TR201808938T4 - A method for producing a pressurized air gas by cryogenic distillation. - Google Patents

A method for producing a pressurized air gas by cryogenic distillation. Download PDF

Info

Publication number
TR201808938T4
TR201808938T4 TR2018/08938T TR201808938T TR201808938T4 TR 201808938 T4 TR201808938 T4 TR 201808938T4 TR 2018/08938 T TR2018/08938 T TR 2018/08938T TR 201808938 T TR201808938 T TR 201808938T TR 201808938 T4 TR201808938 T4 TR 201808938T4
Authority
TR
Turkey
Prior art keywords
compressor
air
column
sent
turbines
Prior art date
Application number
TR2018/08938T
Other languages
Turkish (tr)
Inventor
Le Bot Patrick
Original Assignee
Air Liquide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide filed Critical Air Liquide
Publication of TR201808938T4 publication Critical patent/TR201808938T4/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Buluş, kolon sisteminde kriyojenik damıtma aracılığıyla hava ayırmaya yönelik bir yöntem ile ilgili olup, burada çift tek aşamalı hava kompresörü (15, 25) seri olarak bağlanmaktadır ve sıkıştırılmayan havanın genişlediği iki türbine (17, 27) bağlanmaktadır. Kompresörler, kolon sisteminden oksijenin buharlaştığı bir değişim hattında soğuk yüksek basınçlı havayı sıkıştırmaktadır.The invention relates to a method for separating air by means of cryogenic distillation in the column system, wherein the double single-stage air compressor (15, 25) is connected in series and is connected to two turbines (17, 27) in which the uncompressed air expands. The compressors compress the cold high pressure air in a change line where oxygen evaporates from the column system.

Description

TARIFNAME KRIYOJENIK DAMITMA ILE BASINÇLI BIR HAVA GAZININ ÜRETILMESINE YÖNELIK YÖNTEM Mevcut bulus, kriyojenik damltîlna ile basEçlDbir hava gazlElI üretilmesine yönelik bir yöntem ile ilgilidir. DESCRIPTION FOR THE PRODUCTION OF A COMPRESSED AIR GAS BY CRYOGENIC DISTILLATION METHOD OF DIRECTION The present invention provides a method for producing a pressurized air gas by cryogenic distillation. It is related to.

Bulusun bir amacülo ve 16 bar arasIa, tercihen 14 ve 16 bar arasIa, dolayElýla 15 bar civarIa bir oksijen üretimi için hava aylEna aparatlar. iliskin tesislerin maliyetlerinin azaltllîhas- olanak saglayan yöntem semalarII yapilândlülîhas. yönelik bir alternatif sunmaktlü Önceki teknikte, 15 bar oranIa baleçlEbksijen üreten aparatlar, yaklasllZl olarak 6 bar oranIa bir baleç ile bir ana hava lelStlîlEEEi/e 35-40 bar civarIa bir balelç ile hava akIiII bir klEInIEllelglEin bir hava kompresörü kullanan “pompallîl aparatlardan olusmaktadlB Ancak bu çözüm, çok yüksek bir püskürtme balechJe komprese edilecek düsük bir akIi kombinasyonunun teknolojik olarak gerçeklestirilebilmesi için kompresör çlKlglEda çok küçük bir gerçek akIia düsürüldügü küçük boyutlu aparatlar için uygun degildir. For an aim of the invention, between 16 bar, preferably between 14 and 16 bar, approximately 15 bar Air conditioning apparatus for an oxygen production around. the costs of the facilities ReducedLîhas- enabling method schemasII yapilândlülihas. an alternative for presenting In the prior art, apparatus producing baleful Euxigen at a rate of 15 bar, approximately 6 bar. a main air lelStlîlEEEi/e with a balelet of 35-40 bar One of the “pumpallîl apparatuses” that uses an air compressor in a smart way. However, this solution will be compressed into a very high spray balech. compressor for the technological realization of a low flux combination It is not suitable for small sized apparatus, where a very small fact is considered in the workplace.

DolayEIýla küçük aparatlar için, maliyetli olan oksijen slklgtlElEllârII kullanilmas- basvurulmak zorundadIE Sunulan çözüm, orta derecede yüksek bir püskürtme balelcEile tek bir hava siKJg-I kullannüle bu tür aparatlar için maliyetlerin azaltllBras- olanak saglamaktadlîl ve bu, önceki iki çözüme göre rekabetçi bir avantaj sunmaktadE tek bir kompresör ve maliyetli bir oksijen kompresöründen kaçlElna. Therefore, for small apparatus, costly oxygen slklgtlEllarII should not be used. had to be appliedIE The solution offered is a single air cylinder with a moderately high spray bale. It allows the use of such apparatus to reduce costs, and this offers a competitive advantage over the previous two solutions with a single compressor and a cost-effective escape from the oxygen compressor.

BaleÇlEbksijenin üretilmesi için, iki kompresör ana degistiricinin ara slîlaklllîlaria havayü sllîlgtlîilnaktadü birinci kompresörün giris lelaklEglÇl ikinci kompresörün çlElg lebkllglEdan daha yüksektir. Bir sogutma grubu, ikinci kompresörün giris sElakl[g]II düsürülmesi için kullanUIhaktadIE böylece yöntemin karmasüîllglürtmaktadlü iki soguk kompresörde lelgt-lgiüiiir hava ayiîn`na yöntemini açiKIamaktadlü Iki kompresör bir türbine baglanmak zorunda degildir; çünkü yöntemin türbinleri, sadece -. imal edilmesine olanak saglayan özel bir çallsma boyunca çallgnaktadlîi Nominal çallgl'ria sßsia yöntem kriyojenik s-I eklenmesi ile soguk olarak muhafaza edilmektedir. In order to produce the BaleClEbxygen, air is supplied to the intermediate slits of the two compressor main exchangers. sllîlgtlîilnaktadü first compressor's inlet lelaklEglÇl second compressor's çlElg lebkllglEdan is higher. A chiller is used to reduce the inlet scal[g]II of the second compressor. useUIhaktadIE so that the method has mixed Explaining the method of lelgt-lgiüiiiir air month in two cold compressors The two compressors do not have to be connected to a turbine; because the turbines of the method, only -. During a special operation that allows the production of Çallgl'ria sßsia method is kept cold by the addition of cryogenic s-I.

Tüm baleiçlar mutlak baleçlardiB Bulusa göre, havan. tümü yüksek basiîita çiKbrUBiaktadiEI(büyük ölçüde ortalama basElç kolonunun balelcIan daha yüksek, baska bir ifadeyle ortalama basEçtan en az 3 bar daha yüksek) ve bu baleçta arEiIBqaktadlü daha sonra en az iki kigna bölünmektedir. HavanI sadece bir kEmÇldaha sonra ana degisim hattII soguk ucunda slînâsan klgmübu akli, arzu edilen baslîiçta oksijenin buharlasmas. olanak saglamak için yeterli bir baleta çilZiarilâcak sekilde, ardiSIEbir kriyojenik leIStlEinaya tabi tutulmaktadß Tercihen havanI geri kalan.. ortalama baslik,` kolonunun balelcIa en az bir türbinde balebEbzaltllîhaktadIEl HavanIgenlesmesi ile serbest kalan çalisma 5-. en az bir klgmlîkriyojenik stlîlgtlîiina için kullanilîhaktadlü US-A-5475980 numaralElpatent dokümanü istem 1'in giris klîml göre bir yöntemi açiEIamaktadE Bulusun bir amaclEla göre, istem 1'e göre bir yöntem öngörülmektedir. All ballets were absolute balletsB According to the invention, mortar. all high bass column has a higher baseline, that is, at least 3 bar higher than the average pressure. high) and in this baleç arEiIBqaktadlü is then divided into at least two kigna. Mortar just one kemÇlthen slînâsan klgmübu mind at the cold end of the main change lineII, evaporation of the desired primary oxygen. sufficient ballet to enable Remarkably, the afterSIE was subjected to a cryogenic leaching. Preferably re-air remaining.. average heading, balebEbzaltllîhaktadIEl in at least one turbine The study released by mortar expansion 5-. for at least one klgmlîcryogenic stlîlgtlîina used entitled A method according to the input climate of claim 1 of the Elpatent document US-A-5475980 angled According to an object of the invention, a method according to claim 1 is provided.

Istege baglßlan diger özelliklere göre: iki türbin, degisim hattII üçüncü ara leakIEgJü/e dördüncü ara siEbkügllEtlan olusan esit veya farkllîgljiris lebkIllZlar- sahiptir; - üçüncü slîtiklllîl birinci slBakliEtan düsüktür. - üçüncü slîlaklilîi dördüncü slîiakliEtan en fazla 20°C, hatta en fazla 10°C oranütia farklIE - birinci siElakIiElikinci lelakIüZtan yüksektir; - birinci lelaklllZlikinci lethlgh esit veya bundan düsüktür; - türbinlerden en az birisi tarafIan üretilen enerjinin bir klglnlîiiagllîilü'iaktadlü - türbine baglEIbir fren yagßistemi araciügiisîla enerjinin bir klîmüiagiülüiaktadü - havanI bir klglnütercihen degisim hattIa, yüksek baleçta slîllâsmaktadlü - türbinlerden en az birisinin havasÇidaha yüksek baslüçta çalisan kolona gönderilmektedir; - birinci kompresörde lelgtBlân havanItümü ikinci kompresöre gönderilmektedir; - arllîlna ünitesinde arltllân havanI tümü, ar[t]na ünitesinin çllaglüda baleçla degisim hattlEb gönderilmektedir; - sistem, bir birinci kolon ve birinci kolondan daha düsük baslöçta çallgan bir ikinci kolon içeren çift bir hava aylîilna kolonu içermektedir; iki türbinde baslücüzaltllân hava birinci kolona gönderilmektedir; - birinci lelakllEl ikinci kompresörün çlEgllelakHgllian daha soguktur; - birinci ve ikinci kompresörün çEKlgllelaklllZlar|3125°C ve -145°C arasIa bulunmaktadE Bulus, bulusa göre bir hava aylElna yöntemini gösteren sekilden hareketle daha ayrlEtlIJD olarak açllglanacaktlü Bir hava akiül), kriyojenik damllîlna ile çift bir hava ayüna kolonunun ortalama balelç kolonu olan kolonun (31) baletIan en az 3 bar daha düsük olan bir baleba kadar bir ana kompresörde (3) lelîstlEllIhaktadlE SlKlglElan hava, arlfllBilglakIiI (9) olusturulmasEiçin bir ar[Elna ünitesinde (7) arltZllB1aktadlB Arlîllîhlgl akli, sogutulmadan degisim hatt- (11) gönderilmektedir ve degisim hattlEda, bir birinci ara lelakllgEi kadar sogutulmaktadlB Bu slîakllKta hava bir klîlEli (13) ve baska bir k“ (14) olmak üzere ayrllüîaktadE KlîlEli (13), sllZlSt-[gillirinci ara süklllîta tek bir kademeye sahip olan tek bir birinci kompresöre (15) girmektedir. SlEIStElßîlgl hava, birinci ara slîlaklllîtan daha düsük olan bir ikinci ara slîbkllgla kadar yeniden sogutuldugu degisim hatt- (11) gönderilmektedir. Bu ikinci ara sIEaklIKta, kompresörde (15) lelStlEHân havan. en azIan bir klêl'n ühatta havanI (13) tümü, tek bir kademeye sahip olan tek bir ikinci kompresörde (25) lelgtlEIIB1aktadlEl Birinci ara slîlaklllîl en fazla 10°C oranlEUa ikinci lelakIlEtan farklIEl ve birinci ve ikinci slîlakllKlar -145°C ve -165°C araletla bulunmaktadE Birinci ara lelaklllZl istege baglEblarak ikinci ara leth[gb esit veya bundan daha yüksek olabilmektedir. 125°C ve -145°C arasia bulunmaktadß Iki kere lelSIlElllEnE akl (13), baleblEbir oksijen akIlElI buharlastlîllîhaslîlçin gereken baleçta degisim hatti gönderilmektedir. SEKlgtlEllBilSJakIi (13), degisim hattII (11) soguk ucuna kadar bu baslii;ta sogutulmaktadlîlve yogunlasmaktadE Degistiricinin çllZlgliba akIiI baslitljzaltüiiaktadlilve ortalama baslik; kolonuna (31) gönderilmektedir. According to other optional features: two turbines, exchange lineII third intermediate leakIEgJü/e fourth intermediate siEbkügllEtlan formed equal or have different gljiris lebkIllZs; - third slîtiklllîl first slBakliEtan is low. - third and fourth cyclic ethane differs by a maximum of 20°C, or even a maximum of 10°C - the first gloss is higher than the second gloss; - the first lethlgh is less than or equal to the first lethlgh; - a klglnlîiiagllîilü'iktadlu of the energy produced by at least one of the turbines - a transfer of energy through a brake fluid system connected to the turbine - mortar with a klgln, preferably even with a change, at high balech - the air of at least one of the turbines is sent to the column operating at higher pressure; - in the first compressor, the lelgtBlan mortar is sent to the second compressor; - All of the arltllan mortar in the arllîlna unit, exchange with baleç in the ar[t]na unit hattlEb is sent; - the system consists of a first column and a second column operating at a lower pressure than the first column a double air column containing air; Compressed air in two turbines first is sent to the column; - the first lilacHgllian of the second compressor is colder; - the refrigeration pipes of the first and second compressor are between|3125°C and -145°C. The invention is further differentiated with reference to the figure showing a weather separation method according to the invention. will be opened as An air cell), the average baleness of a double column of air with a cryogenic dropper The balls of the column (31) with a column are a main up to a ballet that is at least 3 bars lower. The air blown up in the compressor (3) is filled with a sludge to form a thicker Wisdom (9). ar[Elna unit (7) arltZllB1aktadlB Arlîllîhlgl mind, change line without cooling- (11) is sent and cooled down to a first intermediate lelakllg on the exchange line. This In slîakllK air is divided into one kîlEli (13) and another k“ (14) in the form of KlîlEli (13), sllZlSt-[to a single first compressor (15) having a single stage in the first intermediate cycle enters. SlEIStElßîlgl air, with a second intermediate slîbklll lower than the first intermediate slîlakllll It is sent to the exchange line (11), where it is re-cooled until In this second intermediate connection, lelStlEHân mortar in the compressor (15). All of at least one klêl, or even mortar (13), is a single (25) lelgtlEIIB1aktadlEl in a single second compressor with a single stage First intermediate silica, maximum 10°C to second lacquer, different and first and second Slilaks are available with an interval of -145°C and -165°C. First intermediate lelaklllZl optionally second intermediate leth[gb equal or higher than can happen. Between 125°C and -145°C Twice lelSIlElllEnE mind (13) change line is sent in baleç. SEKlgtlEllBilSJakI (13), change lineII (11) cold this title is cooled down to the end, the language and the concentration are concentrated. baslitljzaltüiiaktadlilve average title; is sent to the column (31).

HavanI geri kalanE(14) iki veya üç kEma ayrllîhaktadß Bir çeside göre havanI geri kalanü (14) iki klima ayrilIhaktadE Bir km (19), degisim hattII bir üçüncü ara sliakllgiIJJIan bir giris slilakllgilila sahip olan bir türbine (17) gönderilmektedir, daha sonra ortalama baslik kolonuna (31) gaz formunda gönderilmektedir. Bir baska k! (21), degisim hattlillil bir dördüncü ara slilakligilîblan bir giris slilakllgi. sahip olan bir türbine (27) gönderilmektedir, daha sonra ortalama baslik; kolonuna (31) gaz formunda gönderilmektedir. Tercihen k-ilar (19, 21), tek bir akIiI (23) olusturulmaslîbin karlSIlilIhaktadlil K-ilarI (19, 21) dlglitia, aynüamanda yüksek basliisllîhavanl bir kliinE(26) da istege baglEblarak degisim hattIilI (11) soguk ucuna kadar sogumaslilEtakip edebilmektedir ve yogunlasabilmektedir. Degistiricinin çilZlgliUa, bir vanada baslitlîiazaltiliiaktadlilve örnegin ortalama baslik; kolonu (31) gibi kolon sistemine gönderilmektedir. Çift kolon bilindigi üzere geri ak& akllarD(39, 41) ile kendi aralarIa termik olarak baglanan bir ortalama baslik; kolonu (31) ve düsük baslilç kolonu (33) içermektedir. The rest of the mortarE(14) two or three different kinds of mortar The rest of the mortar (14) two air conditioners separated. One km (19), interchange line a third intermediate switchgear. The inlet is sent to a turbine (17) having a headband, then the average header is sent to the column (31) in gas form. Just another k! (21) change line the fourth intermediate slilakligilîblan is an introductory slilakllîblan. is sent to a turbine (27), which has then average title; is sent to the column (31) in gas form. Preferably k-ilar (19, 21), the creation of a single mind (23) K-ilarl (19, 21) dlglitia, at the same time a cline (26) with a high headstock By connecting it, it can follow the change line (11) with cooling down to the cold end and can concentrate. If the changer is freckled, a valve is capped and reduced, for example average title; column (31) is sent to the column system. As it is known, the double column is thermally interconnected with the backflowsD(39, 41). a linked average title; column (31) and low pressure column (33).

Düsük baslik; kolonu (33), degisim hattIa (11) _n bir azot aklEa43) üretmektedir. Aynü zamanda 10 ve 16 bar arasliha bir baslibla (37)'de süigtlilân, baslik;ll:lgaz oksijenin olusturulmaslîçin degisim hattlilzla buharlasan, bir teknede silinksijen (35) üretmektedir. low title; column (33) produces a nitrogen alkali43 with exchange line (11). same At the same time, between 10 and 16 bar, with a baslibla (37), suigtlilan, title; 11: lgaz oxygen It produces cylinxigen (35) in a vessel, which evaporates with the exchange line to form it.

Bu sekilde farklEilki baslik;ta sliljbksijenin buharlasmaslil/eya sliüiksijen ile anda lelgtElIhlg siürgon veya slißzotun buharlasmasEöngörülebilmektedir. It is different in this way, the first title; lelgtElIhlg at the same time with sliljbksigen evaporation/either with silica Evaporation of syurgeon or sliszot can be predicted.

Iki ürünün degisim hattIia (veya iki farklübaslik; seviyesinde bir ürün) buharlastigilîdlurumda akIiI (13) bir klgn üdegistiricinin soguk ucuna kadar sogumaslib devam edebilmektedir ve kompresör (25) taraflildan leIStliIiîayabilmektedir. AkIiI bu kliinElyogunlasacaktB Degistiricinin çIKISiiUa, bir vanada basliiclîazaltlliiaktadßve örnegin ortalama baslik; kolonu (31) gibi kolon sistemine gönderilmektedir. If two products are evaporated by the exchange line (or a product at two different titles; level) the mind (13) can continue to cool down to the cold end of a common exchanger, and Compressor (25) can be operated from side to side. His mind will focus on this clinic The output of the changer is capped at a valve and the average cap, for example; colon (31) is sent to the colon system.

Kompresör (15), iki türbinden (17 veya 25) birisi ile en azildan kliinen tahrik edilmektedir ve kompresör (25) ise diger türbin (25 veya 17) tarafIan tahrik edilmektedir. Her durumda aynElzamanda kompresöre baglanan bir üreteç veya bir motora sahip olunabilmektedir. Örnegin bir fren, tercihen bir fren yagüsistemi gibi bir enerji dagiflm cihazE(22, 24), iki türbin/kompresör sisteminden (15/17, 25/27) en az birisine entegre edilecektir.The compressor (15) is driven from the bottom up by one of the two turbines (17 or 25) and the compressor (25) is driven by the other turbine (25 or 17). In every situation At the same time, it is possible to have a generator or a motor connected to the compressor. An energy dissipation device (22, 24), such as for example a brake, preferably a brake oil system, has two It will be integrated into at least one of the turbine/compressor system (15/17, 25/27).

Claims (13)

ISTEMLERREQUESTS 1. Bir kolon sistemi (31, 33) içeren bir tesiste kriyojenik dam[t]na ile hava aylElna yöntemi olup, bir kolon (31) ortalama baslik; olarak adlandlîilân daha yüksek baslîilçta çal Einaktadiîi burada: -havanI tümü, ortalama basiElçtan en az 3 bar daha fazla olan yüksek balelca çiiZiarilüiaktadiEIve bu basiEiçta bir ariüina ünitesinde (7) arifllüiaktadE -havanI tümü, ariEina ünitesinin çlEiSi slîakllgiia degisim hatti (11) gönderilmektedir; -arlfilân havanI tümü degisim hattIia (11) sogutulmaktadlüve aritllân havanI bir klEihiZIdegisim hattII bir ara sIEiaklig1Ia emen ve tek bir kademeye sahip olan en aziEdan bir birinci kompresör (15) aracllglîla siElglEllIhaktadEi -birinci kompresörde silZlStiEllân havan en azlEUan bir kElnÇldegisim hattII bir ikinci ara sükligiia emen ve tek bir kademeye sahip olan en azIan bir ikinci kompresör (25) araclilgilsîla siElgtiEliB1aktadiîive istege bagiijblarak degisim hattII soguk ucunda sogudugu, daha sonra siüllâstigilîidegisim hatti gönderilmektedir ve basIEJCII azaltiiBwaletlan sonra kolon sistemlerinde gönderilmektedir; -yüksek basIEçta arlülân havanI diger kEmIJjegisim hattIda sogutulmaktadlü daha sonra ayriIIhasDçin kolon sistemine gönderilen degisim hattII ara siîakllKlarEblan veya bir ara slükliiîi olan bir veya daha fazla giris siElakHgi- sahip olan en az iki türbinde (17, 27) en azlEtIan klîirien basIEisljzaltlEhaktadIB -havanI basiEtiEiiEi azaltiIBiasEiIe serbest kalan çalEma, iki türbinden birisine birinci kompresörü baglayan ve iki türbinden digerine ikinci kompresörü baglayan birinci ve ikinci kompresör taraflEUan gerçeklestirilen kriyojenik siiZIStIElna için en azIEUan kIEh'ien kullanilEiaktadB -siîlîbksijen 16 bara esit veya daha düsük olan, tercihen 10 ve 16 bar arasIa bulunan bir baslik,“ta balegIandiElIBiaktadiElve degisim hattiEUa buharlastlülhaktadlîi birinci kompresörde leIStiEIIBiEhavanI bir kismi. aritllBrE havan %10 ve %35'ini olusturmasü/e en az iki türbinde basiEtüzaltilân hava kigiri ariEllîhlghavanI %65 ve 90'IEI olusturmasiî.] birinci kompresörde lelglEllân hava kElnIiEl, ikinci kompresörün yukar-ia degisim hattIa sogutulmasiîl bir enerji dagilîim cihazII (22, 24) kompresörlerden en az birisine baglanmasübirinci siEiakligiI ikinci lelakliEtan en fazla 10°C farklEblmasEl/e birinci ve ikinci ara slîhkliElarI -145°C ve -165°C arasIa bulunmasEbirinci ve ikinci kompresörün (15, 25) çiElg siEiakliKlarII -110°C ve -150°C arasIa bulunmasülle karakterize edilmektedir. 1. A method of air separation with a cryogenic dam in a facility comprising a column system (31, 33), in which a column (31) averages the head; Einktadiîi here: -all the air is high baleca dew with at least 3 bars more than the average pressure of the elc, and this bass is in a beeline unit (7); -all of the air is cooled by the exchange line (11), the least one first compressor (15) that absorbs the treated air with a kEihiZI exchange line and a single stage, the second compressor with the air compressor (15) and at least a second compressor (25) having a single stage, through which it is optionally cooled at the cold end of the exchange line, then sent to the subsidiary exchange line, and the basIEJCII reduction Bwalets are then sent in the column systems; -The other air is cooled at high pressure, the other air is cooled in the pipeline, and then the exchange line is sent to the separate column system. freed operation, for cryogenic flow performed by the first and second compressors connecting the first compressor to one of the two turbines and connecting the second compressor from the two turbines to the other, preferably a vehicle with at least 16 bar with at least 16 bar, with at least 16 bar oxygen and less than 16 bar, preferably 10 the title was titled “ElIBiaktadiElve exchange lineEUa vaporized a part of the leIStiEIIBiE mortar in the first compressor. aritllBrE forms 10% and 35% of the air/either at least two turbines generate 65% and 90% IEI of submerged air.] 24) connected to at least one of the compressors, the first temperature second lacquered Ethane not differing by more than 10°C/e the presence of the first and second intermediate temperatures between -145°C and -165°CEThe first and second compressor's (15, 25) blade temperaturesII -110°C and - It is characterized by its presence between 150°C. Iki türbinin (17, 27), degisim hattIlE] üçüncü ara slîiakligüie dördüncü ara leiakIiglmian olusan esit veya farklügiiris slîlaklllîlar. sahip oldugu, Istem 1'e göre yöntem. Two turbines (17, 27), with the change line] equal or different iris, formed by the third intermediate ligature and the fourth intermediate ligature. The method according to claim 1, which it has. Üçüncü ara lelakIigil birinci ara slGkIIJZtan daha düsük oldugu, Istem Z'ye göre yöntem. The method according to claim Z, where the third intermediate lilac is lower than the first intermediate slGkIIJZ. Üçüncü ara slîlakl[gilül, dördüncü süklllîtan en fazla 20°C, hatta en fazla 10°C oranIa farkll]>ldugu, Istem 2 veya 3'e göre yöntem. The method according to claim 2 or 3, wherein the third intermediate silica[gyle, the fourth cyclic differs by a maximum of 20°C or even a maximum of 10°C]. Birinci ara leiakIlgJI ikinci ara leiakIlthan yüksek oldugu önceki istemlerden birisine göre yöntem. The method according to one of the preceding claims, wherein the first intermediate leiakIlgJI is higher than the second intermediate leiakIlthan. Birinci ara lelakligiI ikinci ara lelakllgb esit veya bundan daha düsük oldugu Istemler 1 ila 4'ten birisine göre yöntem. The method according to one of claims 1 to 4, wherein the first intermediate lacquer is less than or equal to the second intermediate lacquer. Türbinlerden en az birisi tarafian üretilen enerjinin bir klginlElI dag-[glüönceki istemlerden birine göre yöntem. The method according to one of the preceding claims, wherein the energy produced by at least one of the turbines has a kginlElI mountain-[growth]. Türbine baglmir fren yagßistemi (22, 24) aracügllîla enerjinin bir klginülag-[giljstem 7'ye göre yöntem. The turbine-connected brake oil system (22, 24) is a klginulag-method according to [giljstem 7] of energy. Birinci kompresörde (15) leIStlEllân havanI tümü ikinci kompresöre (25) gönderildigi önceki istemlerden birine göre yöntem. The method according to one of the preceding claims, wherein all of the leIStlEllan mortar in the first compressor (15) is sent to the second compressor (25). Arlüna ünitesinde (7) arlfllân havanI tümünün, arllîina ünitesinin çlElglEtla baslBçla degisim hatti gönderildigi önceki istemlerden birine göre yöntem. The method according to one of the previous claims, in which all of the arluna unit (7) is sent to the exchange line of the arluna unit via the sludge unit. Sistemin, bir birinci kolon (31) ve birinci kolondan daha düsük basüçta çalgn bir ikinci kolon (33) içeren çift bir hava alelna kolonu içerdigi, iki türbinde (17, 27) baletlZI azaltlßn hava birinci kolona gönderildigi önceki istemlerden birine göre yöntem. The method according to one of the preceding claims, wherein the system comprises a double air allele column comprising a first column (31) and a second column (33) operating at lower pressure than the first column, in which the unloaded air is sent to the first column in two turbines (17, 27). HavanI tümünün, degisim hattII (11) slîlak ucuna gönderildigi önceki istemlerden birine göre yöntem.The method according to one of the preceding claims, in which all the mortars are sent to the wet end of the exchange line (11). 13. Birinci ara lebkligilEi, ikinci kompresörün (25) çiElg siEbkligiIian daha soguk oldugu önceki istemlerden birine göre yöntem. bulundugu önceki istemlerden birine göre yöntem.13. The method according to one of the preceding claims, wherein the first intermediate temperature is colder than the second compressor (25). The method according to one of the preceding claims.
TR2018/08938T 2011-03-31 2012-03-30 A method for producing a pressurized air gas by cryogenic distillation. TR201808938T4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1152734A FR2973487B1 (en) 2011-03-31 2011-03-31 PROCESS AND APPARATUS FOR PRODUCING PRESSURIZED AIR GAS BY CRYOGENIC DISTILLATION

Publications (1)

Publication Number Publication Date
TR201808938T4 true TR201808938T4 (en) 2018-07-23

Family

ID=46017980

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2018/08938T TR201808938T4 (en) 2011-03-31 2012-03-30 A method for producing a pressurized air gas by cryogenic distillation.

Country Status (7)

Country Link
US (1) US20140007617A1 (en)
EP (1) EP2691718B1 (en)
CN (1) CN103827613B (en)
ES (1) ES2675668T3 (en)
FR (1) FR2973487B1 (en)
TR (1) TR201808938T4 (en)
WO (1) WO2012131277A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255313A1 (en) * 2012-03-29 2013-10-03 Bao Ha Process for the separation of air by cryogenic distillation
US20160161181A1 (en) * 2013-08-02 2016-06-09 Linde Aktiengesellschaft Method and device for producing compressed nitrogen
TR201808162T4 (en) * 2014-07-05 2018-07-23 Linde Ag Method and apparatus for recovering a pressurized gas product by decomposing air at low temperature.
EP2963369B1 (en) * 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP3101374A3 (en) * 2015-06-03 2017-01-18 Linde Aktiengesellschaft Method and installation for cryogenic decomposition of air
EP3290843A3 (en) * 2016-07-12 2018-06-13 Linde Aktiengesellschaft Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
KR20210135521A (en) 2019-03-06 2021-11-15 다이이찌 산쿄 가부시키가이샤 pyrrolopyrazole derivatives

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
US6626008B1 (en) * 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
FR2854682B1 (en) * 2003-05-05 2005-06-17 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
DE102006012241A1 (en) * 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
US8020408B2 (en) * 2006-12-06 2011-09-20 Praxair Technology, Inc. Separation method and apparatus
EP2176610B1 (en) * 2007-08-10 2019-04-24 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for the separation of air by cryogenic distillation
DE102009048456A1 (en) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
US20130255313A1 (en) * 2012-03-29 2013-10-03 Bao Ha Process for the separation of air by cryogenic distillation

Also Published As

Publication number Publication date
WO2012131277A3 (en) 2015-08-20
ES2675668T3 (en) 2018-07-11
EP2691718B1 (en) 2018-05-02
EP2691718A2 (en) 2014-02-05
WO2012131277A2 (en) 2012-10-04
US20140007617A1 (en) 2014-01-09
FR2973487B1 (en) 2018-01-26
FR2973487A1 (en) 2012-10-05
CN103827613A (en) 2014-05-28
CN103827613B (en) 2016-03-16

Similar Documents

Publication Publication Date Title
TR201808938T4 (en) A method for producing a pressurized air gas by cryogenic distillation.
US3214925A (en) System for gas separation by rectification at low temperatures
SA517380791B1 (en) Method for the cryogenic separation of air and air separation plant
JPS58153075A (en) Method of cooling and liquefying methane-rich gas flow
CN100394132C (en) Process and device for the production of at least one gaseous high pressure fluid such as oxygen, nitrogen or argon
JP5023148B2 (en) Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant
RU2009137758A (en) METHOD AND INSTALLATION OF GAS FORMATION FROM AIR IN A GAS-SHAPED AND LIQUID FORM OF HIGH FLEXIBILITY BY THE METHOD OF CRYOGENIC DISTILLATION
EP2176610B1 (en) Process for the separation of air by cryogenic distillation
EP3106435A1 (en) A method for revamping an ammonia plant
RU2009137781A (en) METHOD AND DEVICE FOR PRODUCING GASES FROM AIR IN A GAS AND LIQUID STATE WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
CN102788476B (en) Air separation technology for mainly producing high-purity nitrogen and accessorily producing liquid oxygen by using cryogenic air separation device
US2433604A (en) Separation of the constituents of gaseous mixtures
JP5048059B2 (en) Natural gas liquefaction equipment
CN105765329A (en) Process and apparatus for separating air by cryogenic distillation
CN1004229B (en) Method and apparatus for separating product gas from raw material gas
EP1726900A1 (en) Process and apparatus for the separation of air by cryogenic distillation
US20200400371A1 (en) Cooling system
KR20230171430A (en) Systems and methods for precooling in hydrogen or helium liquefaction processing
KR20230104898A (en) Facility and method for generating hydrogen at cryogenic temperatures
KR20230104881A (en) Facility and method for generating hydrogen at cryogenic temperatures
TW201718066A (en) Air fractionation plant, operating method and control facility
US11408674B2 (en) System for treating and cooling a hydrocarbon stream
US11566841B2 (en) Cryogenic liquefier by integration with power plant
ES2736963B2 (en) Compression plant with conversion of residual energy into electrical power and refrigeration.
Maiti et al. Exergy evaluation of integrated liquefier-cryocondensation and cryosorption helium purification systems based on experimental data