SI21576A - Optical measuring device and procedure for determination of shape of solids - Google Patents

Optical measuring device and procedure for determination of shape of solids Download PDF

Info

Publication number
SI21576A
SI21576A SI200300216A SI200300216A SI21576A SI 21576 A SI21576 A SI 21576A SI 200300216 A SI200300216 A SI 200300216A SI 200300216 A SI200300216 A SI 200300216A SI 21576 A SI21576 A SI 21576A
Authority
SI
Slovenia
Prior art keywords
mirror
additional
light plane
camera
plane
Prior art date
Application number
SI200300216A
Other languages
Slovenian (sl)
Inventor
Drago BRAČUN
Janez MOŽINA
Original Assignee
Univerza V Ljubljani
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza V Ljubljani filed Critical Univerza V Ljubljani
Priority to SI200300216A priority Critical patent/SI21576A/en
Publication of SI21576A publication Critical patent/SI21576A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

The scope of the invention is to design a measuring process and its respective appropriate measuring device to enable the determination of the surface shape of a measured solid (4) by scanning according to the principle of triangulation, i.e. by variation of the direction of the plane (3) of light during exposure of the surface of a measured solid (4) to laser light, in spite that neither the measured solid's (4) position and the projector's (1) position nor the camera's (8) position change during the measurement. The device consists of the immovable projector (1), immovable camera (8), movable mirror (2) mounted close to the projector (1), as well as at least two additional mirrors (5, 7) and a referential screen (6). The movable mirror (2) is provided for varying the direction of the plane (3) of light falling upon the surface of a measured solid (4), and thus for varying the triangulation angle (18).

Description

UNIVERZA V LJUBU ANI Fakulteta za strojništvoUNIVERSITY OF LOVE ANI Faculty of Mechanical Engineering

MPK: G 01 B 11/00MPK: G 01 B 11/00

Optična merilna naprava in postopek za ugotavljanje oblike telesOptical measuring device and procedure for determining body shape

V okviru fizike izum spada na področje merilne tehnike, še zlasti optične merilne tehnike.In the field of physics, the invention falls within the field of measuring techniques, in particular optical measuring techniques.

Pri tem izum temelji na problemu, kako zasnovati merilni proces in temu primemo optično merilno napravo, da bo ugotavljanje oblike površine merjenca s skeniranjem po načelu triangulacije, t.j. s spreminjanjem poteka svetlobne ravnine med obsevanjem površine meijenca s svetlobo, še zlasti z lasersko svetlobo, možno kljub temu, da se niti položaj meijenca niti položaj projektorja in niti položaj kamere med merjenjem ne spreminja.The invention is based on the problem of how to design the measurement process and the optical measuring device is adopted thereto in order to determine the shape of the measuring surface by triangulation scanning, i.e. by changing the course of the light plane during irradiation of the beacon surface by light, in particular by laser light, it is possible, although neither the position of the beacon nor the position of the projector nor the position of the camera changes during the measurement.

Tovrstna problematika je vezana predvsem na področje reverzibilnega inžiniringa, oz. rekonstrukcije geometrije teles, kot so ohišja strojev, umetniških izdelkov (npr. kipci, posoda), delov človeškega telesa pri izdelavi protez, čevljev in obleke po meri. Rekonstrukcija geometrije je še posebej zahtevna pri telesih kompleksne oblike, ki imajo na površini izrazitejše stopnice, vdolbine ali izbočitve oz. štrline. Obliko površine je možno določiti na osnovi digitalizacije površine, npr. s koordinatnimi merilnimi stroji, pri čemer se z mehanskim tipalom dotikajo iskanih točk na površini merjenega izdelka. Tovrstna digitalizacija je sicer natančna, a izredno počasna (nekaj točk v minuti z pm natančnostjo). Iz navedenega razloga se na področju reverzibilnega inženiringa vse bolj uvaljavljajo različne optične merilne metode in naprave, kakršne so npr. opisane v US 5,615,003 ali US 5,675,407 ali US 4,511,252 in ki po hitrosti digitalizacije močno prekašajo koordinatne merilnike. Po natančnosti in hitrosti izvajanja meritev še zlasti iztopajo metode in naprave na osnovi aktivne laserske triangulacije, opisane npr. v US 6,205,243 ali US 5,870,220 ali US 5,774,220 ali US 5,739,912 ali US 5,113,080 ali US 5,088,828 ali tudi v DE 37 03 505. Zanje je značilno, da površino merjenca osvetljujejo z lasersko svetlobo različnih oblik in kontrastov, pri tem pa detektirajo in analizirajo svetlobne vzorce na površini meijenca. Osvetlitev je običajno izvedena z lasersko svetlobo, oblikovano v snop, ravnino ali množico ravnin. Rezulat meritve v primeru osvetljevanja z laserskim snopom je zgolj ena točka, pri osvetljevanju z ravnino profil točk ter pri množici ravnin ustrezno število profilov. Izbira načina osvetljevanja je odvisna od namena meritve.This kind of problem is mainly related to the field of reversible engineering, or. reconstructions of body geometries such as machine housings, works of art (eg statuettes, dishes), human body parts in the manufacture of dentures, shoes and custom clothing. The reconstruction of the geometry is especially demanding for bodies of complex shape, which have more pronounced stairs, recesses or protrusions on the surface. protrusions. The shape of the surface can be determined by digitizing the surface, e.g. with coordinate measuring machines, touching the search points on the surface of the measured product with a mechanical sensor. This kind of digitization is accurate but extremely slow (a few points per minute with pm precision). For this reason, various optical measuring methods and devices, such as e.g. described in U.S. Pat. No. 5,615,003 or U.S. Pat. No. 5,675,407 or U.S. Pat. No. 4,511,252. In particular, methods and devices based on active laser triangulation, described e.g. in US 6,205,243 or US 5,870,220 or US 5,774,220 or US 5,739,912 or US 5,113,080 or US 5,088,828 or also in DE 37 03 505. They are typically illuminated by laser light of various shapes and contrasts, detecting and analyzing light patterns. on the surface of the meiotic. Illumination is usually performed by laser light formed into a beam, a plane or a plurality of planes. The measurement result in the case of laser beam illumination is only one point, with a plane profile of points and a set of planes with an appropriate number of profiles. The choice of illumination mode depends on the purpose of the measurement.

Za določitev vseh detajlov kompleksnih površin je potrebno pomeriti veliko število točk. Z meritvijo zgolj enega ali več profilov ni izmeijenih zadosti točk, zato je potrebno površino pomeriti z več merilniki ali pa se z enim pomikati po površini in skenirati. Uporaba več merilnikov pogosto predstavlja cenovno nesprejemljivo rešitev, medtem ko je skeniranje zaradi mehanskega pomikanja časovno potratno in nenenatančno. Tovrsten problem je načelno rešljiv na ta način, da se število svetlobnih ploskev povečuje do te mere, da je mogoče pomeriti zadostno število točk. V praksi pa se izkaže, da tudi takšen pristop ne da zadovoljive rešitve. Nastopi namreč problem detekcije in urejanja profilov, saj pri prelomih površine (stopnice, odprti izrezi) ni mogoče ugotoviti, kje se nadaljuje določen profil. Za urejanje profilov in zagotovitev zanesljivega delovanja so potrebni izredno robustni algoritmi, ki so običajno tudi časovno potratni.To determine all the details of complex surfaces, a large number of points need to be calibrated. By measuring only one or more profiles, there are not enough points, so it is necessary to move the surface with several gauges or to scroll one surface and scan. The use of multiple meters is often an unacceptable solution, while scanning due to mechanical movement is time consuming and imprecise. This problem is, in principle, solvable in such a way that the number of light surfaces increases to such an extent that a sufficient number of points can be adjusted. In practice, however, such an approach does not seem to provide a satisfactory solution. Namely, there is a problem of detecting and editing profiles, since for fractures of the surface (steps, open cutouts) it is not possible to determine where a particular profile proceeds. Editing profiles and ensuring reliable performance require extremely robust algorithms, which are usually time-consuming.

Predložen merilnik omogoča meritev poljubne kompleksne površine merjenca v poljubnem številu profilov in temelji na premikanju svetlobne ravnine po površini meijenca oz. na skeniranju s svetlobno ravnino. Merilnik in meijenec med meritvijo mirujeta, spreminja se le lega svetlobne ravnine v merilniku. V merilniku so namreč predvideni inovativni dodatni optični elementi, na osnovi katerih je možno pri premikanju svetlobne ravnine meriti triangulacij ski kot. Problem urejanja profilov zaradi uporabe zgolj ene svetlobne ravnine ne nastopi. Izum se po eni strani nanaša na optično merilno napravo za ugotavljanje oblike teles, ki sestoji iz optične enote oz. projektoija, ki je predviden(a) za generiranje oz. projiciranje svetlobne ravnine, zlasti laserske svetlobne ravnine, proti površini meijenca, kot tudi iz kamere, ki je predvidena za snemanje površine meijenca, s čimer je na tako dobljeni sliki možno detektirati profil preseka omenjene svetlobne ravnine s površino meijenca, pri čemer je med svetlobno ravnino, izhajajočo iz enote, in kamero vsakokrat na voljo kot triangulacije, s pomočjo katerega se vrši določanje oblike površine merjenca. Pri tem naprava po izumu v osnovi sestoji iz nepremakljive(ga) optične enote oz. projektoija, nepremakljive kamere, nadalje iz ob enoti nameščenega premakljivega zrcala ter iz vsaj dveh dodatnih zrcal in referenčnega zaslona. Ob nepremakljivi optični enoti oz. nepremakljivem projektoiju je predvideno premakljivo zrcalo za spreminjanje smeri proti površini merjenca potekajoče svetlobne ravnine in s tem kota triangulacije. Pri tem je prvo dodatno zrcalo razporejeno v območju svetlobne ravnine med premakljivim zrcalom in meijencem, drugo dodatno zrcalo pa med nepremakljivo kamero in merjencem, tako da se zahvaljujoč odboju dela svetlobne ravnine na prvem dodatnem zrcalu tvori referenčni žarek, ki se po odboju od referenčnega zaslona ter od drugega dodatnega zrcala odbije proti kameri, pri kateri je na delu slike viden referenčni zaslon, na katerem referenčni žarek tvori ustrezen odsek profila.The proposed meter allows measurement of any complex surface of the meter in any number of profiles and is based on the movement of the light plane over the surface of the waveform or. on a scan with a light plane. The meter and the switch point are stationary during the measurement, only the position of the light plane in the meter changes. The meter provides innovative additional optical elements, on the basis of which it is possible to measure the triangulation angle when moving the light plane. The problem of editing profiles due to the use of only one light plane does not occur. The invention relates, on the one hand, to an optical measuring device for determining the shape of a body, consisting of an optical unit or a the projected project (s) to be generated or generated. projecting the light plane, in particular the laser light plane, towards the surface of the waveform, as well as from a camera intended to record the surface of the waveform, thereby detecting in this way the profile of the intersection of said light plane with the surface of the waveform, being between the light plane , resulting from the unit, and each camera is available as triangulation to determine the shape of the surface of the meter. The device according to the invention basically consists of a stationary optical unit (s). projection, fixed cameras, further from the unit-mounted moving mirror and at least two additional mirrors and a reference screen. With a stationary optical unit or. a non-moving projection is provided with a movable mirror for changing the direction towards the surface of the gauge of the passing light plane and thus the triangulation angle. The first additional mirror is arranged in the area of the light plane between the movable mirror and the meanderer, and the second additional mirror is positioned between the motionless camera and the gauge, so that, due to the reflection of a part of the light plane, a reference beam is formed on the first additional mirror, which after reflection from the reference screen and reflecting from the second additional mirror toward the camera, in which part of the picture is a reference screen, on which the reference beam forms a corresponding section of the profile.

Pri nadaljnji različici naprave so poleg optične enote, kamere in premakljivega zrcala predvidena štirih dodatna zrcala in referenčni zaslon, pri čemer je prvo dodatno zrcalo razporejeno v območju svetlobne ravnine med premakljivim zrcalom in meijencem, drugo dodatno zrcalo je razporejeno med nepremakljivo kamero in meijencem, tretje in četrto dodatno zrcalo pa sta tako razporejeni, da se zahvaljujoč odboju dela svetlobne ravnine na prvem dodatnem zrcalu tvori proti tretjemu dodatnemu zrcalu usmerjen referenčni žarek, ki se po odboju od tretjega dodatnega zrcala odbije proti referenčnemu zaslonu, od slednjega proti četrtemu dodatnemu zrcalu od ondod pa proti drugemu dodatnemu zrcalu ter zatem proti kameri, pri kateri je spet na delu slike viden referenčni zaslon, na katerem referenčni žarek tvori odsek profila.In the further version of the device, in addition to the optical unit, the camera and the movable mirror, four additional mirrors and a reference screen are provided, the first additional mirror being arranged in the area of light plane between the moving mirror and the landmark, the second additional mirror is arranged between the stationary camera and the landmark, third and the fourth additional mirror are arranged so that, due to the reflection of a part of the light plane, a reference beam is directed towards the third additional mirror, which, after reflection from the third additional mirror, is reflected towards the reference screen from the latter to the fourth additional mirror from there. and against another additional mirror, and then towards the camera, in which again the reference screen is visible on a portion of the image, on which the reference beam forms a section of the profile.

Pri še nadaljnji različici naprave po izumu je lahko predvidenih še več dodatnih zrcal, in sicer vsaj šest. Prvo dodatno zrcalo je spet razporejeno v območju svetlobne ravnine med premakljivim zrcalom in meijencem, drugo dodatno zrcalo pa med nepremakljivo kamero in meijencem. Preostala dodatna zrcala so tako razporejena, da se zahvaljujoč odboju dela svetlobne ravnine na prvem dodatnem zrcalu tvori proti tretjemu dodatnemu zrcalu usmerjen referenčni žarek, ki se po odboju od tretjega dodatnega zrcala odbije proti petemu dodatnemu zrcalu in od tam proti referenčnemu zaslonu, od slednjega proti šestemu dodatnemu zrcalu, od ondod pa proti četrtemu dodatnemu zrcalu ter nato proti drugemu dodatnemu zrcalu, zatem pa proti kameri, pri kateri del slike spet predstavlja referenčni zaslon, na katerem referenčni žarek tvori ustrezen odsek profila.A further embodiment of the device according to the invention may provide additional mirrors of at least six. The first additional mirror is again arranged in the area of the light plane between the movable mirror and the aperture, and the second additional mirror is between the motionless camera and the aperture. The remaining additional mirrors are arranged in such a way that, due to the reflection of a part of the light plane, a reference beam is directed towards the third additional mirror, which, after reflection from the third additional mirror, is reflected towards the fifth additional mirror and from there towards the reference screen, from the latter against to the sixth additional mirror, thence to the fourth additional mirror and then to the second additional mirror, then to the camera, in which part of the image is again a reference screen on which the reference beam forms a corresponding section of the profile.

Po drugi strani je predmet izuma tudi postopek optičnega ugotavljanja površine telesa na osnovi detekcije profilov preseka omenjene svetlobne ravnine s površino merjenca pri različnih kotih triangulacije. Postopek se v splošnem vrši s pomočjo' optične enote za generiranje svetlobne ravnine proti površini megenca in kamere za snemanje vsakokrat dobljene slike, pri čemer se koordinate točk na površini meijenca izračunava na osnovi skeniranja površine merjenea oz. s pomočjo spreminjanja položaja svetlobne ravnine. Po izumu se optično enoto oz. projektor za generiranje svetlobne ravnine ter kamero za snemanje vsakokratnega profila vsakokratne svetlobne ravnine na površini merjenca učvrsti v vsakokrat izbranem položaju, nakar se položaj svetlobne ravnine in s tem kot triangulacije spreminja s pomočjo premakljivega zrcala, ki se ga namesti ob optično enoto oz. projektor, obenem pa se s pomočjo vsaj dveh dodatnih zrcal in referenčnega zaslona iz dela proti površini merjenca usmeij ene svetlobne ravnine tvori referenčni žarek, ki se ga vodi do kamere in s pomočjo katerega se določa vsakokraten kot triangulacije, s tem pa tudi koordinate točk na površini merjenca. Nadaljnja različica postopka predvideva uporabo še večjega števila dodatnih zrcal s čimer je mogoče bistveno zmanjšati izmere merilne naprave.On the other hand, the subject of the invention is also a method of optical determination of the surface of the body based on the detection of the profiles of the cross section of said light plane with the surface of the gauge at different angles of triangulation. The procedure is generally performed by means of an 'optical unit for generating a light plane against the surface of the mezzanine and a camera for recording the image obtained each time, whereby the coordinates of the points on the surface of the mezzanine are calculated on the basis of a scan of the surface measured or measured. by changing the position of the light plane. According to the invention, the optical unit or. the projector for generating the light plane and the camera for recording the respective profile of the respective light plane on the surface of the meter are fixed in the position selected at each time, and then the position of the light plane is changed by means of a movable mirror mounted next to the optical unit or. the projector, while at least two additional mirrors and a reference screen from the part towards the surface of the smiley meter of one light plane, generates a reference beam, which is guided to the camera, which determines the respective triangulation angle and thus coordinates the points on the surface of the gauge. A further version of the process involves the use of an additional number of additional mirrors, which can significantly reduce the dimensions of the measuring device.

Naprava po izumu bo v nadaljevanju podrobneje obrazložena na osnovi primerov izvedbe, ki so prikazani na priloženi skici, kjer kažeThe device according to the invention will now be explained in more detail based on the embodiments shown in the accompanying drawing showing

Sl. 1 shematično ponazoritev prvega primera izvedbe naprave v narisu,FIG. 1 is a schematic illustration of a first embodiment of a device in outline,

Sl. 2 taisto izvedbo v pogledu od strani,FIG. 2 the same design in side view,

Sl. 3 dobljeno sliko površine meijenca,FIG. 3 obtained a picture of the surface of the meia,

Sl. 4 nadaljnji primer izvedbe naprave, spet v narisu, in Sl. 5 še nadaljnji primer izvedbe naprave, prav tako v narisu.FIG. 4 is a further embodiment of the apparatus, again in the outline, and FIG. 5 is a further embodiment of the device, also in the outline.

Merilna naprava po izumu (sl. 1) deluje na osnovi osvetljevanja meijenca 4 z lasersko svetlobno ravnino 3, ki jo generiramo z laserskim izvorom in cilindrično optično enoto 1 oz. projektoijem. Na ta način se po eni strani izognemo problemu detekcije in. urejanja profilov, po drugi strani pa potrebujemo večje število posamičnih meritev, kar po izumu brez težav dosežemo s premikanjem svetlobne ravnine 3 po površini meijenca 4.The measuring device according to the invention (Fig. 1) operates on the basis of illuminating the switch 4 with a laser light plane 3 generated by the laser source and a cylindrical optical unit 1 or. projektoijem. This avoids the problem of detection and. profile editing, on the other hand, requires a larger number of individual measurements, which according to the invention is easily achieved by moving the light plane 3 across the surface of the landmark 4.

Premikanje svetlobne ravnine 3 je izvedljivo na ta način, da svetlobno ravnino 3 na poti od laserskega izvora, t.j. enote 1, vodimo preko premakljivega zrcala 2, ki je premakljivo, še zlasti npr. vrtljivo z ustreznim motoijem, npr. galvo motoijem, in sicer na ta način, da zahvaljujoč premikanju pokrije celotno merilno območje 9. Zaradi premikanja zrcala 2 se spreminja lega svetlobne ravnine 3. Po vsakem premiku s pomočjo kamere 8 z matričnim CCD-jem posnamemo oz. slikamo površino meijenca 4 ter na tako dobljeni sliki 12 (sl. 3) detektiramo profil 14 preseka laserske svetlobne ravnine 3 s površino meijenca 4.The movement of the light plane 3 is feasible in such a way that the light plane 3 is in the path from the laser origin, i.e. of unit 1, is guided through a movable mirror 2 which is movable, in particular e.g. rotating with a suitable moto, e.g. galvo motoi, in such a way that, thanks to the movement, it covers the entire measuring range 9. Due to the movement of the mirror 2, the position of the light plane 3 changes. After each movement, a matrix CCD is captured or captured with the camera 8. image the surface of the waveform 4 and in this way obtained figure 12 (Fig. 3) detect the profile 14 of the cross section of the laser light plane 3 with the surface of the waveform 4.

Tovrstno skeniranje je zanesljivejše kot skeniranje s premikanjem celotnega merilnika ali merjenca 4. Za vsako lego moramo poznati le nov kot 18 triangulacije, t.j. kot lege svetlobne ravnine 3 relativno glede na kamero 8, medtem ko vsi ostali parametri merilnika ostanejo enaki. V primeru skeniranja s celotnim merilnikom bi namreč morali poznati novo lego merilnika glede na meijenec 4, kar je povezano z vsemi napakami mehanskega pomikanja. V prvem primeru je neznanka le kot 18 triangulacije, medtem ko so v drugem primeru neznanke vse tri prostorske koordinate x, y, z, ki na skici niso posebej ponazorjene.Such a scan is more reliable than scanning by moving the entire meter or meter 4. For each position, we only need to know a new angle of 18 triangulation, i.e. angle of light plane 3 relative to camera 8, while all other meter parameters remain the same. In the case of full-scale scanning, you should know the new position of the meter with respect to the landmark 4, which is related to all mechanical displacement errors. In the first case, the unknown is only 18 triangulations, while in the second case, all three spatial coordinates x, y, z, which are not particularly illustrated, are unknown.

Dokler se skeniranje vrši zgolj s pomočjo premakljivega zrcala 2 je zaradi grobosti mehanskega pogona kljub vsemu še razmeroma težko zagotoviti ponovljivost in enakomernost gibanja laserske ravnine 3. Uporaba dovolj preciznih pogonov z optičnimi dajalniki kotov je vsaj tačas še vedno povezana z izjemno visokimi stroški. Poleg tega je tovrstna konstrukcija že v osnovi občutljiva na vsakršne spremembe, vibracije, udarce, in druge motnje, za nameček pa zahteva tudi drago krmiljenje in pogosto preveijanje nastavitev.As long as the scanning is done only by means of a movable mirror 2, due to the roughness of the mechanical drive, it is nevertheless still relatively difficult to ensure the reproducibility and uniformity of the motion of the laser plane 3. The use of sufficiently accurate drives with optical angle encoders is still at very high cost. In addition, this design is already fundamentally sensitive to any changes, vibrations, shocks, and other disturbances, and it also requires expensive steering and frequent adjustments.

Temu v izogib sta pri napravi po izumu predvideni dodatni zrcali 5 in 7 skupaj z referenčnim zaslonom 6, s pomočjo katerih je mogoče pridobiti točno informacijo o vsakokratni legi svetlobne ravnine 3. Z uporabo ravnega zrcala 5 (sl. 1 in 2) Odklonimo del Svetlobne ravnine 3, takoimenovan referenčni žarek 19, in ga vodimo na referenčni zaslon 6, ki je vgrajen v neprikazanem ohišju merilne naprave. Drugo zrcalo 7 namestimo pred objektiv kamere 8 tako, da je na delu slike viden referenčni zaslon 13. S tem je dosežen prenos informacije o .legi svetlobne ravnine 3 oz. o trenutnem triangulacij skem kotu 18 na sliko 12 (sl. 3). Na delu slike 12, kjer je viden prikaz 13 referenčnega zaslona 6, je vidna tudi lega referenčnega žarka 19, in sicer kot kratek odsek 15 ravnega profila.In order to avoid this, additional mirrors 5 and 7 are provided with the device according to the invention, together with a reference screen 6, by means of which accurate information can be obtained about the respective position of the light plane 3. Using the flat mirror 5 (Figs. 1 and 2) plane 3, the so-called reference beam 19, and is guided to the reference screen 6, which is mounted in the non-displayed housing of the measuring device. The second mirror 7 is positioned in front of the lens of the camera 8 so that the reference screen 13 is visible on a portion of the image. This results in the transmission of light plane position information 3 or. on the current triangulation angle 18 of Figure 12 (Fig. 3). In the portion of Figure 12, where the display 13 of the reference screen 6 is visible, the position of the reference beam 19 is also visible as a short section 15 of a flat profile.

Zaradi zagotavljanja dobre vidljivosti refrenčnega žarka 19 na prikazu 13 referenčnega zaslona 6, mora biti svetlobna odbojnost referenčnega zaslona 6 usklajena s svetlobnimi razmerami celotne merilne naprave. Refrenčni zaslon 6 mora zagotoviti enakomeren difuzni odboj laserske svetlobe in biti barvno usklajen (npr. odtenek sivine) s svetlobno odbojnostjo meijenca 4, svetlobno intenziteto laserske ravnine 3, okoliško svetlobo ter nastavitvijo kamere 8.In order to ensure good visibility of the refractive beam 19 in the display 13 of the reference screen 6, the luminous reflectance of the reference screen 6 must be consistent with the light conditions of the whole measuring device. The refractive display 6 must provide a uniform diffuse reflection of the laser light and be color-coordinated (eg, grayscale) with the light reflectance of the beam 4, the light intensity of the laser plane 3, the surrounding light and the setting of the camera 8.

Iz vertikalne lege (označba 15) referenčnega žarka 19 na sliki s prikazom 13 referenčnega zaslona 6 lahko določimo triangulacij ski kot 18 in ga nato uporabimo pri izračunu trodimenzionalnih koordinat preostalih točk profila 14. Algoritmi izračuna koordinat so na strokovnjaku nedvomno razumljiv način podrobno opisani v strokovni literaturi (npr. D. Bračun: MERITEV OBLIKE TELES NA OSNOVI LASERSKE TRIANGULACIJE, Doktorska disertacija, Univerza v Ljubljani, Fakulteta za strojništvo, 2002).From the vertical position (reference 15) of the reference beam 19 in the picture showing 13 of the reference screen 6, we can determine the triangulation ski angle 18 and then use it in the calculation of the three-dimensional coordinates of the remaining points of the profile 14. The algorithms for calculating coordinates are clearly described in the expert way in a proficient manner. literature (eg D. Bračun: MEASUREMENT OF BODY SHAPE BASED ON LASER TRIANGULATION, Doctoral dissertation, University of Ljubljana, Faculty of Mechanical Engineering, 2002).

Zaradi vzpostavitve tovrstne optične povratne zanke ni potrebno zagotoviti ponovljivosti pozicioniranj a svetlobne ravnine 3, ki je lahko poljubno premakljiva, ker je triangulacij ski kot 18 v vsaki legi določljiv na predhodno opisan način.. Tovrstno določanje triangulacijskega kota 18 je enostavnejše in izvedljivo z bistveno cenejšimi komponentami kot je to možno npr. pri napravi, kakršna je opisana v US 4,873,449.In order to establish such an optical feedback loop, it is not necessary to ensure the repeatability of the positioning of the light plane 3, which can be arbitrarily movable, since the triangulation angle 18 in each position is determinable in the manner previously described. Such determination of the triangulation angle 18 is simpler and feasible with significantly cheaper components such as possible e.g. with a device as described in US 4,873,449.

Konfiguracija merilne naprave, kakršna je uporabljena pri izvedbi po sl. 1, je še zlasti primerna v primerih, ko so dimenzije ohišja zaradi dolžine optične povratne zanke v razumnih mejah. Kadar so te dimenzije prevelike, jih je mogoče zmanjšati, in sicer z uvedbo še dveh dodatnih zrcal 10, 11 (Sl. 4). Pri tovrstni izvedbi vodimo referenčni žarek 19 do referenčnega zaslona 6, ki je v tem primeru premaknjen na nivo lege zrcal 5 in 7. S takšno postavitvijo se za polovico skrajša razdalja med zrcali 5, 10 oz. 11, 7, s tem pa se tudi zmanjša ohišje. Nadaljnja različica naprave po sl. 5 omogoča še dodatno zmanjšanje z uvedbo še dveh dodatnih zrcal 16, 17, ki pa sta nameščeni vzporedno z zrcaloma 10 in 11, tako da se referenčni žarek 19 večkrat odbije, preden doseže referenčni zaslon 13. Tovrstna postavitev omogoča bistveno skrajšanje vertikalne dimenzije ohišja, treba pa je seveda računati z razmeroma zahtevno montažo in nastavitvijo celotnega optičnega sistema.The configuration of the measuring device as used in the embodiment of FIG. 1 is particularly suitable in cases where the dimensions of the housing are within reasonable limits due to the length of the optical feedback loop. When these dimensions are too large, they can be reduced by introducing two additional mirrors 10, 11 (Fig. 4). In this embodiment, the reference beam 19 is guided to the reference screen 6, which in this case is moved to the position of the mirror position 5 and 7. This arrangement halves the distance between the mirrors 5, 10 and 10, respectively. 11, 7, thus also reducing the casing. A further version of the apparatus of FIG. 5 enables further reduction by introducing two additional mirrors 16, 17, which are arranged parallel to mirrors 10 and 11, so that the reference beam 19 is repeatedly reflected before it reaches the reference screen 13. This arrangement allows for a substantial shortening of the vertical dimension of the housing, Of course, it has to be calculated with the relatively demanding installation and setup of the whole optical system.

Claims (5)

1. Optična merilna naprava za ugotavljanje oblike teles, sestoječa iz optične enote (1) oz. projektoija, kije predvidena za generiranje oz. projiciranje svetlobne ravnine (3), zlasti laserske svetlobne ravnine, proti površini merjenca (4), kot tudi iz kamere (8), ki je predvidena za snemanje površine merjenca (4), s čimer je na tako dobljeni sliki (12) možno detektirati profil (14) preseka omenjene svetlobne ravnine (3) s površino merjenca (4), pri čemer je med svetlobno ravnino (3), izhajajočo iz enote (1), in kamero (8) vsakokrat na voljo kot (18) triangulacije, s pomočjo katerega se vrši določanje oblike površine merjenca (4), označena s tem, da sestoji iz nepremakljive(ga) optične enote (1) oz. projektoija, nepremakljive kamere (8), ob enoti (1) nameščenega premakljivega zrcala (2) ter iz vsaj dveh dodatnih zrcal (5, 7) in referenčnega zrcala (6), pri čemer je ob nepremakljivi optični enoti (1) oz. nepremakljivem projektoiju predvideno premakljivo zrcalo (2) za spreminjanje smeri proti površini merjenca (4) potekajoče svetlobne ravnine (3) in s tem kota (18) triangulacije, in pri čemer je prvo dodatno zrcalo (5) razporejeno v območju svetlobne ravnine (3) med premakljivim zrcalom (2) in meijencem (4), drugo dodatno zrcalo (7) pa med nepremakljivo kamero (8) in merjencem (4), tako da se zahvaljujoč odboju dela svetlobne ravnine (3) na prvem dodatnem zrcalu (5) tvori referenčni žarek (19), ki se po odboju od referenčnega zaslona (6) od drugega dodatnega zrcala (7) odbije proti kameri (8), pri kateri je na delu slike (12) viden prikaz (13) referenčnega zaslona (6), na katerem referenčni žarek (19) tvori odsek (15).An optical measuring device for determining the shape of a body, consisting of an optical unit (1) or a projection, which is intended to generate or. projecting the light plane (3), in particular the laser light plane, towards the surface of the gauge (4), as well as from the camera (8) intended to capture the surface of the gauge (4), thereby detecting in the resulting image (12) the profile (14) of the cross section of said light plane (3) with the surface of the gauge (4), whereby between the light plane (3) emanating from the unit (1) and the camera (8) are each available as (18) triangulation, s by means of which the shape of the surface of the gauge (4) is determined, characterized in that it consists of a stationary optical unit (1) or. projection, fixed cameras (8), with a movable mirror (2) mounted next to the unit (1), and at least two additional mirrors (5, 7) and a reference mirror (6), with the fixed optical unit (1) or. a movable mirror providing a movable mirror (2) for changing the direction towards the surface of the gauge (4) of the illuminating plane (3) and thereby the angle (18) of the triangulation, and wherein the first additional mirror (5) is arranged in the area of the light plane (3) between the movable mirror (2) and the landmark (4), and the second additional mirror (7) between the motionless camera (8) and the gauge (4), so that due to the reflection of a part of the light plane (3) on the first additional mirror (5) a reference beam (19) which, after deflecting from the reference screen (6) from the second additional mirror (7), is reflected towards the camera (8), in which a portion (13) of the reference screen (6) is visible on the portion of the image (12), on which the reference beam (19) forms a section (15). 2. Naprava po zahtevku 1, označena s tem, da sestoji iz nepremakljivega) optične enote (1) oz. projektoija, nepremakljive kamere (8), ob enoti (1) nameščenega premakljivega zrcala (2) ter iz vsaj štirih dodatnih zrcal (5, 7; 10, 11) in referenčnega zaslona (6), pri čemer je ob nepremakljivi optični enoti (1) oz. nepremakljivem projektoiju predvideno premakljivo zrcalo (2) za spreminjanje smeri proti površini merjenca (4) potekajoče svetlobne ravnine (3) in s tem kota (18) triangulacije, in pri čemer je prvo dodatno zrcalo (5) razporejeno v območju svetlobne ravnine (3) med premakljivim zrcalom (2) in merjencem (4), drugo dodatno zrcalo (7) je razporejeno med nepremakljivo kamero (8) in meijencem (4), tretje in četrto dodatno zrcalo (10, 11) pa sta tako razporejeni, da se zahvaljujoč odboju dela svetlobne ravnine (3) na prvem dodatnem zrcalu (5) tvori proti tretjemu dodatnemu zrcalu (10) usmerjen referenčni žarek (19), ki se po odboju od tretjega dodatnega zrcala (10) odbije proti referenčnemu zrcalu (6), od slednjega proti četrtemu dodatnemu zrcalu (11), od ondod pa proti drugemu dodatnemu zrcalu (7) ter zatem proti kameri (8), pri kateri je na delu slike (12) viden prikaz (13) referenčnega zaslona (6), na katerem referenčni žarek (19) tvori odsek (15).Apparatus according to claim 1, characterized in that it consists of a stationary optical unit (1) or an optical unit. projection, waterproof cameras (8), with a moving mirror (2) mounted next to the unit (1), and at least four additional mirrors (5, 7; 10, 11) and a reference screen (6), with the stationary optical unit (1) ) or a movable mirror providing a movable mirror (2) for changing the direction towards the surface of the gauge (4) of the illuminating plane (3) and thereby the angle (18) of the triangulation, and wherein the first additional mirror (5) is arranged in the area of the light plane (3) between the movable mirror (2) and the gauge (4), the second additional mirror (7) is arranged between the motionless camera (8) and the landmark (4), and the third and fourth additional mirrors (10, 11) are so arranged that the reflection of a part of the light plane (3) on the first additional mirror (5) forms a reference beam (19) directed towards the third additional mirror (10), which, after reflection from the third additional mirror (10), is reflected towards the reference mirror (6) from the latter. towards the fourth additional mirror (11), thence to the second additional mirror (7) and then to the camera (8), in which a portion (13) of the reference screen (6) is visible on the portion of the image (6) on which the reference beam (19) forms a section (15). 3. Naprava po zahtevku 1, označena s tem, da sestoji iz nepremakljive(ga) optične enote (1) oz. projektorja, nepremakljive kamere (8), ob enoti (1) nameščenega premakljivega zrcala (2) ter iz vsaj šestih dodatnih zrcal (5, 7; 10, 11; 16, 17) in referenčnega zaslona (6), pri čemer je ob nepremakljivi optični enoti (1) oz. nepremakljivem projektorju predvideno premakljivo zrcalo (2) za spreminjanje smeri proti površini merjenca (4) potekajoče svetlobne ravnine (3) in s tem kota (18) triangulacije, in pri čemer je prvo dodatno zrcalo (5) razporejeno v območju svetlobne ravnine (3) med premakljivim zrcalom (2) in merjencem (4), drugo dodatno zrcalo (7) je razporejeno med nepremakljivo kamero (8) in meijencem (4), preostala dodatna zrcala (10, 11; 16, 17) pa so tako razporejena,' da se zahvaljujoč odboju dela svetlobne ravnine (3) na prvem dodatnem zrcalu (5) tvori proti tretjemu dodatnemu zrcalu (10) usmerjen referenčni žarek (19), ki se po odboju od tretjega dodatnega zrcala (10) odbije proti petemu dodatnemu zrcalu (16) in od tam proti referenčnemu zaslonu (6), od slednjega proti šestemu dodatnemu zrcalu (17), od ondod pa proti četrtemu dodatnemu zrcalu (7), nato proti drugemu dodatnemu zrcalu (7) in zatem proti kameri (8), pri kateri je na delu slike (12) viden prikaz (13) referenčnega zaslona (6), na katerem referenčni žarek (19) tvori odsek (15).Device according to claim 1, characterized in that it consists of a stationary optical unit (1) or. projector, fixed camera (8), with movable mirror (2) mounted next to unit (1), and at least six additional mirrors (5, 7; 10, 11; 16, 17) and reference screen (6) optical unit (1) or. a movable mirror provided with a movable mirror (2) for changing the direction towards the surface of the gauge (4) of the illuminating plane (3) and thereby the angle (18) of the triangulation, and wherein the first additional mirror (5) is arranged in the area of the light plane (3) between the movable mirror (2) and the gauge (4), the second additional mirror (7) is arranged between the motionless camera (8) and the landmark (4), and the remaining additional mirrors (10, 11; 16, 17) are thus arranged, ' due to the reflection of a part of the light plane (3) on the first additional mirror (5), a reference beam (19) is directed towards the third additional mirror (10) which, after reflection from the third additional mirror (10), is reflected towards the fifth additional mirror (16) ) and thence to the reference screen (6), from the latter to the sixth additional mirror (17), thence to the fourth additional mirror (7), then to the second additional mirror (7) and then to the camera (8), in which a portion (13) of the reference screen can be seen in part (12) a (6), on which the reference beam (19) forms a section (15). 4. Postopek optičnega ugotavljanja površine telesa na osnovi detekcije profilov (14) preseka omenjene svetlobne ravnine (3) s površino meijenca (4) pri različnih kotih (18) triangulacije, ki se vrši s pomočjo optične enote (1) za ganeriranje svetlobne ravnine (3) proti površini meijenca (3) in kamere za snemanje vsakokrat dobljene slike (12), pri čemer se koordinate točk na površini merjenca (4) izračunava na osnovi skeniranja površine merjenca (3) oz. s pomočjo spreminjanja položaja svetlobne ravnine (3), označen s tem, da se optično enoto (1) oz. projektor za generiranje svetlobne ravnine (3) ter kamero (8) za snemanje vsakokratnega profila (14) vsakokratne svetlobne ravnine (3) na površini meijenca (4) učvrsti v vsakokrat izbranem položaju, nakar se položaj svetlobne ravnine in s tem kot (18) triangulacije spreminja s pomočjo premakljivega zrcala (2), ki se ga namesti ob enoto (1), obenem pa se s pomočjo vsaj dveh dodatnih zrcal (5, 7) in referenčnega zaslona (6) iz dela proti površini meijenca (4) usmeijene svetlobne ravnine (3) tvori referenčni žarek (19), ki se ga vodi do kamere (8) in s pomočjo katerega se določa vsakokraten kot (18) triangulacije in s tem koordinate točk na površini meijenca (4).4. The method of optical determination of the surface of the body based on the detection of profiles (14) of the cross section of said light plane (3) with the surface of the mew (4) at different angles (18) of triangulation, which is carried out by means of an optical unit (1) for the generation of the light plane (4). 3) against the surface of the waveform (3) and the camera for recording the image obtained in each case (12), whereby the coordinates of the points on the surface of the meter (4) are calculated on the basis of a scan of the surface of the meter (3) or. by changing the position of the light plane (3), characterized in that the optical unit (1) or the projector for generating the light plane (3) and the camera (8) for recording the respective profile (14) of the respective light plane (3) on the surface of the meander (4) are fixed in the position selected at each time, and then the position of the light plane and thus (18) changes the triangulation by means of a movable mirror (2), which is mounted next to the unit (1), and at the same time, by means of at least two additional mirrors (5, 7) and a reference screen (6), from the part towards the surface of the smiley light (4) of the plane (3) is formed by a reference beam (19), which is guided to the camera (8), by which the respective angle (18) of the triangulation and thus the coordinates of the points on the surface of the meander (4) are determined. tt 5. Postopek po zahtevku 4, označen s tem, da se optično enoto (1) oz. projektor za generiranje svetlobne ravnine (3) ter kamero (8) za snemanje vsakokratnega profila (14) vsakokratne svetlobne ravnine (3) na površini meijenca (4) učvrsti v vsakokrat izbranem položaju, nakar se položaj svetlobne ravnine in s tem kot (18) triangulacije spreminja s pomočjo premakljivega zrcala (2), ki se ga namesti ob enoto (1), obenem pa se s pomočjo dodatnih zrcal (5, 7; 10, 11; 16, 17) in referenčnega zaslona (6) iz dela proti površini meijenca (4) usmeijene svetlobne ravnine (3) tvori referenčni žarek (19), ki se ga vodi do kamere (8) in s pomočjo katerega se določa vsakokraten kot (18) triangulacije in s tem koordinate točk na površini merjenca (4).Method according to claim 4, characterized in that the optical unit (1) or. the projector for generating the light plane (3) and the camera (8) for recording the respective profile (14) of the respective light plane (3) on the surface of the meander (4) are fixed in the position selected at each time, and then the position of the light plane and thus (18) it changes the triangulation by means of a movable mirror (2), which is mounted next to the unit (1), and at the same time by means of additional mirrors (5, 7; 10, 11; 16, 17) and a reference screen (6) from the part towards the surface the beam (4) of the smiling light plane (3) forms a reference beam (19), which is guided to the camera (8), by which the respective angles (18) of the triangulation and thus the coordinates of the points on the surface of the meter (4) are determined.
SI200300216A 2003-08-29 2003-08-29 Optical measuring device and procedure for determination of shape of solids SI21576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200300216A SI21576A (en) 2003-08-29 2003-08-29 Optical measuring device and procedure for determination of shape of solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200300216A SI21576A (en) 2003-08-29 2003-08-29 Optical measuring device and procedure for determination of shape of solids

Publications (1)

Publication Number Publication Date
SI21576A true SI21576A (en) 2005-02-28

Family

ID=34225641

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200300216A SI21576A (en) 2003-08-29 2003-08-29 Optical measuring device and procedure for determination of shape of solids

Country Status (1)

Country Link
SI (1) SI21576A (en)

Similar Documents

Publication Publication Date Title
US10323927B2 (en) Calibration of a triangulation sensor
US11199395B2 (en) Profile inspection system for threaded and axial components
EP2183546B1 (en) Non-contact probe
Eiríksson et al. Precision and accuracy parameters in structured light 3-D scanning
US9599455B2 (en) Device for optically scanning and measuring an environment
KR100729290B1 (en) Phase profilometry system with telecentric projector
US5933231A (en) Method and system for measuring cavities and probe for use therein
US20150015701A1 (en) Triangulation scanner having motorized elements
TWI420081B (en) Distance measuring system and distance measuring method
CN105102925A (en) Three-dimensional coordinate scanner and method of operation
Jecić et al. The assessment of structured light and laser scanning methods in 3D shape measurements
JP2019522213A (en) Non-contact probe and method of operation
JPH10311779A (en) Equipment for measuring characteristics of lens
RU2148793C1 (en) Process measuring form and spatial position of surface of object
Livingstone et al. Development of a large field of view 3-d vision system
KR20180053119A (en) 3-dimensional shape measurment apparatus and method thereof
KR100383027B1 (en) Method and apparatus for measuring 3 dimensional behavior using laser
CN105157615A (en) Three-dimensional shape measurement system for vacuum
KR100499697B1 (en) Three-dimensional image measuring apparatus and method thereof
SE470029B (en) Optical device for checking the smoothness and flatness of a surface
KR20040071532A (en) Three-dimensional image measuring apparatus
SI21576A (en) Optical measuring device and procedure for determination of shape of solids
Breuckmann et al. 3D-metrologies for industrial applications
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
KR20180039201A (en) Precise deformation generating and measuring device using the light interferometer

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20041210

KO00 Lapse of patent

Effective date: 20070419