SI9800280A - Production process of ferro-titanium alloy - Google Patents

Production process of ferro-titanium alloy Download PDF

Info

Publication number
SI9800280A
SI9800280A SI9800280A SI9800280A SI9800280A SI 9800280 A SI9800280 A SI 9800280A SI 9800280 A SI9800280 A SI 9800280A SI 9800280 A SI9800280 A SI 9800280A SI 9800280 A SI9800280 A SI 9800280A
Authority
SI
Slovenia
Prior art keywords
batch
melt
production
alloy
materials
Prior art date
Application number
SI9800280A
Other languages
Slovenian (sl)
Inventor
Štefan Žvab
Original Assignee
Štefan Žvab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Štefan Žvab filed Critical Štefan Žvab
Priority to SI9800280A priority Critical patent/SI9800280A/en
Publication of SI9800280A publication Critical patent/SI9800280A/en

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

A process for production of ferrotitanium FeTi7O is designed in such a way that the whole process is taking place in a low-frequency induction furnace. The first charge of the process is designed to obtain the melt of iron and silicon at 1300 degrees Celsius at first, then titanium, aluminium and other materials are added. The process allows a continuation of the procedure by pouring out about 2/3 of the complete melt and adding further materials in their percentage of the total mass of alloy. The crucial point of the process is to melt the alloy of a desired composition, which is not ecologically questionable during the process, and to obtain a proper microstructure required for the further process of alloying high-quality steel.

Description

Postopek pridobivanja ferotitanaProcess for the production of ferrotitanium

Int. Cl.. C 22 C 33/14Int. Cl .. C 22 C 33/14

Predloženi izum se nanaša na nov postopek pridobivanja zlitine ferotitana (v nadaljevanju Fe Ti 70), ki se uporablja kot legimi dodatek (aditiv) pri pridobivanju specialnih jekel v železarnah.The present invention relates to a new process for the production of ferrotitanium alloys (hereinafter referred to as Fe Ti 70), which is used as a lithium additive (additive) for the production of special steels in ironworks.

Z opisanim izumom je rešen problem varnega pridobivanja zlitine Fe Ti 70 v nizko frekvenčni indukcijski peči, katere omogočajo pridobivanje tudi v minimalnih količinah Fe Ti 70.The present invention solves the problem of the safe production of Fe Ti 70 alloys in a low-frequency induction furnace, which enables them to be obtained even in minimal amounts of Fe Ti 70.

Problem, ki ga rešuje naš postopek pridobivanja zlitine Fe Ti 70 po izumu, se kaže predvsem v naslednjih izboljšanjih glede na do sedaj znane tehnične rešitve, ki se pojavljajo na tržišču, ali so znane iz splošne tehnične literature.The problem solved by our process of producing Fe Ti 70 alloys according to the invention is mainly reflected in the following improvements with respect to known technical solutions that are commercially available or known from the general technical literature.

Več osnovnih rešitev po izumu se vpadljivo kaže kot izboljšanje funkcijskih, izdelovalno tehničnih in materialno-tehničnih lastnosti končnega produkta v danih pogojih proizvodnje.Several basic solutions according to the invention are conspicuously shown to improve the functional, manufacturing and material-technical properties of the finished product under the given conditions of production.

To nam omogoča elegantna tehnična zamenjava osnovne priprave za proizvodnjo oz. livarske peči, ki se kaže v enostavnejšem načinu obzidave peči pri snovanju začetne šarže, v varnem in zanesljivem zaporedju vlaganja materialov za proizvodnjo posamezne šarže, v varnem nadaljevanju proizvodnje brez prekinitve začetnega ciklusa zagona prve šarže, ki je za snovalce tovrstnih proizvodnih ciklusov najzahtevnejša operacija in najbolj nezanesljiva. Tako nam predlagani izum v eni začetni šarži omogoča dokončanje sleherne planirane količine začrtane proizvodnje oziroma pridobivanje željene količine Fe Ti 70.This allows us to elegantly replace the basic production or production equipment. foundry furnace, which is reflected in the simpler method of wall construction in the design of the initial batch, in the safe and reliable sequencing of the production of materials for the production of each batch, in the safe continuation of production without interrupting the initial startup cycle of the first batch, which is the most difficult operation for designers of such production cycles and most unreliable. Thus, the present invention enables us, in one initial batch, to complete each planned quantity of production planned or to obtain the desired amount of Fe Ti 70.

Strokovnjaku z obravnavanega področja je znano, da pravilno doziranje in ugotovitev vrstnega reda taljenja posameznih materialov pri pridobivanju ferotitanovih legur do sedaj ni bilo zanesljivo oz. v popolnosti rešeno. Vedno so se pojavljale nezanesljive tehnične ali procesne rešitve predpisanih postopkov ali priprave materialov oz. je (v veliki meri) pri snovanju in izdelavi tovrstnih postopkov in materialov človeški faktor velikega pomena pri upoštevanju varnega načina pridobivanja tako zahtevnih zlitin.It is known to one of ordinary skill in the art that the correct dosage and determination of the order of melting of individual materials in the production of ferrotitanium alloys has so far been unreliable. fully resolved. Unreliable technical or process solutions to prescribed procedures or preparation of materials or materials have always appeared. (to a large extent), in the design and manufacture of such processes and materials, the human factor is of great importance in considering the safe method of producing such complex alloys.

7Večina dosedanjih sistemov je bila izvedbeno usmerjena v proces pridobivanja v elektro-obločnih pečeh, ki zahtevajo vlaganje velike količine energije in časa za pridobivanje posamezne šarže. Tovrstni postopek ima veliko pomanjkljivost, da je zaključenega značaja, kar pomeni, da je za dosego določene količine zlitine potrebno postopek pridobivanja večkrat ponoviti od začetka izdelave šarže do končnega izlitja proizvoda. S tem se poveča stopnja nevarnosti, pri manjših potrebah pa se zaradi velike porabe energije celotna šarža podraži.7Most of the systems to date have been implementation oriented in the process of extraction in electric arc furnaces, which require the investment of a large amount of energy and time for the production of a single batch. This process has the great disadvantage of being of a completed character, which means that in order to achieve a certain amount of alloy, the process of production must be repeated several times from the beginning of the production of the batch to the final pouring of the product. This increases the level of danger, and the lower batch makes the whole batch more expensive due to high energy consumption.

Obstajajo še druge tehnične rešitve pridobivanja ferotitana, ki se funkcijsko ali metalurško razlikujejo od našega postopka pridobivanja, tako da se oddaljujejo od stanja tehnike naše rešitve in s tem, takšni kot so, za naše področje tehnike niso bistveni.There are other technical solutions for the production of ferrotitanium, which differ functionally or metallurgically from our production process, so that they depart from the state of the art of our solution and thus, as they are, are not essential to our field of technology.

Pomembna razlika med dosedaj znanimi postopki in predlagano izvedbo po izumu je v izvedbi samega postopka doziranja posameznih elementov v zlitini. Dejstvo je , da se ves predlagani postopek odvija v nizko-frekvenčni indukcijski peči in da je omogočeno kontinuirano taljenje, na da bi bio za to potrebno prekiniti proces prve šarže.An important difference between the methods known to date and the proposed embodiment of the invention is in the implementation of the dosing process of the individual elements in the alloy. The fact is that all of the proposed process takes place in a low-frequency induction furnace and that continuous melting is made possible in order to interrupt the first batch process.

Analiza rešitve iz stanja tehnike je pokazala, da je za rešitev šaržiranja v niskofrekvenčni indukcijski peči pri določanju doziranja in vrstnega reda posameznih vhodnih materialov značilno, da je dosežen varen postopek pridobivanja zlitine ferotitana ne glede na vsebovanost posameznih količin v zlitini.The analysis of the prior art showed that the solution of batching in a low-frequency induction furnace in determining the dosage and order of individual input materials is characterized by the fact that a safe process of obtaining a ferrotitanium alloy is achieved, regardless of the content of individual quantities in the alloy.

Na osnovi ugotovljenega stanja tehnike in že izvedenih poizkusov ter izdelavi nultih serij FeTi70 smo potrdili prednosti spremembe peči za taljenje in nadaljevanje cikla proizvodnje, ne da bi bilo potrebno prekiniti že začeto prvo šaržo. Prav tako je prišlo v postopku preizkušanja postopka do izbora optimalne recepture, ki zagotavlja maksimalno vsebovanost glavnih materialov pri minimalni porabi energije, ki jo zahtevajo tovrstni procesi.Based on the state of the art and the experiments already carried out and the production of zero series FeTi70, we confirmed the advantages of changing the melting furnace and continuing the production cycle, without having to interrupt the already started first batch. The process of testing the process also resulted in the selection of the optimal recipe, which ensures the maximum content of the main materials at the minimum energy consumption required by such processes.

Za rešitev naloge je postopek za pridobivanje ferotitana po izumu značilen po značilnostih iz prvega patentnega zahtevka, torej: postopek za pridobivanje ferotitana FeTi 70 je zasnovan tako, da se ves proces odvija v nizkofrekvenčni indukcijski peči pri različnih temperaturah s točno določenim vrstnim redom vnašanja materialov. Postopek je zasnovan iz treh procesno povezanih postopkov (ti prehajajo iz enega v drugega tako, da omogočajo pridobivanje željene količine zlitine), to so začetna šarža, standardna šarža in izlitja celotne količine taline.To accomplish the task, the process for producing ferrotitanium according to the invention is characterized by the features of the first claim, that is to say: the process for producing ferrotitanium FeTi 70 is designed such that the whole process takes place in a low-frequency induction furnace at different temperatures in a specified order of material input. The process is designed from three process-related processes (these pass from one to the other to allow the desired amount of alloy to be obtained), i.e., an initial batch, a standard batch, and pours of the total amount of melt.

Za dosego optimalnega postopka za pridobivanje ferotitana s poudarkom na zgoraj navedenem postopku bo izum opisan v primeru pridobivanja prve šarže zlitine in standardne šarže ter v prikazu analize in preiskave kemijske sestavine in mikrostrukture naključno izbranih vzorcev zlitine FeTi70, prikazane v slikah in grafikonih,In order to achieve the optimum ferrotitanium production process with emphasis on the above process, the invention will be described in the case of obtaining the first batch of an alloy and a standard batch, and in the analysis and investigation of the chemical constituent and microstructure of randomly selected FeTi70 alloy samples shown in the figures and graphs,

1. Slika 1: EDS spekter večjega področja pri kemijski analizi vzorcev.1. Figure 1: Large-area EDS spectrum in chemical analysis of samples.

2. Slika 2: Posnetek mikrostrukture počasneje hlajenega vzorca.2. Figure 2: Snapshot of the microstructure of a slow-cooled sample.

3. Slika 3: Posnetek mikrostrukture nekoliko hitreje hlajenega vzorca.3. Figure 3: Snapshot of microstructure of slightly cooled sample.

4. Slika 4: Elektronski mikroposnetek analiziranega področja.4. Figure 4: Electronic micro-image of the analyzed area.

5. Slika 5: EDS spektra faz v evtektoidu.5. Figure 5: EDS of the phase spectrum in the eutectoid.

Izum smo začeli ustvarjati s pripravo indukcijske peči oz. v ta del štejemo standardni način obzidave indukcijske peči, ki je popolnoma identičen kot za pretaljevanje sive zlitine. Zaradi dolgoletne potrjenosti v praksi bomo uporabili ta znani protokol za izvedbo in pripravo livarskih peči.We began to make the invention by preparing an induction furnace. this section includes the standard method of construction of an induction furnace, which is exactly the same as that used for melting a gray alloy. For many years of practical validation, we will use this well-known protocol for the construction and preparation of foundry furnaces.

V standardnem protokolu so zajeti vsi ukrepi za varno obratovanje indukcijske peci z upoštevanjem vseh za varnost pri procesu nevarnih temperatur, ki lahko nastanejo znotraj odvijanja procesa pridobivanja zlitine. Izračun potrebnega vsipa (šarže) za izdelavo Fe Ti 70 je odvisen od količinskih potreb zlitine in vsekakor osnovnih mer in količin same peči.The standard protocol covers all measures for the safe operation of the induction furnace, taking into account all the safety in the process of hazardous temperatures that may occur within the process of producing the alloy. The calculation of the required fill (batch) for the production of Fe Ti 70 depends on the quantity requirements of the alloy and, of course, the basic dimensions and quantities of the furnace itself.

Glede na te splošno znane parametre je po izumu dobljena optimalna željena sestava v procentih (%):According to these generally known parameters, the optimal desired percentage composition (%) is obtained according to the invention:

1) Ti od 68 do 72,5 %1) You from 68 to 72.5%

2) Si - maksimalno do 0,5 %2) Si - up to 0.5% maximum

3) Mn - maksimalno do 0,3%3) Mn - up to 0.3% maximum

4) Ni - maksimalno do 0,2 %4) Ni - up to 0.2% maximum

5) Cu - maksimalno do 0,3 %5) Cu - up to 0.3% maximum

6) Al - maksimalno do 4 %6) Al - up to 4% maximum

7) Zr - maksimalno do 0,1 %7) Zr - up to 0.1% maximum

8) Fe - ostalo8) Fe - the rest

Postopek pridobivanja začetne šarže se začne ob upoštevanju vseh varnostnih ukrepov tako da se najprej tali 20-30% od predvidene količine železo ali ostanki železa v sivi zlitini. Taljenje se izvaja okoli 5h pri temperaturi 1300 °C.The process of obtaining the initial batch is started taking all safety precautions in place by first melting 20-30% of the estimated amount of iron or scrap iron in the gray alloy. Melting is carried out for about 5 hours at 1300 ° C.

Šaržiranje ostalega materiala se izvaja po naslednjem vrstnem zaporedju: titan (Ti), aluminij (Al), SiZr 40. Ostale materiale dodajamo v teku procesa. Zelo pomembno je, da se na koncu doda steklo SiO2. Z njegovim dodajanjem smo onemogočili stik med titanom in kisikom. To pomeni, da smo preprečili oksidacijo titana in ves proces usmerili v naš namen.Batching of other material is carried out in the following order: titanium (Ti), aluminum (Al), SiZr 40. Other materials are added during the process. It is very important to add SiO2 glass at the end. By adding it, the contact between titanium and oxygen is prevented. This means that we have prevented the oxidation of titanium and directed the whole process to our purpose.

Odvzem taline in nalitje v kokile izvajamo v drugi standardni šarži.The melt extraction and molding is performed in another standard batch.

Vrstnega reda šaržiranja ne smemo zamenjati, ker lahko pride do tehnoloških težav. Z dodajanjem navedenih elementov se dviguje temperatura zlitine med 1330 °C in 1600 °C in se proces taljenja izvaja med 6 in 7 h.The order of the batching should not be confused as there may be technological problems. By adding the above elements, the alloy temperature rises between 1330 ° C and 1600 ° C and the melting process is carried out between 6 and 7 h.

Potrebno je odvzeti 2/3 vse mase taline in se potem dodajajo vse potrebne sestavine. S tem smo dosegli to, da ni potrebno snovati začetne šarže, ki je najzahtevnejša faza celotnega procesa. Postopek odvzema ponavljamo tako dolgo, dokler ne dosežemo željene količine. Postopek se zaključi ob izlitju taline v kokile.It is necessary to remove 2/3 of all the masses of the melt and then add all the necessary ingredients. In this way, we have no need to design the initial batch, which is the most demanding phase of the whole process. The withdrawal process is repeated until the desired quantity is reached. The process is completed when the melt is poured into the molds.

Pri preizkušanju optimalnega postopka doziranja posameznih elementov smo ugotovili, daje najprimernejši način doziranja titana (Ti) v več manjših šaržah, ker se titan pri temperaturi 1300°C do 1600°C zelo hitro topi in se pri tem lahko pojavi eksotermna reakcija spajanja Fe-Ti-Al, ki dviguje temperaturo zlitine za 100 °C do 200 °C.When testing the optimal dosing process for individual elements, we found that the most convenient way of dosing titanium (Ti) in several smaller batches is because titanium melts very quickly at 1300 ° C to 1600 ° C and an exothermic Fe-Ti coupling reaction can occur -Al which raises the temperature of the alloy by 100 ° C to 200 ° C.

Na konkretnem primeru bomo pokazali, kako se v praksi odvija proces pridobivanja ferotitana v šarži od 700 kg.In the concrete example, we will show how the process of ferrotitanium production in a batch of 700 kg takes place in practice.

I. začetna šaržaI. initial batch

Začetek šaržiranjaStart batching

Po 5h in 30min taljenja 200 kg sive litine (Fe) smo pričeli Šaržirati po naslednjem vrstnem zaporedju dodavanja ostalih materialov:After 5 hours and 30 minutes of melting 200 kg of gray cast iron (Fe), we began batching in the following order of adding other materials:

1. šarža 52 kg Ti pri T=1330 °C se poviša na T=1550 °C1st batch of 52 kg Ti at T = 1330 ° C is raised to T = 1550 ° C

2. šarža 50 kg Ti2. batch 50 kg Ti

3. šarža 57 kg Ti3. batch 57 kg Ti

4. šarža 72 kg Ti - pri pridobivanju Ti moramo paziti na zelo hitro topljivost in eksotermne reakcije.4. batch 72 kg Ti - when extracting Ti we must pay attention to very fast solubility and exothermic reactions.

5. šarža 8 kg Al - dodajanje Al lahko povzroči burno reakcijo5. batch 8 kg Al - Addition of Al can cause a violent reaction

6. šarža 49 kg Ti6. batch 49 kg Ti

7. šarža 63 kg Ti7. batch 63 kg Ti

8. šarža 61 kg Ti8. batch 61 kg Ti

9. šarža 36 kg Ti9. batch 36 kg Ti

10. šarža 8 kg Al T= 1430°C10. batch 8 kg Al T = 1430 ° C

11. šarža S1O2 - po potrebi in osnovi meritev za izboljšanje viskoznosti žlindre11. S1O2 batch - where necessary and the basis of measurements to improve the viscosity of the slag

12. šarža 4.5 kg SiZr12th batch 4.5 kg SiZr

Založeno je skupaj 200 kg sive litine (Fe, ), 440 kg Ti, 15 kg Al in 4.5 kg SiZr, pri tem smo dobili teoretično cca. 67% Ti, 2,2% Al, drugi elementi cca. 2%. Skupna teža odlitega je 700 kg. Čas taljenja je bil 6 h in 15 min.A total of 200 kg of gray cast iron (Fe,), 440 kg of Ti, 15 kg of Al and 4.5 kg of SiZr were loaded, yielding a theoretical approx. 67% Ti, 2.2% Al, other elements approx. 2%. The total weight of the cast is 700 kg. The melting time was 6 h and 15 min.

Ta poizkusna serija je bila lansirana v manjši količini, kot je kapaciteta peči, tako da ni bili potrebno izvajati nadaljevalnega postopka delnega odvzema in nadaljevana procesa šaržiranja.This test batch was launched in a smaller amount than the furnace capacity, so that no further partial take-off process and continued batching process were required.

Standardna šarža pri kontinuirani proizvodnji FeTi70:Standard batch for continuous FeTi70 production:

Fe = 265 kg,Fe = 265 kg,

Ti = 700 kg,Ti = 700 kg,

Al = 30 kg,Al = 30 kg,

SiZr = 5 kg SiO2 = cca 50 kgSiZr = 5 kg SiO2 = approx. 50 kg

Σ = 1000 kg + SiO2 Σ = 1000 kg + SiO 2

Da bi dokazali tehnološko pravilnost našega izuma, smo naključno izbrali dva vzorca zlitine FeTi70 ter naredili:In order to prove the technological correctness of our invention, we randomly selected two samples of FeTi70 alloy and made:

• kemijsko analizo vzorcev, prikazano na slikah 1 in 5 in • metalografsko analizo mikrostrukture vzorcev, prikazanih na slikah 2, 3 in 4.• chemical analysis of the samples shown in Figures 1 and 5; and • metallographic analysis of the microstructure of the samples shown in Figures 2, 3 and 4.

Integralna kemijska analiza je pokazala, daje v vzorcih povprečno 64,5 mas. % Ti. Ostali elementi so analizirani z EDS analizo v rasterskem elektronskem mikroskopu (REM), ki je opremljen z energijsko disperzijskim detektorjem rentgenskega sevanja. Na sliki 1 je prikazan EDS spekter, ki so ga posneli pri 200-kratni povečavi. Na spektru so jasno vidni poleg vrhov titana tudi vrhovi železa, aliminija in silicija. Koncentracija aluminija, kakor tudi silicija, je približno lmas.%.Integral chemical analysis showed that the samples averaged 64.5 wt. % You. The other elements are analyzed by EDS analysis in a scanning electron microscope (REM) equipped with an energy dispersive X-ray detector. Figure 1 shows the EDS spectrum recorded at 200x magnification. In addition to titanium peaks, iron, aluminum and silicon peaks are clearly visible on the spectrum. The concentration of aluminum, as well as silicon, is about lm%.

Pri analizi mikrostrukture so morali izhajati iz binarnega faznega diagrama Ti-Fe. Glede na določeno kemijsko sestavo (64,5 mas.% Ti) potekajo procesi pri ravnotežnem ohlajanju zlitine po izumu v naslednjih stopnjah:When analyzing the microstructure, they had to come from a binary Ti-Fe phase diagram. Depending on the chemical composition (64.5% by weight of Ti), the processes of equilibrium cooling of an alloy according to the invention are carried out in the following steps:

• primarna kristalizacija intermetalne faze FeTi, • evtektična kristalizacija: L —>βτί + FeTi pri 1085 °C, • izločanje FeTi iz faze βτ, do 595 °C, • evtekoidna reakcija βτ,->α·ΐι + FeTi pri 595 °C.• primary crystallization of the intermetallic FeTi phase, • eutectic crystallization: L -> βτί + FeTi at 1085 ° C, • elimination of FeTi from the β τ phase, up to 595 ° C, • eutectoid reaction βτ, -> α · ΐι + FeTi at 595 ° C.

Glede na takšen potek bi morala biti zlitina sestavljena pretežno iz aTl in FeTi, saj ni pričakovati, da hi majhni koncentraciji aluminija in silicija bistveno spremenili potek dogodtkov pri ohlajanju. Dejanski mikrostrukturi se od ravnotežne precej razlikujeta, saj v mikrostrukturi prevladujeta intermetalna spojina FeTi ter po vsej verjetnosti visokotemperatuma faza βτί, ki le delno evtektoidno razpade pri ohlajanju. Tako so ponekod opazni tudi otočki evtektoida (αΏ + FeTi).In view of such a course, the alloy should consist predominantly of a Tl and FeTi, since it is not expected that the low concentrations of aluminum and silicon would significantly alter the course of the cooling events. The actual microstructures are quite different from the equilibrium one, as the microstructure is dominated by the intermetallic FeTi compound and in all likelihood high-temperature phase βτί, which only partially eutectoidly decays upon cooling. Thus, eutectoid islets (α Ώ + FeTi) are also noticeable in some places.

Mikrostrukturi obeh vzorcev se nekoliko razlikujeta med seboj (slika 2 in 3 ). Na sliki 2 je mikrostruktura vzorca, ki seje verjetno počasneje ohlajeval .Faza označena z 1 je integralana spojina TiFe. Faza označena z 2 pa je pa je po vsej verjetnosti faza βτί. Rezultati semi-kvantitativne EDS analize so pokazali, da vsebuje okoli 23 mas.% Fe; to je pa zelo blizu koncetraciji faze βγ, pri temperaturi evtektične reakcije. To pomeni, da se ta faza praktično nespremenjena ohrani do sobne temperature. Področje označeno s 3 je zelo verjetno evtektoid (α·π + FeTi). Svetli delci evtektoida so delci faze FeTi, medtem ko je osnova aTl.The microstructures of the two samples differ slightly (Figures 2 and 3). Figure 2 shows the microstructure of the sample, which probably cooled down more slowly. The phase labeled 1 is an integral compound of TiFe. Phase 2 is, however, likely to be phase βτί. The results of semi-quantitative EDS analysis showed that it contained about 23 wt% Fe; this, however, is very close to the concentration of the βγ phase, at the eutectic reaction temperature. This means that this phase is kept virtually unchanged to room temperature. The area labeled 3 is very likely a eutectoid (α · π + FeTi). The bright eutectoid particles are particles of the FeTi phase, while the base a is Tl .

V vseh fazah so opravili točkovno EDS analizo. Analizna mesta so označena na sliki 4, ki prikazuje točke 1, 2 in 3, kjer je bila izvedena točkovna analiza. V področju točke 3 sta bili ločeno analizirani svetla in temna faza. Svetla faza, označena z 1, je brez dvoma intermetalna spojina FeTi, saj je atomsko razmerje Ti/Fe ~1. Temna faza v evtektoidu vsebuje precej manj železa, tako da je to po vsej verjetnosti αψί . Spektra faz, ki sta v evtektoidu, sta prikazana na sliki 5. Leva stran prikazuje spektar svetle faze AlFe, desna pa prikazuje spektar temne faze aTi Point EDS analysis was performed at all stages. The analysis sites are indicated in Figure 4, which shows the points 1, 2 and 3 where the spot analysis was performed. In point 3, the light and dark phases were analyzed separately. The light phase, denoted by 1, is without doubt an intermetallic compound FeTi, since the atomic Ti / Fe ratio is ~ 1. The dark phase in the eutectoid contains much less iron, so this is likely αψί. The phase spectra found in the eutectoid are shown in Figure 5. The left side shows the spectrum of the light phase AlFe and the right shows the spectrum of the dark phase a Ti

Mikrostruktura vzorca, ki je bil po vsej verjetnosti ohlajen nekoliko hitreje, je na sliki 3. To je praktično čista dvofazna mikrostruktura βτϊ + FeTi, le po mejah kristalnih zrnje verjetno potekala evtektoidna reakcija (nakazana s puščico).The microstructure of the sample, which was likely cooled slightly faster, is shown in Figure 3. This is a practically pure two-phase βτϊ + FeTi microstructure, only eutectoid reaction (indicated by an arrow) probably occurred along the boundaries of the crystalline grains.

Predstavljena kratka vsebina kemijske in metalografske preiskave, ki v popolnosti potrjuje v praksi dosežene rezultate je povzeta po raziskavi št.:MPP/l-98, ki so jo po naročilu prijavitelja izuma izdelali na Fakulteti za strojništvo Maribor v Laboratoriju za raziskavo materialov pod vodstvom doc. dr. Ivana Anžela, dipl.inž. met. Raziskavo pa sta opravila dr. Franc Zupanič, dipl.inž met. in Tonica Bončina, dipl.inž met.The brief content of the chemical and metallographic investigation, which completely confirms the results achieved in practice, is summarized after the research No .: MPP / l-98, which was made by the order of the applicant of the invention at the Faculty of Mechanical Engineering in the Laboratory for Materials Research under the guidance of Doc. . dr. Ivana Anžela, B.Sc. met. The research was conducted by dr. Franc Zupanič, B.Sc. and Tonica Bončina, B.Sc.

Claims (3)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek pridobivanja ferotitana (v nadaljevanju Fe Ti 70) je zasnovan tako, da se proces taljenja zlitine izvaja v nizko-frekvenčni indukcijski peči in je značilen po tem, da je postopek vlaganja zasnovan tako, da se najprej tali železo, potem se tej talini doda titan (Ti) v več šaržah, potem se skupni masi taline doda aluminij Al tudi v več šaržah in nato, ko so ti trije elementi v željeni zmesi taline potem ji dodajamo SiZr 40 ter ostale materiale za izboljšanje kvalitete taline in na koncu še steklo SiO2 za vzdrževanje viskoznosti žlindre.1. A process for the production of ferrotitanium (hereinafter referred to as Fe Ti 70) is designed so that the process of melting the alloy is carried out in a low-frequency induction furnace and is characterized by the fact that the investing process is designed to first melt iron, then titanium (Ti) is added to the melt in several batches, then aluminum al is added to the total mass of the melt also in several batches, and then, when these three elements are in the desired melt mixture, SiZr 40 and other materials for improving the quality of the melt are added to it and finally SiO 2 glass to maintain slag viscosity. 2. Za postopek pridobivanja FeTi70 po zahtevku 1 značilen po tem, da je možno proces nadaljevati tako, da se od prve šarže odvzame 2/3 celotne mase taline in se ponovno dodaja novi material v šaržo v opredeljenemu vrstnem zaporedju iz zahtevka 1.2. The FeTi70 production process according to claim 1, characterized in that it is possible to continue the process by removing 2/3 of the total melt mass from the first batch and re-adding new material to the batch in the order defined in claim 1. 3. Za postopek FeTi70 po zahtevku 1 in 2 značilen po tem, da je skupna masa posamezne Šarže sestavljena v procentualnem razmerju od 67-72% titana (Ti), 2520% Fe , 4 - 2 % Aluminija (Al) in ostalo drugi elementi.3. The FeTi70 process according to claims 1 and 2, characterized in that the total weight of each batch consists of a percentage of 67-72% of titanium (Ti), 2520% of Fe, 4 - 2% of Aluminum (Al) and other other elements .
SI9800280A 1998-10-29 1998-10-29 Production process of ferro-titanium alloy SI9800280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9800280A SI9800280A (en) 1998-10-29 1998-10-29 Production process of ferro-titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9800280A SI9800280A (en) 1998-10-29 1998-10-29 Production process of ferro-titanium alloy

Publications (1)

Publication Number Publication Date
SI9800280A true SI9800280A (en) 1999-02-28

Family

ID=20432356

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9800280A SI9800280A (en) 1998-10-29 1998-10-29 Production process of ferro-titanium alloy

Country Status (1)

Country Link
SI (1) SI9800280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503724C2 (en) * 2012-04-20 2014-01-10 Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" Method of titanium-magnetite ore processing
RU2522876C1 (en) * 2012-12-03 2014-07-20 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Titanium slag processing
RU2606813C1 (en) * 2015-09-18 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Method of processing vanadium containing iron-titanium concentrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503724C2 (en) * 2012-04-20 2014-01-10 Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" Method of titanium-magnetite ore processing
RU2522876C1 (en) * 2012-12-03 2014-07-20 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Titanium slag processing
RU2606813C1 (en) * 2015-09-18 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Method of processing vanadium containing iron-titanium concentrate

Similar Documents

Publication Publication Date Title
JP4190720B2 (en) Multi-component alloy
Lai et al. Leaching behavior of impurities in Ca-alloyed metallurgical grade silicon
KR102616983B1 (en) Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
TW201823478A (en) Process for the production of a pgm-enriched alloy
Huang et al. Segregation behavior of iron in metallurgical grade silicon during SiCu solvent refining
EP2454390A1 (en) Method for extracting at least one chemical element from a molten salt medium
US2964397A (en) Copper-boron alloys
KR101284081B1 (en) The method for manufacturing of Titanium ingot with low oxygen concentration using metal calcium and Vacuum melting
CN101812605B (en) Method for smelting amorphous master alloys under non-vacuum condition
CN102965556A (en) Multi-element Mg-Zn-Al based magnesium alloy and preparation method thereof
SI9800280A (en) Production process of ferro-titanium alloy
Yu et al. Dissolution behavior of nickel-based superalloy in molten zinc: Its mechanism and kinetics
Carlson et al. Preparation and Refining of Yttrium Metal by Y‐Mg Alloy Process
RU2538794C1 (en) Production of composite powders of refractory and rare-earth metals
Shevchenko et al. A method of determining phase-transition temperatures using solar heating
SU1749244A1 (en) Process for producing precision alloys in open induction furnace
BYUN et al. Alloys Using NdF3-Ca-CaCl2-Fe Reaction System
US1869979A (en) Art of treating metals
US1640487A (en) Refining lead
JPH05148564A (en) Method for adding of si to mg or mg alloy
JP2010208862A (en) Method for refining silicon
RU2302475C2 (en) Method of production of ingots on base of refractory metals by vacuum autocrucible arc melting
RU2224040C2 (en) Leaden alloy for lattice frames of storage batteries and a method of the alloy production
卞智永 et al. Effect of Temperature and Time in Preparation of Nd-Fe Alloys Using NdF3-Ca-CaCl2-Fe Reaction System.
CN116287920A (en) Niobium-zirconium intermediate alloy and preparation method thereof