SE519233C2 - Ways to make metal composite materials for cemented carbide - Google Patents

Ways to make metal composite materials for cemented carbide

Info

Publication number
SE519233C2
SE519233C2 SE9901206A SE9901206A SE519233C2 SE 519233 C2 SE519233 C2 SE 519233C2 SE 9901206 A SE9901206 A SE 9901206A SE 9901206 A SE9901206 A SE 9901206A SE 519233 C2 SE519233 C2 SE 519233C2
Authority
SE
Sweden
Prior art keywords
solution
powder
water
metal
cemented carbide
Prior art date
Application number
SE9901206A
Other languages
Swedish (sv)
Other versions
SE9901206L (en
SE9901206D0 (en
Inventor
Mats Waldenstroem
Rolf Svensson
Original Assignee
Sandvik Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Ab filed Critical Sandvik Ab
Priority to SE9901206A priority Critical patent/SE519233C2/en
Publication of SE9901206D0 publication Critical patent/SE9901206D0/en
Priority to DE60039384T priority patent/DE60039384D1/en
Priority to AT00105246T priority patent/ATE400669T1/en
Priority to EP00105246A priority patent/EP1043411B1/en
Priority to JP2000108002A priority patent/JP2000313929A/en
Publication of SE9901206L publication Critical patent/SE9901206L/en
Publication of SE519233C2 publication Critical patent/SE519233C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

The present invention provides a method of producing a metal composite material by dissolving at least one inorganic metal salt of Mo and/or W optionally together with one or more organic iron group metal salts in water and possibly at least another polar solvent, complex binding the metals with at least one complex former comprising functional groups in the form of OH or NR3, (R=H or alkyl). The amount of said salt of Mo and/or W in the solution should be no more than 4 x 10<-3> x (wt% H2O)<2> g/100 ml solution and not less than 10 wt-% water. The method further includes adding hard constituent powder to the solution, evaporating the solvent and heat treating the remaining powder in an inert and/or reducing atmosphere. As a result coated hard constituent powder is obtained which after addition of pressing agent and optionally with other coated hard constituent powders and/or carbon to obtain the desired composition can be compacted and sintered according to standard practice.

Description

40 519z233 . . . . H 2. Pulver av hàrda beståndsdelar sàsom WC, (Ti,Ta,Nb)C, (Ti,W)(C,N), genom jetmalning, tillsättes under màttlig omröring och temperatu- (Ti,W)C, (Ta,Nb)C, företrädesvis väldeagglomererade, t ex. ren ökas för att päskynda avdunstningen av lösningsmedlet. När blandningen har blivit ganska viskös, knàdas den deglika bland- ningen och när den är nästan torr krossas den försiktigt för att underlätta avdunstningen (undvika inneslutningar av lösningsme- del). 3. Den lösa pulverklumpen som erhållits i föregående steg värmebehandlas i kvävgas och/eller vätgas vid omkring 400-llO0°C, företrädesvis 400-800°C. För att àstadkomma ett helt reducerat pulver behövs eventuellt en hàlltemperatur. Tiden för värmebehand- ling pàverkas av processfaktorer sàsom pulverbäddtjocklek, sats- storlek, gassammansättning och värmebehandlingstemperatur och mäste bestämmas genom experiment. En hàlltid för reducering av en 5 kg pulversats i en ren vätgasatmosfär vid 650°C i 60-120 minuter har befunnits lämplig. Kvävgas och/eller vätgas används normalt men Ar, NH3, CO och C02 (eller blandningar därav) kan användas varigenom sammansättning och mikrostruktur hos beläggningen kan pâverkas. 4. Efter värmebehandling blandas det belagda pulvret med ett pressmedel i etanol till en slurry antingen ensamt eller med andra pulver av belagda hårda beståndsdelar och/eller bindefasmetaller och/eller kol för att erhälla den önskade sammansättningen. 40 519z233. . . . H 2. Powders of hard constituents such as WC, (Ti, Ta, Nb) C, (Ti, W) (C, N), by jet milling, are added with moderate stirring and temperature (Ti, W) C, (Ta, Nb) C, preferably well agglomerated, e.g. is increased to accelerate the evaporation of the solvent. When the mixture has become quite viscous, knead the dough-like mixture and when it is almost dry, crush it gently to facilitate evaporation (avoid inclusions of solvent). The loose powder lump obtained in the previous step is heat treated in nitrogen and / or hydrogen gas at about 400-110 ° C, preferably 400-800 ° C. To achieve a completely reduced powder, a holding temperature may be required. The time for heat treatment is affected by process factors such as powder bed thickness, batch size, gas composition and heat treatment temperature and must be determined by experiment. A holding time for reducing a 5 kg batch of powder in a pure hydrogen atmosphere at 650 ° C for 60-120 minutes has been found suitable. Nitrogen and / or hydrogen are normally used, but Ar, NH 3, CO and CO 2 (or mixtures thereof) can be used whereby the composition and microstructure of the coating can be affected. After heat treatment, the coated powder is mixed with a pressurizer in ethanol into a slurry either alone or with other powders of coated hard constituents and / or binder phase metals and / or carbon to obtain the desired composition.

Slurryn torkas sedan, pressas och sintras pà vanligt sätt för att erhàlla en sintrad kropp av härda bestàndsdelar i en bindefas.The slurry is then dried, pressed and sintered in the usual manner to obtain a sintered body of hardened constituents in a binder phase.

Exempel l En WC-0.9 vikt%Mo-10 vikt%Co-hàrdmetall tillverkades pä föl- jande sätt enligt uppfinningen: 3.70 g ammoniummolybdattetrahydrat (NH4)5 Mo7O24 x 4H2O upplöstes i 350 ml vatten (l.O6 g/100 ml lös- ning). 17.0 g koboltacetattetrahydrat (Co(C2H3O2)2 x 4H2O) till- sattes till lösningen. Till denna lösning tillsattes 7 g trietano- lamin ((C2H5O)3N) under omröring. Därefter tillsattes 200 g WC (dWC=2.l um) och temperaturen ökades till omkring 100 OC. Försik- tig omröring ägde rum kontinuerligt under tiden vattnet avdunstade tills blandningen hade blivit viskös. Den degliknande blandningen bearbetades och krossades med ett lätt tryck när den hade blivit nästan torr.Example 1 A WC-0.9 wt% Mo-10 wt% Co-cemented carbide was prepared in the following manner according to the invention: 3.70 g of ammonium molybdate tetrahydrate (NH4) Mo7O24 x 4H2O was dissolved in 350 ml of water ning). 17.0 g of cobalt acetate tetrahydrate (Co (C 2 H 3 O 2) 2 x 4H 2 O) was added to the solution. To this solution was added 7 g of triethanolamine ((C 2 H 5 O) 3 N) with stirring. Then 200 g of WC (dWC = 2 .mu.m) were added and the temperature was increased to about 100 DEG C. Careful stirring took place continuously while the water evaporated until the mixture had become viscous. The dough-like mixture was processed and crushed with a light pressure when it had become almost dry.

Det erhàllna pulvret brändes i en ugn i en porös bädd omkring l cm tjock i kvävgasatmosfär i en sluten behållare, uppvärmnings- 20 25 30 40 1519 233 -3 “_hastighet 10 °C/min till 500 OC, kompletterat med reduktion i vät- gas i 90 minuter, slutligen följt av kylning i kvävgasatmosfär med 10 OC/min. Inget kylningssteg mellan bränningen och reduktionsste- get användes.The resulting powder was fired in an oven in a porous bed about 1 cm thick in a nitrogen atmosphere in a closed container, heating rate 10 ° C / min to 500 ° C, supplemented by reduction in hydrogen gas. for 90 minutes, finally followed by cooling in a nitrogen atmosphere at 10 OC / min. No cooling step between firing and reduction step was used.

Det erhàllna pulvret blandades med pressmedel i etanol med justering av kolhalten (sot), torkades, pressades och sintrades enligt standardförfarande för WC-Co-legeringar. En tät hàrdmetall- struktur med porositet A00 och hårdhet HV3=1400 erhölls.The obtained powder was mixed with pressing agent in ethanol with adjustment of the carbon content (soot), dried, pressed and sintered according to standard procedure for WC-Co alloys. A dense cemented carbide structure with porosity A00 and hardness HV3 = 1400 was obtained.

Exempel 2 En WC-0.9 vikt%Mo-10 vikt%Co-hàrdmetall tillverkades pà samma sätt som i Exempel 1 men utan tillsats av koboltacetattetrahydrat (Co(C2H3O2)2 x 4H2O) och 1.7 g trietanolamin till lösningen. Samma resultat som i Exempel 1 erhölls.Example 2 A WC-0.9 wt% Mo-10 wt% Co-cemented carbide was prepared in the same manner as in Example 1 but without the addition of cobalt acetate tetrahydrate (Co (C 2 H 3 O 2) 2 x 4H 2 O) and 1.7 g of triethanolamine to the solution. The same results as in Example 1 were obtained.

Exempel 3 En WC-0.9 vikt%Mo-10 vikt%Co-hàrdmetall tillverkades pà samma sätt som i Exempel 1 men upplöstes i en lösning av 250 ml metanol + 100 ml vatten (l.06 g/100 ml lösning). Samma resultat som i Exempel 1 erhölls.Example 3 A WC-0.9 wt% Mo-10 wt% Co-cemented carbide was prepared in the same manner as in Example 1 but dissolved in a solution of 250 ml of methanol + 100 ml of water (1.06 g / 100 ml of solution). The same results as in Example 1 were obtained.

Exempel 4 En WC-0.9 vikt%Mo-10 vikt%Co-hàrdmetall tillverkades pà samma sätt som i Exempel 1 men upplöstes i en lösning av 100 ml etanol + 140 ml vatten (1.54 g/100 ml lösning). Samma resultat som i Exem- pel 1 erhölls.Example 4 A WC-0.9 wt% Mo-10 wt% Co-cemented carbide was prepared in the same manner as in Example 1 but dissolved in a solution of 100 ml of ethanol + 140 ml of water (1.54 g / 100 ml of solution). The same result as in Example 1 was obtained.

Exempel 5 En WC-0.9 vikt%Mo-10 vikt%Co-hàrdmetall tillverkades pà samma sätt som i Exempel 1 men upplöstes i en lösning av 230 ml etanol + 20 ml vatten (1.48 g/100 ml lösning). En hàrdmetallstruktur med porositet A02, B04 erhölls.Example 5 A WC-0.9 wt% Mo-10 wt% Co-cemented carbide was prepared in the same manner as in Example 1 but dissolved in a solution of 230 ml ethanol + 20 ml water (1.48 g / 100 ml solution). A cemented carbide structure with porosity A02, B04 was obtained.

Exempel 6 En WC-0.9 vikt%W-10 vikt%Co-hàrdmetall tillverkades pà föl- jande sätt enligt uppfinningen: 2.90 g ammoniummetatungstathydrat (NH4)5 H2W12O4O; H20 upplöstes i 350 ml vatten (0.83 9/100 ml lös- ning). 17.0 g koboltacetattetrahydrat (Co(C2H3O2)2 x 4H2O) till- sattes till lösningen. Till denna lösning tillsattes 6 g trietano- lamin ((C2H5O)3N) under omröring. Därefter tillsattes 200 g WC (dWC=2.1 um) och temperaturen ökades till omkring 100 OC. Försik- 20 30 519 233 4 tig omröring ägde rum kontinuerligt under tiden vattnet avdunstade tills blandningen hade blivit viskös. Den degliknande blandningen bearbetades och krossades med ett lätt tryck när den hade blivit nästan torr.Example 6 A WC-0.9 wt% W-10 wt% Co-cemented carbide was prepared in the following manner according to the invention: 2.90 g ammonium methate heavy state hydrate (NH 4) H 2 W 2 O 4 O; H 2 O was dissolved in 350 ml of water (0.83 9/100 ml of solution). 17.0 g of cobalt acetate tetrahydrate (Co (C 2 H 3 O 2) 2 x 4H 2 O) was added to the solution. To this solution was added 6 g of triethanolamine ((C 2 H 5 O) 3 N) with stirring. Then 200 g of WC (dWC = 2.1 μm) were added and the temperature was increased to about 100 ° C. Careful stirring took place continuously while the water evaporated until the mixture had become viscous. The dough-like mixture was processed and crushed with a light pressure when it had become almost dry.

Det erhàllna pulvret brändes i en ugn i en porös bädd omkring 1 cm tjock i kvävgasatmosfär i en sluten behállare, uppvärmnings- hastighet 10 OC/min till 500 OC, kompletterat med reduktion i vät- gas i 90 minuter, slutligen följt av kylning i kvävgasatmosfär med 10 °C/min. Inget kylningssteg mellan avbrännings- och reduktions- steget användes.The resulting powder was fired in an oven in a porous bed about 1 cm thick in a nitrogen atmosphere in a closed container, heating rate 10 OC / min to 500 OC, supplemented with reduction in hydrogen for 90 minutes, finally followed by cooling in a nitrogen atmosphere. at 10 ° C / min. No cooling step between the burning and reduction step was used.

Det erhàllna pulvret blandades med pressmedel i etanol med justering av kolhalten (sot), torkades, pressades och sintrades enligt standardförfarande för WC-Co legeringar. En tät härdmetall- struktur med porositet A00 och hårdhet HV3=14OO erhölls.The obtained powder was mixed with pressing agent in ethanol with adjustment of the carbon content (soot), dried, pressed and sintered according to standard procedure for WC-Co alloys. A dense cemented carbide structure with porosity A00 and hardness HV3 = 14000 was obtained.

Exempel 7 En WC-0.9 vikt%W-10 vikt%Co-hàrdmetall tillverkades pà samma sätt som i Exempel 6 men utan tillsats av koboltacetattetrahydrat (Co(C2H3O2)2 x 4H2O) och 1.0 g trietanolamin till lösningen. Samma resultat som i Exempel 6 erhölls.Example 7 A WC-0.9 wt% W-10 wt% Co-cemented carbide was prepared in the same manner as in Example 6 but without the addition of cobalt acetate tetrahydrate (Co (C 2 H 3 O 2) 2 x 4H 2 O) and 1.0 g of triethanolamine to the solution. The same results as in Example 6 were obtained.

Exempel 8 En WC-0.9 vikt%W-10 vikt%Co-hàrdmetall tillverkades pà samma sätt som i Exempel 6 men upplöstes i en lösning av 175 ml metanol + 175 ml vatten (0.83 g/100 ml lösning). Samma resultat som i Exempel 6 erhölls.Example 8 A WC-0.9 wt% W-10 wt% Co-cemented carbide was prepared in the same manner as in Example 6 but dissolved in a solution of 175 ml of methanol + 175 ml of water (0.83 g / 100 ml of solution). The same results as in Example 6 were obtained.

Exempel 9 En WC-0.9 vikt%W-10 vikt%Co-hardmetall tillverkades pà samma sätt som i Exempel 6 men upplöstes i en lösning av 200 ml etanol + 100 ml vatten (0.97 g/100 ml lösning). Samma resultat som i Exempel 6 erhölls.Example 9 A WC-0.9 wt% W-10 wt% Co-hard metal was prepared in the same manner as in Example 6 but dissolved in a solution of 200 ml ethanol + 100 ml water (0.97 g / 100 ml solution). The same results as in Example 6 were obtained.

Exempel 10 En WC-0.9 vikt%W-10 vikt%Co-hàrdmetall tillverkades pä samma sätt som i Exempel 6 men upplöstes i en lösning av 200 ml etanol utan vatten (1.45 g/100 ml lösning). En hàrdmetallstruktur med hög porositet A04, B08 erhölls.Example 10 A WC-0.9 wt% W-10 wt% Co-cemented carbide was prepared in the same manner as in Example 6 but dissolved in a solution of 200 ml of ethanol without water (1.45 g / 100 ml of solution). A cemented carbide structure with high porosity A04, B08 was obtained.

Claims (1)

1. 0 U 20 519 233 s Sätt att tillverka ett metallkompositmaterial omfattande Krav följande steg - upplösning av åtminstone ett oorganiskt metallsalt eller förening av åtminstone en metall från grupperna IV, V, och VI i det periodiska systemet eventuellt tillsammans med en eller flera organiska järngruppsmetallsalt i vatten och eventuellt åtminstone ett annat polärt lösningsmedel och komplexbindning av sagda me- tallsalt med åtminstone en komplexbildare omfattande funktionella grupper i form av OH eller NR3,(R=H eller alkyl) - tillsats av pulver av hårda beståndsdelar och eventuellt en löslig kolkälla till lösningen - avdunstning av lösningsmedlet - värmebehandling av det återstående pulvret i inert och/eller reducerande atmosfär för att erhålla sagda hårda be- ståndsdelspulver belagt med sagda åtminstone en av metallerna i grupperna IV, V, och VI av det periodiska systemet - tillsats av pressmedel ensamt eller med pulver av andra be- lagda hårda beståndsdelar och/eller kol för att erhålla den öns- kade sammansättningen till sagda belagd hårda beståndsdelspulver, pressning och sintring k ä n n e t e c k n a t av att sagda metall är Mo och/eller W och att metallsaltet föreligger i en mängd av <4 x 1O”3 x (vikt% H2O)2 g Me-salt / 100 ml lösning och minst 10 vikt% vatten i lösningen.A method of making a metal composite material comprising the following steps - dissolving at least one inorganic metal salt or joining at least one metal from groups IV, V, and VI in the periodic table optionally together with one or more organic ferrous metal salts. in water and optionally at least one other polar solvent and complex bonding of said metal salt with at least one complexing agent comprising functional groups in the form of OH or NR 3, (R = H or alkyl) - addition of powder of hard constituents and optionally a soluble carbon source to the solution - evaporation of the solvent - heat treatment of the remaining powder in an inert and / or reducing atmosphere to obtain said hard constituent powder coated with said at least one of the metals of groups IV, V, and VI of the Periodic Table - addition of pressurizing agent alone or with powder of other coated hard constituents and / or carbon to obtain The desired composition of said coated hard ingredient powder, pressing and sintering is characterized in that said metal is Mo and / or W and that the metal salt is present in an amount of <4 x 10 3 ′ 3 x (wt% H 2 O) 2 g Me-salt / 100 ml solution and at least 10% by weight of water in the solution.
SE9901206A 1999-04-06 1999-04-06 Ways to make metal composite materials for cemented carbide SE519233C2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SE9901206A SE519233C2 (en) 1999-04-06 1999-04-06 Ways to make metal composite materials for cemented carbide
DE60039384T DE60039384D1 (en) 1999-04-06 2000-03-14 Process for the production of metallic composite material
AT00105246T ATE400669T1 (en) 1999-04-06 2000-03-14 METHOD FOR PRODUCING METAL COMPOSITE MATERIAL
EP00105246A EP1043411B1 (en) 1999-04-06 2000-03-14 Method of making metal composite materials
JP2000108002A JP2000313929A (en) 1999-04-06 2000-04-05 Manufacture of metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9901206A SE519233C2 (en) 1999-04-06 1999-04-06 Ways to make metal composite materials for cemented carbide

Publications (3)

Publication Number Publication Date
SE9901206D0 SE9901206D0 (en) 1999-04-06
SE9901206L SE9901206L (en) 2000-10-07
SE519233C2 true SE519233C2 (en) 2003-02-04

Family

ID=20415101

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9901206A SE519233C2 (en) 1999-04-06 1999-04-06 Ways to make metal composite materials for cemented carbide

Country Status (5)

Country Link
EP (1) EP1043411B1 (en)
JP (1) JP2000313929A (en)
AT (1) ATE400669T1 (en)
DE (1) DE60039384D1 (en)
SE (1) SE519233C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187005A (en) 2008-10-20 2011-09-14 H.C.施塔克股份有限公司 Molybdenum-contained alloy powders used to produce sintered hard metals based on tungsten carbide
DE102008052559A1 (en) 2008-10-21 2010-06-02 H.C. Starck Gmbh Use of binder alloy powder containing specific range of molybdenum (in alloyed form), iron, cobalt, and nickel to produce sintered hard metals based on tungsten carbide
US8771391B2 (en) * 2011-02-22 2014-07-08 Baker Hughes Incorporated Methods of forming polycrystalline compacts
JP6228765B2 (en) * 2013-06-19 2017-11-08 小林 博 Method for producing nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE510659C2 (en) * 1997-10-14 1999-06-14 Sandvik Ab Process for preparing a cemented carbide comprising coating of particles of the cementitious binder with binder metal

Also Published As

Publication number Publication date
EP1043411B1 (en) 2008-07-09
EP1043411A3 (en) 2005-11-02
EP1043411A2 (en) 2000-10-11
SE9901206L (en) 2000-10-07
JP2000313929A (en) 2000-11-14
SE9901206D0 (en) 1999-04-06
DE60039384D1 (en) 2008-08-21
ATE400669T1 (en) 2008-07-15

Similar Documents

Publication Publication Date Title
EP0752921B1 (en) Method of making metal composite materials
JP4226702B2 (en) Method for producing metal composite material
EP0852526B1 (en) Method of making metal composite materials
SE510749C2 (en) Methods of preparing a metal composite material containing hard particles and binder metal
SE519233C2 (en) Ways to make metal composite materials for cemented carbide
KR101139745B1 (en) Method of making submicron cemented carbide
JP4260883B2 (en) Method for producing metal composite material

Legal Events

Date Code Title Description
NUG Patent has lapsed