SU533649A1 - Aerodynamic heater - Google Patents

Aerodynamic heater

Info

Publication number
SU533649A1
SU533649A1 SU2197164A SU2197164A SU533649A1 SU 533649 A1 SU533649 A1 SU 533649A1 SU 2197164 A SU2197164 A SU 2197164A SU 2197164 A SU2197164 A SU 2197164A SU 533649 A1 SU533649 A1 SU 533649A1
Authority
SU
USSR - Soviet Union
Prior art keywords
heater
aerodynamic
aerodynamic heater
rotor
coolant
Prior art date
Application number
SU2197164A
Other languages
Russian (ru)
Inventor
Александр Павлович Поклонский
Николай Федорович Карташов
Анатолий Иванович Тюмеров
Александр Львович Дудник
Original Assignee
Среднеазиатский Научно-Исследовательский И Проектный Институт Цветной Металлургии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Среднеазиатский Научно-Исследовательский И Проектный Институт Цветной Металлургии filed Critical Среднеазиатский Научно-Исследовательский И Проектный Институт Цветной Металлургии
Priority to SU2197164A priority Critical patent/SU533649A1/en
Application granted granted Critical
Publication of SU533649A1 publication Critical patent/SU533649A1/en

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

давлением выходит на рассекатель 7, который делит поток на две части, одна из которых направл етс  потребителю через патрубок 10, а друга  - обратно на всас ротора. Рециркулирующа  часть потока теплоносител  проходит между неподвижными ребрами 8 и вращающимис  лопатками 5 и подвергаетс  интенсивной турбулизации и торможению, вследствие чего тепловыделени  теплоносител  при его возврате на всас ротора станов тс  близкими к тепловыделени м внутри ротора. За счет этого прирост температуры при возврате теплоносител  на всас ротора увеличиваетс  и, следовательно, увеличиваетс  температура теплоносител .pressure goes to the divider 7, which divides the flow into two parts, one of which is sent to the consumer through the pipe 10, and the other back to the rotor suction. The recirculating part of the coolant flow passes between the fixed ribs 8 and the rotating blades 5 and undergoes intense turbulence and deceleration, as a result of which the heat release of the heat transfer fluid to its return to the rotor suction becomes close to the heat release inside the rotor. Due to this, the temperature increase when the coolant returns to the rotor suction increases and, consequently, the temperature of the coolant increases.

В предложенном нагревателе теплопроизводительность увеличиваетс  на 70-100% по сравнению с известными конструкци ми.In the proposed heater, the heat output is increased by 70-100% in comparison with the known structures.

Claims (2)

1. Авт. св. № 487290, F 27D 7/00, 1973 (прототип ) .1. Auth. St. No. 487290, F 27D 7/00, 1973 (prototype). 2. Авт. св. № 309133, С 21D 9/00, 1969 (аналог ).2. Auth. St. No. 309133, C 21D 9/00, 1969 (equivalent). 10ten Фиг.22
SU2197164A 1975-12-04 1975-12-04 Aerodynamic heater SU533649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU2197164A SU533649A1 (en) 1975-12-04 1975-12-04 Aerodynamic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU2197164A SU533649A1 (en) 1975-12-04 1975-12-04 Aerodynamic heater

Publications (1)

Publication Number Publication Date
SU533649A1 true SU533649A1 (en) 1976-10-30

Family

ID=20639744

Family Applications (1)

Application Number Title Priority Date Filing Date
SU2197164A SU533649A1 (en) 1975-12-04 1975-12-04 Aerodynamic heater

Country Status (1)

Country Link
SU (1) SU533649A1 (en)

Similar Documents

Publication Publication Date Title
GB680118A (en) Improvements in or relating to turbine and like blades
Anwar Prevention of vortices at intakes
Whitfield et al. Study of incidence loss models in radial and mixed-flow turbomachinery
SU533649A1 (en) Aerodynamic heater
GB610737A (en) Improvements relating to turbine and like blading
JPS53125641A (en) Ventilator heater
JPS5377319A (en) Axial-flow fan
ES439439A1 (en) Cooling tower
GB2014663A (en) Gas Turbine Ducted Fan Engine
Wilson et al. Applied aerodynamics of wind power machines(rotor blades(turbomachinery))
JPS5337260A (en) Turbine overload controlling system
SU466367A1 (en) Heat pump installation
SU1455169A1 (en) Air heater
MARKLAND et al. Heat transfer to turbine blading in the presence of secondary flow(Heat-transfer coefficients for gas turbine blades heated above air stream temperature, setting up secondary flows in deflecting stream)
Dunham et al. Experiments on the design of a small axial turbine
JPS54140040A (en) Fluid temperature increasing device
MARKLAND et al. Calculation of heat transfer to turbine blading in the presence of secondary flow(Heat transfer calculation to turbine blading in cascade in presence of secondary flow, considering flow velocity estimation, blade boundary layer and related heat transfer properties)
JPS5458936A (en) Cooler and heater by utilizing solar heat
BREUGELMANS Blade wake interference: Temperature effect(on cascade flow)
SU553364A2 (en) Injector condenser for acceleration of fluid
LEWIS Comparison of the effect of two damper sizes on the performance of a low-solidity axial-flow transonic compressor rotor(Performance of 20 inch diameter axial-flow transonic compressor rotor with small dampers and comparison with performance of rotor with large dampers)
MOLCHANOV et al. Heat transfer from the gas to the blade surface under realistic conditions of gas-turbine operation(Heat-transfer coefficients for heat transfer from gas to blade surface in gas turbine under operating conditions)
BARSKII Effect of unsteady-state heat exchange in the flow section on the accelerating capacity of a gas-turbine engine
JPS5495810A (en) Low pressure casing construction of steam turbine
TRUSHIN et al. Heat release from turbine rotor blades