SU403294A1 - Method of producing single crystals of titanium sillenite - Google Patents

Method of producing single crystals of titanium sillenite

Info

Publication number
SU403294A1
SU403294A1 SU1615653A SU1615653A SU403294A1 SU 403294 A1 SU403294 A1 SU 403294A1 SU 1615653 A SU1615653 A SU 1615653A SU 1615653 A SU1615653 A SU 1615653A SU 403294 A1 SU403294 A1 SU 403294A1
Authority
SU
USSR - Soviet Union
Prior art keywords
titanium
sillenite
crystals
single crystals
producing single
Prior art date
Application number
SU1615653A
Other languages
Russian (ru)
Inventor
М.Л. Барсукова
В.А. Кузнецов
А.Н. Лобачев
Original Assignee
Ордена Трудового Красного Знамени Институт Кристаллографии Им.А.В.Шубникова Ан Ссср
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ордена Трудового Красного Знамени Институт Кристаллографии Им.А.В.Шубникова Ан Ссср filed Critical Ордена Трудового Красного Знамени Институт Кристаллографии Им.А.В.Шубникова Ан Ссср
Priority to SU1615653A priority Critical patent/SU403294A1/en
Application granted granted Critical
Publication of SU403294A1 publication Critical patent/SU403294A1/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

(54) СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ ТИТАНОВОГО СИЛЛЕНИТА(54) METHOD FOR OBTAINING TITANIUM SILENITE TITANIUM CRYSTALS

1one

Изобретение относитс  к области получени  материалов с ценными пъезоэпектричес- кймк к нелинейными олтическими свойствами , в частности монокристаллов пьезоэлектрика титанового силленита О кркс-, таллизацией в гидротермальных услови х.The invention relates to the field of obtaining materials with valuable piezoelectric to nonlinear optical properties, in particular single crystals of a piezoelectric titanium sillenite O crx-, tallization under hydrothermal conditions.

Известен способ получени  монокристал ов титанового силленита из расплава с большим избытком -120 при высоких темлерату- Q pax (выше 90О С), при этом, кристаллы С получаютс  с нарушенной стехиометрией , с большим количеством включений. Указанные недостатки особенно резко про вл ютс  при длительных опытах и медленной 5 кристаллизации, необходимых дл  получени  крупных кристаллов высокого качества.A known method for producing single crystals of titanium sillenite from a melt with a large excess of -120 at high temmerut-Qpax (above 90 ° C), in this case, crystals C are obtained with a broken stoichiometry, with a large number of inclusions. These drawbacks are especially pronounced during long-term experiments and slow crystallization, which are necessary to obtain large crystals of high quality.

В цеп х получени  крупных кристаллов титанового сипленита высокого качества процесс ведут в водном. 15-ЗО%-ном раст- 20 воре фторида кали  при соотношении , iTJOg B шихте 6:1-12:1 при тегушературе 580-6 ОО С и градиенте температур между верхней и реакционной зонами 10-2 О С.In the chains of obtaining large crystals of high quality titanium siplenite, the process is carried out in aqueous form. 15-ZO% solution of potassium fluoride with a ratio, iTJOg B charge 6: 1-12: 1 with 580-6 OO C tegusherature and 10-2 ° C temperature gradient between the upper and reaction zones.

Способ заключаетс  в следующем.25The method is as follows.

Исходную шихту из смеси окислов -«gOj и TiOg в молекул рном соотношении 6:1-12:1 помещают на дно автоклава и заливают раствором К Р, автоклав нагревает в печи сопротивлени  до 58О-6ОО С (температура в нижней части автоклава). В результате реакции в нижней зоне автоклава образуютс  кристаллы титанового силленита размером, до 4 мм.The initial mixture of a mixture of oxides — gOj and TiOg in a molecular ratio of 6: 1–12: 1 is placed at the bottom of the autoclave and filled with a solution K P, the autoclave heats up in a resistance furnace to 58 ° -6OO C (temperature at the bottom of the autoclave). As a result of the reaction, titanium sillenite crystals with a size of up to 4 mm are formed in the lower zone of the autoclave.

Температуру в верхней зоне автоклава поддерживают на 10-20 С ниже, чем в реакционной зоне, в результате чего в автоклаве происходит конвекционное перемешивание раствора. Титановый силленит, раствор  сь в нижней зоне автоклава, переноситс  в верхнюю зону, где выкристаллизовываетс  на затравочном кристалле или на стенках реактора в виде отдельных образцов. Регу-Л1фу  скорость конвекции раствора (путем изменени  перепада температур), можно варьировать скорость роста кристаллов, Рост происходит непрерывно до полного израходовани  шихты.The temperature in the upper zone of the autoclave is maintained 10-20 ° C lower than in the reaction zone, as a result of which the convection mixing of the solution occurs in the autoclave. Titanium sillenite, dissolved in the lower zone of the autoclave, is transferred to the upper zone, where it crystallizes on the seed crystal or on the walls of the reactor as separate samples. By adjusting the rate of convection of the solution (by changing the temperature difference), it is possible to vary the growth rate of the crystals. The growth occurs continuously until the charge is consumed completely.

Полученные описанным методом кристаллы титанового силленита до 1О мм доста 403294Crystals of titanium sillenite obtained by the method described above are up to 1O mm and reach 403294.

точно хорошего качества, пригодны дл  физи-отличающийс  тем, что, с цельюexactly good quality, fit for the physic characterized in that, for the purpose of

ческих исследований.получени  крупных кристаллов высокого каФорь ула изобретени растворе фторида кали  при соотношенииof large scale high crystals of the invention of potassium fluoride solution at a ratio of

Способ получени  монокристаллов титано--600 С и градиенте температур междуThe method of obtaining single crystals of titanium - 600 ° C and a temperature gradient between

вого силленнта в гидротермальных услови х,верхней н реакционной зонами 10-20°С. чества, процесс ведут в водном 15-30%- омhillock under hydrothermal conditions, upper n reaction zones of 10-20 ° C. qualities, the process is carried out in water 15-30%

5Ssf Jo г: шихте 6:1-12:1 при 5805Ssf Jo g: charge 6: 1-12: 1 at 580

SU1615653A 1971-01-29 1971-01-29 Method of producing single crystals of titanium sillenite SU403294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1615653A SU403294A1 (en) 1971-01-29 1971-01-29 Method of producing single crystals of titanium sillenite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1615653A SU403294A1 (en) 1971-01-29 1971-01-29 Method of producing single crystals of titanium sillenite

Publications (1)

Publication Number Publication Date
SU403294A1 true SU403294A1 (en) 1977-01-05

Family

ID=20464534

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1615653A SU403294A1 (en) 1971-01-29 1971-01-29 Method of producing single crystals of titanium sillenite

Country Status (1)

Country Link
SU (1) SU403294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683322A1 (en) * 1991-10-30 1993-05-07 Imaje HIGH FREQUENCY ACOUSTIC RHEOMETER AND DEVICE FOR MEASURING THE VISCOSITY OF A FLUID USING THE RHEOMETER.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683322A1 (en) * 1991-10-30 1993-05-07 Imaje HIGH FREQUENCY ACOUSTIC RHEOMETER AND DEVICE FOR MEASURING THE VISCOSITY OF A FLUID USING THE RHEOMETER.
US5302878A (en) * 1991-10-30 1994-04-12 Imaje S.A. High-frequency acoustic rheometer and device to measure the viscosity of a fluid using this rheometer

Similar Documents

Publication Publication Date Title
CN110042467B (en) Compound lithium rubidium germanate and lithium rubidium germanate nonlinear optical crystal as well as preparation method and application thereof
CN110029397B (en) Compound lithium cesium germanate and lithium cesium germanate nonlinear optical crystal as well as preparation method and application thereof
SU403294A1 (en) Method of producing single crystals of titanium sillenite
JPS62113798A (en) Production of calcium carbonate single crystal
SU823285A1 (en) Method of producing sodium-calcium silicate
CN100363253C (en) Method for developing crystal of aluminium phosphate through cosolvent
JP2881737B2 (en) Manufacturing method of optical single crystal
SU393213A1 (en) Method of producing single crystals of bismuth titanate
RU2687419C1 (en) METHOD OF PRODUCING COMPLEX PRASEODYMIUM OXIDE, MOLYBDENUM AND TELLURIUM Pr2Mo2Te2O13
SU552993A1 (en) The method of obtaining single crystals of a double compound from alkali metal hydroxodes
RU2019583C1 (en) Method of preparing of gallium ortho-phosphate monocrystals
SU1682413A1 (en) Method for producing germanium dioxide of tetragonal modification
SU875890A1 (en) Melt for growing ferroelectric single crystals of lead metaniobate
SU1692942A1 (en) Method for hydrothermal recrystalization of gallium orthophosphate
Schwarzer et al. Single crystal synthesis and properties of lithium‐gallium‐, lithium‐aluminium‐oxide and mixed compounds (I) growing of LiGaO2‐, LiAlO2‐and LiAlxGa1− x crystals from fluxes
SU700499A1 (en) Method of preparing pyroniobates and pyrotantalates of bivalent metals
JPH03290390A (en) Production of optical single crystal
JPS6148498A (en) Process for preparing single crystal of alkali tantalate and crucible therefor
SU490798A1 (en) The method of obtaining 3-methacryloyl-1,2, 5,6-diisopropylidene-d-glucose
RU1102190C (en) Method of producing strontium titanate
SU402506A1 (en) METHOD OF OBTAINING METAL OXIDE MONOCRYSTALS
RU2054497C1 (en) Binary molybdate zinc crystal used as ferroelastic
SU594059A1 (en) Method of obtaining quartz glass
SU722856A1 (en) Method of quartz grit production
JPS5969490A (en) Manufacture of lithium tantalate single crystal