SI20296A - Method for connecting a remotely powered peripheral unit - Google Patents

Method for connecting a remotely powered peripheral unit Download PDF

Info

Publication number
SI20296A
SI20296A SI9820087A SI9820087A SI20296A SI 20296 A SI20296 A SI 20296A SI 9820087 A SI9820087 A SI 9820087A SI 9820087 A SI9820087 A SI 9820087A SI 20296 A SI20296 A SI 20296A
Authority
SI
Slovenia
Prior art keywords
voltage
transmission line
peripheral device
unit
charge
Prior art date
Application number
SI9820087A
Other languages
Slovenian (sl)
Inventor
Franz Haselsteiner
Original Assignee
Ericsson Austria Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Austria Aktiengesellschaft filed Critical Ericsson Austria Aktiengesellschaft
Publication of SI20296A publication Critical patent/SI20296A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Devices For Supply Of Signal Current (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

The method for connecting peripheral unit, which are remotely powered from a central unit by a transmission link, to an information processing system, begins by connecting the selected peripheral device to the transmission link with the remote power supply down. Later a testing voltage is applied, which is lower than the actual operating remote powering voltage of the device to be connected to the terminal, on the side of the center. The connection status of the peripheral terminals of the transmission link is evaluated by measuring the charge quantity, which runs into the transmission link from the center. In the second step when determining the correct connection status of the remote powering transmission link, the remote powering voltage is increased to the standard operation level.

Description

ERICSON AUSTRIA AKTIENGESELLSCHAFTERICSON AUSTRIA AKTIENGESELLSCHAFT

Postopek za priključitev daljinsko napajane periferne pripraveProcedure for connecting a remote-powered peripheral device

Izum se nanaša na priključitev periferne priprave, ki je daljinsko napajana s centralnega mesta preko prenosnega voda, v sistemu za prenos informacij, pri čemer se v prvem koraku periferna priprava priključi na prenosni vod pri odklopljenem daljinskem napajanju.The invention relates to the connection of a peripheral device, which is remotely powered from a central location via a transmission line, in an information transmission system, wherein in a first step the peripheral device is connected to the transmission line when the remote power supply is disconnected.

Daljinsko napajanje različnih telekomunikacijskih krajevnih priprav je zelo razširjeno v mnogih telefonskih sistemih, npr. v nadpamih sistemih. V ta namen je na centralnem mestu, npr. v izbirni centrali, prisoten vir enosmerne napetosti, ki zagotavlja potreben obratovalni tok za pripravo, ki je priključena na perifernih koncih prenosnega voda. Glavna naloga prenosnega voda obstoji v prenosu signalov ali podatkov v nizkonapetostnem področju. Iz tega razloga običajno za takšne vode niso predvidene priprave, ki služijo zaščiti oseb. Napetosti, ki so nevarne človeškemu telesu, se zato tudi pri običajnih daljinskih napajanjih ne uporabljajo. Tako znašajo običajne napajalne napetosti 48 V oz. 60 V, pri čemer se dopuščajo nihanja do 20 %. Razvoj v zadnjih letih pa kaže jasno težnjo v smeri po vedno višjih močeh priprav, ki v ohranjenih mejah napajalnih napetosti povzročijo zelo visoke tokove in na ta način izgubne moči.Remote power supply for various telecommunications field devices is widespread in many telephone systems, e.g. in aboveboard systems. For this purpose, it is centrally located, e.g. a direct current source is present in the selection switchboard, providing the necessary operating current for the preparation connected at the peripheral ends of the transmission line. The main task of the transmission line is to transmit signals or data in the low voltage range. For this reason, preparations for the protection of persons are not normally provided for such waters. Tensions that are dangerous to the human body are therefore not used in conventional long-range power supplies. Thus, the normal supply voltages are 48 V or. 60 V, with fluctuations of up to 20% allowed. Developments in recent years, however, show a clear tendency towards an ever-increasing capacity for preparations that, within the maintained limits of supply voltages, cause very high currents and thus loss of power.

Del upravljalcev z omrežjem zato prehaja k temu preko npr. daljinsko napajanih električnih priprav, npr. nadpamih sistemov, HDSL-sistemov ali ADSL-sistemov ali podobnega, da napajalne napetosti zelo občutno dvignejo, npr. na +-60 V do +- 135 V, s čimer pridobiva na pomenu problem varnosti oseb. Sicer so predvidene tokovne omejitve, vendar lahko pri različnih postopkih, npr. pri delih na stebrih, pride do zelo nevarnih situacij, če so s tokovnimi udari za kratek čas moteni občutek ravnovesja ali druge refleksne sposobnosti.Part of the network managers are therefore moving to this, e.g. remotely powered electrical appliances, e.g. overhead systems, HDSL systems, or ADSL systems, or the like, to substantially raise the supply voltages, e.g. at + -60 V to + - 135 V, thereby giving importance to the safety of persons. Otherwise, current limitations are envisaged, but for different processes, e.g. when working on pillars, very dangerous situations can occur if the shocks for a short time disturb the sense of balance or other reflexive capacity.

Za rešitev tega problema so se našli različni nastavki, da bi se izognilo ogrožanju oseb. V ta namen se lahko npr. izvajajo prikjučna dela pri odklopljenem daljinskem napajanju. Pri tem pa obstoji problem, daje treba z gotovostjo preprečiti, da bi v Času montaže lahko prišlo do nevarne visoke napetosti za daljinsko napajanje na prenosnem vodu.Various attachments have been found to solve this problem to avoid endangering people. For this purpose, e.g. perform connection work when the power supply is disconnected. There is a problem, however, that it must be prevented with certainty that dangerously high voltages for remote power supply to the transmission line can occur during the Installation Time.

Torej mora biti zagotovljeno, da se pri periferni pripravi, ki ni priključena ali pa je priključena z napako, obratovalna napajalna napetost ne sme pojaviti. V tem smislu se je že poskušalo po priključitvi napetosti preko tokovne meritve toka, ki teče v prenosnem vodu, ugotoviti, ali je zadevna priprava dejansko priključena oz. ali sta prisotna odprta periferna konca prenosnega voda.Therefore, it must be ensured that, in the case of a peripheral device that is not connected or is connected in error, the operating supply voltage must not occur. In this sense, after attempting to connect the voltage via a current measurement of the current flowing in the transmission line, it has already been attempted to determine whether the device in question is actually connected or connected. or open peripheral ends of the transmission line are present.

Tudi odpošiljanje ali sprejemanje podatkov se je že pritegnilo v predlogih za rešitev, da bi se iz ugotovljenega podatkovnega toka preverilo, ali je periferna priprava priključena.Also, sending or receiving data has already been captured in solution templates to verify from the identified data stream that the peripheral device is connected.

Pomanjkljivost teh poznanih postopkov obstoji v tem, da je potrebno vključiti daljinsko napajalno napetost v polni višini, da bi se dobila uporabljiva izjava o pravilni priključitvi daljinsko napajane priprave. Prenos podatkov deluje v večini primerov le pri polni obratovalni napetosti, medtem ko je tokovnemu merjenju dostopen notranji upor perifernih priprav zelo odvisen od priključene napajalne napetosti, tako da se pri znižanju obratovalne napetosti ne morejo sprejeti zanesljive izjave.A disadvantage of these known procedures is that it is necessary to include the full voltage supply voltage in order to obtain a useful statement on the correct connection of the remote powered device. In most cases, data transfer only works at full operating voltage, while the current measurement of the internal resistance of the peripheral devices is very dependent on the connected supply voltage, so that reliable declarations cannot be made when the operating voltage is reduced.

Nadaljnja možnost, da se zaobidejo te ovire, obstoji v tem, da se v periferni pripravi predvidi opredeljeni upor, ki se med obratovanjem lahko odklopi in ki pri vamostnotehnično nevprašljivi napetosti lahko služi za preverjanje priključnega stanja periferne priprave. Pomanjkljivost te rešitve obstoji v tem, da je potrebno posebno vezje v daljinsko napajani pripravi, ki mora preverjati razpoložljivost merilnega upora in poznejši odklop. Merilni upor bi bilo v ta namen potrebno predvideti sorazmerno nizkoohmski, da bi se takšna meritev razlikovala od merilnih vrednosti, ki jih povzročijo tokovi uhajanja na kablu. Napake na kablu lahko pri tem vsekakor zlahka vodijo do napačnih rezultatov.A further possibility of circumventing these obstacles is the provision of a defined resistor in the peripheral device, which can be disconnected during operation and which can be used to check the connection status of the peripheral device in the case of high-techno-undervoltage. The disadvantage of this solution is that a special circuit is required in the remote-fed device, which must check the availability of the measuring resistor and the subsequent disconnection. For this purpose, the measuring resistance should be relatively low-ohmic in order to distinguish such measurement from the measurement values generated by the leakage currents on the cable. Errors on the cable can certainly lead to wrong results.

Zato je naloga izuma, da se stvori postopek uvodoma navedene vrste, s pomočjo katerega se pri montaži daljinsko napajanih priprav omogoči zaščita oseb in je možno natančno določanje in razlikovanje priključnih stanj periferne priprave.Therefore, it is an object of the invention to provide a process of the type mentioned above, by which the protection of persons is provided during the installation of remotely-powered devices and it is possible to accurately determine and differentiate the connection states of the peripheral device.

Po izumu se to doseže tako, da se v drugem koraku na centralnih koncih prenosnega voda priključi preizkusna napetost, kije nižja od napetosti za daljinsko napajanje, kije predvidena za obratovanje priprave, in se priključno stanje perifernih koncev prenosnega voda ugotovi z merjenjem na centralni strani količine naboja, ki steče v prenosni vod, in da se v tretjem koraku pri določanju pravilnega priključnega stanja prenosnega voda poviša napetost za daljinsko napajanje na obratovalno napetost.According to the invention, this is achieved by connecting in the second step at the central ends of the transmission line a test voltage that is lower than the supply voltage provided for the operation of the device, and the connecting state of the peripheral ends of the transmission line is determined by measuring on the central side of the quantity of charge flowing into the transmission line and in the third step, in determining the correct connection state of the transmission line, the voltage for the remote supply to the operating voltage is increased.

Na ta način se lahko izvede montaža v breznapetostnem stanju in se izključi ogrožanje montažnega osebja zaradi visokih napetosti. V perifernih pripravah predvidene vhodne kapacitete, ki se bisteno razlikujejo od kapacitet voda, se lahko pritegnejo pri detekciji pravilnega priključnega stanja, s tem, da se meri pri priključitvi preizkusne napetosti v prenosni vod pretečena količina naboja. To ima prednost, da se uporabi sorazmerno nizka in za ljudi nenevarna preizkusna napetost in se lahko upoštevajo tudi v vsakem primeru nastopajoči tokovi uhajanja. Na ta način se omogoči nenevarno delo pri montaži periferne priprave. Če leži količina naboja, ki se izmeri po priključitvi preizkusne napetosti znotraj vnaprej določenih mejnih vrednosti, ki ustrezajo velikosti vhodne kapacitete periferne priprave, se lahko zadevna priprava obravnava, kot da je pravilno priključena, in se lahko napetost daljinskega napajanja poviša na vrednost, ki je potrebna za obratovanje. V kolikor to ni tako, se napetost napajanja odklopi in se počaka, da se kapaciteta razelektri. Po nekaj časa se lahko ponovno izvede merilni cikel s ponovnim priključevanjem nenevarne preizkusne napetosti.In this way, the installation can be carried out in a voltage-free state and the danger to the assembly personnel due to high voltages can be excluded. In peripheral devices, the intended input capacities, which are significantly different from the capacities of the lines, can be attracted to detect the correct connection condition by measuring the elapsed charge amount when connecting the test voltage to the transmission line. This has the advantage of using a relatively low and non-hazardous test voltage for humans, and the leakage currents that may occur in each case can also be taken into account. In this way, the peripheral device assembly work can be done safely. If the amount of charge measured after connecting the test voltage is within predefined limits corresponding to the size of the input capacity of the peripheral device, the device in question may be considered as properly connected and the power supply voltage may be increased to a value that is required for operation. If this is not the case, the supply voltage is disconnected and the capacity is discharged. After a while, the measurement cycle can be restarted by reconnecting the non-hazardous test voltage.

Šele po pozitivnem merilnem rezultatu se na centralnem mestu poviša napetost daljinskega napajanja na polno vrednost, s čimer potrebna napetost napajanja med obratovanjem obstoji šele po pravilni priključitvi periferne priprave in od te ne izhaja nobeno ogrožanje za montažno osebje.Only after a positive measurement result does the central supply voltage rise to its full value at the central location, so that the required supply voltage during operation only exists after the peripheral device is properly connected and does not result in any danger to the assembly personnel.

Če se izmeri premajhna količina naboja, se lahko sklepa na pripravo, ki ni prikjučena, ali na poškodovan prenosni vod. Prevelika količina naboja pa se pojavi pri pripravi z vhodnim delom z napako oz. pri pomotoma vzporedno priključenih krajevnih delih ali pri kratkosklenjenem prenosnem vodu ali prenosnem vodu, ki ima previsoke tokove uhajanja.If too little charge is measured, it can be inferred to a device that is not connected or to a damaged transmission line. Too much charge, however, occurs when preparing with the input part with an error or. in case of accidentally connected local parts or in the case of a short-circuited transmission line or transmission line that has excess leakage currents.

V nadaljnji izvedbi izuma se lahko predvidi, da se priključi preizkusna napetost kot napetostni skok na koncih na centralni strani prenosnega voda.In a further embodiment of the invention it may be envisaged to connect a test voltage as a voltage jump at the ends on the central side of the transmission line.

Na ta način se lahko izvede natačno opredeljen prehod od odklopljenega stanja v stanje preizkušanja.In this way, a precision-defined transition from disconnected to test state can be made.

Po nadaljnjem izvedbenem primeru izuma se lahko predvidi, da se preizkusna napetost priključuje toliko časa v stalno ponavljajočem se zaporedju in se ugotavlja v prenosnem vodu tekoča količina naboja, dokler ni ugotovljeno pravilno priključno stanje prenosnega voda.According to a further embodiment of the invention, it can be envisaged that the test voltage is connected for as long as it is in a continuously repeated sequence and a liquid amount of charge is detected in the transmission line until the correct transmission state of the transmission line is established.

Na ta način se izvaja stalno nadzorovanje priključnega stanja prenosnega voda in se to nadzorovanje konča šele po priključitvi periferne priprave. Časovni razmiki med posameznimi merilnimi postopki se prednostno izberejo periodično, po potrebi pa se lahko predvidi tudi preklopitev na ročno krmiljenje časovnih razmikov, da se v danem primeru doseže natančnejše vplivanje na meritev, Če to ravno zahteva montažna situacija. Ustrezno preizkuševalno osebje lahko na ta način poljubno vključuje in izključuje merilni postopek.In this way, the continuous monitoring of the transmission line connection status is carried out and this monitoring is terminated only after the peripheral device is connected. The intervals between individual measurement procedures are preferably selected periodically, and if necessary, switching to manual timing control may be provided, in order to achieve a more accurate effect on the measurement, if required, if the assembly situation so requires. Appropriate testing personnel may thus optionally switch the measuring process on and off.

Po nadaljnji varianti izuma se lahko predvidi, da se meri naboj, ki teče v prenosni vod, preko integriranja toka, ki teče med priključitvijo preizkusne napetosti proti periferni pripravi.According to a further variant of the invention, it is contemplated to measure the charge flowing into the transmission line by integrating the current flowing during the connection of the test voltage to the peripheral device.

Na ta način se lahko preko toka indirektno meri količina naboja, ki teče v prenosni vod, s čimer motilni signali, ki bi negativno vplivali na meritev na prenosnem vodu in ki bi lahko nastopili pri neposredni meritvi naboja, ne morejo vplivati na rezultat meritve.In this way, the amount of charge flowing into the transmission line can be indirectly measured over the current, thus interfering signals that would adversely affect the measurement on the transmission line and which could occur in the direct measurement of the charge cannot affect the measurement result.

Nadalje se izum nanaša na vezje za izvajanje postopka po izumu, s katerim se lahko natančno in zanesljivo ugotovi priključno stanje periferne priprave.The invention further relates to a circuit for carrying out the process of the invention which can accurately and reliably determine the attachment state of a peripheral device.

Po izumu se s tem doseže, da sta predvideni enota za tvorjenje napetostnega skoka in enota za določanje količine naboja, ki se odda v prenosni vod.According to the invention, it is thus envisaged that a unit for generating a voltage jump and a unit for determining the amount of charge to be emitted into the transmission line are provided.

V nadaljnji izvedbi izuma se lahko predvidi, da se enota za določanje količine naboja stvori z enoto za tvorjenje napetosti, ki je sorazmerna toku, ki teče proti periferni pripravi, in z integrimo enoto, kije povezana s to enoto.In a further embodiment of the invention, it may be contemplated that a charge determination unit is formed by a voltage generating unit commensurate with the current flowing toward the peripheral device and an integrating unit associated with that unit.

Preprosta izvedba po izumu lahko obstoji v tem, da se stvori enota za tvorjenje napetosti, ki je sorazmerna toku, iz ohmskega upora.A simple embodiment of the invention may exist in that a current-proportional voltage generating unit is formed from an ohmic resistor.

Za avtomatsko detekcijo priključnega stanja periferne priprave se lahko nadalje predvidi, da je na izhodu integrime enote priključen en vhod komparatorske enote, ki je na svojem drugem vhodu povezana z referenčnim napetostnim virom, preko katerega se nastavi napetost praga za spreminjanje izhoda komparatorja.For the automatic detection of the connecting state of the peripheral device, it may further be provided that a single input of the comparator unit is connected at the output of the unit integrim which is connected at its second input to a reference voltage source through which a threshold voltage is set for changing the comparator output.

V tej povezavi se lahko prednostno predvidi, da je integrator stvorjen iz invertirajočega operacijskega ojačevanja z integrimim kondenzatorjem v veji za negativno povratno zvezo.In this connection, it can be advantageously assumed that the integrator is created from an inverting operational amplification with an integrim capacitor in the negative feedback branch.

Da se nadalje prepreči, da bi tokovi uhajanja zaradi slabe izolacije prenosnega voda povzročili napačen rezultat integriranja, se lahko po nadaljnjem izvedbenem primeru predvidi, da se vzporedno z integrimim kondenzatorjem priključi upor.In order to further prevent leakage currents due to poor insulation of the transmission line, it may result in an incorrect integration result, it may be envisaged, after a further embodiment, that a resistor be connected in parallel with the integral capacitor.

V nadaljnji izvedbi izuma se lahko predvidi, daje integrator stvorjen z RC-členom, s čimer je podana posebej preprosta izvedba vezja integratorja.In a further embodiment of the invention it can be envisaged that the integrator is created with an RC member, thereby providing a particularly simple embodiment of the integrator circuit.

V nadaljnjem je izum podrobno pojasnjen na osnovi risb predstavljenih izvedbenih primerov. Pri tem prikazuje sl. 1 blokovno shemo daljinsko napajanega sistema za prenos informacij s centralnim mestom, prenosnim vodom in periferno pripravo;Hereinafter, the invention is explained in detail based on the drawings of the embodiments presented. In this, FIG. 1 block diagram of a remotely operated information transmission system with a central location, a transmission line and a peripheral device;

sl. 2 delno predstavitev vhodnega dela periferne priprave;FIG. 2 is a partial representation of the peripheral input;

sl. 3 in 4 vsakokrat blokovno shemo izvedbenega primera vezja po izumu za izvajanje postopka po izumu;FIG. 3 and 4 each block diagram of an embodiment of a circuit of the invention for performing the process of the invention;

sl. 5 vezje izvedbenega primera stikalne razmestitve po izumu;FIG. 5 is a circuit embodiment of a switch arrangement according to the invention;

sl. 6, 7 in 8 časovni potek napetosti daljinskega napajanja, ki se pojavljajo na periferni pripravi, toka, ki je s tem povzročen, in izhodne napetosti integrime enote in komparatorske enote vezja po sl. 5 pri pravilno priključeni periferni pripravi; sl. 9, 10 in 11 časovni potek napetosti za daljinsko napajanje, povzročenega toka in izhodne napetosti ingrirane enote in komparatorske enote vezja po sl. 5 pri previsokih tokovih uhajanja prenosnega voda;FIG. 6, 7 and 8, the time course of the remote supply voltages occurring on the peripheral device, the resulting current, and the output voltages of the unit integrator and the comparator circuit of FIG. 5 with a properly connected peripheral device; FIG. 9, 10 and 11 show the time course of the voltage for the remote power supply, the induced current and the output voltage of the integrated unit and the comparator unit of the circuit of FIG. 5 for high transmission line leakage currents;

sl. 12, 13 in 14 časovni potek napetosti za daljinsko napajanje, povzročega toka in izhodnih napetosti integrime enote in komparatorske enote vezja po sl. 5 pri prenizki vhodni kapaciteti periferne priprave;FIG. 12, 13 and 14 show the time course of the voltage for the remote power supply, causing the current and output voltages of the unit integrator and the comparator circuit of FIG. 5 at low input capacity of the peripheral device;

sl. 15, 16 in 17 časovni potek napetosti za daljinsko napajanje, povzročenega toka in izhodnih napetosti integrime enote in komparatorske enote po sl. 5 pri previsoki vhodni kapaciteti periferne priprave;FIG. 15, 16 and 17 show the time course of the remote power supply voltage, the induced current, and the output voltages of the unit integrator and the comparator unit of FIG. 5 at peripheral device input capacity too high;

sl. 18 vezje nadaljnje izvedbene oblike vezja po izumu in sl. 19, 20 in 21 časovni potek povzročega toka, izhodne napetosti integrime enote in komparatorske enote vezja po sl. 18 pri pravilno priključeni periferni pripravi.FIG. 18 is a circuit of a further embodiment of the circuit of the invention and FIG. 19, 20 and 21 show the time course of the inductive current, the output voltage of the unit integral and the comparator unit of the circuit of FIG. 18 with a properly connected peripheral device.

Na sl. 1 je predstavljen sistem po stanju tehnike za prenos informacij, v katerem je periferna priprava, npr. krajevni del 2 preko prenosnega voda 1 povezan s centralnim mestom, npr. izbirno centralo 7. Analogni govorni signali in/ali digitalni podatki se posredujejo preko enote na strani izbirne centrale krajevnemu delu 2 oz. jih ta sprejema. Da se zagotovi oskrba krajevnega dela s tokom neodvisno od krajevnih danosti, je ta daljinsko napajan preko priprave 20 za daljinsko napajanje, pri čemer v mnogo primerih obratovalna napetost lahko leži pod varnostno tehnično kritično vrednostjo npr. 60 V enosmerne napetosti. V takšnem primeru ne obstoji med postopkom priključevanja takšne periferne priprave za montažno osebje nobeno neposredno ogrožanje zaradi učinkovanja te napetosti, ker se privzame, da človek pri polni telesni sposobnosti lahko prestane te napetostne vrednosti brez kakršnegakoli ogrožanja. Zato je brez nadaljnjega možno, da se napetost za daljinsko napajanje polno ohrani tudi, če se periferna priprava 2 nahaja v še nepriključenem stanju. Pristojni monter lahko zato krajevni del priključi na prenosni vod 1, ne da bi se izpostavil nadaljnji nevarnosti.In FIG. 1 is a system according to the state of the art for transmitting information, in which a peripheral device, e.g. local part 2 via a transmission line 1 connected to a central location, e.g. polling station 7. Analog voice signals and / or digital data are transmitted via the unit on the side of the polling station to the local part 2 or. he accepts them. In order to ensure that the local part is supplied with a current independent of the local circumstances, it is remotely powered via a remote power device 20, in which in many cases the operating voltage may lie below a safety critical technical value, e.g. 60 V DC. In such a case, there is no direct threat during the process of connecting such peripheral equipment to the assembly personnel due to the effect of this voltage, since it is assumed that a person at full physical capacity can withstand these voltage values without any risk. Therefore, it is possible without further ado that the supply voltage is fully maintained even if the peripheral device 2 is in an unconnected state. The competent installer can therefore connect the local part to transmission line 1 without exposing it to further danger.

Ker morajo periferne priprave te vrste v modemih sistemih za prenos informacij prevzemati vedno več funkcij, v zadnjih letih stalno narašča priključna moč teh priprav. Če pa se napetost daljinskega napajanja sedaj drži pod mejo ogrožanja okoli 60 V, je zato kot posledica potrebno više izbrati napajalne tokove, kar ponovno povzroči povišani padec napetosti na prevodnih uporih prenosnega voda in ima s tem za posledico povišane izgubne moči. Da se to prepreči, prehajajo številni upravljalci z omrežjem k temu, da se predvidijo višje napetosti za daljinsko napajanje, v posameznih primerih do ± 135 V enosmerne napetosti z ozirom na zemljo ali 270 V enosmerne napetosti brez ozira na zemljo. Pri tem pa se ogrožanje montažnega osebja ne da več izključiti, predvsem zato, ker enosmerne napetosti predstavljajo višjo stopnjo ogrožanja kot izmenične napetosti iste višine.As peripheral devices of this kind have to take on more and more functions in modem information transfer systems, the connecting power of these devices has been increasing in recent years. However, if the voltage of the remote power supply is now kept below the limit of about 60 V, it is therefore necessary to select more power supplies as a consequence, which again causes an increased voltage drop across the transmission resistors and thus results in increased power losses. In order to prevent this, many network operators are switching to higher voltages for remote power supply, up to ± 135 V DC with respect to the ground or 270 V DC with no regard to the ground. However, the danger of the assembly personnel can no longer be ruled out, mainly because the DC voltages represent a higher degree of danger than the AC voltages of the same height.

Da se izogne nezažljenim tokovnim udarcem, se predlaga postopek za priključevanje priprave, ki se daljinsko napaja iz centralnega mesta preko prenosnega voda, v sistem za prenos informacij, pri čemer se v prvem koraku priključi periferna priprava 2 pri odklopljeni napetosti daljinskega napajanja na prenosni vod 1. V drugem koraku se nato po izumu priključi preizkusna napetost, ki je nižja od napetosti za daljinsko napajanje periferne priprave 2, predvidene za obratovanje, na proti centrali obrnjenih koncih prenosnega voda in se ugotovi priključno stanje perifernih koncev prenosnega voda z merjenjem na centralni strani količine naboja, ki teče pri tem v prenosni vod. V nadaljnjem tretjem koraku se pri ugotovitvi pravilnega priključnega stanja prenosnega voda 1 napetost daljinskega napajanja poviša na obratovalno napajalno napetost. V osnovi se pri tem pred priključitvijo periferne priprave na prenosnem vodu 1 ne vzdržuje napetost daljinskega napajanja. Na ta način so periferni konci brez napetosti in se priključna dela lahko izvajajo brez ogrožanja montažnega osebja. Ko se ugotovi pravilno priključno stanje in so zato priključna dela pravilno zaključena, se napetost daljinskega napajanja poviša na vrednost, kije primerna za obratovanje.In order to avoid unwanted electric shocks, a method is proposed for connecting a device that is remotely powered from a central location via a transmission line to an information transfer system, in the first step connecting a peripheral device 2 when the remote power supply voltage is disconnected to the transmission line 1 In a second step, a test voltage, which is lower than the voltage for the remote supply of the peripheral device 2 intended for operation, is then connected to the centralized ends of the transmission line according to the invention, and the connecting state of the peripheral ends of the transmission line is determined by measuring on the central side of the quantity. the charge flowing into the transmission line. In a further third step, when determining the correct connection state of the transmission line 1, the remote supply voltage is increased to the operating supply voltage. Basically, the voltage of the remote power supply is not maintained before connecting the peripheral device to the transmission line 1. In this way, the peripheral ends are tension-free and the connection work can be carried out without compromising assembly personnel. When the correct connection condition is established and the connection parts are completed properly, the voltage of the remote power supply is increased to a value suitable for operation.

Preko merjenja naboja se lahko ugotovi vhodna kapaciteta periferne priprave 2, ki se bistveno razlikuje od kapacitet vodov ali drugih parazitnih kapacitet. V ta namen je na sl. 2 prikazan vhodni del krajevnega dela 2, ki ga običajno tvori enosmemo-enosmemi pretvornik 5, ki ima poleg kondenzatorjev 4 in 6 za omogočanje od polaritete neodvisnega priključka mostični usmernik. Kapaciteti kondenzatorjev 4 in 6 sta bistveno višji od prevodnih kapacitet prenosnega voda 1 in zato omogočata na osnovi meritve naboja zanesljivo razlikovanje, ali se zadevna priprava 2 nahaja v priključenem stanju ali ne. Merjenje naboja se lahko zato izvede tudi pri napetostih, ki niso nevarne za ljudi.By measuring the charge, the input capacity of the peripheral device 2 can be determined, which is significantly different from the capacities of conduits or other parasitic capacities. To this end, in FIG. 2 shows the input portion of the local portion 2, typically formed by a one-to-one converter 5, which, in addition to the capacitors 4 and 6, has a bridge rectifier in addition to the polarity of the independent connector. The capacitances of the capacitors 4 and 6 are significantly higher than the conductive capacities of the transmission line 1 and therefore allow, based on the charge measurement, to reliably distinguish whether or not the device 2 in question is connected. Charge measurement can therefore also be performed at voltages that are not hazardous to humans.

Na sl. 3 in 4 sta vsakokratno prikazani razmestitvi na centralni strani, ki sta primerni za izvedbo postopka po izumu. Na sl. 3 je v ta namen predvidena enota 10 za tvorjenje napetostnega skoka in enota 11 za določanje količine naboja, ki se odda v prenosni vod.In FIG. 3 and 4, in each case, are shown center-side layouts suitable for carrying out the process of the invention. In FIG. 3, a voltage jump unit 10 is provided for this purpose, and a charge determination unit 11 for transmitting to the transmission line is provided.

Enota 10 za tvorjenje napetostnega skoka tvori kar se da strmo naraščajoč napetostni skok na prenosnem vodu 1, da se lahko sklepa na časovni potek na perifernem koncu prenosnega voda 1 nahajajoče se kapacitete. Na ta način se preizkusna napetost dovede kot napetostni skok na konca na centralni strani prenosnega voda 1, ki je npr. prikazan na sl. 6, v obliki, ki nastopa na periferni pripravi. Zaobljena oblika tega napetostnega skoka izhaja iz pri tem izvedenega postopka nabijanja vhodnih kondenzatorjev krajevnega dela 2. Kot je razvidno iz sl. 6, leži višina napetosti v področjih, ki za človeka niso nevarna.The voltage jump unit 10 forms a steeply increasing voltage jump on the transmission line 1 so that it can be inferred to a time course at the peripheral end of the transmission line 1 of the existing capacity. In this way, the test voltage is fed as a voltage jump at the end on the central side of transmission line 1, e.g. shown in FIG. 6, in the form appearing on the peripheral device. The rounded shape of this voltage jump is derived from the process of compressing the input capacitors of the local part 2, as shown in FIG. 6, lies the height of stress in areas that are not dangerous to humans.

Enota 11 za merjenje naboja je na sl. 3 neposredno priključena v tokovno pot, s čimer pa pride do težav za praktično izvedbo, ker so meritve naboja v tej neposredni obliki le zelo težko izvedljive in so poleg tega zelo podvržene motnjam.The charge measurement unit 11 is in FIG. 3 directly connected to the flow path, which causes problems for practical implementation, since charge measurements in this direct form are only very difficult to perform and are also highly susceptible to interference.

Bolj prednostna varianta je zato predstavljena na sl. 4, pri čemer je v tokovni poti predvidena enota 13 za tvorjenje napetosti, ki je sorazmerna toku, ki teče proti periferni pripravi 2, in ki se lahko npr. tvori s prednostno nizkoohmskim ohmskim uporom. Ta enota 13 je na svojih izhodih povezana z integrimo enoto 14, ki integrira nanjo priključeno napetost in na ta način tvori izhodno veličino, ki je sorazmerna količini naboja, ki teče v prenosni vod 1.A more preferred variant is therefore presented in FIG. 4, wherein a voltage generating unit 13 is provided in the current path commensurate with the current flowing toward the peripheral device 2, and which may e.g. forms with a preferably low ohmic ohmic resistance. This unit 13 is connected at its outputs to an integrite unit 14 that integrates the voltage connected to it, thus forming an output magnitude proportional to the amount of charge flowing into the transmission line 1.

Iz tako ugotovljene količine naboja se lahko sklepa na kapaciteto, ki je na perifernih koncih prenosnega voda 1, in v posledici se lahko sklepa, ali je periferna priprava 2 pravilno priključena ali ne.From the amount of charge thus determined, it can be deduced from the capacity at the peripheral ends of the transmission line 1, and as a consequence it can be concluded whether or not peripheral device 2 is properly connected.

V praksi se lahko sedaj postopa tako, da se v stalno ponavljajočem se zaporedju priključuje preizkusna napetost in ugotavlja količina naboja, ki teče v prenosni vod, dokler se ne ugotovi pravilno priključno stanje prenosnega voda. Na ta način se stalno nadzoruje stanje koncev prenosnega voda in se takoj, ko se pojavijo pozitivni merilni rezultati, odda ustrezno sporočilo preizkuševalnemu osebju.In practice, it can now be done by connecting the test voltage in a continuous repetitive sequence and determining the amount of charge flowing into the transmission line until the correct condition of the transmission line is established. In this way, the condition of the ends of the transmission line is constantly monitored and, as soon as positive measurement results occur, an appropriate message is sent to the test personnel.

Za boljše detektiranje pravilnega priključnega stanja je nadalje na izhodu integratorja 14 priključen en vhod komparatorske enote 15, ki je na svojem drugem vhodu povezana z virom Uref referenčne napetosti, preko katere se lahko nastavi vrednost praga za spreminjanje komparatorskega izhoda.In order to better detect the correct connection state, one input of the comparator unit 15 is connected at the output of the integrator 14, which at its second input is connected to a reference voltage source U re f through which the threshold value for changing the comparator output can be set.

S pomočjo komparatorske enote se lahko vsaj ugotovi, ali količina naboja, ki teče v prenosni vod 1, prekoračuje vnaprej določeno vrednost praga, ki se lahko določi tako, da se glede na vhodne kapacitete periferne priprave 2 sorazmerno majhne prevodne kapacitete lahko razlikujejo od prvih. Na ta način se lahko poda izjava, ali gre za odprti konec voda, torej nepriključeno periferno pripravo, ali priključeni konec voda.By means of a comparator, it can at least be determined whether the amount of charge flowing into the transmission line 1 exceeds a predetermined threshold value, which can be determined so that relative to the input capacities of the peripheral device 2, the relatively small conductive capacities may differ from the former. In this way, it can be stated whether it is an open end of the line, ie an unconnected peripheral device or a connected end of a line.

Razlikovanje se lahko doseže z razporeditvijo po sl. 4, dokler ne nastopijo visoki izgubni tokovi na prenosnem vodu 1 zaradi majhnega izolacijskega upora ali podobnih učinkov. Takšni izgubni tokovi namreč povzročajo stalno oddajanje naboja, ki je v integratorski enoti 14 prav tako integriran kot naboj kondenzatorja. Pri tem negativnem vplivu postopka po izumu se lahko pomaga s stikalno razmestitvijo, kot je predstavljena na sl. 5. Sl. 5 vsebuje za boljše razumevanje načina delovanja delno tudi slike nadomestnega vezja. Tako je prenosni vod 1 v približku podan s prevodnim uporom R8, prevodno kapaciteto C5 in prevodno induktivnostjo Ll, medtem ko je periferna enota 2, npr. krajevni del iz nadpamih sistemov ali HDSL-enot podan z vhodnim uporom R9 in vhodnim kondenzatorjem C4, pri čemer so iz prenosnega voda 1 rezultirajoči tokovi uhajanja vključeni v upor R9. Enota 13 za tvorjenje napetosti, ki je sorazmerna toku, je predstavljena z nizkoohmskim uporom Rl, kije na enem koncu povezan z dvožilnim prenosnim vodom 1 in na drugem koncu s priključkom enote 10 za tvorjenje napetostnega toka, ki je na svojem drugem koncu povezana z drugo žilo prenosnega voda 1.The distinction can be achieved by the arrangement of FIG. 4 until high loss currents occur on transmission line 1 due to low insulation resistance or similar effects. Such loss currents result in a continuous charge discharge, which is also integrated in the integrator unit 14 as the capacitor charge. This negative effect of the process according to the invention can be assisted by the switch arrangement as shown in FIG. 5. FIG. 5 also contains, in order to better understand the mode of operation, alternate circuit images. Thus, the transmission line 1 in the approximation is given by the conductive resistor R8, the conductive capacity C5, and the conductive inductance L1, while the peripheral unit 2, e.g. a local part from the above-board systems or HDSL units given by the input resistor R9 and the input capacitor C4, whereby from the transmission line 1, the resulting leakage currents are included in the resistor R9. The voltage-generating unit 13, proportional to the current, is represented by a low-ohm resistor Rl, which is connected at one end to a two-wire transfer line 1 and at the other end to a voltage-generating unit 10 connected at its other end to the other. transmission line wire 1.

Sl. 6 do 10 podajajo časovne poteke štirih različnih, realnih zaključnih pogojev, ki so podane v nadaljnjem zaradi boljše preglednosti.FIG. 6 to 10 illustrate the timing of four different, realistic termination conditions, which are given below for better transparency.

Stanje I (sl. 6 do 8): periferna priprava 2 je pravilno priključena.Status I (Figs. 6 to 8): Peripheral device 2 is properly connected.

stanje II (sl. 9 do 11): prenosni vod povzroča previsoke tokove uhajanja.state II (Figs. 9 to 11): the transmission line causes excessive leakage currents.

Stanje III (sl. 12 do 14): periferna priprava 2 izkazuje premajhno vhodno kapaciteto ali ni priključena.Status III (Figures 12 to 14): Peripheral device 2 shows insufficient input capacity or is not connected.

Stanje IV (sl. 15 do 17): periferna priprava 2 ima previsoko vhodno kapaciteto.Status IV (Figs. 15 to 17): Peripheral device 2 has too high input capacity.

Posamezni diagrami vsakič prikazujejo:The individual diagrams each show:

Sl. 6, 9, 12, 15 časovni potek napetosti VI na uporu R9;FIG. 6, 9, 12, 15 the time course of voltage VI on resistor R9;

sl. 7, 10, 13, 16 časovni potek toka I na uporu R8;FIG. 7, 10, 13, 16 the time course of current I at resistor R8;

Sl. 8, 11, 14, 17 časovni potek napetosti V2 na izhodu integratorja Ul in časovni potek napetosti V3 na izhodu komparatorja U5.FIG. 8, 11, 14, 17 the time course of voltage V2 at the output of the integrator Ul and the time course of voltage V3 at the output of comparator U5.

Časovni potek napetosti VI in časovni potek toka I sta v bistvu določena z vrednostjo vhodne kapacitete C4. Na sl. 7 narašča tok I pri povzročitvi napetostnega skoka najprej na najvišjo vrednost, ker nenabit kondenzator C4 deluje kot kratek stik, z naraščajočo nabitostjo pada tok in končno po preteku časa približno 100 milisekund doseže vrednost nič. Časovno odvisni potek toka bi prav tako lahko bil pritegnjen za merjenje vhodne kapacitete periferne priprave, vendar gre pri tej obliki merjenja za prevodni upor prenosnega voda in tokovna omejitev enote 10 za tvorjenje napetostnega skoka močno poseže v področje vrednosti tokovnega poteka in zato pride do sorazmerno velikega tolerančnega področja, znotraj katerega bi lahko bilo pravo priključno stanje, s čimer je natančna določitev tega priključnega stanja možna le zelo težko.The time course of voltage VI and the time course of current I are essentially determined by the value of the input capacity C4. In FIG. 7 increases the current I in causing the voltage jump first to its maximum value, because the uncharged capacitor C4 acts as a short circuit, with increasing charge it drops the current and finally reaches a value of zero after about 100 milliseconds. The time-dependent current flow could also be attracted to the measurement of the input capacity of the peripheral device, but this form of measurement is a conductive resistance of the transmission line and the current limitation of the voltage jump unit 10 greatly encroaches on the value of the current flow and therefore a relatively large of the tolerance area within which the correct connection state could be, making it only very difficult to accurately determine this connection state.

Potek toka se preko enote 13 pretvori v sorazmerno napetost, ki se priključi na vhod integratorske enote 14. Ta integratorska enota po izvedbenem primeru na sl. 5 obsega invertirajoči operacijski ojačevalnik Ul, ki v veji z negativno povratno zvezo obsega integrimi kondenzator C3.The flow of the current is converted through the unit 13 into a proportional voltage, which is connected to the input of the integrator unit 14. This integrator unit according to the embodiment in FIG. 5 comprises an inverting operating amplifier Ul which, in a negative feedback branch, integrates the capacitors C3.

Da se odpravi vpliv motečih tokov uhajanja v prenosnem vodu, se vzporedno integrimemu kondenzatorju C3 priključi upor R4, ki po postopku nabijanja vhodnega kondenzatorja C4 preprečuje, da na osnovi slabe izolacije - nastopajoče naprimer pri starih vodih - pojavljajoči se tokovi uhajanja povzročajo nadaljnji prirast naboja, ki se nato lahko tolmači kot dodatna kapaciteta na vhodu periferne priprave. Upor R4 je dimenzioniran tako, da po izvedenem postopku nabijanja vhodnega kondenzatorja C4 povzroči praznjenje integrimega kondenzatorja C3 in s tem ponovno zniža izhodno napetost integratorja Ul, potem ko je bila dosežena najvišja vrednost. S karakterističnim potekom napetosti V2, ki pri tem nastopa in kot je prikazano na sl. 8, se lahko s komparatorsko enoto 15 detektira pravilno priključno stanje periferne priprave 2. Zato je predvidena referenčna napetost Uref na referenčnem vhodu operacijskega ojačevalnika U5, ki tvori komparatorsko enoto, in se na ta način opredeli napetost praga, ki je na sl. 8 vnesena npr. z 2,5 V. V trenutku tl izhodna napetost integratorja Ul preseže opredeljeni prag napetosti in na ta način povzroči prevešanje izhodnega stanja komparatorske enote 15. Zintegrirani naboj naprej narašča in doseže v trenutku t2 največjo vrednost, v tem trenutku pa je vhodni kondenzator C4 v nabitem stanju. Sorazmerno počasi padajoči potek po prekoračitvi največje vrednosti izhodne napetosti se določi z vzporednim uporom R4, ki ima vrednost, ki vsaj za eno desetično potenco leži pod najslabšim možnim izolacijskim uporom prenosnega voda. S praznjenjem integracijskega kondenzatorja C3 pada izhodna napetost V2 integrime enote 14 pod prag 2,5 V in povzroča na ta način ponovno prevešanje izhodnega stanja komparatorske enote 15. Časovno razdobje med trenutkom tl in t3 se lahko tako z ustrezno logiko nadalje obdela. Znotraj določenih toleranc se lahko pojav tega časovnega razdobja tolmači kot pravilna priključitev periferne priprave 2.In order to eliminate the influence of interfering leakage currents in the transmission line, a resistor R4 is connected in parallel to the integral capacitor C3, which prevents the leakage currents from growing due to poor insulation - eg in old lines - by occurring leakage currents, which can then be interpreted as additional capacity at the peripheral input. The resistor R4 is dimensioned to cause the integrator capacitor C3 to be discharged after charging the capacitor C4, thereby reducing the output voltage of the integrator Ul again after the maximum value has been reached. With the characteristic current of the voltage V2, which occurs here and as shown in Figs. 8, the correct connection state of the peripheral device 2 can be detected by the comparator unit 15. Therefore, a reference voltage U re f is provided at the reference input of the operational amplifier U5 that forms the comparator unit, thus determining the threshold voltage in FIG. 8 entered e.g. z 2.5 V. At the moment tl the output voltage of the integrator Ul exceeds the specified voltage threshold, thus causing the output state of the comparator unit to be exceeded 15. The integrated charge increases further and reaches the maximum value at time t2, at which point the input capacitor C4 v charged state. The relatively slow descending path after exceeding the maximum value of the output voltage is determined by a parallel resistor R4 having a value that lies at least one decimal point below the worst possible insulating resistance of the transmission line. By discharging the integration capacitor C3, the output voltage V2 of the unit 14 integrim drops below a threshold of 2.5 V and thus causes the output state of the comparator unit 15 to be exceeded again. Within certain tolerances, the occurrence of this time period may be interpreted as the proper attachment of a peripheral device 2.

Komparatorsko izhodno stanje se lahko alternativno k temu ugotavlja v treh časovnih točkah. Pri tem pa se podajo naslednji pogoji. V časovni točki t=0 mora izhodno stanje ležati na nizkem potencialu, v časovni točki t=100 ms na visokem potencialu in v časovni točki t=400 ms ponovno na nizkem potencialu, če naj bo prisotno pravilno priključitveno stanje.Alternatively, the comparator output can be determined at three time points. In doing so, the following conditions are given. At time point t = 0, the output state must be at low potential, at time point t = 100 ms at high potential, and at time point t = 400 ms again at low potential, if the correct connection state is to be present.

Pri nastopu stanja II po sl. 9, 10 in 11 je pogoj vpraševanja za t=0 in t=100 ms izpolnjen, za t=4000 ms pa ni izpolnjen. To je povzročeno s prenizkim izolacijskim uporom prenosnega voda, s čimer R9 močno pade. Na osnovi tokov uhajanja, ki so s tem povzročeni, se povzroči stalen tok naboja v prenosni vod 1. V takšnem primeru se priključno stanje periferne priprave ne more enolično ugotoviti, zato mora biti najprej obnovljena izolacija prenosnega voda in odstranjeni drugi vzroki tega stalnega odtakanja naboja. Vsekakor pa ne gre za redno obratovalno stanje, ki bi bilo primemo za dvig napetosti daljinskega napajanja.In the onset of state II according to FIG. 9, 10 and 11, the query condition for t = 0 and t = 100 ms is fulfilled and for t = 4000 ms it is not fulfilled. This is caused by the transmission line insulation resistance being too low, causing the R9 to fall sharply. On the basis of the leakage currents that are caused, a constant flow of charge is introduced into the transmission line 1. In this case, the peripheral device connection status cannot be uniquely determined, so the transmission line insulation must first be restored and other causes of this constant charge drainage must be eliminated. . However, this is not a regular operating condition, which would be suitable for raising the voltage of the remote power supply.

Na sl. 12, 13 in 14 prikazano stanje III se ne pokaže pri vpraševanju v Časovnem trenutku t=l00 ms kot nikakršna prekoračitev napetosti praga v višini 2,5 V, od koder se lahko sklepa, da ima periferna priprava bodisi zelo nizko vhodno kapaciteto ali da sploh ni ali pa je napačno priključena. Pri natančnejšem poznavanju vhodne kapacitete se lahko v takšnem primeru enolično ugotovi, da se ne sme izvesti dvigovanje napetosti daljinskega napajanja na obratovalno vrednost, ker se sicer ne bi moglo izključiti ogrožanje montažnega osebja. S tem odprti priključki prenosnega voda ne morejo povzročiti nobene nevarnosti ali napačno priključene priprave biti obvarovane pred poškodbami.In FIG. 12, 13 and 14, the displayed state III does not appear when asked at Time t = 100 ms as no threshold voltage exceeding 2.5 V, from which it can be concluded that the peripheral device has either a very low input capacity or not at all. is not present or incorrectly connected. In a more precise knowledge of the input capacity, in such a case, it can be uniquely established that the lifting of the remote power supply voltage to the operating value cannot be carried out, as otherwise the installation personnel could not be excluded. The open connections of the transmission line can therefore not cause any danger or prevent the incorrectly connected device from being damaged.

Stanje IV, ki je razvidno iz časovnih potekov na sl. 15 do 17, zadeva previsoko kapaciteto kondenzatorja C4, ki pri vpraševanju v časovnem trenutku t=400 ms daje izhodno napetost na komparatorju, ki je še vedno v visokem stanju, in pade šele po 500 ms na nizko stanje. To je treba pripisati popolnemu prekrmiljenju integrime enote 14, do katere je prišlo zaradi previsoke kapacitete kondenzatorja C4 med časom od t=50 ms do t=250 ms.The IV state, which can be seen in the timing of FIG. 15 to 17, concerns the capacitance C4 that is too high which, when asked at time t = 400 ms, gives the output voltage on the comparator, which is still in the high state, and drops only after 500 ms to the low state. This must be attributed to the complete overflow of the unit 14 integument, which was due to the overcapacity of the C4 capacitor during the time from t = 50 ms to t = 250 ms.

Previsoka kapaciteta kondenzatorja C4 je lahko utemeljena v tem, da sta bili npr. pomotoma priključeni dve ali več perifernih priprav vzporedno, in vzpostavitev obratovanja je treba zato preprečiti, ker se oskrba s tokom ne more zagotoviti za obe pripravi ali bi obe pripravi povzročili previsok napajalni tok na prenosnem vodu in s tem previsoko izgubno moč. Vhodni del krajevnega dela 2 pa je lahko tudi pokvarjen ali pa gre lahko za prenosni vod, ki ima previsoke tokove uhajanja.The overcapacity of the C4 capacitor may be justified by the fact that e.g. two or more peripheral devices are inadvertently connected in parallel, and the establishment of the operation must therefore be prevented because the supply cannot be secured for both devices or the two devices would lead to too high supply current on the transmission line and thereby too high power loss. The local part 2 inlet may also be defective or may be a transmission line that has excess leakage currents.

Na sl. 18 je predstavljena izvedbena oblika stikalne razmestitve po izumu, v kateri je integrator tvorjen z RC-členom. RC-člen obstoji pri tem iz upora R20 in kondenzatorja CIO. Na sl. 19 je prikazan tok I skozi upor R8, ki je povzročen pri pravilnem stanju periferne priprave, in je na sl. 20 prikazan potek napetosti V2 po integriranju z RC-členom. Nadalje daje komparatorska izhodna napetost V3 ustrezno možnost dokaza za pravilno priključno stanje.In FIG. 18 is an embodiment of a switch arrangement according to the invention in which the integrator is formed by an RC member. The RC member consists of a resistor R20 and a capacitor CIO. In FIG. 19 shows a current I through a resistor R8, which is caused by the correct state of the peripheral device, and is shown in FIG. 20 shows the voltage path V2 after integration with the RC member. Furthermore, the comparator output voltage V3 provides adequate proof of proper connection condition.

ZaFor

ERICSON AUSTRIA AKTIENGESELLSCHAFTERICSON AUSTRIA AKTIENGESELLSCHAFT

Claims (11)

Patentni zahtevkiPatent claims 1. Postopek za priključitev periferne priprave (2), ki je od centralnega mesta (7) preko prenosnega voda (1) daljinsko napajana, v sistem za prenos informacij, pri čemer se v prvem koraku periferna priprava (2) pri odklopljeni napetosti daljinskega napajanja priključi na prenosni vod (1), označen s tem, da se v drugem koraku preizkusna napetost, ki je nižja od napetosti daljinskega napajanja priprave, ki je predvidena za obratovanje, priključi na konca na centralni strani prenosnega voda (1) in se ugotovi priključno stanje perifernih koncev prenosnega voda (1) z merjenjem na centralni strani količine naboja, ki pri tem steče v prenosni vod (1), in da se v tretjem koraku po ugotovitvi pravilnega priključnega stanja prenosnega voda (1) napetost daljinskega napajanja zviša na obratovalno napajalno napetost.A method for connecting a peripheral device (2), which is remotely powered from a central location (7) via a transmission line (1), to the information transfer system, wherein in a first step the peripheral device (2) is disconnected from the remote supply voltage connected to the transmission line (1), characterized in that in the second step, a test voltage lower than the remote supply voltage of the device intended for operation is connected to the ends at the central side of the transmission line (1) and the connection is determined the condition of the peripheral ends of the transmission line (1) by measuring on the central side the amount of charge flowing into the transmission line (1) and, in the third step, after establishing the correct connecting state of the transmission line (1), the voltage of the remote supply is increased to the operating power supply tension. 2. Postopek po zahtevku 1, označen s tem, da se preizkusna napetost kot napetostni skok dovede na konca na centralni strani prenosnega voda (1).Method according to claim 1, characterized in that the test voltage is applied to the ends on the central side of the transmission line (1) as a voltage jump. 3. Postopek po zahtevku 1 ali 2, označen s tem, da se toliko časa v stalno ponavljajočem se zaporedju priključuje preizkusna napetost in ugotavlja količina naboja, ki teče v prenosni vod (1), dokler se ne ugotovi pravilno priključno stanje prenosnega voda (1).Method according to claim 1 or 2, characterized in that the test voltage is connected in a continuous repetitive sequence and the amount of charge flowing into the transmission line (1) is determined until the correct transmission state of the transmission line (1) ). 4. Postopek po zahtevku 2 ali 3, označen s tem, da se v prenosni vod (1) odtekajoči naboj meri z integriranjem toka, ki teče med priključitvijo priključne napetosti proti periferni pripravi (2).Method according to claim 2 or 3, characterized in that the discharge charge (1) is measured by integrating the current flowing during the connection of the supply voltage to the peripheral device (2). 5. Vezje za sistem za prenos informacij, ki obsega centralno mesto (7) in periferno pripravo (2) in v katerem je periferna priprava (2) preko prenosnega voda (1) povezana s centralnim mestom (7), pri čemer je periferna priprava (2) daljinsko napajana od centralnega mesta (7) preko priprave (20) za daljinsko napajanje, označeno s tem, da centralno mesto (7) nadalje obsega enoto (10) za tvorjenje napetostnega skoka in enoto (11) za določanje količine naboja, ki je bil oddan v prenosni vod.5. An information transmission system circuit comprising a central location (7) and a peripheral device (2) and in which a peripheral device (2) is connected to a central location (7) via a transmission line (1), wherein the peripheral device is (2) remotely powered from the central location (7) via a remote power supply device (20), characterized in that the central location (7) further comprises a voltage jump unit (10) and a charge quantity determining unit (11), which was transmitted to the transmission line. 6. Vezje po zahtevku 5, označeno s tem, da je enota za določanje količine naboja tvorjena z enoto (13) za tvorjenje napetosti, ki je sorazmerna toku, ki teče proti periferni pripravi, in z integrimo enoto (14), kije povezana s to enoto.Circuit according to claim 5, characterized in that the charge determination unit is formed by a voltage generating unit (13) proportional to the current flowing toward the peripheral device and an integrating unit (14) connected to this unit. 7. Vezje po zahtevku 6, označeno s tem, da je enota (13) za tvorjenje toku proporcionalne napetosti izvedena iz ohmskega upora (13).Circuit according to claim 6, characterized in that the proportional voltage current generating unit (13) is derived from an ohmic resistor (13). 8. Vezje po zahtevku 6 ali 7, označeno s tem, da je na izhodu integrime enote (14) priključen prvi vhod komparatorske enote (15), ki je na svojem drugem vhodu povezana z virom (Uref) referenčne napetosti, preko katere se lahko nastavi napetost praga za spreminjanje izhoda komparatorja.A circuit according to claim 6 or 7, characterized in that the first input of the comparator unit (15) is connected at the output of the unit integral (14), which is connected at its second input to a reference voltage source (U re f) through which the threshold voltage can be set to vary the output of the comparator. 9. Vezje po zahtevku 6, 7 ali 8, označeno s tem, da je integrator tvorjen iz invertirajočega operacijskega ojačevalnika (Ul) z integrimim kondenzatorjem (C3) v veji za negativno povratno zvezo.A circuit according to claim 6, 7 or 8, characterized in that the integrator is formed of an inverting operational amplifier (Ul) with an integrim capacitor (C3) in the negative feedback branch. 10. Vezje po zahtevku 9, označeno s tem, da je vzporedno z integrimim kondenzatorjem (C3) vezan upor (R4).10. A circuit according to claim 9, characterized in that a resistor (R4) is connected in parallel with the integral capacitor (C3). 11. Vezje po zahtevku 6, 7 ali 8, označeno s tem, daje integrator tvorjen z RC-členomA circuit according to claim 6, 7 or 8, characterized in that the integrator is formed by an RC member
SI9820087A 1997-12-23 1998-12-21 Method for connecting a remotely powered peripheral unit SI20296A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0218397A AT407321B (en) 1997-12-23 1997-12-23 METHOD FOR CONNECTING A REMOTE-POWERED, PERIPHERAL DEVICE
PCT/AT1998/000317 WO1999034591A1 (en) 1997-12-23 1998-12-21 Method for connecting a remotely powered peripheral unit

Publications (1)

Publication Number Publication Date
SI20296A true SI20296A (en) 2000-12-31

Family

ID=3529494

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9820087A SI20296A (en) 1997-12-23 1998-12-21 Method for connecting a remotely powered peripheral unit

Country Status (7)

Country Link
EP (1) EP1042908A1 (en)
AT (1) AT407321B (en)
AU (1) AU1646699A (en)
HU (1) HUP0100695A3 (en)
IL (1) IL136837A (en)
SI (1) SI20296A (en)
WO (1) WO1999034591A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053627A1 (en) 1998-04-10 1999-10-21 Chrimar Systems, Inc. Doing Business As Cms Technologies System for communicating with electronic equipment on a network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651398B1 (en) * 1989-08-31 1995-08-25 Alcatel Business Systems SUPPLY ARRANGEMENT FOR TELEPHONE AND / OR TELEMATIC TERMINAL.
US5089927A (en) * 1989-10-12 1992-02-18 Northern Telecom Limited Power feed circuit for digital communications terminal equipment
AT399071B (en) * 1992-10-27 1995-03-27 Semcotec Handel MESSAGE TRANSMISSION SYSTEM, IN PARTICULAR TELEPHONE SYSTEM
JPH1013576A (en) * 1996-06-20 1998-01-16 Fujitsu Ltd Feeding circuit

Also Published As

Publication number Publication date
HUP0100695A2 (en) 2001-06-28
WO1999034591A1 (en) 1999-07-08
IL136837A0 (en) 2001-06-14
AU1646699A (en) 1999-07-19
ATA218397A (en) 2000-06-15
AT407321B (en) 2001-02-26
HUP0100695A3 (en) 2002-02-28
IL136837A (en) 2004-12-15
EP1042908A1 (en) 2000-10-11

Similar Documents

Publication Publication Date Title
US3976849A (en) Telephone wiring tester
US7158633B1 (en) Method and apparatus for monitoring subscriber loop interface circuitry power dissipation
KR100242615B1 (en) Digital loop transmission system
US5089927A (en) Power feed circuit for digital communications terminal equipment
JP4044962B2 (en) Telephone line monitor circuit
US4551671A (en) Terminal disconnect and media wire fault detect mechanism
US4415779A (en) Methods of and apparatus for testing telephone subscriber loop to locate a fault relative to a reference point
US5420886A (en) Digital transmission equipment
US3941950A (en) Telephone line testing instrument having a supervising capability
CA2084308C (en) Remotely controlled apparatus for conditioning telephone line exclusive of metallic dc bypass pair
US4326103A (en) Coin telephone monitor circuit
SI20296A (en) Method for connecting a remotely powered peripheral unit
CN218412343U (en) Water sensor and detection equipment thereof
US4355209A (en) Programmable line circuit
EP0501775B1 (en) Remote line test facility
EP0089355B1 (en) Detector circuit for communication lines
US4495494A (en) Detector circuit for communication lines
US5960060A (en) Line tester for coin-operated telephones
US4145579A (en) Key telephone unit protective coupler
FI82797B (en) FOERFARANDE OCH ANORDNING FOER ATT SKYDDA ETT DATAOEVERFOERINGSNAET.
EP1397902B1 (en) Device for detecting telephone line seizure
JP2000232539A (en) Power feeder circuit
JP2917968B2 (en) Transmission level switching device and transmission level switching method
SU1226673A1 (en) Device for monitoring stub resistance
US4166928A (en) Loop, dial pulse and ring trip detection circuit