SK500452011A3 - Method for rock dislodging by melting and interaction with water streams - Google Patents

Method for rock dislodging by melting and interaction with water streams Download PDF

Info

Publication number
SK500452011A3
SK500452011A3 SK50045-2011A SK500452011A SK500452011A3 SK 500452011 A3 SK500452011 A3 SK 500452011A3 SK 500452011 A SK500452011 A SK 500452011A SK 500452011 A3 SK500452011 A3 SK 500452011A3
Authority
SK
Slovakia
Prior art keywords
rock
melt
disruption method
water
directed
Prior art date
Application number
SK50045-2011A
Other languages
Slovak (sk)
Inventor
Igor Kocis
Ivan Kocis
Tomas Kristofic
Dusan Kocis
Original Assignee
Igor Kocis
Ivan Kocis
Tomas Kristofic
Dusan Kocis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Igor Kocis, Ivan Kocis, Tomas Kristofic, Dusan Kocis filed Critical Igor Kocis
Priority to SK50045-2011A priority Critical patent/SK500452011A3/en
Priority to PCT/SK2012/050015 priority patent/WO2013066276A2/en
Priority to US14/356,030 priority patent/US20150047901A1/en
Priority to EP12812412.0A priority patent/EP2809867B1/en
Publication of SK500452011A3 publication Critical patent/SK500452011A3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets

Abstract

Method of disintegrating rock by melting and by synergism of water streams, comprising action of the heat flow source on the rock, action of the water stream source on the melted rock so that: the heat or energy flow source acts on the rock at least until its local phase transition into the melt occurs, at least one water stream is directed into the locally created melt, physical explosion occurs in the melt, on which the water stream acts.

Description

Spôsob rozrušovanie horniny tavením a spolupôsobením vodných prúdovMethod of rock disintegration by melting and interaction of water jets

Oblasť technikyTechnical field

Vynález sa týka spôsobu rozrušovania horniny tavením a spolupôsobením vodných prúdov aje určený na využitie najmä pri procese vŕtania a to najmä tvrdých homín.The invention relates to a method of rock disintegration by melting and the interaction of water jets and is intended for use in particular in the drilling process, in particular hard homines.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Interakcia prirodzenej taveniny, magmy resp. lávy v prírode je známa tisíce rokov, ako jeden z najmohutnejších prírodných javov - výbuchu sopky sprevádzaného obrovským výronom horúceho popolčeka.Interaction of natural melt, magma resp. The lava in nature has been known for thousands of years as one of the most powerful natural phenomena - a volcano eruption accompanied by a huge ejection of hot ash.

Tento prírodný jav, nazvaný hydro-magmatická explózia, bol v poslednom polstoročí predmetom vedeckého štúdia, vysvetľovania jeho fyzikálneho pozadia, ale aj intenzívneho vytvárania hypotéz, teórií, modelov, matematického popisu a ucelených teoretických systémov.This natural phenomenon, called hydro-magmatic explosion, has been the subject of scientific study, explanation of its physical background, but also of intensive hypothesis, theories, models, mathematical description and comprehensive theoretical systems.

Tieto práce však boli vykonávané s cieľom získania viac poznatkov o fyzikálnom procese interakcie vody a taveniny, aby mohol byť upresnený model prírodného javu.However, these works were carried out in order to gain more knowledge of the physical process of the interaction of water and melt in order to refine the natural phenomenon model.

Vzniklo niekoľko ucelených prác vysvetľujúcich a matematicky popisujúcich , vznik a priebeh explózie resp. detonácie.There were several comprehensive works explaining and mathematically describing the origin and course of the explosion respectively. detonation.

V literatúre sú popísané experimentálne práce vulkanológov pri ktorých sa vstrekuje tavenina horniny do väčšieho objemu vody, alebo prúdu vody do taveniny.The literature describes the experimental work of volcanologists in which the rock melt is injected into a larger volume of water or a stream of water into the melt.

V uvedenéj literatúre sú podrobne popísané všetky mechanizmy hydromagmatickéj explózie, tiež morfológia vzniknutých častíc a podmienky za ktorých tieto procesy prebiehajú. Táto odborná literatúra tiež dokazuje, že prebiehajúce procesy je možné využiť v prospech vŕtacej techniky využívajúcej interakciu plazma/homina/voda.All the mechanisms of the hydromagmatic explosion are described in detail, as well as the morphology of the particles formed and the conditions under which these processes take place. This literature also demonstrates that ongoing processes can be utilized in favor of a drilling technique utilizing the plasma / homina / water interaction.

V týchto publikáciách autory popisujú mechanizmy explozívnej interakcie vody s roztavenou horninou.In these publications, the authors describe the mechanisms of explosive interaction of water with molten rock.

Wohletz KH, 1986, Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies, Bulletin ofVolcanology 48, 245-264.Wohletz KH, 1986, Explosive Magma-Water Interactions: Thermodynamics, Explosion Mechanisms, and Field Studies, Bulletin of Volcanology 48, 245-264.

Wohletz KH and Zimanowski B, Physics of phreatomagmatism, part I: explosion physics, Terra Nostra 2000/6, 515-523.Wohletz KH and Zimanowski B, Physics of Phreatomagmatism, Part I: Explosion Physics, Terra Nostra 2000/6, 515-523.

Zimanowski B and Wohletz K. H., Physics of phreatomagmatism, part II: eruption physics, Terra Nostra 2000/6, 535-544.Zimanowski B and Wohletz K.H., Physics of Phreatomagmatism, Part II: Eruption Physics, Terra Nostra 2000/6, 535-544.

Wohletz, K.H., Zimanowski, B., and BDttner, R., 2008, Magma-Water Interactions, Los Alamos National Laboratory Report LA-UR-08-0921, 41 pp.Wohletz, K. H., Zimanowski, B., and BDttner, R., 2008, Magma-Water Interactions, Los Alamos National Laboratory Report LA-UR-08-0921, 41 pp.

V týchto uvedených publikáciách je aj podrobnejší popis morfológie vznikajúcich častíc.These publications also provide a more detailed description of the morphology of the particles formed.

Sheridan, M.F.; Wohletz, K.H. Hydrovolcanism: Basic Considerations and Review, Jour. Volcanol. Geotherm. Res., vol. 17, 1983Sheridan, M.F .; Wohletz, K.H. Hydrovolcanism: Basic Considerations and Review, Jour. Volcano. Geotherm. Res., Vol. 17, 1983

Wohletz, K.H., Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies, J. Volcanol. Geotherm. Res., Sep 1983.Wohletz, K.H., Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies, J. Volcanol. Geotherm. Res., Sep 1983.

Mechanizmus vzniku jemného popola pri vulkanických explóziách: Zimanowski, B.; Wohletz, K.; Buttner, R.: The Volcanic Ash Problém, Jour. Volcanol. Geotherm. Res., Vol. 122, 2003Mechanism of fine ash formation in volcanic explosions: Zimanowski, B .; Wohletz, K .; Buttner, R .: The Volcanic Ash Problem, Jour. Volcano. Geotherm. Res., Vol. 122, 2003

Experimenty s freatomagmatickými explóziami: S Kurszlaukis, R Buttner, B Zimanowski,Experiments with freatomagmatic explosions: S Kurszlaukis, R Buttner, B Zimanowski,

V Lorenz: On the first experimental phreatomagmatic explosion of a kimberlite melt, Journal of Volcanology and Geothermal Research Volume 80, Issues 3-4, February 1998, Pages 323326.In Lorenz: On the First Experimental Phreatomagmatic Explosion of a Kimberlite Melt, Journal of Volcanology and Geothermal Research Volume 80, Issues 3-4, February 1998, Pages 323326.

Výskum základných fyzikálnych aspektov freatomagmatických explózií: Bemd Zimanowski, Georg Fróhlich, Volker Lorenz, Quantitative experiments on phreatomagmatic explosions, Journal of Volcanology and Geothermal Research, Volume 48, Issues 3-4, December 1991, Pages 341-358Research on the Basic Physical Aspects of Phreatomagmatic Explosions: Bemd Zimanowski, Georg Fröhlich, Volker Lorenz, Quantitative Experiments on Phreatomagmatic Explosions, Journal of Volcanology and Geothermal Research, Volume 48, Issues 3-4, December 1991, Pages 341-358

Výskum explózií pri interakcii vody so silikátovými taveninami: Bemd Zimanowski, Georg Fróhlich, Volker Lorenz, Experiments on steam explosion by interaction of water with silicate melts, Nuclear Engineering and Design, Volume 155, Issues 1-2, 2 April 1995, Pages 335343.Explosions of water-silicate interaction explosions: Bemd Zimanowski, Georg Fröhlich, Volker Lorenz, Experiments on Steam Explosion by Water Interaction with Silicate Melts, Nuclear Engineering and Design, Volume 155, Issues 1-2, 2 April 1995, Pages 335343.

Freatomagmatické explózie ryolitickej magmy: A. Austin-Erickson, R. Buttner, P. Dellino, M. H. Ort, B. Zimanowski, Phreatomagmatic explosions of rhyolitic magma: Experimental and field evidence, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, BI 1201, 12 PP., 2008.Freatomagmatic explosions of ryolithic magma: A. Austin-Erickson, R. Buttner, P. Dellino, M.H. Ort, B. Zimanowski, Phreatomagmatic explosions of rhyolitic magma: Experimental and field evidence, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, BI 1201, 12 PP., 2008.

Výskum povrchových charakteristík zŕn popola ako ukazovateľ dynamických kontaktov kvapalnej vody a magmy : Ralf Buttner, Pierfrancesco Dellino & Bemd Zimanowski, Identifying magma-water interaction from the surface features of ash particles, Náture 401, 688-690 (14 October 1999) | doi:10.1038/44364; Received 6 May 1999; Accepted 23 August 1999.Investigation of surface characteristics of ash grains as an indicator of dynamic contacts of liquid water and magma: Ralf Buttner, Pierfrancesco Dellino & Bemd Zimanowski, Identifying magma-water interaction from ash surface features, Nature 401, 688-690 (14 October 1999) | doi: 10.1038 / 44364; Received 11 May 1999; Accepted 23 August 1999.

Fenomenologický model interakcií vody s taveninou: Ralf Buttner and Bemd Zimanowski, Physics of thermohydraulic explosions, Phys. Rev. E 57, 5726-5729 (1998)Phenomenological model of water-melt interactions: Ralf Buttner and Bemd Zimanowski, Physics of thermohydraulic explosions, Phys. Rev. E 57: 5726-5729 (1998)

V odbornej ani patentovej literatúre nie je známy popis využitia tohto javu v technickej aplikácií. Nie je známa žiadna aplikácia na rozrušovanie horniny ana účely vŕtania v technických alebo geologických formáciách. Patenty týkajúce sa danej oblasti: US 6319434, US 5667147, US 6660223, US 2533633, US 3594142, US 4286647, US 6349548,US 5987899.It is not known in the scientific or patent literature to use this phenomenon in technical applications. There is no known application for rock breaking and for drilling in technical or geological formations. Patents in the field: US 6319434, US 5667147, US 6660223, US 2533633, US 3594142, US 4286647, US 6349548, US 5987899.

Cieľom predkladaného vynálezu je podstatne zvýšiť účinnosť procesu vŕtania, najmä tvrdých hornín, ako procesu spolupôsobenia tepelných procesov a pôsobenia vody.It is an object of the present invention to substantially increase the efficiency of the drilling process, in particular hard rock, as a process of interaction of thermal processes and the action of water.

Podstata technického riešeniaThe essence of the technical solution

Cieľom tohto vynálezu je využitie tepelných procesov so spoluúčinkom vody a využitím premeny tepelnej energie na kinetickú energiu častíc rozrušenej horniny pri procese vŕtania najmä tvrdých hornín za účelom zvýšenia účinnosti procesu vŕtania.It is an object of the present invention to utilize water-assisted thermal processes and utilize the conversion of thermal energy to the kinetic energy of disrupted rock particles in the drilling process of hard rocks in particular to increase the efficiency of the drilling process.

Podstata spôsobu rozrušovanie horniny tavením a spolupôsobením vodných prúdov podľa tohto vynálezu spočíva v tom, že :The essence of the method of rock disintegration by melting and co-operation of water jets according to the present invention consists in:

- zdroj tepelného, alebo energetického toku pôsobí na horninu minimálne až do jej lokálnej fázovej premeny na taveninu,- the source of heat or energy flow acts on the rock at least until its local phase conversion to the melt,

- aspoň jeden vodný prúd je usmernený do lokálne vytvorenej taveniny,- at least one water jet is directed to a locally formed melt,

- v tavenine , na ktorú pôsobí vodný prúd dôjde k fyzikálnej explózií.- there will be physical explosions in the melt exposed to the water jet.

Je výhodné, ak vodný prúd je prerušovaný v závislosti a v čase realizácie procesu ohrevu horniny energetickým prúdom.It is preferred that the water stream is interrupted depending on and at the time of the energy heating process.

V tavenine horniny dôjde k fyzikálnej explózií, prebehne proces fŕagmentácie a premeny tepelnej energie na kinetickú energiu pohybu fragmentovaných častíc. Fragmentované častice vzniklé podľa nároku 4 vytvárajú excentrický prúd častíc, ktoré prejdú spätnou fázovou premenou na tuhú fázu.There will be physical explosions in the rock melt, a process of fagmentation and conversion of thermal energy to kinetic energy of the movement of fragmented particles will take place. The fragmented particles produced according to claim 4 form an eccentric stream of particles that undergo a reverse phase conversion to a solid phase.

Excentrický prúd častíc vyprázdni oblasť tepelného toku podľa nároku 1 a pripraví ju na nové pôsobenie tepelného toku.The eccentric particle stream empties the heat flow region of claim 1 and prepares it for a new heat flow action.

Vodné prúdy sú smerové do jedného smeru, alebo sú smerované paralelne so smerom pôsobenia tepelného toku podľa nároku 1., alebo sú smerované tangenciálne okolo miesta pôsobenia tepelného toku podľa nároku 1. alebo sú smerované excentrický od miesta pôsobenia tepelného toku podľa nároku 1.The aqueous streams are directed in one direction, or are directed parallel to the heat flow application direction of claim 1, or are directed tangentially around the heat flow application site of claim 1, or are directed eccentrically from the heat flow application site of claim 1.

Tepelný tok podľa nároku 1 pôsobí na horninu pozdĺž úsečky (lineárne).The heat flow according to claim 1 acts on the rock along the line (linear).

Vodné prúdy podľa nároku 2 pôsobia na taveninu vytvorenú podľa nároku 10 pozdĺž z jednej, alebo z oboch strán do vytvorenej taveninyThe water jets of claim 2 act on the melt formed according to claim 10 along one or both sides of the formed melt

Opakovaním spôsobu postupu podľa nároku 1 a ďalej podľa nároku 2 sa rozširuje pôsobnosť do hĺbky horniny.By repeating the method of claim 1 and further according to claim 2, the scope extends to the depth of the rock.

Opakovaním spôsobu postupu podľa nároku 1 a nároku 2 postupne na inej lokalite horniny sa rozširuje pôsobnosť do strán vedľa pôvodnej lokality.By repeating the method of claim 1 and claim 2 sequentially at another rock site, the scope extends to the sides adjacent to the original site.

Hlavnou výhodou riešenia podľa tohto vynálezu je zvýšenie účinnosti procesov vŕtania a to najmä tvrdých hornín.The main advantage of the solution according to the invention is to increase the efficiency of drilling processes, especially hard rocks.

Príklady uskutočneniaEXAMPLES

Na obr. 1 je znázornené zariadenie pozostávajúce zo zdroja tepelného toku 1, ktorý vytvára tepelný plazmový prúd 2. Plazmový prúd pôsobí na horninu 3 a na jej povrchu taví horninu na taveninu 4 . Po časovom odstupe sa do taveniny 4 vstriekne tryskou 5 vodný prúd 6.In FIG. 1 shows a device consisting of a heat flux source 1 which generates a thermal plasma stream 2. The plasma stream acts on the rock 3 and melts the rock on its surface to melt 4. After a period of time, an aqueous stream 6 is injected into the melt 4 through the nozzle 5.

Na obr. 2 je znázornený stav po vstrieknutí vodného prúdu 6 do taveniny 4 kde sa vytvorí explozívny prúd fragmentovaných častíc taveniny 7, ktoré prejdú opäť do tuhej fázy a odletujú z miesta interakcie vodného prúdu 6 a taveniny 4. Prúd častíc z taveniny 7 má kinetickú energiu z tepelnej energie vloženej do taveniny 4.In FIG. 2 shows the state after injecting an aqueous stream 6 into the melt 4 where an explosive stream of fragmented melt particles 7 is formed, which pass back into the solid phase and leave the interaction point of the aqueous stream 6 and the melt 4. The particle stream from the melt 7 has kinetic energy from thermal energy input to the melt 4.

Claims (13)

1. Spôsob rozrušovania horniny tavením a spolupôsobením vodných prúdov obsahujúci pôsobenie zdroja tepelného toku na horninu, zdroja vodných prúdov pôsobiacich na roztavenú horninu vyznačujúci sa tým že:CLAIMS 1. A method of breaking down a rock by melting and interacting water jets comprising the action of a heat flow source on a rock, a water jet source acting on molten rock, characterized in that: -zdroj tepelného, alebo energetického toku pôsobí na horninu minimálne až do jej lokálnej fázovej premeny na taveninu,-the source of heat or energy flow acts on the rock at least until its local phase transformation into the melt, - aspoň jeden vodný prúd je usmernený do lokálne vytvorenej taveniny,- at least one water jet is directed to a locally formed melt, - v tavenine , na ktorú pôsobí vodný prúd dôjde k fyzikálnej explózií.- there will be physical explosions in the melt exposed to the water jet. 2. Spôsob rozrušovania horniny podľa nároku 1 vyznačujúci sa tým, že vodný prúd je prerušovaný v závislosti a v čase realizácie procesu ohrevu horniny energetickým prúdom.Rock disruption method according to claim 1, characterized in that the water jet is interrupted as a function of and at the time of carrying out the rock heating process with an energy jet. 3. Spôsob rozrušovania horniny podľa nároku 1 a 2 vyznačujúci sa tým, že v tavenine horniny dôjde k fyzikálnej explózií, prebehne proces fragmentácie a premeny tepelnej energie na kinetickú energiu pohybu fragmentovaných častíc.Rock disruption method according to claims 1 and 2, characterized in that physical explosions occur in the rock melt, a process of fragmentation and conversion of thermal energy to kinetic energy of movement of fragmented particles takes place. 4. Spôsob rozrušovania horniny podľa nároku 1 až 3 vyznačujúci sa tým, že fragmentované častice vzniknuté podľa nároku 4 vytvárajú excentrický prúd častíc, ktoré prejdú spätnou fázovou premenou na tuhú fázu.Rock disruption method according to claims 1 to 3, characterized in that the fragmented particles formed according to claim 4 create an eccentric stream of particles which undergo a reverse phase conversion to a solid phase. 5. Spôsob rozrušovania horniny podľa nároku 1 až 4 vyznačujúci sa tým, že excentrický prúd častíc vyprázdni oblasť tepelného toku podľa nároku 1 a pripraví ju na nové pôsobenie tepelného toku.Rock disruption method according to claims 1 to 4, characterized in that the eccentric particle stream empties the heat flow region according to claim 1 and prepares it for a new heat flow action. 6. Spôsob rozrušovania horniny podľa nároku 1 až 5 vyznačujúci sa tým, že vodné prúdy sú smerované do jedného smeru.Rock disruption method according to claims 1 to 5, characterized in that the water jets are directed in one direction. 7. Spôsob rozrušovania horniny podľa nároku 1 až 6 vyznačujúci sa tým, že vodné prúdy sú smerované paralelne so smerom pôsobenia tepelného toku podľa nároku 1.Rock disruption method according to claims 1 to 6, characterized in that the water jets are directed parallel to the heat flow direction of claim 1. 8. Spôsob rozrušovania horniny podľa nároku 1 až 7 vyznačujúci sa tým, že vodné prúdy sú smerované tangenciálne okolo miesta pôsobenia tepelného toku podľa nároku 1.Rock disruption method according to claims 1 to 7, characterized in that the water jets are directed tangentially around the heat flux site according to claim 1. 9. Spôsob rozrušovania horniny podľa nároku 1 až 8 vyznačujúci sa tým, že vodné prúdy sú smerované excentrický od miesta pôsobenia tepelného toku podľa nároku 1.Rock disruption method according to claims 1 to 8, characterized in that the water jets are directed eccentrically from the heat flux site according to claim 1. 10. Spôsob rozrušovania horniny podľa nároku 1 až 9 vyznačujúci sa tým, že tepelný tok podľa nároku 1 pôsobí na horninu pozdĺž úsečky (lineárne).Rock disintegration method according to claims 1 to 9, characterized in that the heat flow according to claim 1 acts on the rock along the line (linear). 11. Spôsob rozrušovania horniny podľa nároku 1 až 10 vyznačujúci sa tým, že vodné prúdy podľa nároku 2 pôsobia na taveninu vytvorenú podľa nároku 10 pozdĺž z jednej, alebo z oboch strán do vytvorenej taveniny.Rock disruption method according to claims 1 to 10, characterized in that the water jets according to claim 2 act on the melt formed according to claim 10 along one or both sides of the formed melt. 12. Spôsob rozrušovania horniny podľa nároku 1 až 11 vyznačujúci sa tým, že opakovaním spôsobu postupu podľa nároku 1 a ďalej podľa nároku 2 sa rozširuje pôsobnosť do hĺbky horniny.Rock disruption method according to claims 1 to 11, characterized in that by repeating the process according to claim 1 and further according to claim 2, the action extends to the depth of the rock. 13. Spôsob rozrušovania horniny podľa nároku 1 až 12 vyznačujúci sa tým, že opakovaním spôsobu postupu podľa nároku 1 a nároku 2 postupne na inej lokalite horniny sa rozširuje pôsobnosť do strán vedľa pôvodnej lokality.Rock disruption method according to claims 1 to 12, characterized in that by repeating the process according to claim 1 and claim 2 successively at another rock site, the scope extends to the sides adjacent to the original site.
SK50045-2011A 2011-11-04 2011-11-04 Method for rock dislodging by melting and interaction with water streams SK500452011A3 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SK50045-2011A SK500452011A3 (en) 2011-11-04 2011-11-04 Method for rock dislodging by melting and interaction with water streams
PCT/SK2012/050015 WO2013066276A2 (en) 2011-11-04 2012-10-31 Method of disintegrating rock by melting and by synergism of water streams
US14/356,030 US20150047901A1 (en) 2011-11-04 2012-10-31 Method of Disintegrating Rock by Melting and by Synergism of Water Streams
EP12812412.0A EP2809867B1 (en) 2011-11-04 2012-10-31 Method of disintegrating rock by melting and by synergism of water streams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SK50045-2011A SK500452011A3 (en) 2011-11-04 2011-11-04 Method for rock dislodging by melting and interaction with water streams

Publications (1)

Publication Number Publication Date
SK500452011A3 true SK500452011A3 (en) 2013-09-03

Family

ID=47520226

Family Applications (1)

Application Number Title Priority Date Filing Date
SK50045-2011A SK500452011A3 (en) 2011-11-04 2011-11-04 Method for rock dislodging by melting and interaction with water streams

Country Status (4)

Country Link
US (1) US20150047901A1 (en)
EP (1) EP2809867B1 (en)
SK (1) SK500452011A3 (en)
WO (1) WO2013066276A2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533633A (en) 1946-04-01 1950-12-12 Charles W Schott Granulated slag and method for producing it
US2738162A (en) * 1953-02-27 1956-03-13 Union Carbide & Carbon Corp Method and apparatus for forming blasting holes in rock
US3594142A (en) 1968-06-05 1971-07-20 Nat Slag Ltd Processes for the pelletization of metallurgical slag
US3589351A (en) * 1970-03-16 1971-06-29 Westinghouse Electric Corp Cutting of rocks, glass and the like
JPS6036336B2 (en) 1979-07-09 1985-08-20 日本鋼管株式会社 Equipment for processing spilled molten steel when a breakout occurs in horizontal continuous casting
DE3701676A1 (en) * 1987-01-22 1988-08-04 Werner Foppe PROFILE MELT DRILLING PROCESS
AT400140B (en) 1993-12-03 1995-10-25 Holderbank Financ Glarus METHOD FOR GRANULATING AND CRUSHING MELT LIQUID MATERIAL AND GROUND, AND DEVICE FOR CARRYING OUT THIS METHOD
DE4420415C2 (en) 1994-06-10 1996-10-02 Thermoselect Ag Melt cooling
US6319434B1 (en) 1998-02-18 2001-11-20 “Holderbank” Financière Glarus AG Method for granulating and grinding liquid slag and device for realizing the same
BR9905656A (en) 1999-11-30 2001-07-24 Viviane Vasconcelos Vilela Ltd Apparatus and process for the extraction of heat and for the solidification of particles of molten materials
AT408437B (en) 2000-02-22 2001-11-26 Holderbank Financ Glarus DEVICE FOR SPRAYING LIQUID MELT
US7490664B2 (en) * 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
AU2009302296A1 (en) * 2008-10-08 2010-04-15 Potter Drilling, Inc. Methods and apparatus for wellbore enhancement
US8967298B2 (en) * 2010-02-24 2015-03-03 Gas Technology Institute Transmission of light through light absorbing medium

Also Published As

Publication number Publication date
WO2013066276A2 (en) 2013-05-10
US20150047901A1 (en) 2015-02-19
EP2809867B1 (en) 2016-12-28
EP2809867A2 (en) 2014-12-10
WO2013066276A3 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
Wohletz et al. Magma-water interactions
Hongxiang et al. Numerical simulation of rock fragmentation under the impact load of water jet
Liu et al. Study on the rock‐breaking effect of water jets generated by self‐rotatory multinozzle drilling bit
Robinson et al. PRELIMINARY STUDY OF THE NUCLEAR SUBTERRENE.
He et al. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets
Wang et al. Segregation and coalescence behavior of helium bubbles in tungsten
Liu et al. Impact characteristics of rock breaking using a conical pick assisted with abrasive slurry jet
Liu et al. The fragmentation mechanism of granite in electrical breakdown process of plasma channel drilling
Zhang et al. Investigation on two-step simulation modeling method for rock breaking by TBM disc cutters assisted with laser
Zhang et al. Investigation of a non-explosive directional roof cutting technology for self-formed roadway
Sun et al. A combined thermal spallation and melting technology by plasma jet for deep and hard rock reservoirs
Cai et al. New technology to assist drilling to improve drilling rate in unconventional gas resources: pulsed arc plasma shockwave technology
SK500452011A3 (en) Method for rock dislodging by melting and interaction with water streams
McClintock et al. The importance of the transport system in shaping the growth and form of kimberlite volcanoes
Long et al. Research on the hard-rock breaking mechanism of hydraulic drilling impact tunneling
Kyu Particular issues associated with fluid fracturing of rocks by plastic materials
Jiawang et al. Effects of microwave irradiation on impact comminution and energy absorption of magnetite ore
Miao et al. Research and application of a symmetric bilinear initiation system in rock blasting
Liu et al. The rock breaking mechanism of a combined high-voltage electric impulse-PDC bit drilling technology
RU2457329C2 (en) Method for production of diamonds in permafrost kimberlitic deposits
Bychkov The High-Speed Process of Magma Formation
Bychkov Warm Dense Matter Generator of Earthquakes?
Ge et al. Experimental study of high-speed particle jets impacting deep hard rock under true triaxial stress
Zhao et al. The technical development for increasing ROP with particle impact drilling in China
Hronsky Controls on high-grade Au Ore-shoots: towards a new paradigm

Legal Events

Date Code Title Description
PC4A Assignment and transfer of rights

Owner name: GA DRILLING, A. S., TRNAVA, SK

Free format text: FORMER OWNER: KOCIS IGOR, MR., BRATISLAVA, SK; KO CIS IVAN, MR., BRATISLAVA, SK; KRISTOFI C TOMAS, MR., BRATISLAVA, SK; KO CIS DUSAN, BRATISLAVA, SK

Effective date: 20131028

FB9A Suspension of patent application procedure