TR201704582A2 - ULTRASONIC SPIROMETER - Google Patents

ULTRASONIC SPIROMETER Download PDF

Info

Publication number
TR201704582A2
TR201704582A2 TR2017/04582A TR201704582A TR201704582A2 TR 201704582 A2 TR201704582 A2 TR 201704582A2 TR 2017/04582 A TR2017/04582 A TR 2017/04582A TR 201704582 A TR201704582 A TR 201704582A TR 201704582 A2 TR201704582 A2 TR 201704582A2
Authority
TR
Turkey
Prior art keywords
spirometer
tube
transceivers
flow direction
user
Prior art date
Application number
TR2017/04582A
Other languages
Turkish (tr)
Inventor
Öztürk Merthan
Yaşar Kerem
Oğuz Ahmet
Sönmez Burak
Original Assignee
Inofab Saglik Teknolojileri Anonim Sirketi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inofab Saglik Teknolojileri Anonim Sirketi filed Critical Inofab Saglik Teknolojileri Anonim Sirketi
Priority to TR2017/04582A priority Critical patent/TR201704582A2/en
Publication of TR201704582A2 publication Critical patent/TR201704582A2/en
Priority to PCT/TR2018/050122 priority patent/WO2019004966A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4422Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to hygiene or sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4433Constructional features of the ultrasonic, sonic or infrasonic diagnostic device involving a docking unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Abstract

Bu buluş solunum fonksiyon testleri için kişisel kullanıma, yani tıbbi eğitimi ve deneyimi bulunmayan kullanıcıların kullanımına yönelik bir spirometre ile ilgilidir. Buluş ile bir hava yolu oluşturan bir tüp içinde kalan hacme doğrultulmuş ve birbirlerinin ürettiği sinyalleri okuyarak tüp içindeki hava akışına ilişkin ölçümler yapılmasını sağlayan iki ultrasonik alıcı-verici içeren, kompakt ve ergonomik bir spirometre geliştirilmiştir. Alıcı-vericiler kendi aralarındaki bir hattan, kullanıcının üflemesi sırasındaki hava girişine doğru sapan bir eksen boyunca sinyal yayacak biçimde konumlandırılarak sinyal kayıplarının önüne geçilmiştir. Spirometrenin her iki yöndeki hava akışı sırasında da ölçüm yapabilmesi de olanaklıdır.The present invention relates to a spirometer for personal use for pulmonary function tests, ie for users with no medical training and experience. With the invention, a compact and ergonomic spirometer has been developed that includes two ultrasonic transceivers, which are oriented to the volume remaining in a tube forming an airway, and which enable measurements regarding the air flow in the tube by reading the signals generated by each other. The transceivers are positioned in such a way that they emit a signal along an axis that deviates from a line to the air inlet during the blowing of the user, thus preventing signal losses. It is also possible for the spirometer to measure during air flow in both directions.

Description

TARIFNAME ULTRASONIK SPIROMETRE Teknik Alan Bu bulus solunum fonksiyon testleri için kisisel kullanima, yani tibbi egitimi ve deneyimi bulunmayan kullanicilarin kullanimina yönelik bir spirometre ile ilgilidir. Önceki Teknik Bir kullanicinin solunum fonksiyonlarinin degerlendirilebilmesi için hava akis hizinin dokümanlarda açiklanmistir. Hava akis hizinin ölçülmesi ile birlikte soluk alinmasi veya verilmesi sirasinda alinan ve verilen nefesin hacmi de belirlenebilmektedir. DESCRIPTION ULTRASONIC SPIROMETER Technical Area This invention is for personal use for pulmonary function tests, ie medical education and experience. It relates to a spirometer for use by users who do not have Prior Art To evaluate a user's respiratory function, the airflow rate must be explained in the documents. Inhalation or inhalation with measurement of airflow rate The volume of inhaled and exhaled breath can also be determined during exhalation.

Hava akis hizini ölçen bu gibi donanimlarin kullanici tarafindan rahatlikla tasinabilir olmasi, deneyimsiz kullanicilartarafindan dogru biçimde kullanilabilmesi ve ölçüm sirasinda hava geçisinin saglandigi kisimlarin temizlenmek veya degistirilmek üzere çikartilabilir olmasi, kullanicilarin solunum fonksiyonlarinin izlenebilmesi açisindan önem tasimaktadir.The fact that such equipment that measures the air flow rate can be carried easily by the user, that it can be used correctly by inexperienced users and that air The parts to which the transition is provided are removable for cleaning or replacement, It is important in terms of monitoring the respiratory functions of the users.

Ultrasonik spirometreler bu nedenler ile tibbi egitimi bulunmayan kullanicilara avantaj saglamaktadir. Spirometrelerin evde kullanimi gelisen mobil saglik hizmetleri ile de yayginlasmaktadir. Klinikte kullanilan bu cihazlarin ev tipi versiyonlari çesitli üreticiler tarafindan piyasaya sunulmustur. Buna karsin bu tip cihazlarin ölçüm hassasiyeti klinik tip ürünlerle ayni seviyede tutulamamaktadir. tarafindan rahatça tasinabilecek ve kullanilabilecek kompakt ve ergonomik bir yapiya sahip degildir. Ultrasonik spirometrelerde kullanilan ölçüm tekniklerinden biri ilk kenar ölçüm teknigidir. Bu yöntemde bir veya daha fazla dalgaboyu uzunlugundaki ultrasonik dalgadan olusan bir sinyal bir vericiden bir aliciya gönderilmektedir. Vericinin ultrasonik sinyali gönderdigi anda baslatilan zaman sayaci alici üzerinde olusan ilk yarim dalgadan sonraki sifir kesme noktasinda durdurularak ölçüm yapilir. Bu sifir kesme noktasi, alici üzerinde olusan ilk yarim dalganin genligi belli bir degeri geçtikten sonra olusturulur. Ultrasonic spirometers are therefore advantageous to users without medical training. it provides. The use of spirometers at home can also be achieved by developing mobile health services. is spreading. Home type versions of these devices used in the clinic are produced by various manufacturers. introduced to the market by However, the measurement accuracy of this type of device is clinical type. cannot be kept at the same level as the products. It has a compact and ergonomic structure that can be easily carried and used by did not have. One of the measurement techniques used in ultrasonic spirometers is the first edge. measurement technique. In this method, one or more wavelengths of ultrasonic A signal consisting of a wave is sent from a transmitter to a receiver. Ultrasonic of the transmitter The time counter that starts when the signal is sent is calculated from the first half-wave on the receiver. The measurement is made by stopping at the next zero cutoff point. This is the zero cutoff point, the receiver It is created after the amplitude of the first half wave formed on it exceeds a certain value.

Spirometre içindeki akis hizi arttikça vericiden aliciya dogru gönderilen ultrasonik sinyalin yayilma dogrultusu akis yönünde kaymakta ve sinyal aliciya ulastigi zaman alicinin merkezinin uzaginda bir noktaya çarpmaktadir. Çarpma noktasi akis hizi arttikça merkezden uzaklasmaktadir. Akis hizi ile artan merkez ile sinyalin aliciya çarpma noktasi arasindaki uzaklik alici üzerinde uzaklikla orantili olarak düsük genlikte voltaj sinyali olusturmaktadir. Vericiden sadece bir dalgaboyu uzunlugundaki bir sinyal gönderildigi durum düsünüldügünde, alicida olusan bu sinyal tetikleme noktasinin altina indigi durumda alicida sinyal algilanamamakta ve ölçüm yapilamamaktadir. As the flow rate in the spirometer increases, the ultrasonic signal sent from the transmitter to the receiver increases. propagation direction shifts in the direction of flow and when the signal reaches the receiver, the receiver It hits a point far from its centre. As the impact point flow rate increases moves away from the centre. The point of impact of the signal to the receiver with the center increasing with the flow rate low amplitude voltage signal proportional to the distance on the receiver forms. A signal of only one wavelength is sent from the transmitter. Considering the situation, this signal in the receiver goes below the trigger point. In this case, the signal cannot be detected in the receiver and the measurement cannot be made.

Vericiden birden fazla dalgaboyu uzunlugundaki ultrasonik bir sinyal gönderildigi durumda ise yüksek akis hizlarinda ilk kenar alici üzerinde yeteri büyüklükte bir voltaj sinyali olusturamamaktadir. Bu nedenle ilk dalga aliciya çarptiktan sonra aliciya periyodik olarak ulasan sonraki dalgalardan herhangi birinde tetikleme noktasi geçilmektedir. Fakat bu durumda, vericiden sinyal gönderildigi ari baslatilan zaman sayaci, aliciya sinyal ilk eristiginde degil de periyodik sinyalin izleyen dalga tepe noktalarinin aliciya çarpip, aliciya genligi yeterli büyüklükteki bir dalga tepe noktasinin tarafindan aktarilabilecek düzeyde enerji aktarildiginda durmaktadir. Bu nedenle kaçinci periyotta tetikleme gerçeklesti ise, zaman sayaci da o kadar periyot süresi sonra durdurulmakta ve ölçümde kayma olusmaktadir. Bu kaymalari yazilimda düzeltmek ekstra yazilim eforu gerektirmesinin yaninda mikro islemcide yapilan zaman-kritik algoritmalarin dogru çalismasini riske atmaktadir. Alici üzerine düsen sinyalin tetikleme noktasinin altinda kaldigi ya da sinyalin beklenen ilk sifir kesme noktasinin degil de izleyen periyotlarda tetikleme noktasinin geçildigi durumda yapilan ölçümler spirometrenin hassasiyetini ciddi oranda düsürmektedir. Dolayisiyla, ultrasonik spirometrelerde havanin hareketlerine bagli olarak gerçeklesen sinyal kayiplarina karsin ölçüm hassasiyetinin korunabilmesi için ultrasonik alici-vericilerin yüksek voltajlar ile çalistirilmalari yüksek enerji tüketimine ve maliyet artisina neden olmakta ve cihazin ömrünü kisaltmaktadir. An ultrasonic signal of multiple wavelengths is sent from the transmitter. In this case, a sufficiently large voltage is applied to the first edge receiver at high flow rates. cannot generate the signal. Therefore, after the first wave hits the receiver, it is periodically transmitted to the receiver. The trigger point is passed in any of the subsequent waves that arrive. But In this case, the bee-started timer, when the signal is sent from the transmitter, will send the signal to the receiver first. not when the periodic signal reaches the receiver, but the following wave peaks hit the receiver and amplitude enough to be transmitted by a wave crest of sufficient size stops when energy is transferred. For this reason, if triggering occurred in which period, the timer is stopped after that many period time and the measurement slips. is formed. Correcting these shifts in software requires extra software effort. Besides, it risks the correct operation of time-critical algorithms made in the microprocessor. is throwing. If the signal falling on the receiver is below the trigger point or the signal not the expected initial zero cutoff point, but the trigger point in subsequent periods. The measurements made in the case of passing the spirometer seriously affect the sensitivity. is lowering. Therefore, depending on the movements of the air in ultrasonic spirometers, In order to maintain the measurement accuracy despite the signal losses, ultrasonic Operation of transceivers with high voltages causes high energy consumption and cost. increases and shortens the life of the device.

Yüksek akislarda olusan sinyal kayiplarinin önüne geçilmesi için, US4914959 sayili dokümanda alici-vericilerin akis yönünün tersine bir sapma ile yerlestirilmesi açiklanmistir. Bu çözüm ile yalnizca tek yönde akis için ölçümde iyilestirme saglanabilmektedir. Oysa ki spirometrelerde akisin iki yönde de ölçülmesi gerekebilmektedir. Bunun yani sira spirometrelerin hava yollari insanlarin agiz boyutlarina göre yapildigi için kesit alanlari agza girebilecek boyutlardadir. Ayrica US4914959 sayili dokümanda belirtilen sensörleri birlestiren dogrunun hava yolu ile 55 derece yaptigi açi ergonomik olmasi için minimal tasarlanan bir spirometrenin hava yolunun insan agzina girebilecek bir kesit alaninda verici üzerine çok düsük sinyal düstügü için ilk-kenar ölçüm teknigini mümkün kilmamaktadir. Ayrica US4914959 sayili dokümanda belirtilen sensörlerin 10 derecelik sapma açisi, ergonomik olmasi için minimal bir formda tasarlanan bir spirometrenin hava yolunun insan agzina girebilecek bir kesit alaninda ilk-kenar ölçüm tekniginin kullanimi açisindan avantajli degildir. Bunun nedeni kesit alani daraldikça vericiden çikan sinyallerin alici üzerine düsebilmesi için sensörleri birlestiren hayali dogru ile hava yolu dogrultusu arasindaki acinin azalmasi gerekliligidir.In order to prevent signal losses occurring at high flows, US4914959 numbered placement of transceivers in the document with a counter-flow bias has been explained. Improvement in measurement for flow in one direction only with this solution can be provided. However, in spirometers, flow is measured in both directions. may be required. In addition, the airways of spirometers vary according to the mouth dimensions of people. Since it is made according to the design, the cross-sectional areas are in dimensions that can enter the mouth. Also US4914959 The angle that the straight line joining the sensors specified in the document makes 55 degrees with the airway. the airway of a spirometer designed minimally to be ergonomic First-edge measurement for very low signal drop on the transmitter in a cross-sectional area that can penetrate technique is not possible. In addition, in the document numbered US4914959, The 10-degree deflection angle of the sensors is designed in a minimal form to be ergonomic. first-edge measurement in a cross-sectional area of the airway of a spirometer that can enter the human mouth It is not advantageous in terms of the use of the technique. This is because as the cross-sectional area narrows, imaginary line connecting the sensors so that the signals from the transmitter can fall on the receiver It is necessary to reduce the angle between the airway and the direction of the airway.

Bulusun Amaci Bu bulusun amaci; solunum fonksiyon testi sirasinda hava akis hizini ölçebilen bir spirometrenin gelistirilmesidir. Purpose of the Invention The purpose of this invention; a device that can measure the airflow rate during the pulmonary function test. development of the spirometer.

Bu bulusun baska bir amaci da, kompakt ve ergonomik, yani kullanici tarafindan rahatlikla tasinabilen ve dogru biçimde kullanilabilen bir spirometrenin gelistirilmesidir. Another aim of this invention is to be compact and ergonomic, that is, to be easily used by the user. development of a portable and properly used spirometer.

Bu bulusun daha baska bir amaci da, yukarida açiklandigi gibi sinyalin hava akisi ile tasinmasindan kaynaklanan sinyal kayiplarinin önüne geçebilen bir spirometrenin gelistirilmesidir. Another purpose of this invention is to connect the signal with the air flow as explained above. a spirometer that can prevent signal loss caused by is to be developed.

Bu bulusun daha baska bir amaci da, her iki yönde, yani hem soluk verilmesi hem de soluk alinmasi sirasinda kullanilabilen bir spirometrenin gelistirilmesidir.It is a further object of the present invention to provide in both directions, i.e. both exhalation and exhalation. is the development of a spirometer that can be used during

Bu bulusun daha baska bir amaci da, hijyenik bir spirometrenin gelistirilmesidir.Another object of the present invention is the development of a hygienic spirometer.

Bulusu Açiklayan Sekillerin Tanimlari Bu bulus ile gelistirilen spirometrenin daha iyi açiklanabilmesi için kullanilan sekiller ve Sekil-1 Bulusa göre bir spirometrenin yandan sematik görünümüdür.Description of Figures Explaining the Invention Shapes used to better explain the spirometer developed with this invention and Figure-1 is the side sematic view of a spirometer according to the invention.

Sekil-2 Bulusa göre bir spirometrenin yandan sematik kesit görünümüdür.Figure-2 is the side sematic section view of a spirometer according to the invention.

Sekil-3 Önceki teknige göre bir tüp ile alici-vericilerin sematik kesit görünümüdür.Figure-3 is the sematic cross-sectional view of a tube and transceivers according to the previous technique.

Sekil-4 Bulusa göre bir tüp ile alici-vericilerin sematik kesit görünümdür. Figure-4 is the sematic section view of a tube and transceivers according to the invention.

Sekil-5 Önceki teknige sinyalin tüp içinde yansitildigi bir tüp ile alici-vericilerin sematik kesit görünümdür. Figure-5 Prior art, transceivers with a tube in which the signal is reflected in the tube. sematic section view.

Sekil-6 Bulusa göre sinyalin tüp içinde yansitildigi bir tüp ile alici-vericilerin sematik kesit görünümdür. Figure-6 Schematic of transceivers with a tube in which the signal is reflected in the tube according to the invention. section view.

Bulusu Olusturan Unsurlarin Tanimlari Bu bulus ile gelistirilen spirometrenin daha iyi açiklanabilmesi için sekillerde yer alan parça ve kisimlar numaralandirilmis olup, her bir numaranin karsiligi asagida verilmistir. 1. Spirometre 2. Tüp Za. Giris ucu 3. Alici-verici 4. Gövde . Agizlik i. Akis dogrultusu ii. Ölçüm hatti iii. Yayim hatti Bulusun Ayrintili Açiklamasi Kompakt ve ergonomik bir yapiya sahip bulus konusu spirometre (1), temelde, - bir akis dogrultusu (i) tanimlayan ve kullanicinin agzina karsilik gelen bir giris ucundan (Za) itibaren bu akis dogrultusu (i) boyunca uzanan bir hava yolu olusturarak kullanicinin soluk vermesi sirasinda bu hava yolu boyunca hava - anilan hava yolu içinden geçen bir ölçüm hatti (ii) üzerinde kalacak biçimde tüp (2) içinde kalan hacme dogrultulmus, akis dogrultusu (i) boyunca farkli konumlarda bulunan ve karsilikli olarak birbirlerinin ürettigi sinyalleri okuyarak tüp (2) içindeki hava akisina iliskin ölçümler yapilmasini saglayan iki ultrasonik alici-verici (3) içermektedir. Ölçüm, sinyalin ölçüm hatti (ii) boyunca her iki yöndeki hareket süreleri ile gerçeklestirilmektedir. Her iki yöndeki sinyal hizlarinin akis dogrultusuna (i) paralel bilesenleri arasindaki fark havanin tüp (2) içindeki hareketinden kaynaklanmaktadir. Definitions of Invention Elements In order to better explain the spirometer developed with this invention, the part in the figures and the sections are numbered and the corresponding number of each number is given below. 1. Spirometer 2. Tube Za. input end 3. Transceiver 4. Body . Nozzle I. flow direction ii. measuring line iii. extension line Detailed Description of the Invention The spirometer (1), which is the subject of the invention, with a compact and ergonomic structure, basically, - an entry that defines a streamline (i) and corresponds to the user's mouth an airway extending along this flow direction (i) from its tip (Za) air along this airway during the user's exhalation, creating - tube (2) so that it remains on a measurement line (ii) passing through the said airway at different positions along the flow direction (i) inside the tube (2) by reading the signals found and mutually produced by each other. two ultrasonic transceivers (3) that allow measurements of air flow contains. The measurement is measured by the travel times of the signal in both directions along the measurement line (ii). is carried out. Parallel to the direction of flow (i) of signal velocities in both directions The difference between the components is due to the movement of the air inside the tube (2).

Alici-vericiler (3), bir araya getirilmis birer alici ile birer vericiden olusabilecegi gibi tercihen ortak bilesenler içeren bütünlesik birer alici ile birer vericiden olusmaktadir. Transceivers (3) may consist of a receiver and a transmitter combined, as well as it preferably consists of an integrated receiver and a transmitter each containing common components.

Bulus konusu spirometre (1), kullanicinin kolaylikla üzerinde tasiyabilecegi ve tek eli ile rahatça tutarak kullanabilecegi bir yapiya sahiptir. Bunun için, tüp (2) ve alici-vericiler (3), insan eline rahatlikla sigacak ve avuç içine oturacak boyutlardaki bir gövdenin (4) içinde yer almaktadir. Gövdenin (4) giris ucunu (Za) barindiran kismi, gövdenin (4) geri kalanina göre daha dar ve bas parmak tarafindan rahatça kavranabilecek bir kesite sahiptir.The subject of the invention is the spirometer (1), which the user can easily carry on it with one hand. It has a structure that can be used by holding it comfortably. For this, the tube (2) and transceivers (3), inside a body (4) that is sized to fit comfortably in the human hand and fit in the palm of the hand. is located. The part of the body (4) containing the inlet end (Za) is attached to the rest of the body (4). It has a narrower cross-section and can be easily grasped by the thumb.

Böylece, gövde (4) kullaniciyi giris ucunu (Za) agzina tutmak ve tüpe (2) giris ucundan (Za) soluk vermek üzere yönlendirmektedir. Gövdenin (4) bu boyut ve biçimsel sinirlamalara uygun olabilmesi için alici-vericilerin (3) gövdenin (4) giris ucunu (Za) barindiran kismini isgal etmeyecek biçimde konumlandirilabilmeleri gerekmektedir. Thus, the body (4) holds the user in the mouth of the inlet end (Za) and inserts it into the tube (2) from the inlet end (Za). prompts you to breathe. of the trunk (4) to these dimensional and formal limitations. In order to be suitable, remove the part of the transceiver (3) housing the input end (Za) of the body (4). They must be positioned in such a way that they do not occupy.

Spirometre (1), kullanicinin tüp (2) içine soluk verilmesine aracilik eden bir agizlik (5) da içermektedir. Agizlik (5), giris ucuna (Za) karsilik gelen bir konumdadir. Agizlik (5), gövde (4) ile bütünlesik olabilecegi gibi, tercihen tüp (2) ile bütünlesiktir. The spirometer (1) is also equipped with a mouthpiece (5) that mediates the user's exhalation into the tube (2). contains. The mouthpiece (5) is in a position corresponding to the inlet end (Za). Mouthpiece (5), body As it can be integrated with (4), it is preferably integrated with the tube (2).

AIici-vericiler (3), bir merkez bölgesinden ve bu merkez bölgesinden geçen bir yayim hattina (iii) göre büyük ölçüde radyal simetriye sahip bir formda sinyaller yaymakta ve yine bu merkez bölgesine düsen sinyalleri okumaktadir. Bir alici-verici (3) tarafindan üretilen sinyalin diger alici-verici (3) tarafindan okunmasi sirasinda maksimum sinyal siddetinden yararlanilabilmesi için, sinyali yayan alici-vericinin (3) yayimi hattinin (iii) olabildigince sinyali okuyan alici-vericinin (3) merkez bölgesi yakinindan geçmesi gerekmektedir. Buna karsin, yayim hatlari (iii) ölçüm hatti (ii) ile örtüsmesi durumda sinyallerin hava akisi ile birlikte sürüklenmesi nedeni ile sinyaller merkez bölgesinden uzaklasmakta ve okunan sinyal siddetinin böylece düsmesi ile birlikte saglikli ölçümler gerçeklestirilememektedir. The transmitter-emitters (3) use a central region and an emission passing through this center region. It emits signals in a form that has substantially radial symmetry with respect to line (iii), and again, it reads the signals falling on this central region. by a transceiver (3) maximum signal during the reading of the generated signal by the other transceiver (3) In order to benefit from the intensity of the transmission line (iii) of the transceiver (3) emitting the signal, pass as close to the center region of the transceiver (3) that reads the signal as possible required. However, if the emission lines (iii) overlap the measurement line (ii) Because the signals are dragged along with the air flow, the signals are sent from the center area. away and with this decrease of the read signal intensity, healthy measurements cannot be performed.

Okunan sinyal siddetinin saglikli bir ölçüm gerçeklestirilebilecek düzeyde tutulabilmesi için, yayimlanan sinyal siddetinin arttirilmasi veya ölçüm hatti (ii) ile akis dogrultusu (i) arasindaki açinin azaltilmasi gerekmektedir. Sinyal siddeti, alici-vericileri (3) çalistirildigi voltajin yükseltilmesi ile arttirilabilmekte ancak bu da enerji tüketiminin artmasi, üretim maliyetin artmasi, devre alaninin büyümesi ve alici-vericilerin (3) ömrünün kisalmasi ile sonuçlanmaktadir. Ölçüm hatti (ii) ile akis dogrultusu (i) arasindaki açinin azaltilmasi durumunda ise, alici-vericilerden (3) birisinin giris ucuna (Za) yakin konumlandirilmasi gerekmekte ve ergonomik bir yapi elde edilememektedir. Keeping the read signal intensity at a level where a healthy measurement can be made increasing the emitted signal intensity or measuring line (ii) and flow direction (i) The angle between them should be reduced. Signal strength, transceivers (3) operating It can be increased by increasing the voltage, but this results in an increase in energy consumption, production increase in cost, increase in circuit area and shorten the life of the transceivers (3). results. Reducing the angle between the measuring line (ii) and the flow direction (i) case, one of the transceivers (3) must be positioned close to the input terminal (Za). required and an ergonomic structure cannot be achieved.

Dolayisiyla, okunan sinyal siddetinin saglikli bir ölçüm gerçeklestirilebilecek düzeyde tutulabilmesi için bulus konusu spirometre (1) bünyesindeki alici-vericiler (3), yayim hatlari (iii) ölçüm hattindan (ii) akis dogrultusu (i) boyunca giris ucuna (Za) dogru sapacak biçimde, yani ölçüm hattindan (ii) akis dogrultusu (i) boyunca giris ucuna (Za) dogru bir sapma ile yayim yapacak biçimde konumlandirilmislardir. Therefore, the read signal intensity is at a level that a healthy measurement can be made. Transceivers (3) within the spirometer (1), which is the subject of the invention, lines (iii) will deviate from the measuring line (ii) along the flow direction (i) to the inlet end (Za). i.e. from the measuring line (ii) along the flow direction (i) to the inlet end (Za). They are positioned to radiate with deflection.

Spirometre (1) ile yapilan solunum testlerindeki nefes manevralari zorlu üfleme ile normal ve derin nefes çekme manevralarindan olusmaktadir. Bulusun bir uygulamasinda, spirometre (1) zorlu üfleme sirasinda gerçeklestirilecek ölçümlerin yanisira normal ve derin nefes çekme sirasinda gerçeklestirilecek ölçümler için de kullanilabilmektedir.Breathing maneuvers in the breathing tests with the spirometer (1) are normal with forced blowing. and deep breathing maneuvers. In one embodiment of the invention, The spirometer (1) will measure normal and It can also be used for measurements to be performed during deep breathing.

Spirometre (1) ile yapilan solunum testlerinde, zorlu üfleme sirasinda saglanan hava akis hizi normal ve derin nefes çekme sirasinda saglanandan çok büyüktür. Bu nedenle bulus konusu spirometre (1) ile her iki durumda da ölçüm yapilabilmesi için bulusun tercih edilen bir uygulamasinda, ölçüm hatti (ii) ile akis dogrultusu (i) arasinda 50° veya daha az bir açi bulunmakta ve her bir alici-vericinin (3) yayim hatti (iii) ile ölçüm hatti (ii) arasinda da 1" ile 7° arasinda bir açi bulunmaktadir. Böylece, zorlu üfleme sirasinda alici-vericilerin (3) yayim hatlarinin (iii) ölçüm hattindan (ii) sapmasi sayesinde sinyaller ilgili alici-vericinin (3) merkezine yaklasmakta ancak derin ve normal nefes çekme sirasinda, yani ters yöndeki hava akisi sirasinda da sinyaller ilgili alici-vericinin (3) merkezinden okunamayacak kadar uzaklasmamaktadir. In breathing tests with the spirometer (1), the air flow provided during forced blowing rate is much greater than that provided during normal and deep breathing. Therefore, the invention The invention is preferred so that measurement can be made in both cases with the spirometer (1) in question. 50° or less between measuring line (ii) and flow direction (i) There is an angle between the emitting line (iii) and the measuring line (ii) of each transceiver (3). also has an angle of 1" to 7°. Thus, during hard blowing, the transceivers (3) due to the deviation of the emission lines (iii) from the measuring line (ii), the signals are transmitted by the respective transceiver. (3) approaching its center, but during deep and normal breathing, i.e. in the opposite direction During the air flow, the signals are too low to be read from the center of the relevant transceiver (3). does not go away.

Kullanicinin soluk vermesi sirasinda giris ucundan (Za) tüpe (2) hava girisi gerçeklesirken, kullanicinin soluk almasi sirasinda giris ucunda (Za) tüpten (2) hava çikisi gerçeklesmektedir. During the exhalation of the user, while air is entering the tube (2) from the inlet end (Za), air exit from the tube (2) at the inlet end (Za) during user inhalation is taking place.

Alici-vericiler (3) tüp (2) çevresinde karsilikli olarak konumlandirilabilecekleri gibi, bulusun bir uygulamasinda tüp (2) çevresine ölçüm hatti (ii) tüpün (2) iç yüzeyinden en az bir yansima barindiracak biçimde de konumlandirilabilmektedirler. Tüpün (2) iç yüzeyinde yansimanin gerçeklestigi bölgede sinyallerin en az kayipla yansimasini kolaylastiran bir yansitici da bulunmaktadir. The transceivers (3) can be positioned against each other around the tube (2) or In one embodiment, the measuring line (ii) around the tube (2) is at least one from the inner surface of the tube (2). They can also be positioned to accommodate reflection. On the inner surface of the tube (2) A system that facilitates the reflection of the signals with the least loss in the region where the reflection takes place. There is also a reflector.

Kullanim sirasinda tüp (2) hava ile tasinan tükürük ve diger artiklar nedeni ile kirlenmektedir. Bu nedenle tüp (2) tercihen yerinden çikartilabilecek biçimde gövde (4) içindeki bir yuvaya oturmaktadir. Yerinden çikartilan tüp (2) yikanabilecegi gibi tek kullanimlik da olabilir. Tüpün (2) yerine dogru biçimde oturtulabilmesi için yuvanin iç yüzü ile tüpün (2) dis yüzü üzerinde karsilikli olarak birbirlerine oturan yapilar bulunmaktadir. During use, the tube (2) is caused by saliva and other residues carried by air. is contaminated. Therefore, the tube (2) can preferably be removed from the body (4). It sits in a nest inside. The removed tube (2) can be washed as a single It can also be usable. The inner face of the housing so that the tube (2) can be seated correctly There are structures on the outer surface of the tube (2) and the tube (2) that fit each other mutually.

Spirometrenin (1) bilesenlerine hava ile tasinan bakterilerin bulasmamasi veya alici- vericilerin (3) hava ile tasinan tükürük ve diger artiklardan etkilenmemesi için, tüp (2) üzerinde alici-vericilerin (3) bulundugu konumlara karsilik gelen ve sinyallerin geçisine izin verirken kontaminantlarin geçisine izin vermeyen filtreler de bulunmaktadir. The components of the spirometer (1) are not contaminated with airborne bacteria or the receiver tube (2) so that the transmitters (3) are not affected by airborne saliva and other residues. corresponding to the positions on which the transceivers (3) are located and allow signals to pass. There are also filters that do not allow the passage of contaminants.

Kullanici tarafindan tüp (2) içinde olusturulan hava akisi Içinde olusmasi muhtemel türbülans yogunlugunun azaltilmasi için tüp (2) ve/veya agizlik (5) içinde bir veya daha fazla akis düzenleyici de bulunabilir.Air flow created by the user in the tube (2). One or more inside the tube (2) and/or the nozzle (5) to reduce the turbulence density. There may also be more reversal modifiers.

Sekil-EFigure-E

Claims (1)

ISTEMLER . Tibbi egitimi ve deneyimi bulunmayan bir kullanici tarafindan solunum fonksiyon testleri için kullanilabilen, - bir akis dogrultusu (i) tanimlayan ve kullanicinin agzina karsilik gelen bir giris ucundan (Za) itibaren bu akis dogrultusu (i) boyunca uzanan bir hava yolu olusturarak kullanicinin soluk vermesi sirasinda bu hava yolu boyunca hava - anilan hava yolu içinden geçen bir ölçüm hatti (ii) üzerinde kalacak biçimde tüp (2) içinde kalan hacme dogrultulmus, akis dogrultusu (i) boyunca farkli konumlarda bulunan ve karsilikli olarak birbirlerinin ürettigi sinyalleri okuyarak tüp (2) içindeki hava akisina iliskin ölçümler yapilmasini saglayan iki ultrasonik alici-verici (3) içeren, tüp (2) ve alici-vericilerin (3), insan eline sigacak ve avuç içine oturacak boyutlardaki bir gövdenin (4) içinde yer aldigi ve yayim hatlari (iii) ölçüm hattindan (ii) akis dogrultusu (i) boyunca giris ucuna (Za) dogru sapacak biçimde konumlandirilmis anilan alici-vericiler (3) ile karakterize edilen bir spirometre (1). Ölçüm hatti (ii) ile akis dogrultusu (i) arasinda 50° veya daha az bir açi, ve her bir alici-vericinin (3) yayim hatti (iii) ile ölçüm hatti (ii) arasinda da 1° ile 7” arasinda bir açi ile konumlandirilmis alici-vericiler (3) ile karakterize edilen Istem 1'deki gibi bir spirometre (1). Giris ucunu (Za) barindiran kismi, geri kalanina göre daha dar ve bas parmak tarafindan kavranabilecek bir kesite sahip olan gövde (4) ile karakterize edilen Istem 1'deki gibi bir spirometre (1). Kullanicinin tüp (2) içine soluk verilmesine aracilik eden bir agizlik (5) içeren Istem 1'deki gibi bir spirometre (1). Tüp (2) çevresinde karsilikli olarak konumlandirilmis alici-vericiler (3) içeren Istem 1'deki gibi bir spirometre (1). Tüp (2) çevresine ölçüm hatti (ii) tüpün (2) iç yüzeyinden en az bir yansima barindiracak biçimde de konumlandirilmis alici-vericiler (3) içeren Istem 1'deki gibi bir spirometre (1). Yerinden çikartilabilecek biçimde gövde (4) içindeki bir yuvaya oturan tüp (2) içeren Istem 1'deki gibi bir spirometre (1). Yuvanin iç yüzü ile tüpün (2) dis yüzü üzerinde karsilikli olarak birbirlerine oturan yapilar içeren Istem 7'deki gibi bir spirometre (1). Tüp (2) üzerinde alici-vericilerin (3) bulundugu konumlara karsilik gelen ve sinyallerin geçisine izin verirken kontaminantlarin geçisine izin vermeyen filtreler içeren Istem 1'deki gibi bir spirometre (1). Tüp (2) ve/veya agizlik (5) içinde bir veya daha fazla akis düzenleyici içeren Istem 1'deki gibi bir spirometre (1).REQUESTS . Can be used for pulmonary function tests by a user with no medical training or experience, - creating an airway that defines a flow direction (i) and extends from an inlet tip (Za) to the user's mouth along that flow direction (i) during exhalation by the user air along this airway - directed to the volume remaining in the tube (2) so that it remains on a measurement line (ii) passing through the said airway, reading the signals produced by each other and in different positions along the flow direction (i) in the tube (2) The tube (2) and the transceivers (3), which contain two ultrasonic transceivers (3) that allow measurements of air flow to be made, are located in a body (4) sized to fit in the human hand and fit in the palm of the hand, and the emission lines (iii) a spi characterized by the aforementioned transceivers (3) positioned to deviate from the measuring line (ii) along the flow direction (i) to the inlet end (Za). rometer (1). An angle of 50° or less between the measuring line (ii) and the flow direction (i), and an angle of between 1° and 7” between the emission line (iii) and the measuring line (ii) of each transceiver (3) A spirometer (1) as in Claim 1, characterized by transceivers (3) positioned with a spirometer (1). A spirometer (1) as in Claim 1, characterized by the body (4), the part containing the inlet end (Za) is narrower than the rest and has a cross section that can be grasped by the thumb. A spirometer (1) as in Claim 1, comprising a mouthpiece (5) through which the user breathes into the tube (2). A spirometer (1) as in claim 1, comprising transceivers (3) positioned oppositely around the tube (2). A spirometer (1) as in Claim 1, comprising transceivers (3) also positioned around the tube (2) such that the measuring line (ii) accommodates at least one reflection from the inner surface of the tube (2). A spirometer (1) as in Claim 1, comprising a removable tube (2) that fits into a slot in the body (4). A spirometer (1) as in Claim 7, comprising structures that fit each other on the inner surface of the housing and the outer surface of the tube (2). A spirometer (1) as in Claim 1, which includes filters corresponding to the positions on the tube (2) where the transceivers (3) are located and allowing the passage of signals while not allowing the passage of contaminants. A spirometer (1) as in Claim 1, comprising one or more flow regulators in the tube (2) and/or the mouthpiece (5).
TR2017/04582A 2017-03-27 2017-03-27 ULTRASONIC SPIROMETER TR201704582A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2017/04582A TR201704582A2 (en) 2017-03-27 2017-03-27 ULTRASONIC SPIROMETER
PCT/TR2018/050122 WO2019004966A2 (en) 2017-03-27 2018-03-26 Ultrasonic spirometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2017/04582A TR201704582A2 (en) 2017-03-27 2017-03-27 ULTRASONIC SPIROMETER

Publications (1)

Publication Number Publication Date
TR201704582A2 true TR201704582A2 (en) 2017-07-21

Family

ID=64477257

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2017/04582A TR201704582A2 (en) 2017-03-27 2017-03-27 ULTRASONIC SPIROMETER

Country Status (2)

Country Link
TR (1) TR201704582A2 (en)
WO (1) WO2019004966A2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO161882C (en) * 1987-04-24 1989-10-04 Norske Stats Oljeselskap With ultrasonic working transducer for measuring the flow rate of a fluid in a tube.
DE4222286C1 (en) 1992-06-03 1994-05-11 Reutter Georg Dr Ultrasound spirometer
DE9410661U1 (en) 1994-07-01 1994-10-13 Ndd Medizintechnik Gmbh Ultrasound spirometer
ITRM20030487A1 (en) 2003-10-22 2005-04-23 Mir S R L DISPOSABLE SINGLE-USE TURBINE DEVICE OF DIMENSIONS, PRINTED WITH INJECTION IN PLASTIC MATERIAL FOR DETECTION OF RESPIRATORY FLOW.
EP1691685A4 (en) 2003-11-17 2008-09-03 Spirojet Medical Ltd Spirometer
DE102004028215A1 (en) * 2004-06-09 2005-12-29 Robert Bosch Gmbh Offset ultrasound transducer assembly with reflection rejection
EP1632178A1 (en) * 2004-09-03 2006-03-08 ndd Medizintechnik AG Method for non-cooperative lung function diagnosis using ultrasound
DE102008060922A1 (en) 2008-12-06 2010-06-10 Ganshorn Medizin Electronic Gmbh Lung diagnostic device with two ultrasonic measuring sections
US20110092840A1 (en) 2009-09-23 2011-04-21 Feather Sensors Llc Intelligent air flow sensors
JP2013250254A (en) * 2012-06-01 2013-12-12 Chest M I Inc Multiple reflection prevention rectifier tube for ultrasonic spirometer

Also Published As

Publication number Publication date
WO2019004966A3 (en) 2019-04-04
WO2019004966A2 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
KR102113999B1 (en) A portable respiration measuring apparatus
US20230213368A1 (en) Portable spirometer
JP7421209B2 (en) Resuscitation and Ventilation Asynchrony Monitor
US11357421B2 (en) Forced oscillation technique based lung function testing
US20120203128A1 (en) Respiratory rate detection device, system and method
TW200405803A (en) Multi-function sensor device and methods for its use
Urbankowski et al. Methods of airway resistance assessment
WO2013057623A1 (en) Antibacterial filter and turbine flowmeter for tests on respiratory functionality
KR102062205B1 (en) Personal lung Health Management System Based on Artificial Intelligence Using Breathing Measuring Devices
US20210076980A1 (en) Portable handheld electronic spirometer
US6991607B2 (en) Process and device for measuring exhaled air to determine metabolic function of a living being
TR201704582A2 (en) ULTRASONIC SPIROMETER
WO2019166804A1 (en) Spirometry apparatus
US20210307645A1 (en) Spirometer apparatus
KR20210016303A (en) Breath measuring device equipped with a blood flow measurement function
KR20230023959A (en) Apparatus for respiration measurement and respiration training
US11684286B2 (en) Portable spirometer
McCarthy Selecting spirometers for home testing
US20210369232A1 (en) Systems and methods for evaluating respiratory function using a smartphone
KR102585578B1 (en) Respiratory disease checker equipped with respiratory volume measurement and analysis module
US20230405374A1 (en) Methods, apparatuses, and systems for evaluating respiratory protective devices
Sharma et al. Design and development of miniature turbine based flow sensing device for respiratory flow diagnosis
JP2022085126A (en) Respiration rate measuring device
WO2023128772A1 (en) Spirometer for measuring instantaneous velocity of exhaled air by means of metal spheres and magnetic fields
JP2016120256A (en) Ultrasonic precision pulmonary function test device