarlanan bir açiklama yapilmayacaktir. Sekil 9'da gösterildigi gibi, sinterleme islemi kontrol ünitesi (103) mevcut baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizini WXOI belirledikten sonra, aktif karbon sirkülasyon akis hizi WxUi ana kontrol ünitesine (100) ve ana kontrol ünitesine (100) gönderilir, su andaki (t) adimda karsilik gelen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizini (WXO) asagidaki adimlarda belirler: S71: Mevcut zamana tekabül eden bir sinterleme isleminde bir baca gazi saflastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizi WXDI belirlenir ve zamana tni karsilik gelen islem n'deki baca gazi saflastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizi Wxmmbelirlenir; burada n, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tm=t-Tni, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; Sinterleme islemi, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemi (2) ile entegre oldugundan, kirli gazin baca gazi aritma ekipmaninin adsorpsiyon kulesinin çikisindan desorpsiyon kulesinin (23) girisine aktarim süresi, 0 olarak ihmal edilebilir. Bu nedenle, sinterleme isleminde baca gazi saflastirma ekipmaninin (4) aktif karbon sirkülasyon akis hizinin WXm elde edildigi zaman, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) aktif karbon sirkülasyon akis hizinin mevcut oldugu zaman (t) olarak hesaplanir. Islem n'deki baca gazi satlastirma ekipmaninin aktif karbon akis hizini Wxnum) belirleme yöntemi için yukaridaki düzenlemenin içerigine atifta bulunulabilir ve burada tekrarlanan bir açiklama yapilmayacaktir. S72: Islemdeki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina Wxmnngöre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin Wxûi WXO asagidaki formülle sinterleme isleminde belirlenir: WXiizz WXnu-Tiin + WXÜI S73: Konveyör kantarinin bosaltma akis hizinin (WC), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi WCZWxÜ-Wxûi ilgili konveyör kantarinin bir çalisma frekansi (fc) elde edilir. S74: Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinin (fp), konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi saflastinnasi üzerindeki kontrol gerçeklestirilir. Bu anda, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) aktiflestirilmis karbon sirkülasyon akis hizi, sinterleme isleminde baca gazi saflastirrna ekipmaninin (4) aktiflestirilmis karbon sirkülasyon akis hizinin ve her islemde baca gazi aritma ekipmanlarinin aktif karbon sirkülasyon akis hizinin toplamidir; ayrica, çok islemli baca gazi aritma sisteminde bir aktif aktif karbon eleme operasyonu ve yeni bir aktif karbon takviyesi operasyonu saglanirsa, ana aktif karbon bölmesindeki (25) takviye edilmis yeni aktif karbonun ilave akis hizinin (Wsupp), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi hesaplandiginda daha fazla olmasi gerekir, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi (WXO) ile sinterleme isleminde ve her islemde baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi arasinda bir denge garanti edilebilir, böylece tüm çok islemli baca gazi aritina sisteminin senkronize çalismasini ve optimum çalisma verimliligini garanti eder. Çok islemli baca gazi saflastirma sistemine bir sinterleme islemi eklendikten sonra, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi degistirilecektir. Sinterleme isleminde baca gazi aritma cihazi (4) tarafindan bosaltilan kirli aktif karbon, dogrudan desorpsiyon kulesine (23) iletilir ve ana aktif karbon kutusu (25) yalnizca diger islemlerden bosaltilan kirli aktif karbonu içerir. Bu anda, aktif` karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) teorik aktif karbon sirkülasyon akis hizi, sinterleme isleminde baca gazi saflastirma ekipmani (4) tarafindan bosaltilan aktif karbon sirkülasyon akis hizinin ve diger islemlerde baca gazi aritma ekipmaninda aktif karbon sirkülasyon akis hizinin toplamidir. Bu nedenle, ana aktif karbon kutusunun (25) altindaki bant kantarinin (26) bosaltma akis hizini kesin olarak belirlemek için, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktiflestirilmis karbon sirkülasyon akis hizi WXni (WXO) ile sinterleme islemindeki baca gazi saflastirrna ekipmaninin aktiflestirilmis karbon sirkülasyon akis hizi arasindaki farka göre belirlenmelidir. Bu nedenle, aktivasyon alt sistemi kontrol ünitesi (102) ayrica asagidaki islem adimlarini gerçeklestirecek sekilde konfigüre edilir: aktive edilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizina WXoi (WXO) ve sinterleme isleminde baca gazi saflastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizina göre, kayis kantarinin (26) bosaltma akis hizi Wc=W gelen kayis kantarinin (26) çalisma frekansi (fc) belirlenir. Bant kantarinin (26) çalisma frekansi (fc) tekrar belirlendikten sonra, besleme ekipmaninin (22) verilen frekansi (fg), desorpsiyon kulesinin (23) bosaltma ekipmaninin (24) verilen frekansi fp ile konveyör kantar çalisma frekansi (fe) arasindaki oransal iliski tekrar hesaplanir, böylece (fg) ve (fp) tekrar belirlenen orantili iliskiye göre fc`ye esit olacak sekilde ayarlanir. Bu nedenle, pratik isletimde kayis kantarinin (26) bosaltma akis hizinin (WC) ve besleme ekipmaninin (22) bosaltma akis hizinin (WG) bosaltma ekipmaninin (24) bosaltma akis hizina (WP) esit oldugu garanti edilebilir, böylece aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon sirkülasyon akis hizi (WXO) ile her islemin baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi arasinda bir denge elde edilebilir, böylece tüm çok islemli baca gazi aritma sisteminin senkronize çalismasini ve optimum çalisma verimliligini garanti eder. Fg, fp ve fc arasindaki oransal iliskinin belirlenmesi için, 1. uygulamada verilen karsilik gelen yönteme atifta bulunulabilecegine ve burada tekrarlanan bir açiklama yapilmayacagina dikkat edilmelidir. Bu düzenlemeye göre çok islemli baca gazi aritma sistemi, sinterleme islemine karsilik gelen bir baca gazi aritma ekipmani ve diger islemlere karsilik gelen baca gazi aritma ekipmani içerdiginden, aktiflestirilinis aktif karbon üretildikten sonra, karsilik gelen miktarda aktif karbonun demir ve çelik tesisinin her bir islemine dagitilmasi sorunu vardir. Ayrica, sinterleme isleminde üretilen baca gazi miktari, diger islemlerin her birinde üretilen baca gazi miktarindan çok daha fazladir. Bu nedenle, baca gazi aritma ekipmaninin sinterleme isleminde en uygun adsorpsiyon etkisini garanti etmek için, sinterleine islemine daha aktif aktif karbon dagitilmali ve dagitim miktarinin, adsorpsiyon kulesinin yükleme miktarina göre belirlenmesi gerekir, ilgili baca gazi saflastirma ekipinani veya sinterleine islemine karsilik gelen aktif karbon dolasimi akis hizi ve diger islemlere dagitilan aktif karbon miktari, sinterleme islemine dagitildiktan sonra kalan aktif karbonun tamami olacaktir. Bu nedenle, çok islemli baca gazi aritma sisteminin dengeli bir sirkülasyon durumunu sürdürmesini saglamak için aktiflestirilmis aktif karbonun kesin dagilimini gerçeklestirmek için, aktiflestirilmis aktif karbonun gerektigi gibi dagitilmasi için bir malzeme dagitim ekipmaninin (20) kullanilmasi gerekmektedir. Bu düzenlemede. aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon altsistemi (2) ayrica aktiflestirilmis aktif karbon kutusunun (28) altina yerlestirilmis bir malzeme dagitim ekipmani (20) içerir; malzeme dagitim ekipmani (20), aktiflestirilmis aktif karbonu her bir isleme dagitmak için yapilandirilmis bir islem bosaltma ekipmani (202) ve aktiflestirilmis aktif karbonu bir sinterleine islemine dagitmak için yapilandirilmis bir sinterleme islemi bosaltma ekipmani (201) içerir. Her seyden önce, sinterleme islemi bosaltma ekipmani (201), aktif karbonu, bir demir ve çelik tesisinin sinterleme isleminde baca gazi aritma ekipmanina (4) dagitmak için kullanilir ve dagitilan aktif karbon miktari, karsilik gelen baca gazi aritma ekipmanindaki adsorpsiyon kulesinin yükleme miktarina veya sinterleme islemine karsilik gelen aktif karbon sirkülasyon akis hizina göre belirlenir. Spesifik bir düzenekte sinterleme islemine dagitilan aktif karbon miktari, ilgili baca gazi satlastirma ekipmanindaki adsorpsiyon kulesinin yükleme miktarina göre belirlenir. Bu düzenlemede, sinterleme islemindeki baca gazi saûastirma ekipmanindaki adsorpsiyon kulesinin QsinterO yükleme miktari asagidaki formülle belirlenir: (gsinterû:\0]x01'< Tsintcrû Burada QsinterO, sinterleme isleminde adsorpsiyon kulesinin aktif karbonunun kg birimindeki yükleme miktaridir; WXui s / b isleminde baca gazi aritma ekipmaninin aktive edilmis karbon dolasim debisi, su andaki t saatinde kg / saat birimidir; TsinterO, sinterleme isleminde adsorpsiyon kulesinde aktif karbonun, h biriminde 1 10 ~ 170 araliginda kalma süresidir; burada, kalma süresi TsinterO, baca gazi miktarina ve baca gazi akis hizina, Vb. göre belirlenir. Sinterleme islemine karsilik gelen baca gazi saflastirma ekipmanindaki adsorpsiyon kulesinin yükleme miktarini belirledikten sonra, sinterleine islemi bosaltma ekipmaninin toplam bosaltma miktari belirlenebilir, böylece Sinterleme islemi bosaltma ekipmaninin (201) bosaltma akis hizi Wunloadl belirlenebilir. Baska bir spesifik uygulamada Sinterleme islemine dagitilan aktif karbon miktari, Sinterleme islemine karsilik gelen aktif karbon dolasim debisine göre belirlenir. Kirleticiler, adsorpsiyon kulesi tarafindan bosaltilan aktif karbonda adsorbe edildiginden, ayni hacimdeki aktif karbon için, bunun agirligi,% 3 ~% 10, yani ayni aktif karbon partisi için sonraki agirlik desorpsiyon ve aktivasyon, kirletici adsorpsiyonundan sonra agirligin 0.9-0.97'si olacaktir. Bu nedenle, Sinterleme islemindeki baca gazi satlastirma ekipmanina (4) karsilik gelen teorik aktif karbon sirkülasyon akis hizi belirlendiginde, bir agirlik degisim katsayisinin (j), yani Sinterleme isleminin bosaltma ekipmaninin (Wunloadl) bosaltilmasi gerekir, bu da asagidaki formül ile belirlenir: Wunloadl:Wx01 Xj buradaj, 0.9 ila 0.97` araliginda bir katsayidir. Sinterleme isleminin bosaltma akis hizindan sonra bosaltma ekipmani (201) belirlenir: aslinda, diger isleinlerde bosaltma akis hizi (Wunload2), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin teorik aktif karbon dolasimli akis hizi (WXO) ile Sinterleme islemi bosaltma ekipmaninin (201) bosaltma akis hizi (Wunloadl) arasindaki farktir. Bununla birlikte, çok islemli baca gazi aritma sisteminin sürekli çalismasini garanti etmek ve çalisma verimliligini arttirmak için, bu düzenlemede, aktif karbonun baca gazi aritma ekipmanina dagitilmasi için islem bosaltma ekipmaninin (202) bosaltma akis hizi (Wunload2) diger islemlerde maksimum olacak sekilde ayarlanir, böylece malzeme dagitim ekipmaninda depolanan tüm materyali verme amacina ulasilir. Üçüncü düzenlemede, yeni bir aktif karbon takviye ekipmani (29) ayrica 2. uygulamada saglanan çok islemli baca gazi aritma sisteminde yapilandirilabilir. Özellikle, Sekil 10'da gösterildigi gibi, ana kontrol ünitesi (100), çok islemli baca gazi aritma sisteminde hassas kontrolü gerçeklestirmek için asagidaki adimlari gerçeklestirecek sekilde yapilandirilmistir: S81: Islem n'deki zaman tni'ye karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin WXm simdiki zamana (t) karsilik gelen bir sinterleme isleminde belirlenir, ve islem n'deki baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizinin Wxmm) belirlenmesi ve yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun destek akis hizinin belirlenmesi; burada 11, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tni=t-Tni, Tm, baca gazi aritina ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; S82: Islemdeki baca gazi satlastirma ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina WXn(tiii) göre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi WXui (WXO) ve takviye akis hizi (Wsupp) asagidaki formülle sinterleme isleminde belirlenir: WXÜ : ZWXH.(t-Tm) + WWW +WX01 883: Konveyör kantarinin bosaltma akis hizinin (WC), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi ilgili konveyör kantarinin Wc=Wxû-Wx(ii bir çalisma frekansi (fc) elde edilir. 884: Aktif karbon inerkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinm (fp), konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrol gerçeklestirilir. Bu düzenlemeye göre çok islemli baca gazi aritma sistemindea özel uygulama islemi için 1. uygulama ve 2. uygulamanin ilgili kisminin içerigine atif yapilabilir ve burada tekrarlanan bir açiklama yapilmayacaktir. Bu düzenlemeye göre çok islemli baca gazi aritma sisteminde, çok baca gazi üreten sinterleme islemi, aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sistemi ile birlikte saglanir. Sinterleine isleminde baca gazi aritina ekipmani (4) tarafindan bosaltilan kirli aktif karbon, desorpsiyon ve aktivasyon için en yüksek hiza sahip aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine (2) girebilir, böylece tasima sirasinda zaman kaybini önleyerek sistemin çalisma verimliligini düsürür. Tüm sistemin çalisma parametreleri, aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin (2) aktif karbon sirkülasyon akis hizina göre kontrol edildiginde, sinterleme islemine karsilik gelen aktif karbon sirkülasyon akis hizi ve her birine karsilik gelen aktif karbon sirkülasyon akis hizina göre besleme isleminin (22) verilen frekansi (fg) ve desorpsiyon kulesinin bosaltma ekipmaninin (24) verilen frekansi (fp), kayis kantarinin çalisma frekansina (fc) esit olacak sekilde kontrol edildiginde veriler tam olarak dikkate alinir, bu da aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi (WXO) ile sinterleme prosesine ve diger proseslere karsilik gelen baca gazi saflastirma ekipmanlarinin aktif karbon sirkülasyon akis hizi arasinda bir denge garanti eder, böylece tüm çok islemli baca gazi aritma sisteminin senkron ve kararli çalismasini ve optimum çalisma verimliligini garanti eder. Yukaridaki düzenlemede saglanan çok islemli baca gazi aritma sistemine göre, Sekil 6'da gösterildigi gibi, bulusun bir düzenlemesi, yukaridaki düzenlemede saglanan çok islemli baca gazi temizleme sistemine uygulanabilen çok isleinli baca gazi aritina sisteminin kontrol edilmesi için bir yöntem saglar. Kontrol yöntemi asagidaki adimlari içerir: Sl: Islem n'deki zaman tni'ye karsilik gelen bir baca gazi saflastinna ekipmaninin aktif karbon dolasim akis hizi Wxiumibelirlenir; buradaki 11, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tni = t-Tni, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; SZ: Islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizi Wxmm› (on) mevcut zamanda (t) belirlenir; 83: Bant kantarinin bosaltma akis hizi (WC), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteininin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanir; ve WC = WXO elde edildiginde ilgili kayis kantarinin çalisma frekansi (fc) ayarlanir; S4: Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinin (fp), konveyör kantarinin Çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi sailastirmasi üzerindeki kontrol gerçeklestirilir. Istege bagli olarak, sekil 7°de gösterildigi gibi, zamana karsilik gelen islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi Wxnmi; asagidaki adimlarda belirlenir: 821: tm zamanina karsilik gelen ham baca gazindaki toplam 802 ve NOK akis hizi, asagidaki formülde n isleminde üretilen ham baca gazinin toplam Vn miktarina göre hesaplanir: WSIi(liii):Vn < Csn/l 0(i WNiin.)=vn x evi/106 Burada Ws.\(i..i)ham baca gazindaki (n) islemindeki zamana karsilik gelen (kg / h) birimindeki toplam 802 akis hizidir; WNniimin islemindeki zamana karsilik gelen ham baca gazindaki kg / saat birimindeki toplam NOX akis hizidir; Cs.. "n" isleminde mg / Nm3 birimindeki zaman tni'ye karsilik gelen ham baca gazindaki SOZ konsantrasyonudur; CN.. ve mg / Nm3 birimindeki n islemindeki zamana karsilik gelen ham baca gazindaki NOX konsantrasyonudur; 822: tni süresine karsilik gelen islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi WX"(tm) , asagidaki formülle ham baca gazindaki 802 ve NOX toplam akis hizina göre hesaplanir: WxnumFKix WSn(tni)+K2X WWM buradaki Wxnnni) islem n'deki baca gazi aritma ekipmaninin kg / saat birimindeki ilgili zamandaki aktive edilmis karbon sirkülasyon akis hizi; K1, 15-21 araliginda bir ilk katsayidir; ve K2, 3 ~ 5 araliginda ikinci bir katsayidir. Istege bagli olarak, karsilik gelen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin (WXO), su andaki (t) zamaninda belirlenir: Islem n'deki baea gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizi WXii(tiu) (WXO) mevcut zamanda (t) asagidaki formülle belirlenir; WXÜ=Z WXiiUiii) = 2 WXiiÜ-Tm) Buradaki t, simdiki zamandir ve Tni, baca gazi saflastirma ekipmaninin, i prosesindeki aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir. Istege bagli olarak, mevcut zamanda t karsilik gelen aktif karbon inerkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi WXO, asagidaki adimlarda belirlenir: Takviye akis hizinin (Wsupp) yeni aktif karbon takviye ekipmanini ana aktif karbon bölmesine takviye etmek için yeni aktif karbon takviye ekipmanini kontrol etinek üzere belirlenir ve yeni bir aktif karbon takviye ekipmani ile takviye edilmis yeni aktif karbon desteklenir; ve Islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin (on) ve takviye akis hizinin Wx..(im)(Wsupp) mevcut zamanda (t) asagidaki formülle belirlenir: WXÜ : Z WXn(t-Tni) + Ws-upyi Opsiyonel olarak, sekil 8"de görüldügü gibi, yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun takviye akis hizi (Wsupp), asagidaki adimlarda belirlenir: Aktive edilmis karbon merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine aktive edilmis karbon yükleme miktarinin (QO) asagidaki formüle göre aktive edilmis karbon inerkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizina (WXO) göre belirlenmistir: Q0=WXUX To Burada (QO), aktif karbonun aktiflestirilmis merkezi merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine kg birimindeki yükleme miktaridir; ve (TO), aktif karbonun desorpsiyon kulesinde, h biriminde 4 ~ 8 araliginda kalma süresidir; Aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki aktif aktif karbon kutusunun gerçek aktif karbon miktari (Qacmai) belirlenir; Kaybolan aktif karbon yükleme miktari (QO) ve gerçek aktif karbon miktarina göre eleme ekipmani tarafindan elendikten sonra aktif karbonun aktif karbon miktari kaybi (Qioss), (QIOSS=Q0-Qactual) formülüne göre belirlenir; ve Yeni aktif karbon takviye ekipmaninm takviye edilmis aktif karbon miktari (Qsupp) kaybolan aktif karbon miktarina (Qloss) esit olacak sekilde ve yeni aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun ilave akis hizi (Wsupp) ayarlanan süreye göre birim zamanda takviye edilmis aktif karbon miktarina (Qsupp) göre belirlenir. Istege bagli olarak, aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki besleme ekipinaninin verilen frekansi (fg) ve bosaltma ekipmanmin verilen frekansinin (fp), asagidaki asamalarda konveyör kantarinin çalisma frekansina (fc) göre ayarlanir: Bant kantarinin bosaltma akis hizi WC WC = Kc < fe olur, besleme ekipmaninin bosaltma akis hizi WG WG : Kg < fg olarak belirlenir ve bosaltma ekipmaninin bosaltma akis hizi WP WP olarak belirlenir : Kp < fp olur, burada KC, Kg ve Kp hepsi sabittir; Besleme ekipmani, bosaltma ekipmani ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin kayis kantarlarinin bosaltma akis hizlarinin ayni olacak sekilde kontrol edilmesi ve böylece WG=WP=WC=WXO olmasi saglanir. Yukaridaki formüle göre, besleme ekipmaninin verilen frekansinin (fg) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladigi elde edilir: ::g-KC böylece besleme ekipmaninin verilen frekansinin (fg) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansini (fc) ayarlar; ve Bosaltma ekipmaninin verilen frekansinin (fp) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladigi elde edilir: E:E böylece desarj ekipmaninin verilen frekansinin (fp) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansi (fc) ayarlanir. Bulusa ait üçüncü bir yaklasimda, yukaridaki düzenlemede saglanan çok islemli baca gazi aritma sistemine göre, Sekil 9'da gösterildigi gibi, bulusun bir düzenlemesi, yukaridaki düzenlemede saglanan çok islemli baca gazi temizleme sistemine uygulanabilen çok islemli baca gazi aritma sisteminin kontrol edilmesi için bir yöntem saglar. Kontrol yöntemi asagidaki adimlari içerir: S71: Mevcut zamana tekabül eden bir sinterleme isleminde bir baca gazi saflastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizi WXÜ. belirlenir ve zamana tni karsilik gelen islem n'deki baca gazi saflastirma ekipmaninin aktive edilmis karbon sirkülasyon akis hizi Wxmmibelirlenir; burada n, çok islemli baca gazi satlastirma sistemindeki her islemin sira numarasidir; tni=t-Tm, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; S72: lslemdeki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina WXuÜm) ve aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin WXm WXO asagidaki formülle sinterleme isleminde belirlenir: WM::: WXii(I-Tiii] + Wxiii S73: Konveyör kantarinin bosaltma akis hizinin (WC), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi ilgili konveyör kantarinin bir çalisma frekansi (fc) WC:WX0-WXiii elde edilir. S74: Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinin (fp), konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrol gerçeklestirilir. Istege bagli olarak, yöntem ayrica sunlari içerir: Sinterleme prosesi bosaltma ekipmaninin bosaltma akis hizi WxUi (Wunloadl) sinterleme prosesinde ve formül Wunloadl : WXO] < j içindeki baca gazi saflastirma ekipmaninin aktif karbon dolasim debisine göre belirlenir, burada ja 0.9 ila 0.97 araliginda bir katsayidir; ve islem n'deki bosaltma ekipmaninin bosaltma akis h kontrolünün düzenegi tarafindan Dördüncü bir yaklasimda, yukaridaki düzenlemede saglanan çok islemli baca gazi aritma sistemine göre, Sekil 10'da gösterildigi gibi, bulusun bir düzenlemesi, yukaridaki düzenlemede saglanan çok islemli baca gazi temizleme sistemine uygulanabilen çok isleirili baca gazi aritma Sisteminin kontrol edilmesi için bir yöntem saglar. Kontrol yönteini asagidaki adimlari içerir: S81: Islem n'deki zaman tni'ye karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin Wxûi simdiki zamana (t) karsilik gelen bir sinterleme isleminde belirlenir, ve islem n'deki baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizinin Wxmm) belirlenmesi ve yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun destek akis hizinin belirlenmesi; burada 11, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tnizt-Tni, Tm, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; 882: Islemdeki baca gazi satlastirma ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina WXuUiii) göre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizi WXoi (WXO) ve takviye akis hizi (Wsupp) asagidaki formülle sinterleme isleminde belirlenir: WXÜ : g WX7L(±-Tni) _i_ Wsnpp _i_ WXÜI 883: Konveyör kantarinin bosaltma akis hizinin (WC), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi ilgili konveyör kantarinin bir Çalisma frekansi (fe) WCZWx..-WXm elde edilir. 884: Aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin fg ve bir bosaltma ekipmaninin belirli bir frekansinin (fp), konveyör kantarinin çalisma frekansi fc'sine göre ayarlanmasi, böylece çok islemli baca gazi satlastirmasi üzerindeki kontrol gerçeklestirilir. Spesifik uygulamada bulus ayrica bir programin saklandigi bir bilgisayar depolama ortami saglar, burada, yürütüldügünde, program, bulusa göre bir çok islemli baca gazi aritma sistemini kontrol etme yönteminin her bir düzenlemesinde adimlarin bir kismini veya tamamini uygulayabilir. Depolama ortami bir manyetik disk, bir optik disk, bir salt okunur bellek (ROM) veya bir rasgele erisim bellegi (RAM) vb. olabilir. Yukaridaki yöntem düzeneklerinin açiklamasi ile teknikte uzman bir kisi, bulusun yazilim ve gerekli evrensel donanim platformu yardimiyla uygulanabilecegini açikça anlayabilir. Böyle bir anlayisa dayanarak, bulusun düzenlemelerindeki teknik çözümlerin temel kismi veya baska bir deyisle, önceki teknige katkida bulunan kisim, bir depoda saklanan bir yazilim ürünü seklinde düzenlenebilir ortam, örnegin, ROM / RAM, manyetik disk veya optik disk, vb. ve bir bilgisayar cihazinin (bir kisisel bilgisayar, bir sunucu veya bir ag cihazi, Vb. olabilir) bulusun her bir düzenlemesine uygun yöntemin adimlarinin tümünü veya bir kismini gerçeklestirmesini saglayacak çesitli talimatlar içerir. Bulusun her bir uygulamasi arasindaki ayni veya benzer kisim için, birbirlerine referans yapilabilir. Özellikle, çok islemli baca gazi aritina sisteminin kontrolüne yönelik yöntemin düzenlemeleri için, temelde çok islemli baca gazi aritma sisteininin düzenlemelerine benzer oldugu için, bunun açiklamasi basit olacaktir ve ilgili kisim için, çok islemli baca gazi aritma sisteininin düzenlemelerinin gösteriminin bir kismina atif yapilabilir. Bulusun yukaridaki düzenlemeleri, bulusun koruma kapsamini sinirlamayacaktir. TR TR TR TR DESCRIPTION MULTI-PROCESS FLUE GAS PURIFICATION SYSTEM AND CONTROL METHOD FIELD OF THE INVENTION The present invention relates to the field of gas purification technologies and, in particular, to a multi-process flue gas purification system and a method for controlling it. BACKGROUND OF THE INVENTION The steel industry is a backbone industry of the entire national economy. Although it contributes to the development of the economy, the steel industry causes a serious air pollution problem. Flue gases are produced in various processes of the steel industry, such as sintering, pelletizing, coking, ironmaking, steelmaking and steel rolling. Flue gas, dust, SOg, NOx, etc. discharged in each process. It contains many pollutants such as: After being discharged into the air, dirty flue gas not only pollutes the environment but also threatens human health. Therefore, activated carbon flue gas purification technology is generally used in the steel industry, where it is placed in the flue gas purification equipment for flue gas adsorption, thus performing a purification process on the discharged flue gas in each process. The current activated carbon flue gas purification technology of the steel industry is applied to the flue gas purification system, which includes: a flue gas purification equipment (1) and many activated carbon desorption and activation subsystems (2), provided in each process, where each active The carbon desorption and activation subsystem (2) is in communication with an activated carbon transport subsystem (3) corresponding to each flue gas purification device (1), respectively. As shown in Figure 1, there is an activated carbon flue gas purifier (1), a feeding device (11), an adsorption tower (12), a discharging device (13), a buffer box (14) and a discharging device (15). ); The activated carbon desorption and activation subsystem (2) includes a buffer box (21), a feeding equipment (22), a desorption tower (23) and a discharge equipment (24). During the operation of the system, activated carbon enters the adsorption tower (12) through the feeding device (11) and forms an activated carbon layer in the adsorption tower (12); At the same time, a raw flue gas (17) containing pollutants also continuously enters the adsorption tower (12), and after the pollutants in the raw flue gas (17) are adsorbed by the activated carbon in the adsorption tower (12), a clean flue gas (16) is discharged. is obtained for . The dirty activated carbon that adsorbs the pollutants is discharged into the buffer chamber (14) through the discharge device (13), then discharged into the activated carbon transport subsystem (3) through the discharge device (15) located under the buffer chamber (14), and then the dirty active carbon is discharged into the buffer chamber (14). The carbon is transported to the buffer box (21) of the corresponding activated carbon desorption and activation subsystem (2) via the activated carbon transport subsystem (3). Then, the dirty activated carbon is released into the desorption tower (23) through the feeding equipment (22) provided under the buffer compartment (21), and clean activated carbon is obtained through desorption and activation and discharged by the discharge equipment (24). Clean activated carbon is transported to the feeding device (1 l) of the relevant flue gas purification equipment (1) by the activated carbon transport subsystem (3), and then enters the adsorption tower (12) again for flue gas purification, where the flue gas purification equipment (1) and active It performs one-to-one flue gas purification and activated carbon recycling of the carbon desorption and activation subsystem (2). In practical application, every flue gas discharge process in the steel industry has a set of flue gas purification equipment and a set of activated carbon desorption and activation subsystems. Multiple flue gas purification equipment and activated carbon desorption and activation subsystems operate simultaneously to provide purification of the dirty flue gas produced in each process. However, because the scale of each process in a steel mill and the amount of flue gas produced are different from each other, in order to achieve an optimal purification effect of flue gas, processes at different scales require a flue gas purification equipment matching the scales, which results in different types of flue gas in the steel mill. may result in the provision of treatment equipment and cannot achieve unified management. In addition, an independent activated carbon desorption and activation subsystem must be provided for each flue gas treatment equipment, which may cause the overall structure of flue gas treatment to provide too many activated carbon desorption and activation subsystems in the steel flue, and the system in the steel mill becomes complex; In addition, the flue gas produced in each process must be treated independently, which may reduce the operating efficiency of the flue gas purification system. Therefore, realizing an efficient flue gas treatment system is a matter of urgency. SUMMARY OF THE INVENTION The present invention provides a multi-process flue gas purification system and a method for controlling the same, thereby addressing the low operating efficiency of the existing flue gas purification system. The present application in the first aspect of the invention provides a multi-process flue gas purification system comprising: an active carbon central desorption and activation subsystem, an activated carbon transport subsystem and flue gas treatment equipment corresponding to each process, wherein each of the flue gas treatment equipment is respectively connected to the activated carbon central desorption and activation subsystem through the activated carbon transport subsystem; Here, the activated carbon central desorption and activation subsystem includes: a desorption tower; feed equipment configured to control the flow rate of contaminated activated carbon entering the desorption tower; discharge equipment configured to discharge active activated carbon activated in the desorption tower; screening equipment configured to screen activated carbon discharged from the discharge equipment; an activated activated carbon box configured to collect activated activated carbon sieved by the screening equipment; a main activated carbon box provided between an outlet end of the flue gas purification equipment corresponding to each process and the feed equipment and configured to collect contaminated activated carbon discharged from the flue gas purification equipment in each process; a belt weigher provided between the main activated carbon box and the feeding equipment and configured to convey dirty activated carbon in the main activated carbon box to the desorption tower; and a new activated carbon booster equipment provided above the main activated carbon box and configured to add the new activated carbon to the main activated carbon box. Optionally, the multi-process flue gas purification system also includes: a flue gas purification device corresponding to the sintering process provided in the activated carbon central desorption and activation subsystem and a material distribution equipment located at the bottom of the activated carbon box; The dirty activated carbon discharged by the flue gas purification equipment corresponding to the sintering process is loaded into the desorption tower through the activated carbon transport subsystem and feeding equipment. The material distribution equipment includes: n number of discharge equipment from a process configured to distribute activated activated carbon into each process and a sintering process discharge equipment configured to distribute activated activated carbon into a sintering process. In the second aspect of the invention, the present application provides a method for controlling a multi-stage flue gas purification system comprising the following steps: determining the activated carbon circulation flow rate Wxn of a flue gas purification equipment corresponding to time tni in process n time tni in process n determining the activated carbon circulation flow rate of a flue gas purification equipment corresponding to; where 11 is the sequence number of each process in the multi-process flue gas purification system; tni: t-Tni, Tni is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon into the activated carbon central desorption and activation subsystem in the work process; determining the activated carbon circulation flow rate of the relevant activated carbon central desorption and activation subsystem Wxnnm) (on) at the current time (t) according to the activated carbon circulation flow rate of the flue gas purification equipment in process n; adjusting the discharge flow rate (Wc) of the conveyor scale according to the activated carbon circulation flow rate (WXÜ) of the activated carbon central desorption and activation subsystem, and obtaining an operating frequency fc of the corresponding conveyor scale when WC = on; and Adjusting a certain frequency fg of a feeding equipment and a certain frequency fp of a discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency fc of the conveyor scale, thereby realizing the control over the multi-process flue gas purification. Optionally, the activated carbon circulation flow rate Wxmmi of the flue gas purification equipment in process n corresponding to time is determined in the following steps: The raw flue corresponding to time tni according to the total amount (Vn) of raw flue gas produced in process n by the following formula Calculation of the total flow rate of 502 and NOX in the raw flue gas: WSii(liii):Vn < Csn/ l 06 Where Wsnu...) is the total 807_ flow rate in the unit (kg / h) corresponding to the time in the (n) process in the raw flue gas; Wmamm is the total flow rate of NOK in the raw flue gas in kg/h corresponding to the time in the process; and CN.] is the NOX concentration in the raw flue gas corresponding to time in process n in mg/Nm3; The activated carbon circulation flow rate of the flue gas purification equipment in process n) is calculated as SO in the raw flue gas with the following formula; and NOX calculated according to the total flow rate corresponding to time tni: Wxn(im)=Ki< WSii(luii+K2 < WNn(tiii] Where WXiiUiii) is the activation of the flue gas treatment equipment in process n at the relevant time in kg / hour. the activated carbon circulation flow rate; , is determined in the following steps: Determining the activated carbon circulation flow rate of the relevant activated carbon central desorption and activation subsystem (WXnUni) according to the activated carbon circulation flow rate of the flue gas purification equipment in process n by the following formula at the current time t; WXFZ Wxnnna) : Z WXnÜ-Tni) Here t is the present time and Tni is the time when the flue gas purification equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process at time i. Optionally, the activated carbon circulation flow rate WXO of the activated carbon core desorption and activation subsystem corresponding to the current time t is determined in the following steps: The reinforcement flow rate (Wsupp) of the new activated carbon to reinforce the new activated carbon reinforcement equipment into the main activated carbon compartment determining to control the reinforcement equipment and supporting the reinforced new activated carbon of a new activated carbon reinforcement equipment; According to the activated carbon circulation flow rate (Wxmm) of the flue gas purification equipment in process n, determining the activated carbon circulation flow rate (on) and boost flow rate (Wsupp) of the relevant activated carbon central desorption and activation subsystem at the current time t with the following formula; WXO : Z WxnoýTM) + WWW Optionally, the reinforcement flow rate (Wsupp) of the reinforced new activated carbon of a new activated carbon reinforcement equipment is determined in the following steps: The activated carbon loading amount (QO) to the desorption tower in the activated carbon central desorption and activation subsystem. Determination of the activated carbon central desorption and activation subsystem according to the activated carbon circulation flow rate (WXO) according to the following formula: QÜ:WX(iX To Here (QO) is the loading amount in kg to the desorption tower in the activated carbon central desorption and activation subsystem; and (TU) is the residence time of activated carbon in the desorption tower, in the range of 4 ~ 8 in unit h; Determining the actual amount of activated carbon (Qaetual) and the actual activated carbon loading amount of the activated carbon box in the active carbon inertial desorption and activation subsystem; Determination of the activated carbon amount loss (Qioss) (QiOSSZQo-Qacmai) after being sieved by the sieving equipment according to the amount of activated carbon; and The amount of reinforced activated carbon (Qsupp) of the new activated carbon reinforcement equipment is equal to the amount of activated carbon lost (Qioss), and the additional flow rate (Wsupp) of the reinforced new activated carbon of the new activated carbon reinforcement equipment is equal to the amount of reinforced activated carbon per unit time according to the set time. (Qgupp), and optionally adjusting the given frequency (fg) of the feeding equipment and the given frequency (fp) of the discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency (fc) of the conveyor scale in the following stages: determining the flow rate (Wc) as WC = Kc < fe, the discharge flow rate (Wg) of the feeding equipment as WG = Kg < fg, and the discharge flow rate (Wp) of the discharge equipment as WP = Kp < fp, where Ko, Kg and Kp are all is constant; Controlling the discharge flow rates of the feeding equipment, discharge equipment and belt scales of the activated carbon central desorption and activation subsystem, thus ensuring WGZW FZWCZWXÜ; According to the above formula, obtaining the given frequency (fg) of the feeding equipment and the operating frequency (fc) of the conveyor scale meets the following relationship: E=E so that the given frequency (fg) of the feeding equipment is adjusted according to the above formula and the operating frequency (fc) of the belt weigher is adjusted; and Obtaining that the given frequency (fp) of the discharge equipment and the operating frequency (fc) of the conveyor scale meet the following relationship: E:Ethus adjusting the given frequency (fp) of the discharge equipment according to the above formula and adjusting the operating frequency (fc) of the belt scale. According to the third aspect of the invention, the application provides a method for controlling a multi-stage flue gas purification system, comprising the following steps: A sintering of the activated carbon circulation flow rate of a flue gas purification equipment corresponding to time tni in process n WXoi corresponding to the present time determining t in process n, and determining the activated carbon circulation flow rate (Wxmm) of the flue gas treatment equipment in process n; where 11 is the sequence number of each process in the multi-process flue gas marketing system; tnFI-Tni, Tni is the time when the flue gas purification equipment disperses the corresponding dirty activated carbon into the activated carbon central desorption and activation subsystem in the work process; According to the activated carbon circulation flow rate of the flue gas purification equipment in the process and the activated carbon circulation flow rate WXnÜiii), determining the activated carbon circulation flow rate of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment WXni WXO in the sintering process with the following formula: WXiizz WXiiU-Tiii] + WXÜI Adjusting the discharge flow rate (WC) of the conveyor scale according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem, obtaining an operating frequency fc of the corresponding conveyor scale WC:WXu-WX01 _; and Adjusting a certain frequency fg of a feeding equipment and a certain frequency fp of a discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency fc of the conveyor scale, thereby realizing the control over the multi-process flue gas purification. Optionally, the method further includes: determining the discharge flow rate (Wunioadi) of the sintering process discharge equipment according to the activated carbon circulation flow rate of the flue gas purification equipment in the sintering process and the formula Wunioadi : WXOl < j, where j is a coefficient in the range of 0.9 to 0.97; and the discharge flow rate of the discharge equipment in process n by the device of WXUI (Wunioadz) control. The application in the fourth aspect of the invention provides a method for controlling a multi-stage flue gas purification system, comprising the following steps: A corresponding time tni in process n determining the activated carbon circulation flow rate of the flue gas purification equipment W determination of flow rate; where 11 is the sequence number of each process in the multi-process flue gas purification system; tni=t-Tni, Tm is the time when the flue gas treatment equipment disperses the corresponding dirty activated carbon into the active carbon inert desorption and activation subsystem in the work process; According to the activated carbon circulation flow rate and activated carbon circulation flow rate Wx..(in.) of the flue gas purification equipment in the process, the activated carbon circulation flow rate WxUi (WXO) and the boost flow rate of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment (Wsupp) is determined in the sintering process with the following formula: WXO : g WXnü-Tni) + WWW) _i_ WXÜI Adjusting the discharge flow rate (Wc) of the conveyor scale according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem of the relevant conveyor. obtaining an operating frequency fc of the weighbridge WC:WXii-WXm; and Adjusting a certain frequency fg of a feeding equipment and a certain frequency fp of a discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency fc of the conveyor scale, thereby realizing the control over the multi-process flue gas supply. In the multi-process flue gas treatment system and the same control method according to embodiments of the invention, the system includes an activated carbon central desorption and activation subsystem, an activated carbon transport subsystem and flue gas treatment equipment corresponding to each process, wherein each flue gas treatment equipment, Activated carbon is connected to the central analysis activation subsystem through the activated carbon transport subsystem, respectively, the dirty activated carbon discharged by the flue gas purification equipment corresponding to each process is respectively transferred to the main activated carbon box. The activated carbon center is desorbed and activated by the desorption tower after the desorption and activation subsystem. The resulting activated carbon is then transported to the flue gas treatment equipment of each process to realize the recycling of activated carbon. In each process, a process control unit provided in the flue gas treatment equipment sends the activated carbon circulation flow rate of the corresponding flue gas treatment equipment to a main control unit, the main control unit uses the sum of the activated carbon circulation flow rates corresponding to all processes, and the activated carbon central desorption and activation represents the activated carbon circulation flow rate of the activated carbon subsystem, and controls an activation subsystem control unit provided in the activated carbon central desorption and activation subsystem, thereby adjusting the given frequency of the conveyor scale and the feeding equipment and discharging equipment in the activated carbon central desorption and activation subsystem, thus enabling the activated carbon central desorption and the activated carbon circulation flow rate in the activation subsystem is essentially the sum of the activated carbon circulation flow rates of the flue gas purification equipment in each process and the adsorption part and the desorption part of the multi-process flue gas purification system, thus obtaining the theoretical activated carbon of the activated carbon central desorption and activation subsystem A balance is achieved between the circulation flow rate and the activated carbon circulation flow rate of each flue gas purification equipment and the process and working efficiency is increased. BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the technical solutions of the embodiments of the invention, the drawings necessary for the description of the art of the embodiments will be briefly introduced below. Apparently, the drawings in the following description are only some embodiments of the invention, and other drawings can be obtained by those of ordinary skill in the art without any creative drawings. Figure 1 is a structural representation of the prior art flue gas purification system; Figure 2, meet l. is a structural representation of a multi-process flue gas treatment system according to its application; Figure 3 is a block diagram of a multi-process flue gas purification system according to the 1st embodiment of the invention; Figure 4 is a structural representation of a multi-process flue gas purification system according to the 2nd embodiment of the invention; Figure 5 is a block diagram of a multi-process flue gas purification system according to the 2nd embodiment of the invention; Figure 6 is a flow diagram of the method of a multi-process flue gas purification system according to an embodiment of the invention; Figure 7 is a flow diagram of a method for determining the activated carbon circulation flow rate of flue gas purification equipment at each process according to the embodiment of the invention; Figure 8 is a flow diagram of a method for determining the reinforcement flow rate of new activated carbon reinforced according to an embodiment of the invention; Figure 9 is a flow diagram of the method of a multi-process flue gas purification system according to another embodiment of the invention; Figure 10 is a flow diagram of the method of a multi-process flue gas purification system according to another embodiment of the invention. Reference numbers in the figures: l-Flue Gas Treatment Equipment, ll-Feeding Device, 12-Adsorption Tower, 13-Discharge Device, l4-Buffer Box, lS-Discharge Device, 16-Flue Gas Bee, l7-Raw Flue Gas, 2- Activated Carbon Central Desorption and Activation Subsystem, 21-Tanipon Box, 22-Feeding Equipment, 23-Desorption Tower, 24-Discharge Equipment, -Main Activated Carbon Box, 26-Conveyor Scale, 27-Sifting Equipment, 28-Activated Carbon Box , 29-New Activated Carbon Auxiliary Equipment, -Material Distribution Equipment, 201-Sintering Process Discharge Equipment, 202-Process Discharge Equipment, 3-Active Carbon Transport Subsystem, 110-Process 1 Flue Gas Purification Equipment, llI-Process 1 Feeding Device , 112-Process 1 Adsorption Tower, 113-Process 1 Evacuation Device, 114-Process 1 Buffer Box, llS-Process 1 Discharge Device, llö-Process 1 Clean Flue Gas, ll7-Process 1 Raw Flue Gas, llS-Process 1 Active Carbon Box, l20-Process 2 Flue Gas Treatment Equipment, l2l-Process 2 Feeding Device, 122-Process 2 Adsorption Tower, 123-Process 2 Evacuation Device, l24-Process 2 Buffer Box, 125-Process 2 Discharge Device, 126-Process 2 Clean Flue Gas, 127-Process 2 Raw Flue Gas, 128-Process 2 Activated Carbon Box, lû-Computer Subsystem, 100-Main Control Unit, 1011- Control Unit of Process 1 lOZ-Activation Subsystem Control Unit, 103 -Sintering Process Control Unit, lO4-New Activated Carbon Supplement Control Unit, 4-Flue Gas Purification Equipment in the Sintering Process, 4l-Feeding Device in the Sintering Process, 42-Adsorption Tower in the Sintering Process, 43-Discharge Device in the Sintering Process, 44-Raw in the Sintering Process Flue Gas, 45-Flue Gas Purification in Sintering Process. DETAILED DESCRIPTIONS Figure 2, find l. is a structural representation of a multi-process flue gas treatment system according to its application; and Figure 3, meet l. It is a block diagram of a multi-process flue gas treatment system according to its application. Referring to Figure 2, the multi-process flue gas purification system according to the embodiment of the invention includes: an activated carbon central desorption and activation subsystem (2), an activated carbon transport subsystem (3) and flue gas purification equipment corresponding to each process , where each flue gas purification equipment is connected with the activated carbon central desorption and activation subsystem (2) through the activated carbon transport subsystem (3), respectively. In this arrangement, in order to improve the flue gas treatment efficiency in an iron and steel plant, an activated carbon central desorption and activation subsystem (2) is provided in the whole plant, and the flue gas treatment equipment provided in each process uses the same activated carbon central desorption and activation subsystem (2), respectively. ), that is, many structural relationships are formed. For example, in the multi-process flue gas purification system as shown in figure 2, a flue gas purifier 110 of process 1 and a flue gas purifier 120 of process 2 respectively form a series structure with activated carbon central desorption and the dirty activated carbon discharged by the activation subsystem (2) and each flue gas treatment equipment through the activated carbon transport subsystem (3) is transmitted to the activated carbon central desorption and activation subsystem (2), and activated carbon is obtained after activation and activation, respectively. It is then delivered to the flue gas treatment equipment in each process, thus recycling the activated carbon. It should be noted that Figure 2 shows, by way of example only, the relationship between the flue gas purifier 110 of process 1, the flue gas purifier 120 of process 2, and the activated carbon central desorption and activation subsystem 2. However, according to the production process of an iron and steel plant, there may be a large number of processes producing flue gases, so the multi-process flue gas purification system may include a large number of flue gas purification equipment corresponding to a large number of processes. In this embodiment, it is illustrated by an example that the multi-process flue gas treatment system includes a flue gas treatment equipment 110 in process 1 and a flue gas treatment equipment 120 in process 2. To realize the recycling of activated carbon between each flue gas purification equipment and the activated carbon central desorption and activation subsystem (2), an activated carbon transport subsystem (3) is used for distribution. In an iron and steel plant, because the distance between two adjacent flue gas treatment equipment is long and the activated carbon central desorption and activation subsystem (2), each flue gas treatment equipment, different flue gas treatment equipment and activated carbon central desorption and activation subsystem (2). 2) is different. To ensure efficient delivery and recycling of activated carbon, the delivery mode via a belt or conveyor may not be applicable for long-distance situations. Therefore, in this arrangement, in addition to a belt and a conveyor, a motor vehicle can also be selected to be delivered, which avoids providing conveyors or belts in the entire facility, increasing the floor space and affecting the structural layout of the entire facility, and also improving the long-distance transportation efficiency of activated carbon increases. In particular, the activated carbon central desorption and activation subsystem (2) includes: a desorption tower (23) configured to desorb and activate the dirty activated carbon discharged by the flue gas purification equipment corresponding to each process to obtain active activated carbon for recycling ); A feed equipment (22) provided at an inlet end of the desorption tower (23) and configured to charge the gross contaminated activated carbon discharged by the flue gas purification equipment corresponding to each process at a specified frequency or flow rate at a specified frequency or flow rate. 23) matching the frequency of desorption and activation; A discharge equipment (24) provided at an outlet end of the desorption tower (23) and connected to the inlet end of the flue gas treatment equipment corresponding to each process through the activated carbon transport subsystem (3) and configured to desorb and activate the active carbon. ) by the desorption tower (23) to the activated carbon transport subsystem (3) at a certain frequency or flow rate and thus transmitting the activated carbon to the flue gas treatment equipment in each process; a main activated carbon box (25) provided between an outlet end of the flue gas treatment equipment corresponding to each treatment and feed equipment and configured to collect contaminated activated carbon discharged from the flue gas treatment equipment in each process; and a conveyor scale (26) is provided between the main activated carbon compartment (25) and the feeding equipment (22) and is configured to convey all contaminated activated carbon collected in the main activated carbon compartment (25) to the activated carbon transport subsystem (3), thereby The dirty activated carbon is loaded into the buffer compartment (21) provided on the feeding equipment (22), where the feeding equipment (22) realizes the communication of the buffer compartment (21) with the desorption tower (23), so that the dirty activated carbon reaches a certain flow rate or frequency. It can be loaded into the desorption tower (23) via the feeding equipment (22) accordingly. The flue gas purifier 110 of process 1 includes: a feeding device 111 of process 1, an adsorption tower 112 of process 1, a discharge device 113 of process 1, a buffer box of in and the conveyor scale (119) of process 1. During the operation of the flue gas purification equipment, the activated carbon box (118) of process 1 is configured to charge the activated carbon delivered by the activated carbon central desorption and activation subsystem (2), and then the activated carbon is transported to the activated carbon and subsystem (3) is transported through the conveyor scale (119) of process 1. Since the height of the flue gas purification equipment is large, a conveyor can be selected as the activated carbon transport subsystem (3) to transport the activated carbon at a low position to the process l buffer at a high position. The activated activated carbon stored in the buffer chamber of process 1 enters the adsorption tower (112) of process 1 through the feeding device (111) of process 1, and at the same time, the raw flue gas (117) of process 1 also enters process 1. It enters the adsorption tower (112). After the pollutants carried in the raw flue gas (117) of process 1 are adsorbed by the activated carbon in the adsorption tower (112) of process 1, a clean flue gas (116) is obtained in process 1 for discharge. The dirty activated carbon that adsorbs the pollutants is discharged into the buffer chamber (114) of process 1 through the discharge device (113) of process 1 for temporary storage, and when the dirty activated carbon stored in the buffer chamber (114) of process 1 reaches a certain amount, the process The discharge device (115) at 1 discharges the dirty activated carbon into the activated carbon transport subsystem (3). Here, to increase the transport amount and speed, a motor vehicle can be selected as the activated carbon transport subsystem (3), thus the activated carbon transport subsystem to transport the contaminated activated carbon to the main activated carbon box (25) where it waits for the contaminated activated carbon to be desorbed and activated. (3) can be used. Similarly, the flue gas purifier 120 of process 2 includes: a feed a buffer box 124 of process 2, a discharge device 125 of process 2, an activated carbon chamber 128 of process 2 ) and the conveyor scale of process 2 (129). The flue gas purification equipment (120) of process 2 is the same as the flue gas purification equipment (110) on the raw flue gas purification (117) of process 2 to obtain the clean flue gas (126) of process 2, where No repeated statements will be made. As shown in Figure 3, in order to realize precise control over each subsystem and equipment in the multi-process flue gas purification system and improve operating efficiency, the multi-process flue gas purification system according to this embodiment also includes a computer subsystem (10). The computer subsystem 10 is configured to include: a main control unit 100; an activation subsystem control unit (102) provided in the activated carbon center desorption and activation subsystem and configured to control the operating status of each structure in the activated carbon center desorption and activation subsystem (2) and to adjust the operating parameters; and a process control unit provided in the flue gas treatment equipment of each process and configured to control the operating status of each structure in the corresponding flue gas treatment equipment and to set operating parameters. The main control unit (100) is configured to perform bidirectional data transmission with the activation subsystem control unit (102) and the process control unit and to control the activation subsystem control unit (102), and the process control unit calculates and analyzes the data, thereby It is configured to carry out instructions on the entire multi-process flue gas treatment system, realizing unified and precise control and improving the efficiency of flue gas treatment. In particular, in practical application, the process control unit in each process has the following functions: determination of the activated carbon circulation flow rate of the flue gas purification equipment WXiium) in the current process corresponding to the current time (tm); and sending the activated carbon circulation flow rate (WXnHni) of the flue gas purification equipment in the current process to the main control unit (100); where 11 is the sequence number of each process in the multi-process flue gas saturation system; tm = t-Tnij i is the time when the corresponding data is sent, and Tni is the time when the flue gas purification equipment delivers the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process at time i. In this arrangement, the process control unit in each process reports the activated carbon flow rate in the corresponding flue gas treatment equipment to the main control unit (100), so that the main control unit (100) controls the flow rate of activated carbon in the flue gas treatment equipment in all processes according to the activated carbon flow rate of the flue gas treatment equipment. It can calculate and analyze to adjust the working state in the corresponding process, thus maximizing the working efficiency of the overall multi-process flue gas purification system. Therefore, as shown in Figure 7, the process control unit corresponding to the relevant process can adjust the flue gas purification equipment according to the current method according to the time. determines the activated carbon circulation flow rate Wxnum of the corresponding flue gas purification equipment: S21: The total 802 and NOX flow rate in the raw flue gas corresponding to time tm- is calculated according to the total amount of Vn of the raw flue gas produced in process n in the following formula: wsiinzvn < Cs.. /l 06 Wnuçimi=Vnx CNN/106 Where Ws..(i..inhain is the total flow rate in the flue gas in (kg / h) unit corresponding to the time in the (n) process; WNnumiVn is the total amount of raw flue gas corresponding to time tni in Nm3/s; Cs..n is the total NOX flow rate in kg/hour in the raw flue gas corresponding to the time in the process; CNJi"n" is the concentration of SO2 in the raw flue gas corresponding to time tni in mg / Nm3 in the process; and n in mg/Nm3 is the NOX concentration in the raw flue gas corresponding to the time in the process; The main components of pollutants produced in an iron and steel plant are dust, SO; and NOX, as well as small amounts of VOCs, dioxins and heavy metals. However, each process has a dust separation function and amount, SO; Since the pollutants other than NOX and NOX are small, flue gas treatment equipment mainly aims to remove 802 and NOX from the flue gas. As a result, the theoretically required amount of activated carbon can be estimated according to the amount of 802 and NOX carried in the flue gas entering the adsorption tower, thus achieving the optimal adsorption effect without saturated adsorption or insufficient adsorption; 822: The activated carbon circulation flow rate Wxmni of the flue gas purification equipment in process n corresponding to the time tni) is calculated according to the total flow rate of 802 and NOX in the raw flue gas with the following formula: WxnuinFKi x Wsmerz < WWW) Where Wxnmi is the flue gas in process n activated carbon circulation flow rate of the purification equipment at the relevant time in kg/h; K1 is an initial coefficient in the range 15-21; and K2 is a second coefficient in the range of 3 ~ 5. Since the activated carbon is in a flow state in the adsorption tower and the flue gas is also in a flow state, the flow state of the activated carbon and the flue gas must meet a certain proportional relationship, so that the activated carbon in the adsorption tower can optimally adsorb the flue gas entering the adsorption tower, flue gas. That is, there is a certain proportional relationship between the circulation flow rate of activated carbon in the flue gas purification equipment and the total flow rate of 802 and NOX. The process control unit in each process sends the activated carbon circulation flow rate of the flue gas purification equipment in the current process to the main control unit (100) by Wxuit., for example, the control unit (1011) of process 1 sends the active carbon circulation flow rate of the flue gas purification equipment of process 1 to the main control unit (100). (110) sends the activated carbon circulation flow rate WXiini) to the main control unit (100); The control unit (1012) of process 2 sends the activated carbon circulation flow rate of the flue gas purification equipment (120) of process 2 to the Wxmziiana control unit (100); and the control unit (101n) of process n sends the activated carbon flow rate Wxi.(t..i) of the flue gas purification equipment of process n to the main control unit (100). The main control unit (100) determines the activated carbon flow rate of the flue gas purification equipment during the process (Wxmn.), and the activated carbon circulation flow rate of the relevant activated carbon central desorption and activation subsystem according to the activated carbon circulation flow rate of the flue gas purification equipment in all processes. WXnttni) determines (Wxn). The circulating amount (ten) is the theoretical activated carbon circulation amount of the activated carbon central desorption and activation subsystem, and the Working state and working parameters of the activated carbon central desorption and activation subsystem can be precisely controlled according to the theoretical value. In particular, according to the activated carbon circulation flow rate of the flue gas purification equipment in process n with the main control unit (100), the activated carbon circulation flow rate of the relevant activated carbon central desorption and activation subsystem is Wx.in..i)Wx0. time is determined by the following formula; WXFZ Wxnnun = 2 WXnÜ-Tni) Here t is the present time, and Tni is the time when the flue gas purification equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process at the work time, which in turn activates the activated carbon transport subsystem ( Provided by 3). The activated carbon circulation flow rate WXO of the activated carbon central desorption and activation subsystem is the sum of the activated carbon circulation flow rates of the flue gas purification equipment in each process. However, rather than the time at which each process control unit determines the activated carbon circulation amount of the flue gas, it is the time t at which the theoretical activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2) is calculated, and in each process the purification equipment processes and sends the data. This is because the dirty activated carbon discharged by the flue gas treatment equipment into the activated carbon central desorption and activation subsystem (2) and the activated carbon central desorption and activation subsystem (2) at a different time is different in different processes, so the time required to deliver the dirty activated carbon It has to take a certain amount of time. In addition, the amount of flue gas produced by each process in the production process and the concentration of pollutants change from time to time, which may cause the circulation flow rate of activated carbon in the flue gas purification equipment to change at different times, so at the current time (t), the activated carbon central desorption and activation sub It ensures that the dirty activated carbon received in the system (2) is only the dirty activated carbon discharged by the flue gas treatment equipment in the corresponding process, that is, the circulating flow rate of the dirty activated carbon received by the activated carbon central desorption and activation subsystem (2) in the corresponding flue gas treatment equipment It is the actual activated carbon circulation flow rate of activated carbon. The activated carbon circulation flow rate obtained by the activation subsystem control unit 102 at the current time (tni) should only be postponed by the corresponding process after the delivery time Tni, that is, by the time period Tni of the precise control on the multi-process flue gas treatment system. Thus, the operating efficiency will be reduced and the theoretical activated carbon circulation flow rate (WXO) of the resulting activated carbon central desorption and activation subsystem will be incorrect. For example, at the current time t: 10:00, when the theoretical activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2) is calculated, the dirty activated carbon discharged by the flue gas purification equipment in process 1 is transferred to the activated carbon central desorption and activation subsystem. When TU is transmitted, the control unit (1011) of process 1 must send the activated carbon flow rate WXini of the flue gas treatment equipment in process 1 to the main control unit (100) corresponding to t" = 9:30*a. In the other example, at the current time t: 14:20, when the theoretical activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2) is calculated, the dirty activated carbon discharged by the flue gas purification equipment in process 2 is transferred to the activated carbon central desorption and activation subsystem. When T2 is transmitted, the control unit (1012) of process 2 must send the activated carbon flow rate (Wxmzi) of the flue gas conditioning equipment in process 1 to the main control unit (100) corresponding to t2i = 13:40. Therefore, in order to guarantee the operating efficiency of the multi-process flue gas treatment system and the accuracy of the data obtained by the activation subsystem control unit (102), that is, the accuracy of the activated carbon circulating flow rate Wxmmi of the flue gas treatment equipment, in each process, the data obtained is t Representing the activated carbon circulation flow rate (Wxu) of the activated carbon central desorption and activation subsystem, the flue gas purification equipment in each needs to achieve the activated carbon circulation flow rate and process at the time corresponding to the current time t, advanced by the delivery time (Tni), That is, the activated carbon circulation flow rate of the flue gas purification equipment is converted using each process WXuüýTm) corresponding to the current time t. After the main control unit 100 determines the activated carbon circulation flow rate WXO of the activated carbon central desorption and activation subsystem, the discharge flow rate of the conveyor scale 26 needs to be adjusted according to the data to adjust the discharge flow rate, the desorption tower according to the discharge flow rate of the conveyor scale 26. (23) discharge equipment (22) and discharge equipment (24), thus making the discharge flow rate of the belt weigher (26), the discharge flow rate of the feeding equipment (22) and the discharge process, the flow rate of the discharge equipment (24) is activated carbon center desorption and is equal to the theoretical activated carbon circulating flow rate of the activation subsystem (2), achieving the effect of precisely controlling the multi-process flue gas purification system. In practical operation, the actual operating frequency of the conveyor scale (26) may not be precisely controlled. Therefore, to make the activated carbon circulation flow rate of the flue gas treatment equipment of each process the same as the activated carbon circulation flow rate of the activated carbon center desorption and activation subsystem (2), synchronize the operation of the entire multi-process flue gas treatment system and the activated carbon center Because the amount of activated carbon given by the desorption and activation subsystem (2) is insufficient to support the flue gas treatment equipment in each process to adsorb the amount of flue gas, and its effect decreases, or the active carbon given by the central desorption and activation subsystem (2) When the amount of carbon appears to be too large, which may cause the flue gas purification equipment in each process to be saturated and cause the active activated carbon to overflow, the discharge flow rate (WC) of the conveyor scale (26) needs to be controlled, the activated carbon circulation of the activated carbon central desorption and activation subsystem It will be equal to the flow speed (ten). In particular, the activation subsystem control unit 102 adjusts the discharge flow rate (Wc) of the conveyor scale (26) according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem, so that the discharge flow rate of the conveyor scale (26) is gradual. is equal to the activated carbon circulation flow rate of the activated carbon center desorption and activation subsystem (2) and the corresponding operating frequency (fe) of the conveyor scale (26) when WC: WXÜ is determined. The operating frequency (fc) is the theoretical operating frequency of the conveyor scale 26, that is, an operating frequency to synchronize the operation of the multi-process flue gas purification system. Then, the main control unit 100 obtains the operating frequency fc of the conveyor scale 26 and sends a tuning instruction to the activation subsystem control unit 102, where the activation subsystem control unit 102 determines the given frequency of the feeding equipment 22 ( fg) and the discharge equipment (24) to adjust the given frequency (fp), thus realizing control over the multi-process flue gas treatment system. Specifically, in this embodiment, the main control unit 100 analyzes and calculates the data according to the obtained data and generates a control instruction based on the result to control the activation subsystem control unit 102 to perform the relevant operation. Therefore, in order to precisely adjust the given frequency (fg) of the feeding equipment (22) and the given frequency (fp) of the discharge equipment (24) according to the operating frequency (fc) of the conveyor scale (26), the main control unit (100) will perform the following steps It is configured as follows: 861: Discharge flow rate of the belt scale (WC), WC: KC < fc, discharge flow rate of the feeding equipment (WG), WG: Kg , where KC, Kg and Kp are the width of the conveyor scale (26), the outlet width of the feeding equipment (22), the outlet width of the discharging equipment (24), the parameters of the electric motor, the specific gravity of the frequency converter and activated carbon, etc. are the constants associated with . Since the belt scale (26), feeding equipment (22) and discharging equipment (24) are material feeding devices driven by an electric motor to deliver a material, the electric inotor is driven by a frequency converter and the rotation speed of the electric motor of the belt converter (26). ), the material transport flow rate of the feeding equipment (22) and the discharging equipment (24) is determined by the operating frequency of the frequency converter in proportion to the rotation speed of the electric motor, in proportion to the rotation speed of the electric motor, that is, the discharging flow. 862: It is ensured that the discharge flow rates of the feeding equipment, discharge equipment and belt scales of the activated carbon central desorption and activation subsystem are the same and thus WGzWPZWCZWXO. According to the above introduction, in order to make the activated carbon circulation flow rate of the flue gas treatment equipment of each process the same as the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2), thus realizing the synchronous operation of the entire multi-process flue gas treatment system, the belt The discharge flow rate of the weighbridge (26) needs to be adjusted according to the theoretical activated carbon circulation flow rate (WXÜ) of the activated carbon central desorption and activation subsystem (2), and then the discharge flow rate of the feeding equipment (22) and the discharge flow rate of the desorption tower (23). The equipment (24) needs to be adjusted according to the discharge flow rate of the belt scale (26), so that the discharge flow rate (WC) of the belt scale (26), the discharge flow rate (WG) of the feeding equipment (22) and the discharge flow rate (WG) of the discharge equipment (24). WP) is equal to the theoretical activated carbon circulation flow rate (ten) of the activated carbon center desorption and activation subsystem. 863: According to the above formula, obtaining the given frequency (fg) of the feeding equipment and the operating frequency (fc) of the conveyor scale meets the following relationship: E:E so that the given frequency (fg) of the feeding equipment is adjusted according to the above formula and the operating frequency (fc) of the belt weigher meets the following relationship: can be adjusted; and It is obtained that the given frequency (fp) of the discharge equipment and the operating frequency (fc) of the conveyor scale meet the following relationship: E :E Thus, the given frequency (fg) of the discharge equipment can be adjusted according to the above formula and the operating frequency (fc) of the belt scale can be adjusted. According to the proportional relationship between the given frequency fg of the feeding equipment (22), the given frequency fp of the discharging equipment (24) and the operating frequency fc of the belt weigher (26), fg and fp can be set equal to fc, so that in practical operation, the belt weigher (26) can be set equal to fg. The discharge flow rate (Wc), the discharge flow rate (WG) of the feeding equipment (22) and the discharge flow rate (WP) of the discharge equipment (24) can theoretically be guaranteed to be equal to the circulation flow of activated carbon, the activated carbon central desorption and activation subsystem ( on) rate, so that a balance between the theoretical activated carbon circulation flow rate (WXÜ) of the activated carbon central desorption and activation subsystem and the activated carbon circulation flow rate of the flue gas treatment equipment can be guaranteed, thus achieving a synchronous operation of the entire multi-process flue gas treatment system and It guarantees optimum operating efficiency. After being desorbed and activated by the desorption tower (23), the weight of the dirty activated carbon will change, and some activated carbon will be wasted during the discharge of activated activated carbon, so that the rate of the feeding equipment (22) and the discharge equipment (24) is adjusted to achieve a balance between the discharge flow. The discharge flow rate in the desorption tower (23) requires the addition of new activated carbon to the activated carbon central desorption and activation subsystem (2). In this embodiment, the reinforcement point of the reinforced new activated carbon is located on the activated carbon central desorption and activation subsystem (2), that is, according to this embodiment, the activated carbon central desorption and activation subsystem (2) also includes: the main activated carbon compartment ( A new activated carbon reinforcement equipment (29) provided on 25). In this embodiment, equipment for replenishing new activated carbon is provided in the main activated carbon compartment 25, this is because the main activated carbon compartment 25 is configured to receive dirty activated carbon discharged from the flue gas purification equipment in each operation. After the whole plant and its removal, all the dirty activated carbon is conveyed in a combined manner to the desorption tower (23) for desorption and activation, and the resulting activated carbon is conveyed in a combined manner to the flue gas treatment equipment of each process, thus recycling of activated carbon occurs. The main activated carbon box (25) takes away all the dirty activated carbon, and the total loss of activated carbon of the flue gas purification equipment in each process during flue gas adsorption and distribution can be precisely determined, so that the activated carbon is supplemented in the main activated carbon box (25). On the contrary, if activated carbon is independently supplemented in the flue gas treatment equipment in each process, not only the correct amount of new activated carbon cannot be supplied each time, but also the overall operating efficiency of the system will be affected. The new activated carbon reinforcement equipment (29) includes a new activated carbon control unit (104). The added new activated carbon control unit (104) performs bidirectional data transmission with the main control unit (100) and transmits the new active carbon reinforcement equipment (29) to the main activated carbon compartment (25) at a certain frequency according to the instructions (100) from the main control unit. It is designed to reinforce. If new activated carbon enters the main activated carbon compartment (25), the activated carbon circulation amount (ten) of the activated carbon central desorption and activation subsystem will be changed, therefore, when calculating (ten), not only the activated carbon circulation flow rate of the flue gas purification equipment in each process, At the same time, the activated carbon flow rate of the new activated carbon added to the main activated carbon compartment (25) must be taken into account. Specifically, in this embodiment, the main control unit (100) of the multi-process flue gas purification system determines the activated carbon circulation flow rate (on) of the corresponding activated carbon central desorption and activation subsystem in the following steps: S41: The new active carbon circulation flow rate (Wsupp) is determined to control the new activated carbon reinforcement equipment to reinforce the carbon reinforcement equipment into the main activated carbon compartment, and the new activated carbon reinforced with a new activated carbon reinforcement equipment is supported; In this embodiment, the boost flow rate (Wsupp) of the new reinforced activated carbon of the new activated carbon boosting equipment (29) is determined by the reinforced new activated carbon control unit (104). The activated carbon central desorption and activation subsystem (2) performs combined desorption and activation on all dirty activated carbon and delivers the resulting active carbon to each process in a combined manner. Moreover, in each process, no active carbon elimination loss is provided in the flue gas treatment equipment, and instead, active elimination loss and activated carbon are provided in the activated carbon central desorption and activation subsystem (2). Therefore, the data accuracy of the sieving loss of activated carbon is guaranteed and the working efficiency of the overall system is improved. In this embodiment, the activated carbon central desorption and activation subsystem (2) further includes: a screening equipment (27) located below the discharge equipment (24) and an activated activated carbon box (28) located below the screening equipment (27). Screening equipment (27) for sieving the activated carbon desorbed and activated by the desorption tower (23) to obtain target grained activated carbon and activated activated carbon in the activated activated carbon for storage in the activated carbon compartment (28). is configured and the garbage bin (28) will be the source of activated carbon needed by the flue gas treatment equipment in each process. In this embodiment, the sieving equipment 27 may be a shaker screen or other equipment having a sieving function and not specifically limited in this embodiment. In practical operation, when the screening equipment (27) sieves that the activated carbon is desorbed, a small amount of loss may occur, and this loss includes the loss of activated carbon during the flue gas adsorption of the flue gas purification equipment in each process, the loss of activated carbon during delivery, the active carbon in the desorption tower (23). It may include carbon loss and activated carbon loss (27) in the screening equipment (27). Therefore, it can be seen that the loss of activated carbon caused by the screening equipment 27 provided in the activated carbon central desorption and activation subsystem 2 will be the sum of all activated carbon consumed in the operation of the multi-process flue gas purification. According to the activated carbon consumed here, the amount of new activated carbon to be supplemented in the main activated carbon chamber 25 can be determined precisely and quickly, so that the theoretical activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem and the flue gas of each process A balance between the activated carbon circulation flow rate of the purification equipment can be guaranteed, thus ensuring the synchronized operation and optimum working efficiency of the entire multi-process flue gas purification system. Therefore, to precisely determine the reinforcement flow rate (Wsupp) of the reinforced new activated carbon of the new activated carbon reinforcement equipment 29 per unit time, as shown in Figure 8, the activation subsystem control unit 102 in this embodiment follows the following method and steps: uses: S411: The activated carbon loading amount (QÜ) to the desorption tower in the activated carbon central desorption and activation subsystem is determined according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem according to the following formula: QÜ:WXUX To Here (QO) is the loading amount per kg of activated carbon to the desorption tower in the central central desorption and activation subsystem; (TO) is the residence time of activated carbon in the desorption tower, in the range of 4 ~ 8 in units h; In this arrangement, activated carbon loss is determined through the difference between the amount of all contaminated activated carbon entering the desorption tower and the amount of activated carbon discharged. Therefore, at the current time t, the activated carbon loading amount QO of the desorption tower is determined according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem and the residence time (TO) of dirty activated carbon in the desorption tower. 8412: Activated carbon central desorption and the actual amount of activated carbon (Qacmai) of the activated carbon box in the activation subsystem is determined; 8413: The activated carbon amount loss (Qloss) of activated carbon after being sieved by the screening equipment is determined according to the activated carbon loading amount (QO) of the desorption tower and the activated carbon amount (Qactual) activated by the formulaQgm : Q0 7 Qmm ; The activation subsystem control unit (102) detects the actual activated carbon amount (Qactual) of the active activated carbon box corresponding to the current time and then calculates the entire activated carbon amount loss during a cycle operation of the multi-process flue gas purification system in the desorption tower (23). It is determined according to the carbon loading amount (QO). 8414: The amount of reinforced activated carbon (Qsupp) of the new activated carbon reinforcement equipment is equal to the amount of activated carbon lost (Qioss), and the additional flow rate (Wsupp) of the new activated carbon of the new activated carbon reinforcement equipment is increased according to the set time. It is determined according to the amount of carbon (Qsupp). The lost amount of activated carbon Qloss produced after the screening equipment (27) will be the new amount of activated carbon, which will be supported by the new activated carbon reinforcement equipment (29). Therefore, taking the amount of activated carbon lost (Qloss) as a benchmark, the new activated carbon supplement equipment (29) uses the new activated carbon control unit reinforced to determine the amount of activated carbon lost (Qsupp) according to the amount of activated carbon lost (Qloss). It is controlled by (104). Once the additional amount is determined, the reinforcement flow rate (Wsupp) of the newly reinforced activated carbon per unit time can be determined. After the reinforcement flow rate (Wsupp) is detected of the reinforced new activated carbon of the new activated carbon reinforcement equipment (29), the reinforced new activated carbon control unit (104) adjusts the new activated carbon reinforcement to appropriately reinforce the new activated carbon into the main activated carbon box. It controls the equipment according to the boost flow rate (Wsupp). S42: According to the activated carbon circulation flow rate of the flue gas treatment equipment in process n, the relevant activated carbon central desorption and activation subsystem activated carbon circulation flow rate (WXO) and makeup flow rate Wx,.(tm)(Wsupp) at the current time t Since the main activated carbon box (25) contains the dirty activated carbon discharged from the flue gas purification equipment in each process and the newly added new activated carbon, the above activated carbon circulation flow rate, theoretical activated carbon circulation flow rate, activated carbon central desorption and activation subsystem (2) determines. The loss of activated carbon is produced by the activated carbon central desorption and activation subsystem 2 in the current cycle, and then the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem corresponding to the next cycle is greater than the activated carbon circulation flow rate of the flue gas treatment equipment in each process. is equal to the total. Therefore, it can be seen that in this arrangement, by combining the elimination loss of activated carbon and combining the new activated carbon reinforcement, the accuracy of the loss and reinforcement amount can be guaranteed, and the operating time can be reduced to the maximum, thus improving the operating efficiency of the multi-process flue gas purification system. From the above technology, it can be seen that the multi-process flue gas purification system according to the embodiment of the invention includes an activated carbon central desorption and activation subsystem (2), an activated carbon transport subsystem (3) and flue gas purification equipment corresponding to the following, wherein each flue gas purification The equipment is respectively connected to the activated carbon central analysis activation subsystem (2) through the activated carbon transport subsystem (3), the dirty activated carbon discharged by the flue gas purification equipment corresponding to each process is respectively transferred to the main activated carbon box (25). The activated carbon is desorbed and activated by the desorption tower (23) after the central desorption and activation subsystem (2). The resulting activated carbon is then transported to the flue gas treatment equipment of each process to realize the recycling of activated carbon. In each process, a process control unit provided in the flue gas treatment equipment sends the activated carbon circulation flow rate of the corresponding flue gas treatment equipment to a main control unit, the main control unit uses the sum of the activated carbon circulation flow rates corresponding to all processes and activates the activated carbon central desorption and activation subsystem. It represents the activated carbon circulation flow rate and controls an activation subsystem controller provided in the activated carbon central desorption and activation subsystem, thereby adjusting the given frequency of the conveyor scale and the feeding equipment and discharging equipment in the activated carbon central desorption and activation subsystem, thus enabling the activated carbon central desorption and activation The activated carbon circulation flow rate in the activation subsystem is essentially the sum of the activated carbon circulation flow rates of the flue gas purification equipment in each process and the adsorption part and the desorption part of the multi-process flue gas purification system, thus obtaining the theoretical activated carbon circulation of the activated carbon central desorption and activation subsystem A balance is achieved between the flow rate (WXO) and the activated carbon circulation flow rate of each flue gas purification equipment, increasing the process and working efficiency. Figure 4 is a structural representation of a multi-process flue gas purification system according to the 2nd embodiment of the invention; and Figure 5 is a block diagram of the multi-process flue gas purification system according to the 2nd embodiment of the invention. As shown in Figure 4 and Figure 5, the multi-process flue gas purification system in accordance with the 2nd embodiment of the invention differs from the above embodiment in that the system can also be applied to a sintering process. In an iron and steel facility, the flue gas produced in the sintering process is much more than the gas produced in other processes. The amount of flue gas produced in the sintering process is 70% of the total flue gas amount of the iron and steel plant. Therefore, to improve the working efficiency of flue gas purification, the sintering process and activated carbon central desorption and activation subsystem (2) are provided together, that is, the multi-process flue gas purification system also provides the sintering process with activated carbon central desorption and activation subsystem (2). It includes a corresponding flue gas purification equipment. In this arrangement, the dirty activated carbon discharged by the flue gas purification equipment (4) in the sintering process does not need to be transported to the main activated carbon compartment (25) for temporary storage; instead, it can be transferred directly to the desorption tower (23) for desorption and activation. Because the flue gas produced in the sintering process is very large, and the sintering process may include No. 1 sintering and No. 2 sintering depending on the scale of the iron and steel plant. In this arrangement, two corresponding activated carbon central desorption and activation subsystems (2) can be provided to improve the working efficiency of flue gas purification. In this embodiment, as an example, an activated carbon central desorption and activation subsystem (2), a flue gas purification equipment in the sintering process (4), and a plurality of flue gas purification equipment in other processes are provided. The structure of the flue gas purification equipment in the sintering process (4) is the same as that of the flue gas purification equipment of each process shown in Figure 2. Specifically, the flue gas purification equipment (4) in the sintering process includes: a feeding device in the sintering process (41), an adsorption tower in the sintering process (42), and a discharge device in the sintering process (43). The procedure in which the flue gas purification equipment (4) in the sintering process performs flue gas purification on the sintering process raw flue gas (44) to obtain the sintering process clean flue gas (45) is the same as the flue gas purification equipment (110) in process 1, the relevant For the procedure, reference can be made to the content of the 1st application and no repeated explanation will be made here. The flue gas purification equipment (4) in the sintering process is equipped with a sintering process control unit (103) configured to perform bidirectional data transmission with the main control unit (100) and to control the operating status of the flue gas purification equipment (4) in the sintering process and to control the main control unit (100). operating parameters, etc., according to an instruction from the control unit (100). is configured to set. After adding a sintering process to the multi-process flue gas purification system, the activated carbon circulation flow rate of the flue gas purification equipment (4) in the sintering process and the activated carbon circulation flow rate of the flue gas purification equipment in each process are determined by the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem. It should be considered simultaneously when calculating the flow rate (WXO). In practical application, a sintering process control unit 103 is required to determine the activated carbon circulation flow rate WxÜi of a flue gas purification equipment in a sintering process corresponding to the available time (t); and the activated carbon flow rate WXni is sent to the main control unit (100). The activated carbon circulation flow rate WXm of the flue gas purification equipment (4) in the sintering process can be determined according to the total 802 and NOX flow rate in the flue gas based on the method provided in the above regulation and a repeated explanation will not be made. As shown in Figure 9, after the sintering process control unit (103) determines the activated carbon circulation flow rate WXOI of the existing flue gas purification equipment, the activated carbon circulation flow rate WxUi is sent to the main control unit (100) and the main control unit (100), water The corresponding activated carbon center at step (t) determines the activated carbon circulation flow rate (WXO) of the desorption and activation subsystem in the following steps: S71: The activated carbon circulation flow rate WXDI of a flue gas purification equipment in a sintering process corresponding to the current time is determined and The activated carbon circulation flow rate Wxmm of the flue gas purification equipment in process n corresponding to time tni is determined; where n is the sequence number of each process in the multi-process flue gas purification system; tm=t-Tni, Tni is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process; Since the sintering process is integrated with the activated carbon central desorption and activation subsystem (2), the transfer time of dirty gas from the outlet of the adsorption tower of the flue gas treatment equipment to the inlet of the desorption tower (23) can be neglected as 0. Therefore, the time when the activated carbon circulation flow rate WXm of the flue gas purification equipment (4) in the sintering process is obtained is calculated as the time (t) when the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2) is available. For the method of determining the activated carbon flow rate Wxnum) of the flue gas purification equipment in process n, reference can be made to the content of the above regulation and no repeated explanation will be made here. S72: According to the activated carbon circulation flow rate of the flue gas purification equipment in the process and the activated carbon circulation flow rate Wxmnn, the activated carbon circulation flow rate of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment Wxûi WXO is determined in the sintering process by the following formula: WXiizz WXnu-Tiin + WXÜI S73: By adjusting the discharge flow rate (WC) of the conveyor scale according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem WCZWxÜ-Wxûi an operating frequency (fc) of the relevant conveyor scale is obtained. S74: Adjusting a certain frequency fg of a feeding equipment and a certain frequency fp of a discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency fc of the conveyor scale, thus realizing the control over the multi-process flue gas purification. At this moment, the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2) is the sum of the activated carbon circulation flow rate of the flue gas purification equipment (4) in the sintering process and the activated carbon circulation flow rate of the flue gas purification equipment in each process; Moreover, if an activated activated carbon screening operation and a new activated carbon supplement operation are provided in the multi-process flue gas purification system, the additional flow rate (Wsupp) of the reinforced new activated carbon in the main activated carbon compartment (25) is determined by the activated carbon central desorption and activation subsystem. When the activated carbon circulation flow rate is calculated, it needs to be more, so that a balance between the theoretical activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem and the activated carbon circulation flow rate of the flue gas purification equipment in the sintering process and each process can be guaranteed, thus ensuring synchronized operation and optimum operating efficiency of the entire multi-process flue gas treatment system. After adding a sintering process to the multi-process flue gas purification system, the theoretical activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem will be changed. The dirty activated carbon discharged by the flue gas purification device (4) in the sintering process is directly conveyed to the desorption tower (23), and the main activated carbon box (25) contains only the dirty activated carbon discharged from other processes. At this moment, the theoretical activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2) is the activated carbon circulation flow rate discharged by the flue gas purification equipment (4) in the sintering process, and the activated carbon circulation flow rate in the flue gas purification equipment in other processes. total. Therefore, to precisely determine the discharge flow rate of the belt weigher (26) under the main activated carbon box (25), the activated carbon circulation flow rate WXni (WXO) of the activated carbon central desorption and activation subsystem and the activated carbon of the flue gas purification equipment in the sintering process. It should be determined according to the difference between circulation flow rates. Therefore, the activation subsystem control unit 102 is further configured to perform the following process steps: activated carbon central desorption and activated carbon circulation flow rate WXoi (WXO) of the activation subsystem and activated carbon circulation of the flue gas purification equipment in the sintering process. According to the flow rate, the operating frequency (fc) of the belt scale (26) is determined, with the discharge flow rate of the belt scale (26) Wc=W. After the operating frequency (fc) of the belt scale (26) is determined again, the proportional relationship between the given frequency (fg) of the feeding equipment (22), the given frequency fp of the desorption tower (23) and the discharge equipment (24) and the operating frequency (fe) of the conveyor scale is again determined. is calculated so that (fg) and (fp) are again adjusted to be equal to fc according to the determined proportional relationship. Therefore, in practical operation, it can be guaranteed that the discharge flow rate (WC) of the belt weigher (26) and the discharge flow rate (WG) of the feeding equipment (22) are equal to the discharge flow rate (WP) of the discharge equipment (24), so that the activated carbon central desorption and A balance can be achieved between the theoretical activated carbon circulation flow rate (WXO) of the activation subsystem and the activated carbon circulation flow rate of the flue gas purification equipment of each process, thus guaranteeing the synchronized operation and optimum operating efficiency of the entire multi-process flue gas purification system. It should be noted that for determining the proportional relationship between Fg, fp and fc, reference can be made to the corresponding method given in embodiment 1 and no repeated explanation will be given here. According to this arrangement, since the multi-process flue gas purification system includes a flue gas purification equipment corresponding to the sintering process and flue gas purification equipment corresponding to other processes, after the activated carbon is produced, the problem of distributing the corresponding amount of activated carbon to each process of the iron and steel plant is has. Additionally, the amount of flue gas produced in the sintering process is much greater than the amount of flue gas produced in each of the other processes. Therefore, in order to guarantee the optimal adsorption effect in the sintering process of the flue gas purification equipment, more active activated carbon should be dispersed into the sintering process, and the distribution amount should be determined according to the loading amount of the adsorption tower, corresponding to the corresponding flue gas purification equipment or sintering process activated carbon circulation flow. rate and the amount of activated carbon distributed to other processes will be the entire remaining activated carbon after being distributed to the sintering process. Therefore, in order to realize the precise distribution of activated activated carbon to ensure that the multi-process flue gas purification system maintains a balanced circulation state, it is necessary to use a material dispensing equipment (20) to distribute the activated activated carbon as required. In this embodiment. the activated carbon central desorption and activation subsystem (2) further includes a material distribution equipment (20) placed at the bottom of the activated activated carbon box (28); The material distribution equipment (20) includes a process discharge equipment (202) configured to distribute activated activated carbon into each process, and a sintering process discharge equipment (201) configured to distribute activated activated carbon into a sintering process. First of all, the sintering process discharge equipment 201 is used to distribute the activated carbon into the flue gas treatment equipment 4 in the sintering process of an iron and steel plant, and the amount of distributed activated carbon depends on the loading amount of the adsorption tower in the corresponding flue gas treatment equipment or sintering It is determined according to the activated carbon circulation flow rate corresponding to the process. In a specific setup, the amount of activated carbon distributed into the sintering process is determined by the loading amount of the adsorption tower in the relevant flue gas purification equipment. In this arrangement, the QsinterO loading amount of the adsorption tower in the flue gas treatment equipment in the sintering process is determined by the following formula: (gsinterû:\0]x01'< Tsintcrû Where QsinterO is the loading amount in kg of the activated carbon of the adsorption tower in the sintering process; WXui is the flue gas purification in the s/b process The activated carbon circulation flow rate of the equipment is in kg/h unit at the current time t; TsinterO is the residence time of activated carbon in the adsorption tower in the sintering process in the range of 1 10 ~ 170 in unit h; where the residence time TsinterO depends on the amount of flue gas and the flue gas flow rate, After determining the loading amount of the adsorption tower in the flue gas purification equipment corresponding to the sintering process, the total discharge amount of the sintering process discharge equipment can be determined, thus the discharge flow rate Wunloadl of the Sintering process discharge equipment 201 can be determined. The amount of active carbon is determined according to the active carbon circulation flow rate corresponding to the sintering process. Because the pollutants are adsorbed in the activated carbon discharged by the adsorption tower, for the same volume of activated carbon, its weight will be 3% ~ 10%, that is, for the same batch of activated carbon, the subsequent weight of desorption and activation will be 0.9-0.97 of the weight after pollutant adsorption. Therefore, when the theoretical activated carbon circulation flow rate corresponding to the flue gas purification equipment (4) in the Sintering process is determined, a weight change coefficient (j) needs to be unloaded, that is, the discharge equipment (Wunloadl) of the Sintering process, which is determined by the following formula: Wunloadl: Wx01 Xj wherej is a coefficient in the range of 0.9 to 0.97. After the discharge flow rate of the sintering process, the discharge equipment 201 is determined: in fact, in other processes, the discharge flow rate (Wunload2) is combined with the theoretical activated carbon circulating flow rate (WXO) of the activated carbon central desorption and activation subsystem. The discharge of the sintering process discharge equipment 201 is the difference between flow rate (Wunloadl). However, in order to guarantee the continuous operation of the multi-process flue gas treatment system and improve the operating efficiency, in this arrangement, the discharge flow rate (Wunload2) of the process discharge equipment 202 is adjusted to be maximum in other processes to distribute the activated carbon to the flue gas treatment equipment, so that The purpose of delivering all the material stored in the material dispensing equipment is achieved. In the third embodiment, a new activated carbon supplement equipment 29 can also be configured in the multi-process flue gas purification system provided in the 2nd embodiment. In particular, as shown in Fig. 10, the main control unit 100 is configured to perform the following steps to realize precise control in the multi-process flue gas purification system: S81: Active control of a flue gas purification equipment corresponding to time tni in process n. determining the carbon circulation flow rate W ; where 11 is the sequence number of each process in the multi-process flue gas purification system; tni=t-Tni, Tm is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process; S82: According to the activated carbon circulation flow rate of the flue gas purification equipment in the process and the activated carbon circulation flow rate WXn(tiii), the activated carbon circulation flow rate WXui (WXO) and the boost flow rate () of the activation subsystem of the relevant activated carbon central desorption and flue gas purification equipment Wsupp) is determined in the sintering process with the following formula: WXÜ : ZWXH.(t-Tm) + WWW +WX01 883: Adjustment of the discharge flow rate (WC) of the conveyor scale according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem. An operating frequency (fc) of the relevant conveyor scale Wc=Wxû-Wx(ii) is obtained. 884: In the activated carbon inertial desorption and activation subsystem, a certain frequency fg of a feeding equipment and a certain frequency m (fp) of a discharge equipment are determined by the operating frequency of the conveyor scale. By adjusting the frequency according to its fc, the control over the multi-process flue gas purification is realized. According to this arrangement, for the specific application process in the multi-process flue gas purification system, reference can be made to the content of the relevant part of the 1st application and the 2nd application, and no repeated explanation will be made here. According to this arrangement, in the multi-process flue gas purification system, the sintering process that produces multiple flue gases is provided together with the activated carbon center desorption and activation subsystem. In the sintering process, dirty activated carbon discharged by the flue gas purification equipment (4) can enter the activated carbon central desorption and activation subsystem (2), which has the highest alignment for desorption and activation, thus preventing loss of time during transportation and reducing the operating efficiency of the system. When the operating parameters of the entire system are controlled according to the activated carbon circulation flow rate of the activated carbon central desorption and activation subsystem (2), the activated carbon circulation flow rate corresponding to the sintering process and the feeding process (22) according to the activated carbon circulation flow rate corresponding to each of them. The data are fully taken into account when the given frequency (fg) and the given frequency (fp) of the discharging equipment (24) of the desorption tower are controlled to be equal to the operating frequency (fc) of the belt weigher, which results in the activated carbon circulation of the activated carbon central desorption and activation subsystem It guarantees a balance between the flow rate (WXO) and the activated carbon circulation flow rate of flue gas purification equipment corresponding to the sintering process and other processes, thus guaranteeing synchronous and stable operation and optimum operating efficiency of the entire multi-process flue gas purification system. According to the multi-process flue gas purification system provided in the above embodiment, as shown in Figure 6, an embodiment of the invention provides a method for controlling the multi-process flue gas purification system applicable to the multi-process flue gas purification system provided in the above embodiment. The control method includes the following steps: S1: The activated carbon circulation flow rate Wxiumi of a flue gas purification equipment corresponding to time tni in process n is determined; where 11 is the sequence number of each process in the multi-process flue gas purification system; tni = t-Tni, Tni is the time when the flue gas purification equipment disperses the corresponding dirty activated carbon into the activated carbon central desorption and activation subsystem in the work process; SZ: According to the activated carbon circulation flow rate of the flue gas purification equipment in process n, the activated carbon circulation flow rate Wxmm› (on) of the relevant activated carbon central desorption and activation subsystem is determined at the current time (t); 83: The discharge flow rate (WC) of the belt weigher is adjusted according to the activated carbon circulation flow rate (WXO) of the activated carbon center desorption and activation subcysteine; and when WC = WXO is obtained, the operating frequency (fc) of the relevant belt scale is adjusted; S4: Adjusting a certain frequency fg of a feeding equipment and a certain frequency (fp) of a discharging equipment in the activated carbon central desorption and activation subsystem according to the Operating frequency fc of the conveyor scale, thus realizing the control on multi-process flue gas purification. Optionally, as shown in figure 7, the activated carbon circulation flow rate of the flue gas purification equipment at process n corresponding to time Wxnmi; It is determined in the following steps: 821: The total 802 and NOK flow rate in the raw flue gas corresponding to time tm is calculated according to the total amount of Vn of the raw flue gas produced in process n in the following formula: WSIi(liii):Vn < Csn/l 0(i WNiin.) =vn WN is the total NOX flow rate in kg/h in the raw flue gas corresponding to the time in the imim process; Cs.. is the concentration of SOZ in the raw flue gas corresponding to time tni in mg / Nm3 in the process "n"; CN.. and n in mg/Nm3 is the NOX concentration in the raw flue gas corresponding to the time in the process; 822: The activated carbon circulation flow rate WX"(tm) of the flue gas purification equipment in process n corresponding to the time tni is calculated according to the total flow rate of 802 and NOX in the raw flue gas with the following formula: WxnumFKix WSn(tni)+K2X WWM where Wxnnni) The activated carbon circulation flow rate at the corresponding time in kg/h of the flue gas purification equipment in process n; K1 is a first coefficient in the range of 15-21; and K2 is optionally the corresponding activated carbon. The activated carbon circulation flow rate (WXO) of the central desorption and activation subsystem is determined at time (t): The activated carbon circulation flow rate of the corresponding activated carbon central desorption and activation subsystem according to the activated carbon circulation flow rate of the flue gas purification equipment in process n The flow rate WXii(tiu) (WXO) at current time (t) is determined by the following formula; It is the time when it distributes the corresponding dirty activated carbon to its subsystem at time i. Optionally, the activated carbon circulation flow rate WXO of the activated carbon core desorption and activation subsystem corresponding to the current time t is determined in the following steps: The reinforcement flow rate (Wsupp) of the new activated carbon reinforcement equipment to reinforce the main activated carbon compartment is determined to check the equipment and the new activated carbon reinforced with a new activated carbon reinforcement equipment is supported; and according to the activated carbon circulation flow rate of the flue gas purification equipment in Process n, the activated carbon circulation flow rate (on) and the boost flow rate of the relevant activated carbon central desorption and activation subsystem Wx..(im)(Wsupp) at the current time (t). ) is determined by the following formula: WXÜ : Z WXn(t-Tni) + Ws-upyi Optionally, as seen in figure 8, the reinforcement flow rate (Wsupp) of the reinforced new activated carbon of a new activated carbon reinforcement equipment is determined in the following steps: The activated carbon loading amount (QO) to the desorption tower in the activated carbon central desorption and activation subsystem was determined according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem according to the following formula: Q0=WXUX To Here (QO) is the loading amount in kg of activated carbon to the desorption tower in the central desorption and activation subsystem; and (TO) is the residence time of activated carbon in the desorption tower, in the range of 4 ~ 8 in units of h; The actual amount of activated carbon (Qacmai) of the activated carbon box in the activated carbon central desorption and activation subsystem is determined; The amount of activated carbon lost (Qioss) after being sieved by the sieving equipment according to the lost activated carbon loading amount (QO) and the actual amount of activated carbon is determined according to the formula (QIOSS=Q0-Qactual); and The amount of reinforced activated carbon (Qsupp) of the new activated carbon reinforcement equipment is equal to the amount of activated carbon lost (Qloss), and the additional flow rate (Wsupp) of the new activated carbon reinforced activated carbon of the new activated carbon reinforcement equipment per unit time according to the set time. It is determined according to the quantity (Qsupp). Optionally, the given frequency (fg) of the feeding equipment and the given frequency (fp) of the discharging equipment in the activated carbon central desorption and activation subsystem are adjusted according to the operating frequency (fc) of the conveyor scale in the following stages: Discharge flow rate of the belt weigher WC WC = Kc < fe, the discharge flow rate of the feeding equipment is determined as WG WG : Kg < fg, and the discharge flow rate of the discharge equipment is determined as WP WP : Kp < fp, where KC, Kg and Kp are all constants; The discharge flow rates of the feeding equipment, discharge equipment and belt scales of the activated carbon central desorption and activation subsystem are controlled to be the same, thus ensuring that WG=WP=WC=WXO. According to the above formula, it is obtained that the given frequency (fg) of the feeding equipment and the operating frequency (fc) of the conveyor scale meet the following relationship: ::g-KC so that the given frequency (fg) of the feeding equipment is adjusted according to the above formula and the operating frequency (fc) of the belt scale meets the following relationship: settings; and It is obtained that the given frequency (fp) of the discharge equipment and the operating frequency (fc) of the conveyor scale meet the following relationship: E:E so that the given frequency (fp) of the discharge equipment is adjusted according to the above formula and the operating frequency (fc) of the belt scale is adjusted. In a third aspect of the invention, according to the multi-process flue gas purification system provided in the above embodiment, as shown in Figure 9, an embodiment of the invention provides a method for controlling the multi-process flue gas purification system applicable to the multi-process flue gas purification system provided in the above embodiment. . The control method includes the following steps: S71: Activated carbon circulation flow rate WXÜ of a flue gas purification equipment in a sintering process corresponding to the current time. is determined and the activated carbon circulation flow rate Wxmmi of the flue gas purification equipment in process n corresponding to time tni is determined; where n is the sequence number of each process in the multi-process flue gas marketing system; tni=t-Tm, Tni is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process; S72: According to the activated carbon circulation flow rate WXuÜm) of the flue gas purification equipment in the process and the activated carbon circulation flow rate WXm WXO of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment is determined in the sintering process by the following formula: WM:: : WXii(I-Tiii] + Wxiii S73: Adjustment of the discharge flow rate (WC) of the conveyor scale according to the activated carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem an operating frequency (fc) of the corresponding conveyor scale WC:WX0 -WXiii is obtained. S74: Adjusting a certain frequency fg of a feeding equipment and a certain frequency (fp) of a discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency fc of the conveyor scale, thus achieving multi-process flue gas purification. control is performed. Optionally, the method also includes: The discharge flow rate WxUi (Wunloadl) of the sintering process discharge equipment is determined according to the activated carbon circulation flow rate of the flue gas purification equipment in the sintering process and the formula Wunloadl : WXO] < j, where ja 0.9 to 0.97. is a coefficient in the range; and by the mechanism of the discharge flow control of the discharge equipment in process n. In a fourth approach, according to the multi-process flue gas purification system provided in the above embodiment, as shown in Figure 10, an embodiment of the invention provides many It provides a method for controlling the operational flue gas purification System. The control method includes the following steps: S81: The activated carbon circulation flow rate Wxûi of a flue gas purification equipment corresponding to time tni in process n is determined in a sintering process corresponding to the current time t, and of the flue gas purification equipment in process n determining the activated carbon circulation flow rate (Wxmm) and determining the support flow rate of the new reinforced activated carbon of a new activated carbon reinforcement equipment; where 11 is the sequence number of each process in the multi-process flue gas purification system; tnizt-Tni, Tm is the time when the flue gas purification equipment disperses the corresponding dirty activated carbon into the activated carbon central desorption and activation subsystem in the work process; 882: Activated carbon circulation flow rate WXoi (WXO) and makeup flow rate (Wsupp) of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment according to the activated carbon circulation flow rate and activated carbon circulation flow rate WXuUiii) of the flue gas purification equipment in process It is determined in the sintering process with the following formula: WXÜ : g WX7L(±-Tni) _i_ Wsnpp _i_ WXÜI 883: Adjustment of the discharge flow rate (WC) of the conveyor scale according to the activated carbon circulation flow rate (WXO) of the active carbon central desorption and activation subsystem of the relevant conveyor. An operating frequency (fe) WCZWx..-WXm of the weighbridge is obtained. 884: Adjusting a certain frequency fg of a feeding equipment and a certain frequency (fp) of a discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency fc of the conveyor scale, thus realizing the control on multi-process flue gas saturation. In the specific embodiment, the invention also provides a computer storage medium in which a program is stored, wherein, when executed, the program can perform some or all of the steps in each embodiment of the method of controlling a multi-process flue gas treatment system according to the invention. The storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), etc. it could be. With the description of the above method embodiments, a person skilled in the art can clearly understand that the invention can be implemented with the help of software and the necessary universal hardware platform. Based on such an understanding, the essential part of the technical solutions in the embodiments of the invention, or in other words, the part contributing to the prior art, can be organized in the form of a software product stored in a storage medium, for example, ROM / RAM, magnetic disk or optical disk, etc. and includes various instructions for causing a computing device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method according to each embodiment of the invention. References can be made to each other for the same or similar part between each embodiment of the invention. In particular, for the embodiments of the method for controlling the multi-process flue gas purification system, since it is essentially similar to the embodiments of the multi-process flue gas purification system, its explanation will be simple, and for the relevant part, reference can be made to part of the illustration of the embodiments of the multi-process flue gas purification system. The above regulations of the invention will not limit the scope of protection of the invention.TR TR TR TR

Claims (11)

ISTEMLER 1. Çok islemli bir baca gazi aritma sistemi olup asagidakileri içerir: bir aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi, bir aktif karbon tasima alt sistemi ve her bir isleme karsilik gelen baca gazi aritma ekipmani, burada baca gazi aritma ekipmanlarinin her biri, sirasiyla aktif karbon tasima alt sistemi araciligiyla aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine baglanir; burada aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemi sunlari içerir: bir desorpsiyon kulesi; desorpsiyon kulesine giren kirli aktifkarbonun akis hizini kontrol etmek için yapilandirilmis besleme ekipmani; desorpsiyon kulesinde aktif hale getirilen aktif aktif karbonu desarj etmek üzere yapilandirilmis desarj ekipmani; desarj ekipmanindan bosaltilan aktif karbonun elenmesi için yapilandirilmis eleme ekipmani; eleme ekipmani tarafindan elenen aktiflestirilmis aktif karbonu toplamak için yapilandirilmis bir aktiflestirilmis aktif karbon kutusu; her bir isleme karsilik gelen baca gazi saflastirma ekipmaninin bir çikis ucu ile besleme ekipmani arasinda saglanan ve her bir islemde baca gazi saflastirma ekipmanindan bosaltilan kirli aktif karbonu toplamak üzere yapilandirilmis bir ana aktif karbon kutusu; ana aktif karbOn kutusu ve besleme ekipmani arasinda saglanan ve ana aktif karbon kutusundaki kirli aktif karbonu desorpsiyon kulesine tasimak üzere yapilandirilmis bir kayis kantari; ve ana aktif karbon kutusunun üzerinde saglanan ve yeni aktif karbonu ana aktif karbon kutusuna eklemek üzere yapilandirilan yeni bir aktif karbon takviye ekipmani.1. A multi-process flue gas treatment system, comprising: an activated carbon central desorption and activation subsystem, an activated carbon transport subsystem, and flue gas treatment equipment corresponding to each process, where each of the flue gas treatment equipment is respectively active via the carbon transport subsystem, activated carbon is connected to the central desorption and activation subsystem; wherein the activated carbon central desorption and activation subsystem includes: a desorption tower; feed equipment configured to control the flow rate of contaminated activated carbon entering the desorption tower; discharge equipment configured to discharge active activated carbon activated in the desorption tower; screening equipment configured to screen activated carbon discharged from the discharge equipment; an activated activated carbon box configured to collect activated activated carbon sieved by the screening equipment; a main activated carbon box provided between an outlet end of the flue gas purification equipment corresponding to each process and the feed equipment and configured to collect contaminated activated carbon discharged from the flue gas purification equipment in each process; a belt weigher provided between the main activated carbon box and the feeding equipment and configured to convey dirty activated carbon in the main activated carbon box to the desorption tower; and a new activated carbon booster equipment provided above the main activated carbon box and configured to add the new activated carbon to the main activated carbon box. 2. Istem 17e göre sistem olup asagidakileri içerir: aktiflestirilmis karbon merkezi desorpsiyon ve aktivasyon alt sisteminde saglanan sinterleme islemine karsilik gelen bir baca gazi aritma cihazi ve aktiflestirilmis aktif karbon kutusunun altinda bulunan bir malzeme dagitim ekipmani; sinterleme islemine karsilik gelen baca gazi aritma ekipmani tarafindan bosaltilan kirli aktif karbon, aktif karbon tasima alt sistemi ve besleme ekipmani yoluyla desorpsiyon kulesine yüklenir; malzeme dagitim ekipmani sunlari içerir: aktiflestirilmis aktif` karbonu her bir isleme dagitmak için yapilandirilmis olan bir islemde n sayida bosaltma ekipmani ve aktiflestirilmis aktif karbonu bir sinterleme islemine dagitmak için yapilandirilmis bir sinterleme islemi bosaltma ekipmani.2. The system according to claim 17, comprising: a flue gas purification device corresponding to the sintering process provided in the activated carbon central desorption and activation subsystem and a material distribution equipment located at the bottom of the activated activated carbon box; The dirty activated carbon discharged by the flue gas purification equipment corresponding to the sintering process is loaded into the desorption tower through the activated carbon transport subsystem and feeding equipment; material distribution equipment includes: n discharge equipment from a process configured to distribute activated activated carbon into each process and a sintering process discharge equipment configured to distribute activated activated carbon into a sintering process. 3. Çok islemli baca gazi aritma sisteminin kontrol edilmesi için bir yöntem olup, asagidaki basamaklari içerir: islem n'deki zamana (tm) karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin Wxnm.) belirlenmesi; buradaki n, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tni:t-Tni, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina Wxnum) göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin (WXO) mevcut zamanda (t) belirlenmesi; konveyör kantarinin bosaltma akis hizinin (Wc), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (on) göre ayarlanmasi ve WC:WXO oldugunda ilgili konveyör kantarinin bir çalisma frekansi fc'nin elde edilmesi; ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin (fg) ve bir bosaltma ekipmaninin belirli bir frekansinin (fp), konveyör kantarinin çalisma frekansina (fc) göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrolün gerçeklestirilmesi.3. A method for controlling a multi-process flue gas purification system, comprising the following steps: determining the activated carbon circulation flow rate Wxnm. of a flue gas purification equipment corresponding to time (tm) in process n; where n is the sequence number of each process in the multi-process flue gas purification system; tni:t-Tni, Tni is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon into the activated carbon central desorption and activation subsystem in the work process; determining the activated carbon circulation flow rate (WXO) of the relevant activated carbon central desorption and activation subsystem at the current time (t) according to the activated carbon circulation flow rate Wxnum of the flue gas purification equipment in process n; adjusting the discharge flow rate (Wc) of the conveyor scale according to the activated carbon circulation flow rate (on) of the activated carbon central desorption and activation subsystem, and obtaining an operating frequency fc of the corresponding conveyor scale when WC:WXO; and adjusting a certain frequency (fg) of a feeding equipment and a certain frequency (fp) of a discharge equipment in the activated carbon central desorption and activation subsystem according to the operating frequency (fc) of the conveyor scale, thereby realizing the control over the multi-process flue gas purification. 4. Istem 3”e göre yöntem olup özelligi; zamana (tm) karsilik gelen islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizi Wxmmiasagidaki adimlarda belirlenmesidir: Asagidaki formül ile islem n'de üretilen ham baca gazinin toplam miktarina (Vn) göre zamana (tm) karsilik gelen ham baca gazindaki SO; ve NOX toplam akis hizinin hesaplanmasi: WSn(iiii):Vlî X Gsm/=Vn X CN“/ 106 burada WSii(tm)l'lalTl baca gazindaki (n) islemindeki zamana karsilik gelen (kg / h) birimindeki toplam SO; akis hizidir; Wmnniin islemindeki zamana karsilik gelen ham baca gazindaki kg/ saat birimindeki toplam NOX akis hizidir; Cs" "n" isleminde mg / Nm3 birimindeki zamana (tm) karsilik gelen ham baca gazindaki S02 konsantrasyonudur; ve CNn mg / Nm3 birimindeki n isleinindeki zamana karsilik gelen ham baca gazindaki NOX konsantrasyonudur; islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizinin Wxnum), asagidaki formülle ham baca gazindaki karsilik gelen sekilde hesaplanmasi: WxniiniiîKiX Wsn(im)+K2X WNnum) buradaki Wxnriniiislem n'deki baca gazi aritma ekipinaninin kg / saat birimindeki ilgili zamandaki aktive edilmis karbon sirkülasyon akis hizi; K1, 15-21 araliginda bir ilk katsayidir; ve K2, 3 ~ 5 araliginda ikinci bir katsayidir.4. It is a method according to claim 3 and its feature is; The activated carbon circulation flow rate Wxmmia of the flue gas purification equipment in process n corresponding to time (tm) is determined in the following steps: SO in the raw flue gas corresponding to time (tm) according to the total amount (Vn) of raw flue gas produced in process n with the following formula ; and calculation of the total flow rate of NOX: WSn(iiii):Vlî is the flow rate; It is the total NOX flow rate in kg/hour in the raw flue gas corresponding to the time in the Wmnniin process; Cs" is the S02 concentration in the raw flue gas corresponding to time (tm) in process "n" in mg/Nm3; and CNn is the NOX concentration in the raw flue gas corresponding to time (tm) in process n in mg/Nm3; activated carbon circulation of the flue gas purification equipment in process n calculation of the flow rate Wxnum) corresponding to the raw flue gas by the following formula: is a first coefficient in the range of 21; and K2 is a second coefficient in the range of 3 ~ 5. 5. Istem 3,e göre yöntem olup özelligi; mevcut zamanda (t) karsilik gelen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin (WXO), asagidaki adimlarda belirlenmesidir: islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin Wxnmii (on) mevcut zamanda (t) asagidaki formülle belirlenmesi; WM::: Wxnnm) = 2 Wxmsi mi buradaki t, simdiki zamandir ve Tni, baca gazi saflastimia ekipmaninm, i prosesindeki aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif` karbonu dagittigi zamandir.5. It is a method according to claim 3 and its feature is; The activated carbon circulation flow rate (WXO) of the corresponding activated carbon central desorption and activation subsystem at the current time (t) is determined in the following steps: according to the activated carbon circulation flow rate of the flue gas purification equipment in process n, the corresponding activated carbon central desorption and activation subsystem determining the activated carbon circulation flow rate of the system Wxnmii (on) at the current time (t) with the following formula; WM::: Wxnnm) = 2 Wxmsi where t is the present time and Tni is the time when the flue gas purification equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the i process at time i. 6. Istem 3,e göre yöntem olup özelligi; mevcut zamanda (t) karsilik gelen aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin (WXO), asagidaki adimlarda belirlenmesidir: takviye akis hizinin (Wsupp) yeni aktif karbon takviye ekipmanini ana aktif` karbon bölmesine takviye etmek için yeni aktif karbon takviye ekipmanini kontrol etmek üzere belirlenir ve yeni bir aktif karbon takviye ekipmani ile takviye edilmis yeni aktif karbonun desteklenmesi; islem n'deki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina göre ilgili aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktive edilmis karbon sirkülasyon akis hizinin (WXO) ve takviye akis hizinin Wxniini)(Wsupp) mevcut zamanda (t) asagidaki formülle belirlenmesi; WXO : g WX'rLOI- TM) + Wsiipp -6. It is a method according to claim 3 and its feature is; is to determine the activated carbon circulation flow rate (WXO) of the corresponding activated carbon central desorption and activation subsystem at the current time (t), in the following steps: the reinforcement flow rate (Wsupp) of the new activated carbon to reinforce the new activated carbon reinforcement equipment into the main activated carbon compartment is determined to control the reinforcement equipment and supplement the new activated carbon reinforced with a new activated carbon reinforcement equipment; Determining the activated carbon circulation flow rate (WXO) and boost flow rate Wxniini)(Wsupp) of the relevant activated carbon central desorption and activation subsystem according to the activated carbon circulation flow rate of the flue gas purification equipment in process n at the current time (t) by the following formula; WXO : g WX'rLOI- TM) + Wsiipp - 7. Istem 6°ya göre yöntem olup özelligi; yeni bir aktif karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun takviye akis hizi (Wsupp), asagidaki adimlarda belirlenmesidir: aktive edilmis karbon merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine aktive edilmis karbon yükleme miktarinin (QD) asagidaki formüle göre aktive edilmis karbon merkezi desorpsiyon ve aktivasyon altsisteminin aktive edilmis karbon sirkülasyon akis QO=WXOX To burada (QO), aktif karbonun aktiflestirilmis merkezi merkezi desorpsiyon ve aktivasyon altsistemindeki desorpsiyon kulesine kg birimindeki yükleme miktaridir; (To), aktif karbonun desorpsiyon kulesinde, h biriminde 4 ~ 8 araliginda kalma süresidir; aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki aktif aktif karbon kutusunun gerçek aktif karbon miktarinin (Qactual) saptanmasi; kaybolan aktif` karbon yükleme miktari (QO) ve gerçek aktif` karbon miktarina göre eleme ekipmani tarafindan elendikten sonra aktif karbonun aktif karbon miktari kaybinin (Qioss), (Q1055:Q0-Qactual) formülüne göre belirlenmesi; ve yeni aktif karbon takviye ekipmaninin takviye edilmis aktif karbon miktari (Qsupp) kaybolan aktif karbon miktarina (Qloss) esit olacak sekilde ve yeni aktit` karbon takviye ekipmaninin takviye edilmis yeni aktif karbonunun ilave akis hizinin (Wsupp) ayarlanan süreye göre birim zamanda takviye edilmis aktif karbon miktarina (Qsupp) göre belirlenmesi.7. It is a method according to claim 6 and its feature is; The reinforcement flow rate (Wsupp) of the reinforced new activated carbon of a new activated carbon reinforcement equipment is determined in the following steps: the amount of activated carbon loading (QD) into the desorption tower in the activated carbon center desorption and activation subsystem according to the following formula: activated carbon center desorption and activation activated carbon circulation flow of the subsystem QO=WXOX To where (QO) is the activated carbon central central desorption and loading amount in kg to the desorption tower in the activation subsystem; (To) is the residence time of activated carbon in the desorption tower, in the range of 4 ~ 8 in h units; determining the actual amount of activated carbon (Qactual) of the activated carbon box in the activated carbon central desorption and activation subsystem; Determination of the active carbon amount loss (Qioss) of the activated carbon after it is sieved by the sieving equipment according to the formula (Q1055:Q0-Qactual); and the amount of reinforced activated carbon (Qsupp) of the new activated carbon reinforcement equipment is equal to the amount of active carbon lost (Qloss) and the additional flow rate (Wsupp) of the reinforced new activated carbon of the new activated carbon reinforcement equipment is increased per unit time according to the set time. Determination according to carbon amount (Qsupp). 8. Istem ?Ve göre yöntem olup özelligi; aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemindeki besleme ekipmaninin verilen frekansi (fg) ve bosaltma ekipmaninin verilen frekansinin (fp), asagidaki asamalarda konveyör kantarinin çalisma frekansina (fc) göre ayarlanmasidir: konveyör kantarinin bosaltma akis hizinin (WC) WCZKCXfC, besleme ekipmaninin bosaltma akis hizinin (Wg) WG:Kg> olarak belirlenmesi, burada KC, Kg ve Kp'nin hepsi sabittir;5 besleme ekipmani, bosaltma ekipmani ve aktif` karbon merkezi desorpsiyon ve aktivasyon alt sisteminin konveyör kantarlarinin bosaltma akis hizlarinin kontrol edilmesi, böylece WG:WP:WC:WXO saglanir; yukaridaki formüle göre! besleme ekipmaninin verilen frekansinin (fg) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladiginin elde edilmesi: 2:& böylece besleme ekipmaninin verilen frekansinin (fg) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansinin (fc) ayarlanmasi; ve bosaltma ekipmanmin verilen frekansinin (fp) ve konveyör kantarinin çalisma frekansinin (fc) asagidaki iliskiyi karsiladiginin elde edilmesi: fp-IIS böylece desarj ekipmaninin verilen frekansinin (fp) yukaridaki formüle göre ayarlanmasi ve bant kantarinin çalisma frekansi (fc) ayarlanir.8. The method according to the claim and its feature is; is to adjust the given frequency (fg) of the feeding equipment and the given frequency (fp) of the discharging equipment in the activated carbon central desorption and activation subsystem according to the operating frequency (fc) of the conveyor scale in the following stages: the discharge flow rate (WC) of the conveyor scale WCZKCXfC, the discharge flow of the feeding equipment determining the rate (Wg) as WG:Kg>, where KC, Kg and Kp are all constants;5 controlling the discharge flow rates of the feeding equipment, discharge equipment and conveyor scales of the activated carbon central desorption and activation subsystem, thus WG:WP :WC:WXO provided; according to the formula above! obtaining the given frequency (fg) of the feeding equipment and the operating frequency (fc) of the conveyor scale meet the following relationship: 2:& thus adjusting the given frequency (fg) of the feeding equipment according to the above formula and adjusting the operating frequency (fc) of the belt scale; and obtaining that the given frequency (fp) of the discharge equipment and the operating frequency (fc) of the conveyor scale meet the following relationship: fp-IIS so that the given frequency (fp) of the discharge equipment is adjusted according to the above formula and the operating frequency (fc) of the belt scale is adjusted. 9. Çok islemli baca gazi aritma sisteminin kontrol edilmesi için bir yöntem olup, asagidaki basamaklari içerir: islem n'deki zamana (tm) karsilik gelen bir baca gazi saflastirrna ekipmaninin aktif karbon dolasim akis hizinin Wxüi simdiki zamana (t) karsilik gelen bir sinterleme isleminde belirlenmesi, ve islem n'deki baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hiziniannunq belirlenmesi; buradaki 11, çok islemli baca gazi satlastirma sistemindeki her islemin sira numarasidir; tni:t-Tm-, Tnj, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; islemdeki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina WXii(tiii) göre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin WXni (on) asagidaki formülle sinterleme isleminde belirlenmesi: WX0:Z Wxnumn + WXoi _ konveyör kantarinin bosaltma akis hizinin (Wc), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (on) göre ayarlanmasi ilgili konveyör kantarinin bir çalisma frekansinin (fc) WC=WXO'WXUI elde edilmesi; ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmaninin belirli bir frekansinin (fg) ve bir bosaltma ekipmaninin belirli bir frekansinin (fis), konveyör kantarinin çalisma frekansina (fc) göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrolün gerçeklestirilmesi.9. A method for controlling a multi-process flue gas purification system, comprising the following steps: determining the activated carbon circulation flow rate Wx of a flue gas purification equipment corresponding to time (tm) at process n in a sintering process corresponding to current time (t) determining, and determining the activated carbon circulation flow rate of the flue gas treatment equipment in the process; where 11 is the sequence number of each process in the multi-process flue gas marketing system; tni:t-Tm-, Tnj is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process; According to the activated carbon circulation flow rate of the flue gas purification equipment in the process and the activated carbon circulation flow rate WXii(tiii), determining the activated carbon circulation flow rate WXni (on) of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment in the sintering process with the following formula: WX0 :Z Wxnumn + WXoi _ adjusting the discharge flow rate (Wc) of the conveyor scale according to the activated carbon circulation flow rate (on) of the activated carbon central desorption and activation subsystem, obtaining an operating frequency (fc) of the relevant conveyor scale WC=WXO'WXUI; and adjusting a certain frequency (fg) of a feeding equipment and a certain frequency (plug) of a discharge equipment in the activated carbon central desorption and activation subsystem according to the operating frequency (fc) of the conveyor scale, thereby realizing the control over the multi-process flue gas purification. 10. Istem 9”a göre yöntem olup,özelligi; ayrica asagidakileri içermesidir: sinterleme prosesi bosaltma ekipmaninin bosaltma akis hizi (Wunloadl) sinterleme prosesinde ve formül Wuniûad1:Wxm> WxÜigöre belirlenir, burada j, 0.9 ila 0.97' araliginda bir katsayidir; ve islem n'deki bosaltma ekipmaninin bosaltma akis hizi (Wunioadz) kontrolünün düzenegi tarafindan maksimum degere getirilmistir.10. It is a method according to claim 9, its feature is; further comprising: the discharge flow rate (Wunloadl) of the sintering process discharge equipment in the sintering process and is determined according to the formula Wuniûad1:Wxm> WxÜi, where j is a coefficient in the range of 0.9 to 0.97'; and the discharge flow rate (Wunioadz) of the discharge equipment in process n is brought to the maximum value by the control mechanism. 11. Çok islemli baca gazi aritma sisteminin kontrol edilmesi için bir yöntem olup, asagidaki basamaklari içerir: islem n'deki zamana (tm) karsilik gelen bir baca gazi saflastirma ekipmaninin aktif karbon dolasim akis hizinin WXm simdiki zamana (t) karsilik gelen bir sinterleme isleminde belirlenmesi, ve islem n'deki baca gazi aritma ekipmaninin aktif karbon sirkülasyon akis hizinin Wxnm.) belirlenmesi ve yeni bir aktif` karbon takviye ekipmaninin takviye edilmis yeni aktif` karbonunun destek akis hizinin belirlenmesi; burada 11, çok islemli baca gazi saflastirma sistemindeki her islemin sira numarasidir; tni=t-Tni, Tni, baca gazi aritma ekipmaninin i isleminde aktif karbon merkezi desorpsiyon ve aktivasyon alt sistemine i zamaninda karsilik gelen kirli aktif karbonu dagittigi zamandir; islemdeki baca gazi saflastirma ekipmaninin aktif karbon sirkülasyon akis hizina ve aktif karbon sirkülasyon akis hizina Wxnmgöre ilgili aktif karbon merkezi desorpsiyon ve baca gazi aritma ekipmaninin aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizinin WXni (on) ve takviye akis hizinin (Wsupp) asagidaki fonnülle sinterleme isleminde belirlenmesi: konveyör kantarinin bosaltma akis hizinin (Wc), aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminin aktif karbon sirkülasyon akis hizina (WXO) göre ayarlanmasi ilgili10 konveyör kantarmin bir çalisma frekansinm (fc) Wc=Wx«-WxUi elde edilmesi; ve aktif karbon merkezi desorpsiyon ve aktivasyon alt sisteminde bir besleme ekipmanmin belirli bir frekansinin (fg) ve bir bosaltma ekipmanmin belirli bir frekansinin (fb), konveyör kantarinin çalisma frekansina (fc) göre ayarlanmasi, böylece çok islemli baca gazi saflastirmasi üzerindeki kontrolün gerçeklestirilmesi.11. A method for controlling a multi-process flue gas purification system, comprising the following steps: determining the activated carbon circulation flow rate WXm of a flue gas purification equipment corresponding to time (tm) at process n in a sintering process corresponding to time (t) at present determining the activated carbon circulation flow rate of the flue gas treatment equipment in process n (Wxnm.) and determining the supporting flow rate of the reinforced new activated carbon of a new activated carbon boosting equipment; where 11 is the sequence number of each process in the multi-process flue gas purification system; tni=t-Tni, Tni is the time when the flue gas treatment equipment distributes the corresponding dirty activated carbon to the activated carbon central desorption and activation subsystem in the work process; According to the activated carbon circulation flow rate and activated carbon circulation flow rate Wxnm of the flue gas purification equipment in the process, the active carbon circulation flow rate WXni (on) and the reinforcement flow rate (Wsupp) of the relevant activated carbon central desorption and activation subsystem of the flue gas purification equipment are determined in the sintering process with the following formula determination: adjusting the discharge flow rate (Wc) of the conveyor scale according to the active carbon circulation flow rate (WXO) of the activated carbon central desorption and activation subsystem, obtaining an operating frequency (fc) of the relevant10 conveyor scale Wc=Wx«-WxUi; and adjusting a certain frequency (fg) of a feeding equipment and a certain frequency (fb) of a discharge equipment in the activated carbon central desorption and activation subsystem according to the operating frequency (fc) of the conveyor scale, thereby realizing the control over the multi-process flue gas purification.
TR2020/08309 2018-04-18 MULTI-PROCESS FLUE GAS TREATMENT SYSTEM AND CONTROL METHOD TR202008309T2 (en)

Publications (1)

Publication Number Publication Date
TR202008309T2 true TR202008309T2 (en) 2023-06-21

Family

ID=

Similar Documents

Publication Publication Date Title
CN108295621B (en) A kind of multi-process flue gas purification system and its control method
GB2419438B (en) Method and apparatus for providing load dispatch and pollution control optimization
CN101349912B (en) Automatic control system of sintered plant mixture making according to chemical composition
CN101736099B (en) Secondary treatment system for steel slag and method thereof
KR20180136365A (en) Automatic Ammonia-Adding System and Method for Ammonia-based Desulfurization Device
CN101318158A (en) Control method for grinding process optimization of cement factory
CN114803382B (en) Conveying control method, system, device, conveyor equipment and readable storage medium
CN201932697U (en) Automatized charging system for dry powder material
CN102765613A (en) Automatic quantitative handling system used during moving of heavy-load train
CN110116128A (en) A kind of intelligent integral soil remediation equipment and restorative procedure
KR102318293B1 (en) Multi-process flue gas purification system and its control method
TR202008309T2 (en) MULTI-PROCESS FLUE GAS TREATMENT SYSTEM AND CONTROL METHOD
CN104399738A (en) Fly ash smelting pre-treatment system and fly ash treating method
CN108246043B (en) For the interface arrangement of multi-process gas cleaning, active carbon transportation system and method
RU2753521C1 (en) Centralized and autonomous waste gas treatment system for multiple work processes and how to manage it
CN102700949A (en) Gate-type bucket wheel stacker-reclaimer
CN102103370A (en) Slot and level control method of sintering mixture
WO2018205693A1 (en) Material control method and system for flue gas purification device
CN108407096A (en) Incineration of refuse flyash stabilizes batching control system
CN104785096B (en) Two-part activated coke/charcoal desulphurization denitration integrated tower and system for desulfuration and denitration
CN108744943A (en) A kind of desulphurization plant and its sulfur removal technology
CN102764581A (en) Wet-process demercuration system and demercuration technique
CN102001520A (en) System for automatically charging a dry powder material
CN109821343B (en) Method and device for supplementing activated carbon in flue gas purification device
CN208431781U (en) A kind of boiler sludge co-combustion system