SG10201501916QA - Method for fabricating fin field effect transistors - Google Patents

Method for fabricating fin field effect transistors

Info

Publication number
SG10201501916QA
SG10201501916QA SG10201501916QA SG10201501916QA SG10201501916QA SG 10201501916Q A SG10201501916Q A SG 10201501916QA SG 10201501916Q A SG10201501916Q A SG 10201501916QA SG 10201501916Q A SG10201501916Q A SG 10201501916QA SG 10201501916Q A SG10201501916Q A SG 10201501916QA
Authority
SG
Singapore
Prior art keywords
field effect
effect transistors
fin field
fabricating fin
fabricating
Prior art date
Application number
SG10201501916QA
Inventor
Hsingjen Wann Clement
Chang Chih-Sheng
Shih Chi-Yuan
Yeh Ling-Yen
Lin Yi-Tang
Original Assignee
Taiwan Semiconductor Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg Co Ltd filed Critical Taiwan Semiconductor Mfg Co Ltd
Publication of SG10201501916QA publication Critical patent/SG10201501916QA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66818Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the channel being thinned after patterning, e.g. sacrificial oxidation on fin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
SG10201501916QA 2011-11-10 2011-11-23 Method for fabricating fin field effect transistors SG10201501916QA (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/293,732 US8963257B2 (en) 2011-11-10 2011-11-10 Fin field effect transistors and methods for fabricating the same

Publications (1)

Publication Number Publication Date
SG10201501916QA true SG10201501916QA (en) 2015-05-28

Family

ID=48145273

Family Applications (2)

Application Number Title Priority Date Filing Date
SG10201501916QA SG10201501916QA (en) 2011-11-10 2011-11-23 Method for fabricating fin field effect transistors
SG2011086709A SG190469A1 (en) 2011-11-10 2011-11-23 Fin field effect transistors and methods for fabricating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
SG2011086709A SG190469A1 (en) 2011-11-10 2011-11-23 Fin field effect transistors and methods for fabricating the same

Country Status (6)

Country Link
US (3) US8963257B2 (en)
KR (1) KR101348032B1 (en)
CN (1) CN103107196B (en)
DE (1) DE102012102783B4 (en)
SG (2) SG10201501916QA (en)
TW (1) TWI495106B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058688A (en) * 2011-09-09 2013-03-28 Toshiba Corp Semiconductor device manufacturing method
US9117877B2 (en) * 2012-01-16 2015-08-25 Globalfoundries Inc. Methods of forming a dielectric cap layer on a metal gate structure
US8759194B2 (en) * 2012-04-25 2014-06-24 International Business Machines Corporation Device structures compatible with fin-type field-effect transistor technologies
US8603893B1 (en) * 2012-05-17 2013-12-10 GlobalFoundries, Inc. Methods for fabricating FinFET integrated circuits on bulk semiconductor substrates
CN103811342B (en) 2012-11-09 2017-08-25 中国科学院微电子研究所 Fin structure and its manufacture method
US9054020B2 (en) * 2012-11-28 2015-06-09 International Business Machines Corporation Double density semiconductor fins and method of fabrication
US9525068B1 (en) * 2013-03-15 2016-12-20 Altera Corporation Variable gate width FinFET
EP3203529B1 (en) 2013-09-25 2022-12-21 Tahoe Research, Ltd. Isolation well doping with solid-state diffusion sources for finfet architectures
KR20160061964A (en) 2013-09-26 2016-06-01 인텔 코포레이션 Vertical non-planar semiconductor device for system-on-chip (soc) applications
US9324665B2 (en) * 2013-12-27 2016-04-26 Intel Corporation Metal fuse by topology
EP4187619A1 (en) * 2014-03-24 2023-05-31 Intel Corporation Transistoren with multiple fin dimensions on a single die
US10468528B2 (en) 2014-04-16 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device with high-k metal gate stack
US9178067B1 (en) 2014-04-25 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET device
US9721955B2 (en) 2014-04-25 2017-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for SRAM FinFET device having an oxide feature
US9224736B1 (en) 2014-06-27 2015-12-29 Taiwan Semicondcutor Manufacturing Company, Ltd. Structure and method for SRAM FinFET device
CN105470295B (en) * 2014-09-09 2020-06-30 联华电子股份有限公司 Fin structure and manufacturing method thereof
KR102191221B1 (en) * 2014-09-23 2020-12-16 삼성전자주식회사 Resistor and semiconductor device including the same
KR102245133B1 (en) 2014-10-13 2021-04-28 삼성전자 주식회사 Semiconductor device comprising finFETs(fin Field Effect Transistors) of different gate structures and method for fabricating the same
CN105702726B (en) * 2014-11-27 2019-01-18 中国科学院微电子研究所 Semiconductor devices and its manufacturing method
US10037992B1 (en) * 2014-12-22 2018-07-31 Altera Corporation Methods and apparatuses for optimizing power and functionality in transistors
US9761658B2 (en) * 2014-12-30 2017-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. Shallow trench isolation structure with raised portion between active areas and manufacturing method thereof
US10818558B2 (en) * 2015-04-24 2020-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure having trench and manufacturing method thereof
US9484264B1 (en) * 2015-07-29 2016-11-01 International Business Machines Corporation Field effect transistor contacts
KR102350007B1 (en) 2015-08-20 2022-01-10 삼성전자주식회사 Method for fabricating semiconductor device
WO2017052612A1 (en) 2015-09-25 2017-03-30 Intel Corporation Methods of doping fin structures of non-planar transistor devices
CN106601605B (en) * 2015-10-19 2020-02-28 中芯国际集成电路制造(北京)有限公司 Gate stack structure, NMOS device, semiconductor device and manufacturing method thereof
US20170140992A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
EP3182461B1 (en) * 2015-12-16 2022-08-03 IMEC vzw Method for fabricating finfet technology with locally higher fin-to-fin pitch
CN109390401B (en) * 2017-08-10 2022-07-05 联华电子股份有限公司 Semiconductor element and manufacturing method thereof
US10170588B1 (en) * 2017-10-30 2019-01-01 International Business Machines Corporation Method of forming vertical transport fin field effect transistor with high-K dielectric feature uniformity
US10797049B2 (en) * 2018-10-25 2020-10-06 Globalfoundries Inc. FinFET structure with dielectric bar containing gate to reduce effective capacitance, and method of forming same
US20220238823A1 (en) * 2019-05-24 2022-07-28 Alliance For Sustainable Energy, Llc Electronic ratchet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546488B1 (en) 2003-12-26 2006-01-26 한국전자통신연구원 Method of manufacturing a semiconductor device
US7115947B2 (en) 2004-03-18 2006-10-03 International Business Machines Corporation Multiple dielectric finfet structure and method
US7501336B2 (en) * 2005-06-21 2009-03-10 Intel Corporation Metal gate device with reduced oxidation of a high-k gate dielectric
US7709303B2 (en) * 2006-01-10 2010-05-04 Freescale Semiconductor, Inc. Process for forming an electronic device including a fin-type structure
US8772858B2 (en) * 2006-10-11 2014-07-08 Macronix International Co., Ltd. Vertical channel memory and manufacturing method thereof and operating method using the same
US7811890B2 (en) * 2006-10-11 2010-10-12 Macronix International Co., Ltd. Vertical channel transistor structure and manufacturing method thereof
US7612405B2 (en) * 2007-03-06 2009-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication of FinFETs with multiple fin heights
US20080285350A1 (en) * 2007-05-18 2008-11-20 Chih Chieh Yeh Circuit and method for a three dimensional non-volatile memory
JP4518180B2 (en) * 2008-04-16 2010-08-04 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2009260059A (en) 2008-04-17 2009-11-05 Nippon Light Metal Co Ltd Method of manufacturing ultraviolet sensor
EP2284870B1 (en) * 2009-08-12 2012-02-22 Imec Method for forming a floating gate non-volatile memory cell
US8618556B2 (en) * 2011-06-30 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET design and method of fabricating same
US8603893B1 (en) * 2012-05-17 2013-12-10 GlobalFoundries, Inc. Methods for fabricating FinFET integrated circuits on bulk semiconductor substrates

Also Published As

Publication number Publication date
KR20130051861A (en) 2013-05-21
DE102012102783A1 (en) 2013-05-16
TW201320340A (en) 2013-05-16
US20160155826A1 (en) 2016-06-02
US9525049B2 (en) 2016-12-20
US20130119482A1 (en) 2013-05-16
CN103107196B (en) 2016-01-13
DE102012102783B4 (en) 2020-01-23
US9257343B2 (en) 2016-02-09
CN103107196A (en) 2013-05-15
US8963257B2 (en) 2015-02-24
SG190469A1 (en) 2013-06-28
TWI495106B (en) 2015-08-01
US20150132912A1 (en) 2015-05-14
KR101348032B1 (en) 2014-01-03

Similar Documents

Publication Publication Date Title
SG10201501916QA (en) Method for fabricating fin field effect transistors
HK1245309A1 (en) Transistors and methods for making them
EP2662882A4 (en) Semiconductor element and method for producing same
EP2682367A4 (en) Method for n-doping graphene
EP2748855A4 (en) Field effect power transistors
TWI562366B (en) Manufacturing method of semiconductor device
SG11201402630XA (en) Method for manufacturing soi wafer
EP2662887A4 (en) Semiconductor element and method for producing same
EP2725610A4 (en) Semiconductor device and method for producing semiconductor device
EP2787315A4 (en) Inner fin
EP2608249A4 (en) Method for producing transistor
EP2736067A4 (en) Method for manufacturing semiconductor device
EP2790225A4 (en) Method for manufacturing semiconductor device
IL227985B (en) Method for forming insulating film
HK1188133A1 (en) Manufacturing method for o/w emulsion composition o/w
EP2741319A4 (en) Field effect transistor
EP2728612A4 (en) Method for producing semiconductor device
EP2693202A4 (en) Manufacturing method for optical-electric-field enhancement device
EP2682217A4 (en) Method for fabricating slidable member
EP2709142A4 (en) Method for forming deep-channel super-pn junction
EP2787526A4 (en) Semiconductor device fabrication method
SG11201502119TA (en) Method for manufacturing soi wafer
EP2738801A4 (en) Heat sink and method for manufacturing heat sink
EP2685488A4 (en) Production method for semiconductor device
EP2754508A4 (en) Seamless-metal-pipe manufacturing method