SI21318A - Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range - Google Patents

Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range Download PDF

Info

Publication number
SI21318A
SI21318A SI200200254A SI200200254A SI21318A SI 21318 A SI21318 A SI 21318A SI 200200254 A SI200200254 A SI 200200254A SI 200200254 A SI200200254 A SI 200200254A SI 21318 A SI21318 A SI 21318A
Authority
SI
Slovenia
Prior art keywords
sludge
stage
anaerobic
aerobic
heat
Prior art date
Application number
SI200200254A
Other languages
Slovenian (sl)
Inventor
Milenko ROŠ
Gregor Drago Zupančič
Original Assignee
Kemijski inštitut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski inštitut filed Critical Kemijski inštitut
Priority to SI200200254A priority Critical patent/SI21318A/en
Priority to PCT/SI2003/000035 priority patent/WO2004035491A1/en
Priority to AU2003301295A priority patent/AU2003301295A1/en
Publication of SI21318A publication Critical patent/SI21318A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/10Temperature conditions for biological treatment
    • C02F2301/106Thermophilic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Sludge produced in waste water treatment plants should be treated additionally prior to further use or disposal at dump. The subject of this invention is a thermophile two-stage anaerobic-aerobic stabilization and mineralization of sludge and the respective device. The two-stage process developed operates completely within the thermophile range, preferentially between 50 and 60 degrees Celsius and is divided into two parts. Due to the termophile range of operation, the process developed is essentially more effective and also much quicker. In the first - anaerobic - stage, the process is similar to the conventional mesophile process. The aerobic stage of the process after the anaerobic one definitively stabilizes and removes almost all biologically degradable substances, not degradable in the anaerobic way. Additional novelty is also regeneration of heat, which reduces essentially thermal requirements of the process which can thus become equivalent (from the point of view of thermal requirements) to the mesophile process

Description

Postopek in naprava za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območjuMethod and device for stabilization and mineralization of sewage sludge in thermophilic temperature range

Področje tehnike v katero spada izumFIELD OF THE INVENTION

Predmetni izum je s področja reaktorske tehnike - varstva okolja in se nanaša na nov postopek stabilizacije in mineralizacije blata iz čistilnih naprav za čiščenje odpadne vode, ki nastaja kot trdni odpadek (odvečno oz. odpadno blato). Nanaša se zlasti na anaerobno-aerobni dvostopenjski postopek stabilizacije in mineralizacije blata v termofilnem temperaturnem področju. Prednostno obsega tudi regeneracijo toplote pri prvi stopnji - termofilnem anaerobnem procesu in termofilnem dvostopenjskem-anaerobno aerobnem procesu. Postopek stabilizacije blata je zelo fleksibilen in se lahko uporablja v širokem pasu potreb. Z uporabo prve anaerobne, druge aerobne in obeh stopenj pri različnih kombinacijah zadrževalnih časov, se lahko pokrijejo vse zmožnosti biološke stabilizacije in mineralizacije blata.The present invention relates to the field of reactor technology - environmental protection and relates to a new process for the stabilization and mineralization of sewage sludge, which is produced as solid waste (excess or waste sludge). It refers in particular to the anaerobic-aerobic two-step process of stabilization and mineralization of sludge in the thermophilic temperature range. Preferably, it also comprises heat recovery at the first stage - the thermophilic anaerobic process and the thermophilic two-stage-anaerobic aerobic process. The sludge stabilization process is very flexible and can be used in a wide range of needs. By using the first anaerobic, second aerobic and both stages at different combinations of residence times, all the biological stabilization and mineralization capabilities of the sludge can be covered.

Tehnični problemA technical problem

Pri biološkem čiščenju odpadne vode nastane velika količina odvečnega blata, ki ga je treba pred nadaljnjo uporabo dodatno obdelati. Običajne obdelave so mezofilni anaerobni razkroj v gniliščih (digestorijih) pri 30 do 38°C ali aerobna razgradnja pri minimalno 13°C, običajno pri 20°C. Zadrževalni časi v anaerobnih mezofilnih sistemih se običajno gibljejo med 30 in 60 dni, pri aerobnih pa med 50 do 60 dni. Namen razgradnje je zmanjšanje (običajna stopnja odstranitve pri mezofilnem procesu je 40%) in stabilizacija organskih snovi v blatu (manjše število patogenih mikroorganizmov), pri anaerobnem razkroju pa tudi pridobivanje bioplina, iz katerega večinoma pridobivajo električno energijo in toploto za potrebe čistilne naprave.Biological wastewater treatment produces a large amount of excess sludge that needs to be further treated before further use. Typical treatments are mesophilic anaerobic digestion in digesters at 30 to 38 ° C or aerobic digestion at a minimum of 13 ° C, usually at 20 ° C. Retention times in anaerobic mesophilic systems typically range between 30 and 60 days, and in aerobic ones between 50 and 60 days. The purpose of decomposition is to reduce (the normal rate of removal in the mesophilic process is 40%) and to stabilize the organic matter in the sludge (a smaller number of pathogens), and in the case of anaerobic digestion, to produce biogas, from which most of the electricity and heat is generated for the treatment plant.

Tako obdelano blato se lahko uporabi za gnojilo na kmetijskih površinah, vendar le, če nima previsoke vsebnosti strupenih oz. nevarnih snovi, npr. težkih kovin. V takem primeru ga je potrebno deponirati. Trend zadnjih let (nižanje meje dovoljene vsebnosti težkih kovin, in vse večja onesnaženost in obremenjenost čistilnih naprav) uvršča blato kot posebni odpadek, ki ga je treba deponirati na posebna odlagališča. Samo v Sloveniji imamo 126 čistilnih naprav od katerih jih 33 nima obdelave blata, 4 blato kompostirajo ostale pa imajo večinoma anaerobno mezofilno stabilizacijo. Letna količina obdelanega blata v Sloveniji znaša 35872,6 m3 (6608,5 ton suhe snovi), od tega jih je 19833,6 m3 (3996,31 suhe snovi) deponiranega.The sludge treated in this way can be used for fertilizer on agricultural land, but only if it does not contain too much toxic or toxic content. hazardous substances, e.g. of heavy metals. In such a case it must be deposited. The trend of recent years (the lowering of the limit for the content of heavy metals, and the increasing pollution and pollution of wastewater treatment plants) classify sludge as a special waste that must be deposited in special landfills. In Slovenia alone, there are 126 wastewater treatment plants, 33 of which have no sludge treatment, and 4 sludges are composted by the rest, with mostly anaerobic mesophilic stabilization. The annual quantity of treated sludge in Slovenia amounts to 35872.6 m 3 (6608.5 tonnes of dry matter), of which 19833.6 m 3 (3996.31 dry matter) is deposited.

Stanje tehnikeThe state of the art

Doslej je že več uveljavljenih dvostopenjskih procesov, ki le deloma delujejo v termofilnem področju in so osnovani na drugačnih konceptih, kot proces, ki je predmet tega izuma.To date, there are already several well-established two-stage processes that only partially operate in the thermophilic field and are based on concepts different from the process of the present invention.

Dve bistveni lastnosti do sedaj uveljavljenih dvostopenjskih procesov v svetu, ki sta enaki vsem, sta:Two essential features of the one-of-a-kind, two-stage processes in the world so far are:

• Dvostopenjski procesi so vsi v bistvu fazno ločeni anaerobni sistemi.• Two-stage processes are all essentially phase-separated anaerobic systems.

• Vsi procesi imajo prvo stopnjo termofilno, ki traja kratek čas (1-3 dni) in drugo stopnjo mezofilno, ki traja daljši čas (12-30 dni)• All processes have the first stage thermophilic, which lasts for a short time (1-3 days) and the second stage, mesophilic, which lasts for a long time (12-30 days)

Kot je znano, je anaerobni proces stabilizacije s mikrobiološkega stališča dvostopenjski proces, sestavljen iz dveh faz, kislinske in metanogene. Pri sedaj uveljavljenih dvostopenjskih procesih se ti dve fazi ločujeta in optimizirata vsaka posebej. Tako je večinoma prva stopnja termofilna anaerobna (v nekaterih primerih tudi aerobna), kjer se proces stabilizacije in mineralizacije ustavi še v prvi - kislinski fazi procesa. Ta faza je kratka, traja le 1-3 dni, zaradi velike porabe toplote (proces je termofilen). Druga stopnja je zmeraj anaerobna mezofilna stabilizacija in sicer, metanogena faza anaerobnega procesa. Rezultati doseženi pri teh procesih so objavljeni tudi v svetovni strokovni literaturi [1-6]. Kot glavni razlog, da obe stopnji nista v termofilnem območju, se navaja, da so toplotne potrebe termofilnega procesa bistveno višje, in da se tak proces energijsko ne izplača (to je še posebej omenjeno v [1,2]).As is known, the anaerobic stabilization process from a microbiological point of view is a two-stage process consisting of two phases, acidic and methanogenic. With the two-stage processes now in place, the two phases are separated and optimized individually. Thus, for the most part, the first stage is thermophilic anaerobic (in some cases also aerobic), where the stabilization and mineralization process stops in the first - acid phase of the process. This phase is short, lasting only 1-3 days due to high heat consumption (the process is thermophilic). The second stage is always anaerobic mesophilic stabilization, namely, the methanogenic phase of the anaerobic process. The results achieved in these processes are also published in the world expert literature [1-6]. The main reason is that both stages are not in the thermophilic range, it is stated that the thermal needs of the thermophilic process are significantly higher, and that such a process does not pay off energetically (this is mentioned in [1,2] in particular).

Ločitev faz in optimizacija vsake faze posebej v dveh stopnjah pripomore k boljši razgradnji - večji mineralizaciji in stabilizaciji blata. Razgradnja organske komponente blata je večja pri krajših zadrževalnih časih. Proizvodnja bioplina je zaradi višje stopnje razgradnje prav tako višja, kot pri konvencionalnih mezofilnih procesih. Proizvodnja bioplina je nekoliko nižja pri procesih, kjer je prva stopnja aerobna. Rezultati vsake reference posebej so zbrani v Tabeli 1.Separation of phases and optimization of each phase individually in two stages contributes to better degradation - greater mineralization and stabilization of sludge. The decomposition of the organic component of the sludge is greater at shorter retention times. Due to the higher rate of degradation, biogas production is also higher than that of conventional mesophilic processes. Biogas production is slightly lower in processes where the first stage is aerobic. The results of each reference are summarized in Table 1.

Tabela 1 - rezultati do sedaj razvitih dvostopenjskih procesovTable 1 - Results of the two-stage processes developed so far

Avtorji: Authors: Zadrževalni čas (dnevi) Retention time (days) Odstranitev organske komponente blata (%) Organic removal mud components (%) rCheunbarn [1] r Cheunbarn [2] 15 15 63 63 Cheunbarn [2] Cheunbarn [1] 15 15 61 61 Ghosh [3] Ghosh [3] 18,1 18,1 58,9 58,9 Bhattacharya [4] Bhattacharya [4] 12 12 54,3 54,3 Oles [5] Oles [5] 18-27 18-27 54-60 54-60 Yue Han [6] Yue Han [7] 13-28 13-28 44-52 44-52 Roberts [7] Roberts [7] 14 14 45 45

Ker je proces v prvi stopnji izvajan v termofilnem področju, je sterilnost blata višja kot pri konvencionalnih mezofilnih sistemih. To pomeni, da je vsebnost patogenih mikroorganizmov manjša, oziroma, če je zadrževalni čas vsaj 48 ur, pod mejo vrednosti okužbe [8],Since the process is first performed in the thermophilic region, the sterility of the sludge is higher than that of conventional mesophilic systems. This means that the pathogen content of the pathogens is lower or, if the retention time is at least 48 hours, below the infection limit [8],

Reference:References:

1. Tapana Cheunbarn, Krishna R. Pagilla, Aerobic thermophillic and anaerobic mesophillic treatment ofsludge. Journal of environmental engineering, 2000. 126(9): p. 790-795.1. Tapana Cheunbarn, Krishna R. Pagilla, Aerobic thermophillic and anaerobic mesophillic treatment ofsludge. Journal of Environmental Engineering, 2000. 126 (9): p. 790-795.

2. Tapana Cheunbarn, Krishna R. Pagilla, Anaerobic Thermophillic/mesophillic dual-stage sludge treatment. Journal of environmental engineering, 2000. 126(9): p. 796-801.2. Tapana Cheunbarn, Krishna R. Pagilla, Anaerobic Thermophillic / Mesophillic dual-stage sludge treatment. Journal of Environmental Engineering, 2000. 126 (9): p. 796-801.

3. Sambhunath Ghosh, Kevin Buoy, Larry Dressel, Terry Miller, Greg Wilcox, Dave Loos, Pilot and full scale two-phase anaerobic digestion ofmunicipal sludge. VVater environment and research, 1995. 67(2): p. 206-214.3. Sambhunath Ghosh, Kevin Buoy, Larry Dressel, Terry Miller, Greg Wilcox, Dave Loos, Pilot and full scale two-phase anaerobic digestion of municipal sludge. Water Environment and Research, 1995. 67 (2): p. 206-214.

4. Sanjoy K. Bhattacharya, Richard L. Madura, David AValling, Joseph B. Farrel, Volatile solids reduction in two phase and conventionai anaerobic sludge digestion. VVater research, 1996. 30(5): p. 1041-1048.4. Sanjoy K. Bhattacharya, Richard L. Madura, David AValling, Joseph B. Farrel, Volatile solids reduction in two phase and convention and anaerobic sludge digestion. Water Research, 1996. 30 (5): p. 1041-1048.

5. Juergen Oles, Norbert Dichtl, Hans-Hermann Niehoff, Fufl scaie experience of two stage thermophillic/mesophiliic sludge digestion. VVater Science and technology, 1997. 36(6-7): p. 449-456.5. Juergen Oles, Norbert Dichtl, Hans-Hermann Niehoff, Fufl scaie experience of two stage thermophillic / mesophiliac sludge digestion. Water Science and Technology, 1997. 36 (6-7): p. 449-456.

6. Yue Han, Shihwu Sung, Richard R. Dague, Temperature-phased anaerobic digestion of wastewater sludges. VVater Science and technology, 1997. 36(67): p. 367-374.6. Yue Han, Shihwu Sung, Richard R. Dague, Temperature-phased anaerobic digestion of wastewater sludges. Water Science and Technology, 1997. 36 (67): p. 367-374.

7. R. Roberts, W.J. Davies, C.F. Forster, Two-stage, thermophiilic-mesophiiiic anaerobic digestion ofsewage sludge. Trans I. Chem e., 1999. 77(part Β): p. 93-97.7. R. Roberts, W.J. Davies, C.F. Forster, Two-stage, thermophiilic-mesophiiiic anaerobic digestion ofsewage sludge. Trans I. Chem e., 1999. 77 (part Β): p. 93-97.

8. Burtscher C., Fali P. A., Christ O., VVilderer P. A.; VVuertz S., Detection and survival of pathogens during two-stage thermophilic/mesophiiic anaerobic treatment of suspended organic waste. VVater Science and technology, 1998. 38(12): p. 123-126.8. Burtscher C., Fali PA, Christ O., Wilderer PA ; Vuertz S., Detection and survival of pathogens during two-stage thermophilic / mesophytic anaerobic treatment of suspended organic waste. Water Science and Technology, 1998. 38 (12): p. 123-126.

Opis nove rešitve tehničnega problemaDescription of a new solution to a technical problem

Cilj predmetnega izuma je, da količino odvečnega blata iz čistilnih naprav za odpadne vode do najvišje možne mera zmanjša v najkrajšem možnem času. To zahteva, da se procesi vodijo v termofilnem temperaturnem področju (50-60°C), kar pa pomeni bistveno višje toplotne potrebe procesa, kar je doslej oteževalo obratovanje. Pridobljeni bioplin mnogokrat ni zadostoval niti za potrebe osnovnega procesa, kaj šele za dodatno - dopolnilno proizvodnjo električne energije. Prav tako je cilj, da se stabilizira - zmanjša ali ustavi vsakršna škodljiva aktivnost patogenih mikroorganizmov v blatu. To prav tako dosežemo po predmetnem izumu z obratovanjem v termofilnem temperaturnem področju.It is an object of the present invention to reduce the amount of excess sludge from wastewater treatment plants to the maximum possible extent in the shortest possible time. This requires that the processes be run in a thermophilic temperature range (50-60 ° C), which in turn means significantly higher thermal needs of the process, which has hindered operation so far. Many times the biogas produced was not sufficient for the basic process, let alone additional - supplementary electricity production. The goal is also to stabilize - reduce or stop any harmful activity of pathogenic microorganisms in the faeces. This is also achieved according to the present invention by operating in a thermophilic temperature range.

Postopek za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območju po predmetnem izumu je sestavljen iz dveh stopenj, v naslednjem zaporedju:The process for stabilizing and mineralizing the sludge from wastewater treatment plants in the thermophilic temperature range according to the present invention consists of two steps, in the following order:

• prve stopnje - anaerobne stopnje, ki je anaerobna stabilizacija-mineralizacija in poteka v termofilnem območju 40 do 80°C, prednostno med 50 in 60°C;• first stage - anaerobic stage, which is anaerobic stabilization-mineralization and takes place in the thermophilic range of 40 to 80 ° C, preferably between 50 and 60 ° C;

• druge stopnje - aerobne stopnje, ki je aerobna stabilizacija-mineralizacija z uporabo zraka ali opcijsko čistega kisika in poteka v termofilnem območju med 40 in 80°C, prednostno med 50 in 60°C;• second stages - aerobic stages, which is aerobic stabilization-mineralization using air or optionally pure oxygen and takes place in the thermophilic range between 40 and 80 ° C, preferably between 50 and 60 ° C;

opcijsko z regeneracijo toplote.optional with heat regeneration.

Po eni varianti postopka se blato predgreje s pomočjo regeneracije toplote med iztokom blata iz druge - aerobne stopnje in blatom - vtokom v dvostopenjski proces. Po drugi varianti postopka se blato predgreje s pomočjo regeneracije toplote in obratuje samo prva - anaerobna stopnja dvostopenjskega procesa.According to one variant of the process, the sludge is preheated by heat regeneration between sludge outflow from the second - aerobic stage and sludge - inlet into a two stage process. In the second variant of the process, the sludge is preheated by heat regeneration and only the first - anaerobic stage of the two-stage process is operated.

Drugi predmet izuma je naprava za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območju, ki obsega sito za delce (1), toplotni menjalnik - regenerator (2), toplotni menjalnik - grelec (3), anaerobni reaktor (4), opcijsko vod (5) za tok blata, motor (6) z notranjim zgorevanjem, generator (7) za proizvodnjo električne energije, aerobni reaktor (8) in odstranjevalnik (9) vode.Another object of the invention is a device for stabilizing and mineralizing sludge from wastewater treatment plants in a thermophilic temperature range comprising a particulate sieve (1), a heat exchanger - regenerator (2), a heat exchanger - heater (3), an anaerobic reactor (4 ), an optional sludge stream line (5), an internal combustion engine (6), a power generation generator (7), an aerobic reactor (8) and a water remover (9).

Predmet izuma je nov postopek za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območju, ki se v primerjavi z stanjem tehnike odlikuje po:The subject of the invention is a new process for the stabilization and mineralization of sludge from wastewater treatment plants in the thermophilic temperature range, which, in comparison with the prior art, is distinguished by:

• večji proizvodnji bioplina, • višji stopnji razgradnje organskih snovi v enakem ali krajšem zadrževalnem času in • bistveno nižji porabi toplote za enak učinek.• higher biogas production, • higher organic matter degradation over the same or shorter retention time, and • significantly lower heat consumption for the same effect.

Nova značilnost postopka je, da sestavljen iz dveh posameznih procesov anaerobnega in aerobnega in ne samo iz enega procesa, ki je fazno ločen, kar je primer do sedaj. Bistvena prednost te novosti je večja stabilnost dvostopenjskega procesa. Novost je prav tako tudi, da sta obe stopnji predmetnega izuma v termofilnem območju in ne samo ena, tako kot v do sedaj uveljavljenih dvostopenjskih procesih. Kot omenjeno v prejšnjem poglavju, je razlog, da je do sedaj le samo ena stopnja v termofilnem področju ta, da se za vzdrževanje takega procesa porabi preveč energije in da se to ne izplača. Na tem področju predmetni izum uvaja naslednjo novost, to je regeneracijo toplote, ki proces v termofilnem področju privede na enako ali celo manjšo stopnjo porabe energije, kot je pri mezofilnem procesu.A new feature of the process is that it consists of two separate anaerobic and aerobic processes and not just one phase-separated process, which is the case so far. A major advantage of this innovation is the greater stability of the two-step process. It is also novel that both stages of the present invention are in the thermophilic region and not just one, as in the two-stage processes so far established. As mentioned in the previous section, the reason is that only one step in the thermophilic field so far is that too much energy is used to maintain such a process and that it is not worth it. In this field, the present invention introduces the following novelty, that is, heat regeneration, which brings the process in the thermophilic region to the same or even lesser degree of energy consumption than that of the mesophilic process.

Postopek za stabilizacijo in mineralizacijo blata iz naprav po predmetnem izumu je sestavljen dveh stopenj:The process for stabilizing and mineralizing the sludge from the devices of the present invention consists of two steps:

• Prva stopnja je vedno anaerobna, zaradi maksimalnega izplena bioplina, zadrževalni čas te stopnje je od 3 do 12 dni. V tej stopnji se razgradi večina organskih delcev, zmanjša se tudi KPK. Ker pa anaerobno vse organske snovi niso razgradljive je • druga stopnja aerobna, kjer se bistveno zmanjša KPK. Razgradi se še tudi nekaj organskih delcev. Zadrževalni čas te stopnje je prav tako od 3 do 12 dni.• The first stage is always anaerobic, due to the maximum biogas yield, the retention time of this stage is from 3 to 12 days. At this stage, most organic particles are degraded and the COD is reduced. However, since anaerobically all organic substances are not degradable, • the second stage is aerobic, which significantly reduces the COD. Some organic particles are also degraded. The retention time of this stage is also from 3 to 12 days.

Skica 1 shematsko prikazuje napravo za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območju, ki je nadaljnji predmet tega izuma.Figure 1 schematically shows a device for stabilizing and mineralizing sludge from wastewater treatment plants in the thermophilic temperature range, which is a further object of the present invention.

• Odpadno blato iz naprav za čiščenje odpadne vode, z vsebnostjo trdnih delcev običajno okoli 3%, mora najprej skozi sito (1), ki izloči delce večje od 1,5 mm. To je potrebno zaradi regeneratorja (2) toplote, ki ima zaradi velike menjalne površine in višjega izkoristka take pretočne špranje, da delci večji od 1,5 mm povzročajo mašenje in manjšanje pretoka. , • Nato teče blato skozi toplotni menjalnik - regenerator (2), kjer se toplota iz toplega iztočnega blata 2. stopnje - aerobne stopnje procesa prenese na hladno vtočno blato.• The waste sludge from wastewater treatment plants, usually containing about 3% solids content, must first pass through a sieve (1) which removes particles larger than 1.5 mm. This is necessary because of the heat regenerator (2), which, due to its large exchange surface and higher efficiency, has a flow gap such that particles larger than 1.5 mm cause clogging and decrease in flow. , • The sludge then flows through a heat exchanger - regenerator (2), where heat is transferred from the warm stage 2 sludge - aerobic process steps to the cold sludge.

Nato se blato še dogreje s toplotnim menjalnikom - grelcem (3) na delovno temperaturo, ki običajno znaša 55°C. Toplota grelca se dobi iz kogeneracijskega modula (motorja z notranjim zgorevanjem), katerega gorivo je bioplin proizveden v 1. stopnji - anaerobni stopnji.The sludge is then further heated with a heat exchanger heater (3) to an operating temperature of normally 55 ° C. The heat of the heater is obtained from a cogeneration module (internal combustion engine) whose fuel is biogas produced in stage 1 - anaerobic stage.

• Blato nato steče v prvo stopnjo - anaerobni reaktor (4), kjer se s pomočjo anaerobnih bakterij razgrajujejo organski delci v blatu in kjer se zmanjšuje KPK organske snovi v blatu. Produkt anaerobne stabilizacije - mineralizacije je tudi bioplin, ki se uporablja kot gorivo za pogon kogeneracijskega modula. Temperatura anaerobne stopnje je 40 do 80°C, prednostno med 50 in 60°C.• The sludge then flows into the first stage - the anaerobic reactor (4), where organic particles in the sludge decompose with the help of anaerobic bacteria and where the COD of the organic matter in the sludge is reduced. The product of anaerobic stabilization - mineralization is also biogas, which is used as fuel to power the cogeneration module. The temperature of the anaerobic stage is 40 to 80 ° C, preferably between 50 and 60 ° C.

• Delno stabilizirano - mineralizirano blato teče nato v 2. stopnjo - aerobni reaktor (8), kjer se do konca razgradijo organske snovi v blatu (trdni delci se le malo razgradijo, KPK se pa bistveno zmanjša). Temperatura v aerobnem reaktorju je prav tako med 50 in 60°C. Običajno je za 1-5°C nižja kot v anaerobnem reaktorju, zaradi toplotnih izgub aerobnega reaktorja. Aerobni reaktor mora biti zaprta posoda (vendar ne nadtlačna), zaradi izparevanja vode in manjših izgub toplote, ki se pojavijo z izparevanjem. Zato mora imeti aerobni reaktor oddušni izpust zraka.• Partially stabilized - mineralized sludge then flows into stage 2 - an aerobic reactor (8), where the organic matter in the sludge is completely decomposed (the solids only decompose slightly and the COD is reduced significantly). The temperature in the aerobic reactor is also between 50 and 60 ° C. It is usually 1-5 ° C lower than in the anaerobic reactor due to heat losses of the aerobic reactor. The aerobic reactor must be a closed container (but not an overpressure), due to the evaporation of water and the minor heat losses that result from evaporation. Therefore, the aerobic reactor must have an air outlet.

• Blato po iztoku iz aerobnega reaktorja teče skozi toplotni regenerator (2), kjer greje vtočno blato.• The sludge flows through the heat regenerator (2), where the inflow sludge is heated, after leaving the aerobic reactor.

• Na koncu se blatu pred nadaljnjo uporabo ali deponiranjem običajno še odvzame voda v odstranjevalniku (9), da se zmanjša volumen blata.• In the end, the sludge is usually removed from the sludge (9) before further use or disposal to reduce sludge volume.

Alternative prikazane na Skici 1 so tudi recikli, kjer se del blata pri iztoku z reaktorja takoj vrača na vtok zaradi cepljenja - dodajanja mikroorganizmov v vtok.Alternatives shown in Figure 1 are also recyclers, where part of the sludge immediately returns to the outlet due to vaccination - the addition of microorganisms into the outlet.

Alternativa je tudi, da je prisotna samo ena stopnja, običajno je to anaerobna stopnja. V tem primeru mora zadrževalni čas anaerobne stopnje biti daljši, da se doseže dovolj velika stopnja stabilizacije in mineralizacije, kar pa pomeni tudi večji volumen reaktorja. Postopek regeneracije toplote je identičen. Toplota se regenerira med iztokom iz anaerobne stopnje in vtokom v anaerobno stopnjo. Blato pa vodimo po obdelavi v anaerobnem reaktorju (4) po vodu (5) direktno nazaj v toplotni menjalnik regenerator (2).Alternatively, only one stage is present, usually an anaerobic stage. In this case, the holding time of the anaerobic stage must be longer in order to achieve a sufficiently high degree of stabilization and mineralization, which also means a larger reactor volume. The heat recovery process is identical. Heat regenerates between anaerobic efflux and anaerobic effluent. After treatment in the anaerobic reactor (4), the sludge is led directly through the conduit (5) back to the heat exchanger regenerator (2).

Obe stopnji obratujeta v zgoraj navedenem termofilnem območju, kar je tudi bistvena prednost pred do sedaj razvitimi dvostopenjskimi procesi, ki le delno obratujejo v termofilnem področju. Zaradi celotnega obratovanja v termofilnem področju je proces precej hitrejši. Glavni razlog, ki je do sedaj botroval temu, da je le majhen del procesa v termofilnem področju, je domnevno velika poraba toplote za vzdrževanje procesa.Both stages operate in the thermophilic range mentioned above, which is also a significant advantage over the two-stage processes developed so far, which only partially operate in the thermophilic region. Due to the overall operation in the thermophilic field, the process is much faster. The main reason that has so far caused only a small part of the process to be in the thermophilic region is the allegedly high heat consumption to maintain the process.

Raziskave postopka, ki je predmet tega izuma so pokazale, da je toplota potrebna za dvostopenjski proces, resda precej višja od potrebe pri konvencionalnem mezofilnem procesu (od 40 do 50% višje toplotne potrebe). Od toplotne potrebe pri do sedaj razvitih dvostopenjskih procesih, pa se toplotna potreba dvostopenjskega procesa, ki je predmet tega izuma razlikuje ie za 1%.Investigations of the process of the present invention have shown that heat required for a two-stage process is indeed much higher than the need for a conventional mesophilic process (40 to 50% higher heat requirement). However, from the heat demand of the two-step processes developed so far, the heat demand of the two-step process, which is the subject of the present invention, differs by 1%.

Velika razlika toplotnih potreb med konvencionalnim mezofilnim in dvostopenjskim procesom tega izuma se krije s pomočjo regeneracije toplote. Postopek regeneracije toplote je prav tako predmet tega izuma.The large difference in heat demand between the conventional mesophilic and the two-step process of the present invention is covered by heat regeneration. The process of heat regeneration is also an object of the present invention.

Regeneracija toplote, ki je potrebna za postopek mineralizacije in stabilizacije blata, se izvršuje med iztočnim blatom iz druge - aerobne stopnje in vtočnim blatom prve anaerobne stopnje (Skica 1) . Stopnja regeneracije toplote lahko doseže tudi 70% in več, tako da je gledano s toplotnega vidika termofilni proces, ki se vrši z regeneracijo, celo ugodnejši od konvencionalnega mezofilnega procesa.The heat regeneration required for the sludge mineralization and stabilization process is carried out between the sludge of the second - aerobic stage and the sludge of the first anaerobic stage (Figure 1). The rate of heat regeneration can also reach 70% and above, so that from a thermal point of view, the thermophilic regeneration process is even more favorable than the conventional mesophilic process.

Skica 2 prikazuje toplotne bilance in temperaturna stanja blata skozi dvostopenjski proces.Figure 2 shows the heat balances and sludge temperature states through a two-step process.

• Odpadno blato - vtok blata se najprej predgreje s pomočjo toplotnega menjalnika - regeneratorja (2').• Waste sludge - the sludge inlet is first preheated with the help of a heat exchanger regenerator (2 ').

• Blato se nato segreje s pomočjo konvencionalnega grelnega sistema (7090°C) kogeneracijskega modula na vtočno temperaturo. Upošteva se tudi toplotna izguba anaerobnega reaktorja, tako da se blato segreje na malo višjo temperaturo, kot je temperatura v reaktorju ((4') (v primeru na Skici 2 nad 55°C), ravno dovolj da se pokrijejo izgube in da temperatura v reaktorju ostane 55°C. Višina temperature je odvisna od velikosti reaktorja. Manjši reaktorji imajo višjo temperaturo gretja blata.• The sludge is then heated by a conventional heating system (7090 ° C) of the cogeneration module to the flow temperature. The thermal loss of the anaerobic reactor is also taken into account, so that the sludge is heated to a slightly higher temperature than the temperature in the reactor ((4 ') (in the case of Figure 2 above 55 ° C) just enough to cover the losses and to keep the temperature in the reactor remains at 55 [deg.] C. The temperature depends on the size of the reactor and smaller reactors have a higher sludge heating temperature.

• Toplotne izgube anaerobnega reaktorja so minimalne v primerjavi z toploto blata, (le 1-12% toplote potrebne za gretje blata).• The thermal losses of the anaerobic reactor are minimal compared to the heat of the sludge (only 1-12% of the heat required to heat the sludge).

• Blato iz anaerobnega reaktorja teče direktno v aerobni reaktor (8') brez dodatnega gretja. Temperatura v aerobnem reaktorju je zato nižja (1 do 5°C) kot v anaerobnem zaradi toplotnih izgub aerobnega reaktorja. Toplotne izgube aerobnega reaktorja se tako krijejo iz tega padca temperature blata.• The sludge from the anaerobic reactor flows directly into the aerobic reactor (8 ') without additional heating. The temperature in the aerobic reactor is therefore lower (1 to 5 ° C) than in the anaerobic one due to the heat losses of the aerobic reactor. The heat losses of the aerobic reactor are thus covered by this drop in sludge temperature.

• Zelo majhne so tudi toplotne izgube ki nastanejo zaradi odvajanja bioplina in produktov aerobne stabilizacije in mineralizacije. Le-te znašajo vsaka 1% toplote potrebne za gretje blata.• The heat losses resulting from the discharge of biogas and products of aerobic stabilization and mineralization are also very small. They account for every 1% of the heat needed to heat the sludge.

• Toplotni vpliv na aerobni reaktor ima tudi zrak za prezračevanje. Pri dimenzioniranju naprave je potrebno predvideti enako temperaturo zraka, kot je v aerobnem reaktorju. Potem se ta vpliv lahko zanemari.• Ventilation air also has a thermal effect on the aerobic reactor. When designing the device, the same air temperature as in the aerobic reactor should be assumed. Then this influence can be neglected.

• Z iztokom blata iz aerobnega reaktorja, ki ima temperaturo enako kot aerobni reaktor, se potem greje vstopno blato. Končni iztok blata ima temperaturo med 29°C in temperaturo aerobnega reaktorja, odvisno od stopnje regeneracije.• With the outlet of sludge from an aerobic reactor having a temperature equal to that of an aerobic reactor, the inlet sludge is then heated. The final sludge outlet has a temperature between 29 ° C and the temperature of the aerobic reactor, depending on the degree of regeneration.

Zmogljivosti naprave so bile ugotovljene in večkrat preverjene na Kemijskem inštitutu, Ljubljana, Slovenija, v Laboratoriju za kemijo biologijo in tehnologijo voda. Eksperimenti so bili izvedeni z dvema reaktorjema; anaerobnim 20 I volumna, in aerobnim 18,2 I volumna.The capabilities of the device have been identified and tested several times at the Institute of Chemistry, Ljubljana, Slovenia, at the Laboratory for Chemistry of Biology and Water Technology. The experiments were performed with two reactors; anaerobic 20 I volume, and aerobic 18.2 I volume.

Eksperimentalno je bilo določenih več kombinacij zadrževalnega časa anaerobne in aerobne stopnje. Zadrževalni čas v vsaki stopnji je v omočju 3 do 12 dni. Najvažnejše kombinacije so podane v Tabeli 2:Several combinations of anaerobic and aerobic retention time were experimentally determined. The retention time in each stage is 3 to 12 days. The most important combinations are given in Table 2:

Tabela 2 - rezultati eksperimentalno določenih kombinacij procesa, kije predmet izumaTable 2 - Results of experimentally determined combinations of the process of the invention

-1010-1010

Proces: zadrževalni čas anaerobne in aerobne stopnje (dnevi AN + dnevi AE) Process: Retention anaerobic time and aerobic rates (days AN + AE days) Skupni zadrževalni čas (dnevi) Common holding time (days) Odstranitev organske komponente blata (%) Removal organic components mud (%) Proizvodnja bioplina v (l/dan na I reaktorja) Production biogas in (l / day to I reactor) 1 1 3+3 3 + 3 6 6 38 38 0,52 0.52 2 2 3+6 3 + 6 9 9 49 49 0,35 0.35 3 3 5+5 5 + 5 10 10 49 49 0,36 0.36 4 4 3+12 3 + 12 15 15 61,8 61.8 0,23 0.23 5 5 10+10 10 + 10 > 20 > 20 62 62 0,22 0.22

Ugotovili smo, da je glede nastajanja bioplina najboljša 1. varianta, glede odstranjevanja organske komponente pa 4. in 5. varianta.We have found that the 1st variant is best with regard to biogas production and the 4th and 5th variants with regard to the removal of the organic component.

Dimenzioniranje priprave po predmetnem izumuSizing the apparatus of the present invention

Pri dimenzioniranju potrebujemo izhodiščne parametre in sicer:When sizing, we need baseline parameters, namely:

1. Izmerjene parametre,1. Measured parameters,

2. Predvidene parametre in2. Estimated parameters and

3. Eksperimentalno določene parametre3. Experimentally determined parameters

Izmerjeni parametri so:The measured parameters are:

• Maksimalni dnevni pretok blata Qmax, (m3/d) • Minimalni dnevni pretok blata Qmjn, (m3/d) • Srednji dnevni pretok blata Qsr, (m3/d) • Srednja koncentracija KPK vstopnega blata, KPKvt (mg/l) • Koncentracija vtočnega blata Xvt, (g/l, kg/m3) • Delež organske snovi v suhi snovi blata, oz. koncentracija organske komponente blata χ0Γ9, (g/g, %) • Temperatura odpadnega blata (°C).• Maximum daily mud flow Q max , (m 3 / d) • Minimum daily mud flow Q m j n , (m 3 / d) • Mean daily mud flow Q sr , (m 3 / d) • Mean COD of inlet mud , COD vt (mg / l) • Concentration of sludge inflow X vt , (g / l, kg / m 3 ) • Content of organic matter in dry matter of sludge, resp. concentration of organic sludge component χ 0Γ9 , (g / g,%) • Waste sludge temperature (° C).

-1111-1111

Predvideni parametri so:The parameters foreseen are:

• Zadrževalni čas anaerobne stopnje Tan, (dan) • Zadrževalni čas aerobne stopnje Tae, (dan) • Temperatura anaerobne stopnje tan, (°C) • Debelina in tip gradbenih in izolacijskih materialov reaktorjev• Retention time of anaerobic stage T an, (day) • Retention time aerobic stage T ae, (day) • Temperature of anaerobic stage T an, (° C) • The thickness and type of construction and the insulation material of reactor

Eksperimentalno določeni parametri so:The experimentally determined parameters are:

• Stopnja odstranitve organske komponente blata za anaerobno in aerobno Stopnjo Tfo-arh 7o-ae, (%) • Stopnja zmanjšanja KPK za anaerobno in aerobno stopnjo ηκρκ-an, ηκρκ-ae (%) • Specifična proizvodnja bioplina G0p, (l/kg vstopne org. Mase blata) • Sestava bioplina (procent metana v bioplinu) ξ&κ, (%)• Removal rate of organic sludge component for anaerobic and aerobic Tfo-arh 7o-ae rate, (%) • COD reduction rate for anaerobic and aerobic level ηκρκ-an, ηκρκ-ae (%) • Specific biogas production G 0p , (l / kg of inbound sludge mass) • Biogas composition (percentage of methane in biogas) ξ & κ, (%)

Eksperimentalno določeni parametri so ključnega pomena in se določajo laboratorijsko za vsako specifično blato posebej.Experimentally determined parameters are crucial and are determined on a laboratory-by-laboratory basis for each specific sludge.

Dimenzioniramo določimo naslednje parametre:We define the following parameters:

• Volumen reaktorjev Vran, Vrae, (m3) • Pretok bioplina Qbp> (m3/dan), pretok metana Qch4, (m3/dan) • Velikost in tip kogeneracijskega modula • Energijsko in toplotno kapaciteto procesa • Koncentracijo blata in organske komponente v blatu iztoka anaerobne stopnje Xan, Xo-an, (g/l, kg/m3) • Koncentracijo blata in organske komponente v blatu iztoka aerobne stopnje Xae,• Volume of reactors V ran , V rae , (m 3 ) • Biogas flow Q b p> (m 3 / day), methane flow Qch4, (m 3 / day) • Size and type of cogeneration module • Energy and heat capacity of the process • Concentration of sludge and organic component in sludge of anaerobic grade Xan, Xo-an, (g / l, kg / m 3 ) sludge • Concentration of sludge and organic component in sludge of aerobic grade X ae ,

X0-ae, (g/l. kg/m3) • KPK na iztoku anaerobne stopnje KPKar (mg/l) • KPK na iztoku aerobne stopnje KPKae (mg/l) • Pretok zraka za prezračevanje Qzr, (m3/h) in na osnovi tega velikost prezračevalnih napravX 0 -ae, (g / l kg / m 3 ) • COD at the outflow of the anaerobic level COD ar (mg / l) • COD at the outflow of the aerobic level COD ae (mg / l) • Air flow for ventilation Q zr , ( m 3 / h) and on this basis the size of the ventilation installations

-1212 • Toplotne izgube in potrebe gretja blata • Temperaturo vtoka blata tOvt, (CC) in temperaturo aerobnega reaktorja tae, (°C) • Stopnjo potrebne regeneracije toplote iz iztoka na vtok blata κΓ (%), in na osnovi tega velikost in tip toplotnih menjalnikov, regeneratorja in grelca blata.-1212 • Heat losses and sludge heating needs • Sludge flow temperature t Ovt , ( C C) and aerobic reactor temperature t ae , (° C) • Rate of heat recovery required from outflow to sludge inflow κ Γ (%), and based on of this size and type of heat exchangers, regenerator and sludge heater.

Volumen reaktorjev:Volume of reactors:

Anaerobni reaktor:Anaerobic reactor:

L,, = · Pb! i kjer je gostota blataL ,, = · Pb! i where sludge density

Aerobni reaktor;Aerobic reactor;

^rae £?max P hi ^at.'^ rae - £? max P hi ^ at. '

Pretok bioplina in metana:Biogas and methane flow:

Qbp Qs! vt Xιαγ ~ QhpQbp Qs! vt Xιαγ ~ Qhp

Velikost kogeneracijskega modula:Size of cogeneration module:

Velikost kogeneracijskega modula se določi na osnovi kemično vezane energije metana (energijska kapaciteta). Ta se določi s pomočjo nižje kurilne vrednosti metana.The size of the cogeneration module is determined on the basis of the chemically bound methane energy (energy capacity). This is determined by the lower calorific value of methane.

Qkm ~ Q-Chh\ ’ ^/<7/4Qkm ~ Q-Chh \ '^ / <7/4

Ko izberemo določeni kogeneracijski modul, nam proizvajalec poda transformacijske koeficiente za pretvorbo kemično vezane energije v metanu v koristno toploto ητ (toplotna kapaciteta) in električno energijo.Tako se določi toplotna kapaciteta:When we select a specific cogeneration module, the manufacturer gives us the transformation coefficients for the conversion of chemically bound energy in methane into useful heat η τ (heat capacity) and electricity. This is how heat capacity is determined:

Qi =7/ 'Qk„Qi = 7 / 'Qk'

Koncentracija blata in organske komponente v blatu iztoka anaerobne stopnje:Concentration of sludge and organic components in anaerobic effluent sludge:

Aali vt X (//·χ ) + Xw.t; t>-an vi Xrtrg 7'o-atiA or vt X (// · χ) + Xw.t; t> -an you Xrtrg 7'o-ati

-1313-1313

Koncentracija blata in organske komponente v blatu iztoka aerobne stopnje:Concentration of sludge and organic components in aerobic effluent sludge:

Xac = ' (1 ~ Z,^ )+ X(, an ‘ ho-ae = X<> an ' hc-ae X ac = '( 1 ~ Z, ^) + X (, an' ho-ae = X <> an 'hc-ae

KPK na iztoku anaerobne stopnje in aerobne stopnjeCOD at the outflow of the anaerobic stage and the aerobic stage

KPKan = ηκ,>κ.α» KPKV, KPKac = ηκρκ_ KPK^CCP an = η κ ,> κ . α »KPK V , KPK ac = η κρκ _ KPK ^

Pretok kisika oz. zraka za prezračevanje:The flow of oxygen or. ventilation air:

„ &, (KPK^-KPKj-R^-r, ) ^0, ~ ^0; ‘ Λ , • l 24-Ar J„&, (KPK ^ -KPKj-R ^ -r,) ^ 0, ~ ^ 0; 'Λ, • l 24- Ar J

Pkisik plinska konstanta kisikaPkisik gas oxygen constant

Tzr temperatura zraka,T z air temperature,

K faktor absorbcije kisika v zraku v blato, ki ga poda proizvajalec prezračevalne naprave inK is the airborne oxygen absorption factor given by the manufacturer of the ventilation device and

K faktor absorpcije kisika v blato, ki ga poda proizvajalec naprave za prezračevanje s čistim kisikom.K is the oxygen absorption factor of the sludge provided by the manufacturer of the pure oxygen ventilation device.

Toplotne izgube in potrebe gretja blata:Heat losses and sludge heating needs:

- toplotne izgube anaerobnega in aerobnega reaktorja = A„, · A„„ (/„„ -1,.) Q, = kM. Aue -1,.) kjer so:- heat losses of the anaerobic and aerobic reactor = A ", · A""(/""-1,.) Q, = k M. A ue -1,.) Where:

kae> kan koeficienti prestopa toplote za anaerobni in aerobni reaktork ae> k an heat transfer coefficients for the anaerobic and aerobic reactors

Aan, Aae površine anaerobnega in aerobnega reaktorja tOk temperatura okoliceA an , A ae surface of anaerobic and aerobic reactor t O k ambient temperature

- toplotne potrebe gretja blata = Qh/ * P h! ‘ £ p /»/ ' O«« ” Ph* kjer je cp.bi specifična toplota blata- heat needs of sludge heating = Qh / * P h! '£ p / »/' O« «'Ph * where c p . would specific mud heat

-1414-1414

Temperatura vtoka blata:Sludge flow temperature:

Qi7i'-nn + Qi>r-hlQi7i'-nn + Qi> r-hl

Temperatura aerobnega reaktorja:Aerobic reactor temperature:

t =1--— at: an z xt = 1 --— at: an z x

Qhl ' P k! ' C μ-ΗQhl 'P k! ' C μ-Η

Stopnja potrebne regeneracije toplote in toplotna kapaciteta regeneratorja:Rate of heat recovery required and heat capacity of regenerator:

Na osnovi določenih pretokov blata temperatur, toplotnih potreb in stopnje regeneracije se določijo potrebne dimenzije in tip toplotnih menjalnikov.The necessary dimensions and type of heat exchangers are determined on the basis of certain sludge flow rates, heat needs and regeneration rates.

-1515 številke na Skicah sito za delce toplotni menjalnik - regenerator toplotni menjalnik - grelec anaerobni reaktor (prva stopnja postopka) vod za tok blata, če prisotna samo prva stopnja postopka motor z notranjim zgorevanjem generator za proizvodnjo električne energije aerobni reaktor (druga stopnja postopka) odstranjevalnik vode toplotni menjalnik - regenerator anaerobni reaktor (prva stopnja postopka) aerobni reaktor (druga stopnja postopka)-1515 figures in the drawings Particle sieve heat exchanger - regenerator heat exchanger - heater anaerobic reactor (first stage) sludge stream if only the first stage of the process is present Internal combustion engine generator for the production of aerobic reactor (second stage of the process) water remover heat exchanger - regenerator anaerobic reactor (first step of the process) aerobic reactor (second step of the process)

Claims (5)

Patentni zahtevkiPatent claims 1. Postopek za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območju, značilen po tem, da je sestavljen iz dveh stopenj, v naslednjem zaporedju:1. A process for stabilizing and mineralizing sludge from wastewater treatment plants in a thermophilic temperature range, characterized in that it consists of two stages, in the following order: • prve stopnje - anaerobne stopnje, ki je anaerobna stabilizacija-mineralizacija in poteka v termofilnem območju 40 do 80°C in zadrževalnem času 3 do 12 dni; druge stopnje - aerobne stopnje, ki je aerobna stabilizacija-mineralizacija s uporabo zraka in poteka v termofilnem območju med 50 in 60°G ter v zadrževalnem času 3 do 12 dni;• first stage - anaerobic stage, which is anaerobic stabilization-mineralization and takes place in the thermophilic range of 40 to 80 ° C and a holding time of 3 to 12 days; second stages - aerobic stages, which is aerobic stabilization-mineralization using air and takes place in the thermophilic range between 50 and 60 ° G and during a holding time of 3 to 12 days; po potrebi z regeneracijo toplote.heat regeneration as needed. 2. Postopek po zahtevku 1, značilen po tem, da je temperatura v prvi stopnji med 50 in 60°C.Process according to claim 1, characterized in that the temperature in the first stage is between 50 and 60 ° C. 3. Postopek po zahtevku 1, značilen po tem, da se blato predgreje s pomočjo regeneracije toplote med iztokom blata iz druge - aerobne stopnje in blatom vtokom v dvostopenjski proces.Method according to claim 1, characterized in that the sludge is preheated by heat regeneration between the sludge from the second - aerobic stage and the sludge into a two stage process. 4. Postopek po zahtevku 1, značilen po tem, da se blato se blato predgreje s pomočjo regeneracije toplote in da obratuje samo prva - anaerobna stopnja dvostopenjskega procesa.Method according to claim 1, characterized in that the sludge is pre-heated by heat regeneration and that only the first - anaerobic stage of the two-step process is in operation. 5. Naprava za stabilizacijo in mineralizacijo blata iz naprav za čiščenje odpadne vode v termofilnem temperaturnem območju, značilna po tem, da obsega sito za delce (1), toplotni menjalnik-regenerator (2), toplotni menjalnik-grelec (3), anaerobni reaktor (4), opcijsko vod (5) za tok blata, motor (6) z notranjim zgorevanjem, generator (7) za proizvodnjo električne energije, aerobni reaktor (8) in odstranjevalnik (9) vode.5. A device for stabilizing and mineralizing sludge from wastewater treatment plants in a thermophilic temperature range, characterized in that it comprises a particulate sieve (1), a heat exchanger regenerator (2), a heat exchanger-heater (3), an anaerobic reactor (4), optional sludge stream (5), internal combustion engine (6), generator (7) for power generation, an aerobic reactor (8) and a water remover (9).
SI200200254A 2002-10-18 2002-10-18 Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range SI21318A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200200254A SI21318A (en) 2002-10-18 2002-10-18 Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range
PCT/SI2003/000035 WO2004035491A1 (en) 2002-10-18 2003-10-06 Procedure and device for thermophilic temperature range stabilization and mineralization of sludge from wastewater treatment plants
AU2003301295A AU2003301295A1 (en) 2002-10-18 2003-10-06 Procedure and device for thermophilic temperature range stabilization and mineralization of sludge from wastewater treatment plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200200254A SI21318A (en) 2002-10-18 2002-10-18 Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range

Publications (1)

Publication Number Publication Date
SI21318A true SI21318A (en) 2004-04-30

Family

ID=32105817

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200200254A SI21318A (en) 2002-10-18 2002-10-18 Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range

Country Status (3)

Country Link
AU (1) AU2003301295A1 (en)
SI (1) SI21318A (en)
WO (1) WO2004035491A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010600A1 (en) * 2006-09-14 2008-04-10 Josef Moser Apparatus and method for generating energy
FR2924038B1 (en) * 2007-11-28 2011-05-06 Ile Dlmr Soc Civ WASTE TREATMENT PROCESS ASSOCIATED WITH METHANIZATION TREATMENT PHASE AND THERMOPHILIC AEROBIC TREATMENT PHASE
RU2504520C2 (en) * 2012-03-22 2014-01-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Method for biological treatment of concentrated organic substrates to obtain fertilisers, gaseous energy carrier and process water and apparatus for realising said method
CN109295112A (en) * 2018-09-25 2019-02-01 大连理工大学 A kind of diphasic anaerobic processing method digested altogether based on yeast fermented stalk producing and ethanol coupling kitchen garbage
BE1028840B1 (en) 2020-11-30 2022-06-27 Krivalec Bvba EQUIPMENT AND PROCEDURE FOR THE PRODUCTION OF ELECTRICITY AND HEAT BY PROCESSING BIOMASS
CN112574862B (en) * 2020-12-31 2021-09-17 中国科学院地理科学与资源研究所 Straw aerobic-anaerobic alternate fermentation system and process
CN114706438B (en) * 2022-05-19 2022-11-08 河南省科学院地理研究所 Sewage treatment control system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3615971C2 (en) * 1986-05-13 1995-11-16 Schulze Oswald Kg Mud treatment plant
AT392957B (en) * 1987-08-06 1991-07-25 Technoagrar Consulting Ag METHOD FOR THE TREATMENT AND DISPOSAL OF AMOUNTS OF SOLIDS AND LIQUIDS
GB2246122A (en) * 1990-06-06 1992-01-22 Alan Hilton Ridett Digestion of sewage sludge

Also Published As

Publication number Publication date
WO2004035491A1 (en) 2004-04-29
AU2003301295A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
Bayrakdar et al. Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia
Zhang et al. Sludge treatment: Current research trends
EP2212413B1 (en) Process for the treatment of wastes combining a phase of treatment by methanization and a phase of thermophilic aerobic treatment
Zhou et al. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China
EP3280685B1 (en) Treatment of waste products with anaerobic digestion
Karagiannidis et al. Evaluation of sewage sludge production and utilization in Greece in the frame of integrated energy recovery
Babson et al. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility
CN110304786A (en) The processing water of debirs food waste water is without releasing processing equipment for recycling and its processing method
Krishna Role of factors influencing on anaerobic process for production of bio hydrogen: Future fuel
KR101553370B1 (en) System and Method for methane power generation using excrement and waste water
KR20150056429A (en) Treating Method of Sewage comprising sludge and waste water using solvent extraction
Banerjee et al. A biorefinery approach for sewage sludge
SI21318A (en) Procedure and device for stabilization and mineralization of sludge from waste water treatment plants in thermophile temperature range
Ghorbanian et al. Impact of supplemental hydrogen on biogas enhancement and substrate removal efficiency in a two-stage expanded granular sludge bed reactor
US20170158535A1 (en) Process for recovering elemental selenium from wastewater
KR101051729B1 (en) High concentration wastewater treatment method including organic waste and apparatus
Mininni et al. An innovative sludge management system based on separation of primary and secondary sludge treatment
KR101813894B1 (en) An Advanced System for Treating Sewage Using a Structure of High Speed Organic Acid Fermentation and a Method Using the Same
KR100949246B1 (en) Method for proessing the orgnic scrapped materials
US11185816B2 (en) Process and plant for the thermal abatement of malodorous emission from a purification plant with energy recovery from said abatement
KR200417043Y1 (en) Organic waste sludge volume reduction apparatus using by combined thermophilic aerobic and mesophilic anaerobic digestion and electro-destruction system
CN212532729U (en) Integrated treatment system of mud
KR101113253B1 (en) Bio-gas system for organic material waste
KR20150114152A (en) Treatment System of Food Waste Leachate Capable of Denitration and Highly Concentration with High Solubility
Sadecka et al. Processing of sewage sludge with energy recovery in a wastewater treatment plant

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20090603