SI22991A - Enhanced processing device for coating particles based on a new air vortex generator concept - Google Patents

Enhanced processing device for coating particles based on a new air vortex generator concept Download PDF

Info

Publication number
SI22991A
SI22991A SI200900075A SI200900075A SI22991A SI 22991 A SI22991 A SI 22991A SI 200900075 A SI200900075 A SI 200900075A SI 200900075 A SI200900075 A SI 200900075A SI 22991 A SI22991 A SI 22991A
Authority
SI
Slovenia
Prior art keywords
gas
medium
vortex generator
flow
obstacles
Prior art date
Application number
SI200900075A
Other languages
Slovenian (sl)
Inventor
Teslić@Dušan
Original Assignee
BRINOX@@d@o@o
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRINOX@@d@o@o filed Critical BRINOX@@d@o@o
Priority to SI200900075A priority Critical patent/SI22991A/en
Priority to EP10726648A priority patent/EP2408547A2/en
Priority to PCT/SI2010/000013 priority patent/WO2010107401A2/en
Priority to RU2011141325/05A priority patent/RU2542276C2/en
Publication of SI22991A publication Critical patent/SI22991A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glanulating (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Abstract

Subject of the invention is an enhanced processing device for coating particles based on a new air vortex generator (4) which enables to obtain current properties of the gas vortex in areas within the separation cylinder (5) as well as between the separation cylinder (5) and the perforated distribution panel (3) which results in a more uniform coating and its enhanced quality along with a better material and thermal efficiency rate of the particles coating process, where particles are rotating in the upward direction in the area of extruding and drying inside the vertical pipe, separation cylinder (5), located over the gas distribution panel (3) as well as downward direction in the second area of drying and keeping the particles outside the separation cylinder (5).

Description

IZBOLJŠANA PROCESNA NAPRAVA ZA OBLAGANJE DELCEV NA OSNOVI NOVE IZVEDBE GENERATORJA VRTINČNEGAPROCESSING PLANT FOR PARTICLE LOCKING IMPROVEMENT BASED ON NEW VERTICAL GENERATOR DESIGN

TOKA ZRAKAAIR FLOW

Predmet izuma je izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka zraka, ki sodi v področje kemijske in farmacevtske tehnologije in predstavlja izboljšavo procesne opreme za oblaganje delcev z razprševanjem od spodaj in deluje na principu tehnologije z vrtinčenjem. Bolj natančno se izum nanaša na konstrukcijske rešitve bistvenih elementov naprave za oblaganje, ki izboljšajo kvaliteto oblaganja. Izum sodi v razred A61J3/06 mednarodne patentne klasifikacije.The subject of the invention is an improved particle coating process device based on a new embodiment of the airflow generator which belongs to the field of chemical and pharmaceutical technology and represents an improvement of process equipment for particle coating by bottom dispersion and operating on the principle of technology with vortexing. More specifically, the invention relates to structural solutions of essential elements of a coating device that improve the quality of the coating. The invention belongs to Class A61J3 / 06 of the International Patent Classification.

Tehnični problem, ki ga predložena naprava po izumu uspešno is rešuje, je učinkovito zagotavljanje ozke distribucije debeline obloge od delca do delca tako pri oblaganju majhnih kot tudi velikih delcev. Oblaganje delcev s funkcionalnimi oblogami je pogost tehnološki postopek v kemijski in farmacevtski industriji. Zlasti v primeru farmacevtskih izdelkov, ki izkazujejo podaljšano sproščanje zdravilne učinkovine, pri katerih je hitrost raztapljanja zdravilne učinkovine definirana z difuzijo preko obloge, sta debelina obloge in enakomernost debeline obloge od delca do delca bistvenega pomena za doseganje načrtovane kinetike sproščanja učinkovine.A technical problem that the present invention successfully solves with the present invention is the effective provision of a narrow particle-to-particle thickness distribution for coating both small and large particles. Functional coating of particles is a common technological process in the chemical and pharmaceutical industries. Particularly in the case of pharmaceuticals which exhibit sustained release of the active ingredient in which the rate of dissolution of the active ingredient is defined by diffusion through the coating, the thickness of the coating and the uniformity of the thickness of the coating from particle to particle are essential to achieve the intended kinetics of release of the active substance.

Zagotavljanje ozke distribucije debeline obloge od delca do delca s konstrukcijo procesne opreme je pomembno tudi v primeru, ko z oblaganjem delcev ščitimo le-te pred atmosferskim, fiziološkim ali drugim okoljem. V tem primeru lahko za dosego funkcionalnosti obloge nanesemo na delce manj snovi, hkrati pa se s tem zmanjšata čas in poraba energije za tehnološki postopek. Problem predstavlja predvsem oblaganje majhnih delcev (50-300 mikronov), ki so zaradi majhne mase in s tem inercije bolj dovzetni za neželen proces aglomeracije. Samostojni in obloženi majhni delci so v farmacevtski io in kemijski tehnologiji pomembni zaradi večje specifične površine v primerjavi z večjimi delci. V farmacevtski industriji je v primeru oblaganja delcev z disperzijo, ki vsebuje zdravilno učinkovino, še posebej pomemben čim večji izkoristek oblaganja, ki je največkrat odvisen od lege in usmeritve šobe ter številčne gostote delcev okrog is šobe za razprševanje.Providing a narrow distribution of particle thickness from particle to particle with the construction of process equipment is also important if the particle coating protects them from atmospheric, physiological or other environment. In this case, less matter can be applied to the lining's functionality, while reducing the time and energy consumption of the process. The problem is mainly the coating of small particles (50-300 microns), which, due to their low mass and thus inertia, are more susceptible to the unwanted agglomeration process. Single and coated small particles are important in pharmaceutical io and chemical technology because of their larger specific surface area compared to larger particles. In the pharmaceutical industry, in the case of coating particles with a dispersion containing the active ingredient, it is particularly important to maximize the efficiency of the coating, which most often depends on the position and orientation of the nozzle and the numerical density of the particles around the nozzle.

Znane procesne naprave za oblaganje delcev, ki delujejo na principu tehnologije z vrtinčenjem, so primerna tehnologija za oblaganje delcev v velikostnem razredu od 50 mikronov do 6 mm.The well-known vortex-based particle coating process processes are suitable technology for particle coating in the size range of 50 microns to 6 mm.

Procesne naprave za oblaganje delcev, ki delujejo na principu 2o tehnologije z vrtinčenjem, delimo v grobem na naprave z razprševanjem od zgoraj, naprave s tangencialnim razprševanjem in naprave z razprševanjem od spodaj. Procesne naprave z razprševanjem od zgoraj so prvenstveno namenjene granulaciji, v primeru oblaganja pa je zaradi potrebe po majhnih kapljicah disperzije za oblaganje močneje izražen učinek sušenja z razprševanjem. Če znižamo lego šobe, se sicer zmanjša pot šobe do delcev, vendar zaradi nasprotnega toka zraka za fluidizacijo in komprimiranega zraka dvokanalne šobe pride do motnje vzorca gibanja delcev in prekomerne omočitve mrežice na dnu naprave. Procesne naprave za oblaganje s tangencialnim razprševanjem v kombinaciji z rotorsko ploščo so problematične s stališča tesnega stika delcev v vzorcu gibanja in relativno majhnega toka toplote skozi procesno komoro, zaradi česar je favorizirana aglomeracija majhnih delcev, ki jih želimo obložiti.Process particle coating devices operating on the principle of 2o vortex technology are roughly divided into top-sprayed devices, tangential-sprayed devices and bottom-sprayed devices. The top spray process devices are primarily intended for granulation and, in the case of coating, due to the need for small droplets of coating dispersion, the effect of spray drying is more pronounced. If the nozzle position is lowered, the nozzle path to the particles is reduced, but due to the opposite flow of fluidizing air and the compressed air of the two-channel nozzle, the particle movement pattern is disrupted and the mesh is excessively wetted at the bottom of the device. Tangential spray coating process devices in combination with a rotor plate are problematic from the point of view of the close contact of particles in the motion pattern and the relatively small heat flow through the process chamber, which makes it favored to agglomerate the small particles that we want to coat.

V primeru procesne naprave z razprševanjem od spodaj je razdalja med šobo in delci kratka, hkrati pa je šoba usmerjena v smeri toka zraka za fluidizacijo, oziroma delcev. Znana je izvedenka is naprave za oblaganje z razprševanjem od spodaj, ki centralno nad šobo in malo nad distribucijsko ploščo vsebuje še t.i. notranji oziroma razmejitveni valj. Z vključitvijo razmejitvenega valja dobi procesna komora naravo naprave, ki deluje na principu tehnologije z vrtinčenjem s krožnim gibanjem (»circulating fluid bed«), in jo po izumitelju tudi imenujemo VVursterjeva komora. Prednost te naprave je v tem, da je ločeno področje oblaganja delcev od področja sušenja, nadalje je zaradi pnevmatskega transporta delcev znotraj valja in v okolici šobe hitrost delcev relativno velika (0.7 - 2 m/s), kar zmanjšuje možnost aglomeracije delcev. Oblika gibanja delcev je ponavljajoča, krožna, kar predstavlja obliko kontroliranega gibanja. Problemi pri oblaganju s klasično VVursterjevo komoro se kažejo v neenakomernosti nanosa filmske obloge v populaciji delcev, kar je posledica efekta medsebojnega senčenja delcev v območju razprševanja disperzije za oblaganje, učinka »mrtvega« kota v toku delcev ter posledica nesorazmernega pospeševanja najmanjših in največjih delcev v populaciji delcev, ki jih oblagamo. Volumski delež pelet v območju oblaganja in s tem izraženost učinka medsebojnega senčenja je odvisen od pretoka medija za fluidizacijo (zrak ali drug inertni plin) in od nastavitve višine razmejitvenega valja. Učinek »mrtvega kota« v toku delcev se pojavi v kotu med zunanjo steno procesne naprave in distribucijsko ploščo, saj delci, ki se nahajajo bližje zunanji steni razmejitvenega valja prej ponovno preidejo v is območje horizontalnega transporta ter območje oblaganja in vertikalnega transporta ter tako med oblaganjem večkrat zaokrožijo skozi valj ter posledično prejmejo več obloge. Učinek »mrtvega kota« je močneje izražen ob nižjih legah notranjega valja kljub temu, da lokalno v območju mrtvega kota v distribucijski plošči najdemo večje odprtine, ki naj bi z lokalno večjim vertikalnim pretokom plina zmanjševale oz. odpravljale ta problem. Če oblagamo populacijo delcev s širšo distribucijo velikosti, imajo večji delci po koncu oblaganja večjo debelino obloge kot tisti, ki so manjši. To se zgodi • * zaradi narave vertikalnega transporta delcev, saj imajo manjši delci boljše razmerje med prečnim presekom in maso kot večji delci, posledično imajo manjši delci po prehodu razmejitvenega valja večjo hitrost kot večji delci in se dvigujejo višje, zaradi česar se manjšim delcem napram večjim delcem poveča čas dviganja in padanja v procesni komori. V celotnem času oblaganja se to dejstvo izrazi v odvisnosti števila prehodov delcev skozi razmejitveni valj od začetne velikosti delca.In the case of a bottom-spraying process device, the distance between the nozzle and the particles is short, and at the same time the nozzle is directed in the direction of the fluid flow of the fluid or particles. An embodiment of the spray-on coating device is known from below, which further comprises so-called central over the nozzle and just above the distribution plate. inner or divider cylinder. By incorporating a delimiter cylinder, the process chamber gives the nature of a circulating fluid bed technology and is also called the Wurster chamber after the inventor. The advantage of this device is that it is separated from the particle coating area from the drying area, and further due to the pneumatic transport of particles within the cylinder and around the nozzle, the particle velocity is relatively high (0.7 - 2 m / s), which reduces the possibility of particle agglomeration. The particle movement pattern is repetitive, circular, which is a form of controlled motion. The problems of coating with the classic Wurster chamber are reflected in the uneven application of the film coating in the particle population, which is due to the effect of mutual shading of the particles in the dispersion region of the coating dispersion, the effect of a "dead" angle in the particle flow, and the disproportionate acceleration of the smallest and largest particles in the population of the particles that are coated. The volume fraction of the pellets in the coating area, and thus the manifestation of the effect of inter-shading, depends on the flow of the fluidizing medium (air or other inert gas) and on the setting of the height of the dividing cylinder. The "blind spot" effect in the particle flow occurs in the angle between the outer wall of the processing plant and the distribution plate, since particles closer to the outer wall of the divider roller re-enter the horizontal transport zone and the coating and vertical transport zone and thus during coating repeatedly rounded through the cylinder and consequently receive more lining. The "dead-angle" effect is more pronounced at lower internal cylinder positions, despite the fact that larger openings are found locally in the dead-zone area of the distribution panel, which is expected to reduce or decrease the local gas flow. eliminate this problem. When coating a population of particles with a wider size distribution, larger particles have a larger coating thickness after the coating is complete than smaller ones. This happens • * due to the nature of the vertical particle transport, because smaller particles have a better cross-sectional mass ratio than larger particles, consequently smaller particles have a higher velocity after passing the divider roller than larger particles and ascend higher, causing smaller particles to move toward Increases the rise and fall time of the process chamber in larger particles. Throughout the coating time, this fact is expressed as a function of the number of passages of the particles through the dividing cylinder from the initial particle size.

Nadalje je zaradi relativno velike gostote delcev ob notranji steni razmejitvenega valja in s tem medsebojnih trkov delcev lahko izražena aglomeracija delcev v velikostnem območju od 50 do 300 mikronov kljub temu, da sušenje zaradi velikega lokalnega pretoka segretega zraka poteka relativno hitro.Furthermore, due to the relatively high particle density along the inner wall of the separating cylinder and thus the mutual collisions of the particles, the agglomeration of particles in the size range of 50 to 300 microns can be expressed, despite the fact that drying due to the high local flow of heated air takes place relatively quickly.

Znane rešitve problematike VVursterjeve naprave so opisane v is nadaljevanju.Known solutions to the problem of the Wurster device are described in the following.

Znano je, da vrtinčasti tok fluida(»swirl flow«) znotraj neke cevi izboljša prenos toplote v dvofaznem toku, kar je posledica daljše poti fluida (in s tem časa kontakta z delcem) na neki razdalji v aksialni smeri toka (Algifri AH et al, Heat-transfer in turbulent decaying swirl flow in a circular pipe, International Journal of Heat and Mass Transfer, 1988, 31(8):1563-1568.) Zaradi boljšega prenosa toplote je pričakovati, da se bo zmanjšal problem pri oblaganju manjših delcev.Swirl flow inside a tube is known to improve heat transfer in a two-phase flow, which is the result of a longer fluid path (and thus particle contact time) at some distance in the axial direction of flow (Algifri AH et al , Heat Transfer and Turbulent Decaying Swirl Flow in a Circular Tube, International Journal of Heat and Mass Transfer, 1988, 31 (8): 1563-1568.) For better heat transfer, it is expected that the problem of coating smaller particles will be reduced. .

Znan je tudi članek izboljšanja toplotnega izkoristka pri sušenju v napravi, ki nima strukture VVursterjeve naprave, vendar deluje na principu tehnologije z vrtinčenjem in ima generator vrtinčastega toka v obliki vetrnice - kril. Pri tej napravi je bilo z vključitvijo vrtinčnega toka doseženo od 5 do 25% izboljšanje glede hitrosti sušenja in specifične hitrosti sušenja ter do 38% izboljšanje efektivnosti sušenja (M. Ozbej, M.S. Soylemez, Energy Conversionand Management, 46, (2005), 1495-1512).There is also an article on improving the thermal efficiency of drying in a device that does not have the structure of a Wurster device, but operates on the principle of vortex technology and has a vortex-shaped vortex generator. With this device, a 5 to 25% improvement in drying rate and specific drying rate and up to 38% improvement in drying efficiency were achieved by incorporating eddy current (M. Ozbej, MS Soylemez, Energy Conversionand Management, 46, (2005), 1495- 1512).

Z vključitvijo vrtinčastega toka (swirl flow-a) v VVursterjevo komoro io se zmanjša širina distribucije debeline obloge v populaciji obloženih delcev z ozko distribucijo velikosti za približno 43% (P.VV.S. Heng et al., International Journal of Pharmaceutics, 327, 2006, 26-35), napram klasični VVursterjevi komori pa se tudi bistveno zmanjša pojav aglomeracije (E.S.K. Tang et al., International Journal of is Pharmaceutics, 350, 2008, 172-180), medtem ko je izkoristek oblaganja v primerjavi s klasično komoro za dano izvedenko nekoliko slabši.By incorporating swirl flow into the Wurster chamber io, the width of the coating thickness distribution in the coated particle population is reduced by a narrow size distribution by about 43% (P.VV.S. Heng et al., International Journal of Pharmaceutics, 327 , 2006, 26-35), and agglomeration (ESK Tang et al., International Journal of is Pharmaceutics, 350, 2008, 172-180) is also significantly reduced in comparison to the classic Wurster chamber, whereas the coating efficiency compared to the classical one the chamber for a given derivative slightly worse.

V US patentnem dokumentu št. 5,718,764 (vrtinčen tok) je opisana rešitev firme Aeromatic, ki je uporabila in zaščitila generator vrtinčnega toka zraka (swirl flow) v okviru naprave za oblaganje z razprševanjem od spodaj (VVursterjeva komora). V svojih izvedbenih primerih je le ta dokazal določeno izboljšavo v enakomernosti filmske obloge in sicer posredno preko efekta raztapljanja barvila iz obloženega jedra preko bolj ali manj zvezne netopne obloge. Glede na to, da je bil predhodno že znan efekt vrtinčnega toka (swirl flow-a) na prenos toplote (Algifri AH et al, Heat-transfer in turbulent decaying swirl flow in a circular pipe, International Journal of Heat and MassIn U.S. Pat. No. 5,718,764 (vortex flow) describes an Aeromatic solution that utilized and protected a swirl flow generator within a spray device from below (Wurster chamber). In its embodiments, the latter demonstrated some improvement in the uniformity of the film coating, indirectly through the effect of dissolving the dye from the coated core over a more or less continuous insoluble coating. Given the previously known effect of swirl flow on heat transfer (Algifri AH et al, Heat transfer and turbulent decaying swirl flow in a circular pipe, International Journal of Heat and Mass

Transfer, 1988, 31(8):1563-1568), je v pričujočem dokumentu opisana lastna konstrukcija za dosego vrtinčnega toka zraka. V US patentnem dokumentu št. 6,492,024 B1 (granulacija z vrtinčnim tokom) je opisan proces granulacije v kombinaciji z napravo za oblaganje z generatorjem vrtinčnega toka iz patenta št. US io 5,718,764.Transfer, 1988, 31 (8): 1563-1568), the present document describes its own structure for achieving eddy current. In U.S. Pat. No. 6,492,024 B1 (eddy current granulation) describes the process of granulation in combination with a coating device with a eddy current generator of patent no. US io 5,718,764.

V slovenski patentni prijavi št. P-200800295 je opisan tehnični problem zmanjšanja širine distribucije debeline filmske obloge, zmanjšanja aglomeracije delcev in povečanja izkoristka oblaganja delcev, rešen z inovativno konstrukcijo generatorja vrtinčenja toka is plina, ki pa ne omogoča velike fleksibilnosti pri doseganju tokovnih struktur dvofaznega toka. Možnosti za optimizacijo procesa oblaganja so na ta način omejene. Prav tako med procesom oblaganja v razmejitvenem valju prihaja do tvorjenja vrvičastih struktur trdnih delcev, posledično do učinka medsebojnega senčenja delcev v območju razprševanja oblagalne raztopine in s tem do poslabšanja enakomernosti debeline filmske obloge.In the Slovenian patent application no. P-200800295 describes a technical problem of reducing the width of the film coating thickness distribution, reducing particle agglomeration and increasing the particle lining yield, solved by the innovative construction of a vortex and gas vortex generator, which, however, does not provide much flexibility in reaching the two-phase flow structures. The options for optimizing the coating process are thus limited. Also, during the coating process in the delimiter cylinder, the formation of cordlike structures of solids occurs, as a consequence of the effect of the mutual shading of the particles in the dispersion region of the coating solution and thus the uniform film thickness deterioration.

Obstaja konstantna potreba po procesni opremi za oblaganje delcev,There is a constant need for process equipment for particle coating,

- ki bo v primerjavi z obstoječimi konstrukcijskimi rešitvami VVursterjeve komore zagotavljala energetsko in materialno učinkovit proces oblaganja delcev, rezultat katerega bo populacija obloženih delcev s primerjalno ožjo distribucijo debeline filmske obloge in manjšo aglomeracijo delcev;- which, compared to the existing design solutions of the Wurster Chamber, will provide an energy-efficient and materially efficient particle coating process, which will result in a population of coated particles with a comparatively narrower distribution of film thickness and less particle agglomeration;

- ki bo s svojo fleksibilnostjo omogočala nastavitev optimalnih tokovnih lastnosti in s tem visoko kvaliteto oblaganja za širok spekter možnih produktov, kar vključuje tudi zagotavljanje kvalitetnega oblaganja čim bolj širokega območja velikostne distribucije delcev.- which, with its flexibility, will allow the setting of optimal flow properties and thus high coating quality for a wide range of possible products, which also includes providing quality coating as wide a particle size distribution range as possible.

Ob zgoraj omenjenih lastnostih pa obstaja tudi potreba po kompaktni izvedbi procesne naprave za oblaganje, povezani z nizkimi investicijskimi stroški, katere geometrija omogoča enostaven »scale up«.In addition to the aforementioned features, there is also a need for a compact implementation of a process coating device associated with low investment costs, whose geometry makes it easy to scale up.

is V predstavljenem izumu smo tehnični problem zmanjšanja širine distribucije debeline filmske obloge, zmanjšanja aglomeracije delcev in povečanja izkoristka oblaganja, rešili z inovativno konstrukcijo generatorja vrtinčenja toka zraka (slike 3, 4, 5), ki daje drugačen profil hitrosti zraka na vstopu v spodnji del valja kot je značilno za do sedaj znane izvedbe vrtinčnega toka. Večje je tudi zmanjšanje RSDja debeline filmske obloge v primerjavi z znano izvedbo, in sicer bistveno napram klasični VVursterjevi komori (P.VV.S. Heng et al, International Journal of Pharmaceutics, 327, 2006, 26-35). Prav tako smo z inovativno konstrukcijo zmanjšali problem odvisnosti debeline filmske obloge od začetne velikosti delcev, ki jih oblagamo. Na lastnosti dvofaznega toka delci-plin, ki vplivajo na kvaliteto oblaganja, je v veliki meri možno vplivati s spreminjanjem določenih sestavnih delov generatorja zvrtinčenega toka zraka, kar omogoča uporabnost naprave za širok spekter produktov.is In the present invention, the technical problem of reducing the width of the film thickness distribution, reducing particle agglomeration and increasing the yield of coating was solved by the innovative design of the airflow vortex generator (Figures 3, 4, 5), which gives a different air velocity profile at the inlet to the lower part cylinders as is typical of the known eddy current designs. The reduction in RSD of the film coating thickness is also greater compared to the known embodiment, significantly compared to the classic Wurster chamber (P.VV.S. Heng et al, International Journal of Pharmaceutics, 327, 2006, 26-35). We have also reduced the problem of film thickness thickness dependence on the initial size of the particles being coated by the innovative construction. The properties of biphasic particle-gas flow, which affect the quality of the coating, can be largely influenced by modifying certain components of the airflow generator, which makes the device useful for a wide range of products.

Izum bomo podrobneje pojasnili na osnovi izvedbenega primera in pripadajočih slik,od katerih kaže:The invention will be explained in greater detail on the basis of an embodiment and the accompanying drawings, of which:

slika 1 slika 2 slika 3,4,5 slika 6,7 shematski presek procesne naprave za oblaganje delcev po izumu; detajl procesne naprave v okolici generatorja vrtinčenja zraka;Fig. 1 Fig. 2 Fig. 3,4,5 Fig. 6,7 is a schematic sectional view of a process particle coating apparatus of the invention; detail of a process device in the vicinity of an air vortex generator;

geometrija generatorja 4 vrtinčenja zraka; shematska izvedba polindustrijske oz. industrijske naprave za oblaganje delcev po izumu;geometry of air vortex generator 4; schematic design of semi-industrial or. industrial particulate coating devices according to the invention;

Na sliki 1 je predstavljen shematski presek procesne naprave za 20 oblaganje delcev, ki sestoji iz zunanje stene 1, ki ima v spodnjem delu naprave obliko plašča valja ali prisekanega stožca. Na dnu procesne naprave, kjer se med procesom zadržujejo delci, ki jih oblagamo, se nahaja generator 4 vrtinčenja toka plina z distribucijsko ploščo 3 plina v zunanjem delu, ob zunanji steni 1 naprave. Distribucijska plošča 3 plina, ki ima iz tlorisa obliko kolobarja, je iz preseka lahko ravna, ukrivljena ali npr. stopničasta. Tik nad distribucijsko ploščo 3 plina in generatorjem 4 vrtinčenja plina se lahko nahaja pletena kovinska mrežica z odprtinami reda 10-100 mikronov. Centralno je skozi generator 4 vrtinčenja plina vpeljana šoba 6 za razprševanje suspenzije ali disperzije za oblaganje, ki je lahko po delovanju eno ali večfazna. Dvokanalna šoba 6 za razprševanje po sliki 1 ima dovod 7 za disperzijo za oblaganje in io dovod 8 za komprimiran plin. Pod nivojem distribucijske plošče 3 plina in generatorja 4 vrtinčenega plina oblikuje stena 2 procesne naprave prostor, v katerega dovajamo medij 9 (največkrat zrak) za fluidizacijo in je v tem delu naprave v nadtlaku glede na prostor procesne naprave nad generatorjem 4 vrtinčenja plina in is distribucijske plošče 3 plina. Centralno je v procesni komori vpet razmejitveni valj 5 v obliki cevi in sicer na takšni višini, da tvori med generatorjem 4 vrtinčenja plina oz. distribucijsko ploščo 3 plina režo (največkrat velikosti 5 do 25 mm).1 is a schematic cross-sectional view of a process particle coating apparatus 20 consisting of an outer wall 1 having a cylinder or truncated cone shape in the lower part of the device. At the bottom of the processing plant, where the particles that are deposited during the process are held, there is a gas flow vortex generator 4 with a gas distribution plate 3 in the outer part, adjacent to the outer wall 1 of the device. The gas distribution plate 3 having a circular shape from the floor plan may be straight, curved, or e.g. stepped. Just above the gas distribution panel 3 and the gas vortex generator 4, there may be a knit metal mesh with openings of the order of 10-100 microns. Centrally, a suspension or dispersion spray nozzle 6 is introduced through the gas swirl generator 4, which may be single or multiphase after operation. The two-channel spray nozzle 6 of Figure 1 has an inlet 7 for the coating dispersion and an inlet 8 for the compressed gas. Below the level of the gas distribution panel 3 and the vortex gas generator 4, the wall 2 of the process unit forms a space into which fluid 9 is supplied, for fluidization, and in this part of the device is overpressured relative to the space of the process unit above the vortex generator 4 and is distributed. plates of 3 gas. Centrally, a dividing cylinder 5 in the form of a tube is mounted in the process chamber at such a height that it creates gas or gas swirls between the generator 4. distribution panel 3 gas slots (maximum sizes 5 to 25 mm).

Delci se v serijski izvedbi procesne naprave v obliki sloja nahajajo okrog razmejitvenega valja 5 nad ravno ali ukrivljeno distribucijsko ploščo 3 plina. Od števila in razporeditve odprtin v zunanji distribucijski plošči plina 3, pretoka medija 9 za fluidizacijo, velikosti in gostote delcev, je odvisno, ali je ta sloj v obliki statičnega, razrahljanega nasutja ali fluidiziranega (lebdečega) stanja. Centralno postavljen generator 4 vrtinčenega toka medija (plina) tvori v področju horizontalnega preseka razmejitvenega valja 5 vrtinčen tok 17 plina z aksialno in tangencialno komponento.The particles in the serial embodiment of the process device in the form of a layer are located around the delimiter cylinder 5 above the straight or curved gas distribution plate 3. Depending on the number and arrangement of openings in the outer gas distribution plate 3, the flow rate of the fluidizing medium 9, the size and density of the particles, this layer is in the form of a static, loose bulk or fluidized (floating) state. The centrally positioned generator 4 of the vortex flow of the medium (gas) forms, in the region of the horizontal section of the dividing cylinder 5, a vortex flow of 17 gas with an axial and tangential component.

Vrtinčen tok 17 plina v področju reže med razmejitvenim valjem 5 in zunanjo distribucijsko ploščo 3 plina zaradi velike lokalne razlike v hitrosti gibanja plina ustvari podtlak, ki rezultira v horizontalnem vleku delcev 11 v področju reže. Zaradi dovolj velike aksialne in tangencialne komponente hitrosti plina se delci od nivoja io generatorja 4 vrtinčenja plina dvigujejo vertikalno v smeri puščice 12 vzdolž razmejitvenega valja 5, pri čemer delno sledijo gibanju plina v obliki vrtinca zaradi tangencialne komponente toka plina. Pri vertikalnem gibanju delcev navzgor le-ti letijo skozi področje 10 razprševanja disperzije za oblaganje. V tem področju 10 prihaja do naključnih trkov delcev in kapljic, pri čemer se kapljica po trku na površini delca razporedi po površini delca, del kapljevine pa lahko tudi penetrira v notranjost delca.The swirling flow of gas 17 in the gap region between the dividing cylinder 5 and the outer gas distribution plate 3 creates a subpressure due to the large local difference in gas velocity, resulting in horizontal particle drag 11 in the gap region. Due to the sufficiently large axial and tangential gas velocity component, particles from the gas vortex generator level 4 rise vertically in the direction of arrow 12 along the delimiter 5, partly following the vortex gas motion due to the tangential gas flow component. In the vertical upward movement of the particles, they fly through the dispersion region of the coating dispersion. In this area 10, random collisions of particles and droplets occur, with the droplet being distributed over the surface of the particle after the collision on the surface of the particle, and part of the liquid can also penetrate the interior of the particle.

Delci vzdolž celotnega valja 5 pospešujejo, ko pa zapustijo valj 5, se njihova hitrost začne zmanjševati, saj lokalna hitrost plina zaradi hitrega povečanja preseka procesne naprave hitro pade, prav tako sila upora delca v toku plina. Delci po dosegu maksimalne višine v ekspanzijskem delu 13 procesne naprave padejo nazaj med zunanjo steno razmejitvenega valja 5 in zunanjo steno 1 procesne naprave, dokler ne dosežejo nivoja nasutja delcev na dnu naprave. Med gibanjem delcev navzgor in navzdol ves čas poteka proces sušenja tako, da je delec ob stiku z nasutjem delcev praktično osušen. Z ravnotežjem hitrosti dovajanja disperzije za oblaganje, uravnavanja velikosti kapljic prek tlaka razprševanja ter velikosti toplotnega toka, uravnavanega preko pretoka in temperature medija za fluidizacijo, ustvarimo tekom procesa oblaganja pogoje, ki favorizirajo proces oblaganja in ne aglomeracije delcev. Delci tekom oblaganja opisujejo v komori ponavljajoče krožno gibanje in tako večkrat preidejo področje oblaganja. Tako se s časom oblaganja na površini delca najprej tvori zvezna obloga, katere debelina se tekom oblaganja še povečuje.The particles along the entire cylinder 5 accelerate, but when they leave the cylinder 5, their velocity begins to decrease as the local gas velocity drops rapidly due to the rapid increase in the cross section of the process device, as does the particle drag force in the gas stream. Upon reaching the maximum height in the expansion portion 13 of the process device, the particles fall back between the outer wall of the delimiter cylinder 5 and the outer wall 1 of the process device until they reach the particle fill level at the bottom of the device. During the upward and downward movement of the particles, the drying process is carried out in such a way that the particle is substantially dried in contact with the particle ingestion. By balancing the feed rate of the coating dispersion, controlling the size of the droplets through the scattering pressure, and the magnitude of the heat flux controlled by the flow and temperature of the fluidization fluid, we create during the coating process conditions that favor the coating process rather than the agglomeration of the particles. During the coating, the particles describe repeated circular motion in the chamber to cross the coating area several times. Thus, with the time of coating, a continuous coating is first formed on the surface of the particle, whose thickness increases further during the coating.

Na sliki 2 je prikazan detajl procesne naprave v okolici generatorja 4 vrtinčenja plina in šobe 6 za razprševanje s porazdelitvijo in obliko is lokalnih tokov 15, 16, 17 medija (plina) za fluidizacijo. Prav tako je na zunanji distribucijski plošči 3 plina prikazana značilna razporeditev odprtin po gostoti in preseku. V področju distribucijske plošče 3 plina ob zunanji steni 1 procesne naprave se navadno nahaja pas odprtin večjega preseka, ki generira lokalno večji tok 16 medija kot v primeru ostalih odprtin distribucijske plošče 3 plina. Na takšen način se zmanjšuje efekt zadrževanja delcev v kotu med distribucijsko ploščo plina 3 in zunanjo steno 1 procesne naprave.Figure 2 shows a detail of a process device in the vicinity of a gas vortex generator 4 and a nozzle 6 for distribution and shape and local currents 15, 16, 17 of fluid (gas) fluid (gas). Also, the outer gas distribution plate 3 shows a typical arrangement of openings by density and cross section. In the area of the gas distribution panel 3 along the outer wall 1 of the processing device, there is usually a band of openings of a larger cross-section, which generates a locally larger flow of 16 media than in the case of other openings of the gas distribution panel 3. In this way, the particle retention effect in the angle between the gas distribution plate 3 and the outer wall 1 of the processing device is reduced.

Na slikah 3, 4 in 5 je prikazana geometrija generatorja 4 vrtinčenja plina. Ovire 18 za usmerjanje toka plina so nameščene med dvema rotacijsko simetričnima stenama 19 in 20. Ovire 18 za usmerjanje toka plina so glede na središčnice tlorisnih ploskev sten s 19, 20 nameščeni pod kotom a, največkrat od 10 do 80°.Figures 3, 4 and 5 show the geometry of the gas swirl generator 4. The obstacles 18 for directing the gas flow are arranged between two rotationally symmetrical walls 19 and 20. The obstacles 18 for directing the gas flow are positioned at an angle a of maximum 10 to 80 ° with respect to the center lines of the floor planes of the walls 19, 20.

Na sredini spodnje plošče 19 je nameščeno telo 21 v obliki troblje. Oblika telesa 21 usmerja tok plina, ki prihaja iz območja, omejenega s ploščama 19 in 20, v katerem so nameščene ovire 18 za ustvarjanje vrtinčnega toka zraka, navzgor skozi anularno režo 22, ki io jo tvorita notranji rob oziroma notranja stena telesa 23, ki se nahaja med zgornjo ploščo 20 in distribucijsko ploščo plina 3 ter stena telesa 21. Pri tem se ustvarja zvrtinčeni tok plina. Tokovne lastnosti plina so odvisne od oblike in lege ovir 18 za usmerjanje toka zraka, oblike telesa 21 ter proste površine anularne reže 22 med is telesoma 21 in 23. S površino te anularne reže lahko pri nekem določenem pretoku plina vplivamo na hitrost plina pod razmejitvenim valjem 5. Ta hitrost je eden od parametrov, ki vpliva na tok pelet v razmejitveni valj 5 ter s tem na strukturo dvofaznega toka v razmejitvenem valju 5. Če si predstavljamo, da je struktura vrtinčenega toka plina v obliki vijačnice, potem na obliko te vijačnice enostavno vplivamo s kotom ovir 18 za usmerjanje toka plina, obliko telesa 21 ter notranje stene telesa 23. Razstavljiva konstrukcija omogoča enostavno menjavanje omenjenih delov in s tem • · e doseganje ustrezne »vijačne« strukture zvrtinčenega toka plina za doseganje optimalnih razmer oblaganja, ki so za posamezne aplikacije lahko različne. Šoba 6 za razprševanje raztopine ali disperzije za oblaganje je nameščena centralno skozi telo 21 oblike troblje.In the middle of the lower panel 19 is placed a body 21 in the form of a trumpet. The body shape 21 directs the flow of gas coming from the area bounded by the panels 19 and 20, in which the obstacles 18 for creating a vortex airflow are arranged upward through the annular slot 22, which io is formed by the inner edge or the inner wall of the body 23, which is located between the upper plate 20 and the gas distribution plate 3 and the wall of the body 21. This creates a swirling gas stream. The flow properties of the gas depend on the shape and position of the obstacles 18 to direct the flow of air, the shape of the body 21, and the free surface of the annular slot 22 between and with bodies 21 and 23. With the surface of this annular slot, the velocity of the gas below the dividing cylinder can be affected by a certain gas flow. 5. This velocity is one of the parameters that affects the flow of pellets in the delimiter cylinder 5 and thus the structure of the two-phase flow in the delimiter cylinder 5. If we imagine that the structure of the eddy gas flow is in the form of a helix, then the shape of this helix is easy the angle of obstacles 18 for directing the gas flow, the shape of the body 21, and the inner walls of the body 23 are affected. The disassembled structure makes it easy to change said parts and thereby • to achieve the proper “screw” structure of the swirling gas flow to achieve the optimum coating conditions suitable for individual applications may be different. The solution nozzle 6 for dispersing the coating solution or dispersion is arranged centrally through the body 21 of the trumpet shape.

Generator 4 vrtinčenja plina zmanjša RSD debeline obloge (primerjava rezultatov Tabele 2 in Tabele 3) in sicer tako, da se zaradi krožnega gibanja delcev, ki sledijo toku plina, zmanjša efekt medsebojnega senčenja delcev, delci pa so hkrati bolj enakomerno io porazdeljeni po celotnem volumnu razmejitvenega valja 5. Vrtinčen tok plina je zaradi višje celokupne hitrosti plina (aksialna in tangencialna komponenta) bolj efektiven pri sesanju delcev, kar zmanjšuje efekt mrtvega toka, kar prav tako zmanjša efekt distribucije debeline obloge. V primerjavi z izvedbo po patentni prijavi št. P-200800295, tok delcev znotraj razmejitvenega valja 5 v napravi, ki je predmet tega izuma, ne vsebuje vrvičastih struktur toka delcev in je znatno bolj homogen. Zaradi prej opisane oblike gibanja delcev v valju kot posledice vrtinčnega toka plina se povečata izkoristek oblaganja in enakomernost debeline nanošene filmske obloge.The gas swirl generator 4 reduces the RSD of the coating thickness (comparing the results of Table 2 and Table 3) by reducing the effect of the mutual shading of the particles due to the circular motion of the particles following the gas flow, and at the same time the particles are more evenly distributed throughout the volume. delimiter roller 5. Due to the higher overall gas velocity (axial and tangential component), the vortex gas flow is more effective at suctioning the particles, which reduces the dead current effect, which also reduces the effect of the thickness distribution of the coating. Compared with the embodiment of the patent application no. P-200800295, the particle flow within the delimiter cylinder 5 in the apparatus of the present invention does not contain corded particle flow structures and is significantly more homogeneous. Due to the previously described shape of the particle motion in the cylinder as a consequence of the eddy current of the gas, the coating efficiency and the uniform thickness of the deposited film coating are increased.

2o Zaradi izboljšanja prenosa toplote (kot posledica daljše poti gibanja delcev) na poti skozi valj ter področja ekspanzijskega dela naprave) ter zmanjšanja lokalne gostote in medsebojnih trkov pelet ob steni valja v primerjavi s klasično VVursterjevo komoro, opazimo v primeru • « · 9 · procesne naprave z generatorjem 4) vrtinčenja bistveno manjšo aglomeracijo delcev napram klasični VVursterjevi komori. Zaradi centrifugalne komponente gibanja delcev manjši delci po prehodu valja prej padejo proti dnu naprave, zaradi česar se zmanjša problematika odvisnosti debeline obloge od začetne velikosti delcev, ki je značilna za klasično VVursterjevo komoro.2o Due to the improvement of heat transfer (as a result of a longer particle movement path) on the path through the cylinder and the expansion areas of the device) and the reduction of local density and mutual collisions of the pellets against the cylinder wall compared to the classic Wurster chamber, we can see in the example • Generator devices 4) Vortex significantly smaller particle agglomeration than the classic Wurster chamber. Due to the centrifugal component of the particle movement, smaller particles fall towards the bottom of the device sooner after passing the cylinder, which reduces the problem of the dependence of the thickness of the coating on the initial particle size, which is characteristic of the classic Wurster chamber.

Sliki 6 in 7 nakazujeta shematsko izvedbo polindustrijske oz. industrijske naprave za oblaganje delcev z generatorji 4 vrtinčenja, kjer je povečanje kapacitete procesne naprave izvedeno s io povečanjem števila generatorjev 4 vrtinčenja plina, šob za razprševanje 6 in razmejitvenih valjev 5 znotraj ene procesne naprave, omejene z zunanjo steno 1, znotraj katere se lahko nahajajo tudi filtri 24.Figures 6 and 7 show the schematic embodiment of the semi-industrial or industrial particle coating apparatus with 4 vortex generators, wherein the increase in the capacity of the process device is effected by increasing the number of gas vortex generators 4, nozzles 6 and dividing cylinders 5 within one process device bounded by an outer wall 1 within which they may be located also filters 24.

Razumljivo je, da so zgornji opisi s pripadajočimi slikami podani is kot primeri. Glede na njih so možne različne modifikacije, ki pa ne odvračajo od bistva izuma, navedenega v patentnih zahtevkih. Na primer, distribucijska plošča 3 plina je lahko ravna, ukrivljena ali stopničasta. Izvedba perforacije distribucijske plošče 3 je lahko z luknjami, režami, ali npr. z različnimi metodami prebijanja pločevine.It is understood that the above descriptions with accompanying pictures are given by way of example. According to them, various modifications are possible, which do not discourage the essence of the invention stated in the claims. For example, the gas distribution panel 3 may be straight, curved, or stepped. The perforation of the distribution plate 3 may be by means of holes, slots, or e.g. with different methods of punching sheet metal.

Prav tako se lahko zgornji rob 21 b troblje 21 in višina šobe 6 nahajata nad, pod ali v višini distribucijske plošče 3. Usmerjevalniki 18 toka zraka so lahko ravni ali npr. ukrivljeni, in so lahko izvedeni v obliki vetrnice ali npr. utorov. Prav tako ni nujno, da je spodnja ploskev spodnje stene 19 ravna. Izveden je lahko npr. v obliki polkrogle, kar pripomore k znižanju tlačnih izgub plina skozi generator 4 vrtinčenega toka zraka.Likewise, the upper edge 21 b of the blade 21 and the height of the nozzle 6 may be located above, below, or in the height of the distribution plate 3. The air flow guides 18 may be straight or e.g. curved, and may be in the form of a windmill or e.g. slots. Also, the lower face of the lower wall 19 does not have to be straight. It can be performed e.g. in the form of a semicircle, which helps to reduce the pressure loss of gas through the generator 4 of the swirling air stream.

Izvedbeni primeriImplementation examples

Za izvedbena primera 1 in 2 smo z barvilom tartrazin obložili 1 kg pelet in sicer smo med poskusom oblaganja razpršili 915 g 8% (m/m) vodne disperzije HPMC z 10.9 % (m/m) deležem barvila. Ob koncu io oblaganja smo vzorčili 30 vzorcev pelet po 10 pelet in jih raztopili v fosfatnem pufru s pH=6.5 ter spektrofotometrično pomerili koncentracijo barvila pri valovni dolžini 425 nm. Iz populacije meritev koncentracij barvila smo izračunali relativno standardno deviacijo (RSD) filmske obloge, saj je ob ozki in definirani distribuciji pelet okroglih oblik variacija koncentracije raztopljenega barvila predvsem funkcija debeline filmske obloge pelet pred raztapljanjem. Pri izračunu RSD-ja debeline filmske obloge med posameznimi peletami smo se poslužili metode in enačb podanih v Cheng XX, Turton R, The prediction of Variability Occuring in Fluidized Bed CoatingFor embodiments 1 and 2, 1 kg of pellets were coated with tartrazine dye, while during the coating experiment, 915 g of 8% (w / w) HPMC aqueous dispersion was sprayed with 10.9% (w / w) of dye. At the end of the io coating, 30 pellets were sampled of 10 pellets and dissolved in phosphate buffer at pH = 6.5, and spectrophotometrically calibrated the dye concentration at a wavelength of 425 nm. The relative standard deviation (RSD) of the film coating was calculated from the population of measurements of the dye concentrations, since, with a narrow and defined distribution of circular pellets, the variation of the concentration of the dissolved dye is primarily a function of the thickness of the film coating of the pellets before dissolution. In calculating the RSD of film coating thickness between individual pellets, we used the methods and equations given in Cheng XX, Turton R, The Prediction of Variability Occuring in Fluidized Bed Coating

Equipment. II. The Role of Nonuniform Particle Coverage rates in a Bottom-Spray Fluidized Bed Coater. Pharm Dev. Tech., 5, 2000,Equipment. II. The Role of Nonuniform Particle Coverage Rates in a Bottom-Spray Fluidized Bed Coater. Pharm Dev. Tech., 5, 2000,

323-332.323-332.

Procesni parametri pri izvedbenih primerih so bili naslednji:The process parameters for the implementation examples were as follows:

• «• «

Volumski pretok zraka je bil v vseh preliminarnih poskusih oblaganja z modificirano procesno komoro 141 m3/h. Poskuse oblaganja smo izvedli pri višinah razmejitvenega valja 10 in 20 mm (od distribucijske plošče) in premerih anularne odprtine okrog šobeThe volume air flow rate was 141 m 3 / h in all preliminary coating experiments with a modified process chamber. The lining experiments were performed at 10 and 20 mm separator roller heights (from the distribution plate) and annular orifice diameters around the nozzle.

38,5 mm, 45 mm in 52 mm. Skupaj smo izvedli 6 preliminarnih poskusov oblaganja, v katerih smo vrednotili RSD debeline filmske obloge, izkoristek oblaganja in aglomeracijo pelet.38.5mm, 45mm and 52mm. In total, we carried out 6 preliminary coating experiments in which we evaluated the RSD of film coating thickness, coating yield, and pellet agglomeration.

Izkoristek oblaganja smo izračunali tako, da smo delili dejanski prirastek mase pelet med oblaganjem s teoretično izračunano maso io suhih snovi disperzije, ki smo jo razpršili tekom oblaganja. Prav tako smo izvedli 6 ponovitev oblaganj z izvedbo, ki je predmet patentne prijave št. P-200800295. Tudi v teh poskusih oblaganj smo vrednotiliThe coating yield was calculated by dividing the actual weight gain of the pellets during the coating by the theoretically calculated mass and the dispersion dry matter dispersed during the coating. We also performed 6 repetitions of the cladding with the embodiment subject to patent application no. P-200800295. We also valued in these cladding experiments

RSD debeline filmske obloge, izkoristek oblaganja in aglomeracijo pelet.RSD film thickness, coating yield and pellet agglomeration.

is Rezultati v Tabelah 2) in 3) predstavljajo srednje vrednosti šestih meritev.is The results in Tables 2) and 3) represent the mean values of the six measurements.

V posameznem poskusu oblaganja pelet smo oblagali 1000 g predhodno presejanih pelet v intervalu velikosti od 800 do 1000 pm. V vseh poskusih oblaganja pelet je bila relativna vlažnost vstopnega zraka med 30 in 34% pri 17°C.In a single pelletizing experiment, 1000 g of pre-screened pellets were coated in the size range of 800 to 1000 pm. In all pellet coating experiments, the relative humidity of the inlet air was between 30 and 34% at 17 ° C.

Proces The process temperatura temperature razprševanje scattering Vstopni zrak [°C] Entry air [° C] Produkt [°C] Product [° C] Tlak [bar] Pressure [bar] Črpalka [pos] Pump [pos] Količina [g/min] Quantity [g / min] predogrevanje preheating 55 55 - - - - - - - - temperi ranje tempering 55 55 45 45 - - - - - - razprševanje scattering 55 55 40-42 40-42 2 2 8 8 -10.5 -10.5 sušenje drying 70 70 40-54 40-54 - - - - - - vzorčenje Sampling 70 70 55 55 - - - - - - stop stop 61-63 61-63

Tabela 1 Procesni parametri poskusa oblaganjaTable 1 Process parameters of the coating experiment

Premer odprtine/velikost reže [mm] Diameter openings / slot size [mm] RSD debeline [%] RSD thickness [%] Izkoristek oblaganja [%] Efficiency coatings [%] Delež aglomeracije [%] Proportion of agglomeration [%] 2r=38.5 2r = 38.5 10 10 6,84 6.84 73,3 73,3 0 0 20 20 7,07 7.07 74 74 0 0 2r=45 2r = 45 10 10 9,10 9.10 72,1 72,1 0 0 20 20 6,99 6.99 77,9 77,9 0 0 2r=52 2r = 52 10 10 8,81 8.81 68,3 68,3 0 0 20 20 9,39 9.39 73,4 73,4 0 0

Tabela 2 Rezultati poskusov oblaganja na izvedbi komore, kije predmet izuma « ·Table 2 Results of coating experiments on the embodiment of the chamber of the invention «·

Primerjalni eksperimentiComparative experiments

RSD debeline obloge [%] RSD thickness linings [%] Izkoristek oblaganja [%] Coating yield [%] Delež aglomeracije [%] Proportion of agglomeration [%] Srednja vrednost- Izvedba 3* Middle value- Version 3 * 9,7+- 0.4 9.7 + - 0.4 75.0 75.0 0 0 Srednja vrednost Klasična VVursterjeva komora middle value Classic Wurster's chamber 16,1 16.1 74,0 74,0 0 0

izvedba po patentni prijavi št. P-200800295design according to patent application no. P-200800295

Tabela 3 Rezultati poskusov na primerjalnih izvedbahTable 3 Results of experiments on comparative designs

Iz rezultatov eksperimentov je razvidno, da nova izvedba generatorja 4 vrtinčenja izboljša materialni izkoristek oblaganja in enakomernost nanosa obloge.The results of the experiments show that the new version of the vortex generator 4 improves the material yield of the coating and the uniformity of the coating application.

Claims (20)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja (4) vrtinčnega toka plina za nanašanje1. Improved particulate coating process plant based on new embodiment of vortex flow gas generator (4) 5 oblagalne raztopine ali disperzije na površino delcev, pri kateri je znotraj stene (1) nameščena ena ali več enot, pri kateri vsako enoto sestavlja generator (4) vrtinčenja plina, okoli katerega sta nameščena distribucijska plošča (3) plina in razmejitveni valj (5), kjer je centralno skozi generator vrtinčenja plina vpeljana najmanj io ena enofazna ali večfazna šoba (6) za razprševanje, z dovodom za raztopino ali disperzijo za oblaganje in, v primeru večfazne šobe, dovodom komprimiranega plina, kjer gibanje delcev poteka krožno v smeri navzgor skozi razmejitveni valj (5) ter v smeri navzdol v območju izven razmejitvenega valja,5 a coating solution or dispersion to the particle surface, wherein one or more units are housed within the wall (1), each unit comprising a gas swirl generator (4) around which a gas distribution plate (3) and a dividing cylinder (5) are mounted ), where at least one single-phase or multiphase nozzle (6) is introduced centrally through the gas swirl generator, with a solution or dispersion inlet for coating and, in the case of a multiphase nozzle, a compressed gas inlet, in which the particles move in a circular upward direction through the delimiter cylinder (5) and downwards in the area outside the delimiter cylinder, 15 označena s tem, da generator (4) vrtinčnega toka plina izhaja iz distribucijske plošče (3) v območju pod razmejitvenim valjem (5), in je izveden na način, da sta vsaj dve rotacijsko simetrični steni nameščeni tako, da ima presek namišljene ravnine, pravokotne na os15, characterized in that the gas vortex generator (4) originates from the distribution plate (3) in the area below the demarcation cylinder (5) and is arranged in such a way that at least two rotationally symmetrical walls are arranged such that the cross section has an imaginary plane , perpendicular to the axis 20 rotacijske simetrije omenjenih sten, in prostora, omejenega z omenjenima stenama, obliko anularne reže, in da ti omenjeni steni v območju pod razmejitvenim valjem (5) tvorita anularno odprtino med distribucijsko ploščo (3) in šobo (6), ter ti omenjeni steni omejujeta prostor, znotraj katerega so nameščene ovire (18) za doseganje vrtinčnega toka plina in je generator (4) za doseganje vrtinčnega toka plina skozi prostor povezan na izvor plina, pri čemer je tlak plina na vstopu v generator (4) višji kot na izstopu iz20 the rotational symmetry of said walls, and the space bounded by said walls, in the form of an anular gap, and that said walls form an anular opening between the distribution plate (3) and the nozzle (6) in the area below the dividing cylinder (5), and said said walls restrict the space within which obstacles (18) are provided to achieve the vortex gas flow and the generator (4) is connected to the gas source through the space, to obtain the vortex gas flow through the space, the gas pressure at the inlet to the generator (4) being higher than at the outlet from 5 generatorja (4).5 generators (4). 2. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po zahtevku 1, označena s tem, io da so ovire (18) za usmerjanje toka plina, nameščene med dvema vsaj približno rotacijsko simetričnima stenama, nameščene na način, da je kot med horizontalno projekcijo vektorja hitrosti toka plina in njegovo radialno horizontalno komponento med 10 in 80°.2. An improved particulate coating process apparatus based on a new embodiment of the gas vortex generator according to claim 1, characterized in that the obstacles (18) for directing the gas flow are arranged between two at least approximately rotationally symmetrical walls arranged in such a way that the angle between the horizontal projection of the velocity vector of the gas flow and its radial horizontal component is between 10 and 80 °. 1515 3. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po zahtevkih 1 in 2 označena s tem, da je skupna tlorisna prosta površina anularne reže, ki jo določata rotacijsko simetrični steni generatorja (4) vrtinčnega toka plina, v3. An improved process particle coating apparatus based on a new embodiment of the gas vortex generator according to claims 1 and 2, characterized in that the total floor free surface of the annular gap defined by the rotationally symmetrical walls of the gas vortex generator (4) is in 2o nivoju pritrditve generatorja (4) na rob distribucijske plošče (3), od 5% do 90% površine horizontalnega preseka, določenega z notranjim robom (5a) razmejitvenega valja (5).2, at the level of attachment of the generator (4) to the edge of the distribution plate (3), from 5% to 90% of the surface of the horizontal section defined by the inner edge (5a) of the dividing cylinder (5). 4. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih označena s tem,4. An improved particulate coating process apparatus based on a new embodiment of the gas vortex generator according to the preceding claims, 5 da je razmerje med tlorisno površino geometrijskega lika, določenega s spodnjim robom ene izmed rotacijsko simetričnih sten, ki sestavljajo generator (4) vrtinčnega toka plina v prostoru, in tlorisno površino geometrijskega lika, določenega z zgornjim robom te iste stene, med 1 in 200.5 that the ratio of the planar surface of the geometric shape defined by the lower edge of one of the rotationally symmetrical walls constituting the gas vortex generator (4) to the surface of the geometric shape determined by the upper edge of that same wall is between 1 and 200 . 5. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih označena s tem, is da se ovire (18) za doseganje vrtinčnega toka plina nahajajo pod nivojem distribucijske plošče (3).An improved particulate coating process apparatus based on the new embodiment of the gas vortex generator according to the preceding claims, characterized in that the obstacles (18) for achieving the vortex gas flow are below the level of the distribution plate (3). 6. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih6. Improved particulate coating process plant based on new version of gas vortex generator according to prior art 20 zahtevkih označena s tem, da so ovire (18) za usmerjanje toka plina ravne ali ukrivljene.20 claims, characterized in that the obstacles (18) for directing the gas flow are straight or curved. • ·• · 7. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih, označena s tem,An improved particulate coating process device based on a new embodiment of the gas vortex generator according to the preceding claims, characterized in 5 da so ovire (18) za usmerjanje toka medija vzporedne z osjo rotacijske simetrije naprave.5 that the obstacles (18) for directing the flow of the medium are parallel to the axis of rotational symmetry of the device. 8. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih io zahtevkih označena s tem, da ovire (18) za usmerjanje toka medija, skozi katere poteka namišljena ravnina tako, da na njej leži rotacijska os generatorja vrtinčnega toka plina (4), s to isto ravnino niso vzporedne.8. An improved particulate coating process device based on a new embodiment of the gas vortex generator according to the preceding io claims, characterized in that the obstacles (18) for directing the flow of the medium through which the imaginary plane is passed so that therein lies the rotational axis of the vortex generator of gas (4) are not parallel to this same plane. 9. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih označena s tem,An improved process particle coating device based on the new embodiment of the gas vortex generator according to the preceding claims, characterized in that 20 da je zunanja izmed rotacijsko simetričnih sten, ki sestavljata generator (4) vrtinčnega toka plina v prostoru, med katerimi so nameščene ovire za doseganje vrtinčnega toka plina, pritrjena na rob distribucijske plošče (3) .20 that the exterior of the rotationally symmetrical walls constituting the gas vortex generator (4) in the space between which obstacles to achieve the vortex gas flow are arranged is fixed to the edge of the distribution plate (3). 10. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih označena s tem,10. An improved particulate coating process apparatus based on a new embodiment of the gas vortex generator according to the preceding claims, 5 da notranja izmed rotacijsko simetričnih sten, ki sestavljata generator (4) vrtinčnega toka plina v prostoru, med katerimi so nameščene ovire za doseganje vrtinčnega toka plina, sega nad najnižji nivo distribucijske plošče (3).5 that the interior of the rotationally symmetrical walls constituting the gas vortex generator (4) in the space between which obstacles to achieve the vortex gas flow are arranged extends above the lowest level of the distribution plate (3). ioio 11. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih označena s tem, da so stene, ki sestavljajo generator (4) vrtinčnega toka plina v is prostoru, v območju, kjer so med njimi nameščene ovire (18) za doseganje vrtinčnega toka plina, horizontalne.An improved particulate coating process apparatus based on a new embodiment of the gas vortex generator according to the preceding claims, characterized in that the walls constituting the gas vortex generator (4) in the is space in the area where obstacles (between them) are arranged 18) to achieve a horizontal vortex gas flow. 12. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih12. Improved particulate coating process unit based on new version of gas vortex generator according to prior art 20 zahtevkih, označena s tem, da je distribucijska plošča (3) lahko ravna, ukrivljena ali stopničasta in ima delež proste površine za pretok plina (npr. perforacije) od 1% do 50%.20 claims, characterized in that the distribution plate (3) can be straight, curved or stepped and has a free gas flow area (eg perforation) of from 1% to 50%. 55 13. Izboljšana procesna naprava za oblaganje delcev na osnovi nove izvedbe generatorja vrtinčnega toka plina po predhodnih zahtevkih, označena s tem, da ima lahko več razmejitvenih valjev (5), eno ali večfaznih šob (6) io in več generatorjev (4) vrtinčnega toka plina.13. An improved particulate coating process apparatus based on a new embodiment of the gas vortex generator according to the preceding claims, characterized in that it can have multiple dividing cylinders (5), one or multiphase nozzles (6) io and several eddy current generators (4) gas. 14. Naprava za doseganje vrtinčnega toka medija, označen s tem, da sta vsaj dve rotacijsko simetrični steni (1) nameščeni tako, da is ima presek ravnine, pravokotne na os rotacijske simetrije omenjenih sten, in prostora, omejenega z omenjenima stenama, obliko anularne reže, ter da ti omenjeni steni (1) omejujeta prostor, znotraj katerega so nameščene ovire (18) za doseganje vrtinčnega toka medija in je naprava za doseganje vrtinčnega toka medijaDevice for achieving the eddy current of a medium, characterized in that at least two rotationally symmetric walls (1) are arranged such that is has a cross-section of a plane perpendicular to the axis of rotational symmetry of said walls and a space bounded by said walls in the form of an anular slots, and that said walls (1) limit the space within which obstacles (18) are arranged to achieve the eddy current of the medium and is a device for achieving the eddy current of the medium 2o skozi prostor povezana na procesni medij, pri čemer je tlak procesnega medija na vstopu v napravo višji kot na izstopu iz naprave.2o is connected to the process medium through the space, the pressure of the process medium at the inlet to the device being higher than at the outlet of the device. 15. Naprava za doseganje vrtinčnega toka plina ali kapljevine v zahtevku 14, označena s tem, da so ovire (18) za usmerjanje toka plina, nameščene med vsaj15. A gas or liquid swirl flow device in claim 14, characterized in that the obstacles (18) for directing the gas flow are positioned between at least 5 dvema vsaj približno rotacijsko simetričnima stenama (1), nameščene na način, da je kot med vektorjem hitrosti toka medija in njegovo radialno komponento med 10 in 80°.5 with two at least approximately rotationally symmetrical walls (1) positioned such that the angle between the velocity vector of the medium and its radial component is between 10 and 80 °. 16. Naprava za doseganje vrtinčnega toka medija v zahtevkih 14 in io 15, označena s tem, da so stene (1) naprave v območju, kjer so nameščene ovire (18) za usmerjanje toka medija, horizontalne.Device for achieving the eddy current of a medium in claims 14 and io 15, characterized in that the walls (1) of the device are horizontal in the area where the obstacles (18) are directed to direct the flow of the medium. 1515 17. Naprava za doseganje vrtinčnega toka medija po vseh zahtevkih od 14 do 16, označena s tem, da je razmerje med površino namišljenega geometrijskega lika, določenega z daljšim robom katerekoli izmed rotacijskoDevice for achieving the eddy current of a medium according to any one of claims 14 to 16, characterized in that the ratio of the surface area of an imaginary geometric shape defined by the longer edge of any one of the rotational 20 simetričnih sten (1), ki sestavljajo napravo za doseganje vrtinčnega toka medija v prostoru, in površino namišljenega geometrijskega lika, določenega s krajšim robom te iste stene (1), med 1 in 200.20 symmetrical walls (1) constituting a device for achieving the eddy current of a medium in space and the surface of an imaginary geometric shape defined by the shorter edge of this same wall (1) between 1 and 200. 18. Naprava za doseganje vrtinčnega toka medija po vseh zahtevkih od 14 do 17, označena s tem, da ovire (18) za usmerjanje toka medija, skozi katere poteka namišljena ravnina, na kateri leži rotacijska os naprave za doseganje vrtinčnega toka medija, s to isto ravnino niso vzporedne.Device for achieving the eddy current of a medium according to any of claims 14 to 17, characterized in that the obstacles (18) for directing the flow of the medium through which an imaginary plane on which the rotational axis of the device for achieving the eddy current of the medium lies, the same plane is not parallel. 19. Naprava za doseganje vrtinčnega toka medija po vseh zahtevkih od 14-18, označena s tem, da so ovire (18) za usmerjanje toka medija ravne ali ukrivljene.19. A device for achieving the eddy current of a medium according to any of claims 14-18, characterized in that the obstacles (18) for directing the flow of the medium are straight or curved. 20. Naprava za doseganje vrtinčnega toka medija po vseh zahtevkih od 14 do 19, označena s tem, da so ovire (18) za usmerjanje toka medija vzporedne z osjo 20 rotacijske simetrije naprave.Device for achieving the eddy current of a medium according to any of claims 14 to 19, characterized in that the obstacles (18) for directing the flow of the medium are parallel to the axis 20 of the rotational symmetry of the device.
SI200900075A 2009-03-19 2009-03-19 Enhanced processing device for coating particles based on a new air vortex generator concept SI22991A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI200900075A SI22991A (en) 2009-03-19 2009-03-19 Enhanced processing device for coating particles based on a new air vortex generator concept
EP10726648A EP2408547A2 (en) 2009-03-19 2010-03-15 Device for coating particles via an airflow vortex generator
PCT/SI2010/000013 WO2010107401A2 (en) 2009-03-19 2010-03-15 Enhanced processing device for coating particles via a new airflow vortex generator method
RU2011141325/05A RU2542276C2 (en) 2009-03-19 2010-03-15 Perfected device for application of coating on particles by new process with help of airflow vortex generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200900075A SI22991A (en) 2009-03-19 2009-03-19 Enhanced processing device for coating particles based on a new air vortex generator concept

Publications (1)

Publication Number Publication Date
SI22991A true SI22991A (en) 2010-09-30

Family

ID=42664920

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200900075A SI22991A (en) 2009-03-19 2009-03-19 Enhanced processing device for coating particles based on a new air vortex generator concept

Country Status (4)

Country Link
EP (1) EP2408547A2 (en)
RU (1) RU2542276C2 (en)
SI (1) SI22991A (en)
WO (1) WO2010107401A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329072B2 (en) 2010-11-24 2012-12-11 Brimrock International Inc. Method and system for generating sulfur seeds and granules
CN106536034B (en) * 2016-02-02 2019-01-18 天津策浪生物科技有限公司 Fluidized bed plant and method for being coated or pelletizing to particle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020432A1 (en) * 1994-01-27 1995-08-03 Aeromatic-Fielder Ag An apparatus for coating solid particles
JP3782841B2 (en) * 1995-10-16 2006-06-07 財団法人ダム水源地環境整備センター Eddy current diffuser
DK1064990T3 (en) * 1999-06-29 2004-05-24 Aeromatic Fielder Ag Process for granulating a particulate material
FR2823995B1 (en) * 2001-04-25 2008-06-06 Alfa Laval Vicarb IMPROVED DEVICE FOR EXCHANGING AND / OR REACTING BETWEEN FLUIDS
EP1975506A1 (en) * 2007-03-30 2008-10-01 Siemens Aktiengesellschaft Combustion pre-chamber
EP1985924A1 (en) * 2007-04-23 2008-10-29 Siemens Aktiengesellschaft Swirler
SI22923B (en) * 2008-12-01 2017-12-29 Brinox, D.O.O. Processing device for coating particles

Also Published As

Publication number Publication date
RU2542276C2 (en) 2015-02-20
EP2408547A2 (en) 2012-01-25
WO2010107401A2 (en) 2010-09-23
WO2010107401A3 (en) 2011-04-07
RU2011141325A (en) 2013-04-27

Similar Documents

Publication Publication Date Title
EP2382036B1 (en) A process device for coating particles
CA2311497C (en) Device for producing a pourable particulate product and method for using the device
JP6578447B2 (en) Fluidized bed apparatus and method used for coating or granulating particles
US4556175A (en) Granulating and coating machine
JP2000229235A (en) Device for treating granular products
EP0741603B1 (en) An apparatus for coating solid particles
WO1993008923A1 (en) Fluidized bed with spray nozzle shielding
CN1131732C (en) Apparatus and process for coating tablets
Dixit et al. Fluidization technologies: aerodynamic principles and process engineering
Vuppala et al. Application of powder-layering technology and film coating for manufacture of sustained-release pellets using a rotary fluid bed processor
SI22991A (en) Enhanced processing device for coating particles based on a new air vortex generator concept
Heng et al. Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters
EP2475456B1 (en) Gas distribution plate intended for use in devices for treating solid particles
JP2004122057A (en) Fluidized bed apparatus
EP1295633B1 (en) Process for coating particles
JPS62160137A (en) Method and apparatus for trating granular material
Bhagat Application of Powder-Layering Technology and Film Coating for
SI23447A (en) Process device for granulating and lining of solid particles
ITMI20111125A1 (en) FLUID BED SYSTEM FOR TREATMENT OF SOLID PARTICLES AND FLUIDIZATION GAS DISTRIBUTOR DISC FOR SUCH EQUIPMENT
JPS5817017A (en) Apparatus for controlling flow rate of powder and particle
WO1993009867A1 (en) Process for coating small particles using a rotor fluidized bed apparatus

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20101012

KO00 Lapse of patent

Effective date: 20190320