SE463389B - A coating for metal surfaces which is selectively reflective for microwave radiation - Google Patents

A coating for metal surfaces which is selectively reflective for microwave radiation

Info

Publication number
SE463389B
SE463389B SE8901113A SE8901113A SE463389B SE 463389 B SE463389 B SE 463389B SE 8901113 A SE8901113 A SE 8901113A SE 8901113 A SE8901113 A SE 8901113A SE 463389 B SE463389 B SE 463389B
Authority
SE
Sweden
Prior art keywords
layers
frequency
layer
reflection
foil
Prior art date
Application number
SE8901113A
Other languages
Swedish (sv)
Other versions
SE8901113D0 (en
SE8901113L (en
Inventor
Aake Bergquist
Original Assignee
Aake Bergquist
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aake Bergquist filed Critical Aake Bergquist
Priority to SE8901113A priority Critical patent/SE463389B/en
Publication of SE8901113D0 publication Critical patent/SE8901113D0/en
Publication of SE8901113L publication Critical patent/SE8901113L/en
Publication of SE463389B publication Critical patent/SE463389B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Metal surfaces reflect microwave radiation. For a long time attempts have been made to coat reflective surfaces with various types of absorbent layer, with varying degrees of success. Particularly when it is a question of reflector antennas, the problem is complicated by the reflector having to reflect radiation at the frequency intended for the antenna. However, this invention solves this problem as it concerns a coating for metal surfaces which is selectively reflective for microwave radiation. It is built up of four layers, designated I to IV, viewed from the metal surface M, with a resistive foil r between the layers II and III. The layers III and IV are quarter-wave transformers, which adapt the surface resistance of the resistive foil r to the wave impedance of free space while the resistive foil r together with the layers I and II acts as a connection device which gives very great reflection around a predetermined reflection frequency but very low reflection at either side. The latter takes place by the resistive foil being short-circuited at the reflection frequency when the layer I acts as a resonator with resonance at this frequency and layer II has an electrical thickness of a quarter of the wavelength at this frequency. <IMAGE>

Description

463 389 fig 5 visar effektreflexionen som funktion av frekvensen för en variant av den första utföringsformen vid 0 och 45° infalls- vinkel samt med och utan förluster. 463 389 Fig. 5 shows the power reflection as a function of the frequency for a variant of the first embodiment at 0 and 45 ° angle of incidence and with and without losses.

Beläggningen enligt uppfinningen omfattar fyra skikt I, II, III, IV på en metallyta M. Skikten numreras från metallytan M. Vidare finns en reistans- folie r mellan skikten II och III. I utförandet enligt figur I skall dielektricitetskonstanten El i skiktet I ha ett högt värde (4 < El < 100).The coating according to the invention comprises four layers I, II, III, IV on a metal surface M. The layers are numbered from the metal surface M. Furthermore, there is a resistance foil r between layers II and III. In the embodiment according to Figure I, the dielectric constant E1 in the layer I must have a high value (4 <E1 <100).

I skikt II kan 22 väljas inom området 1-9. Vidare bör El alltid väljas betydligt högre än S2. Skikt I kommer då att verka som en resonator.In layer II, 22 can be selected in the range 1-9. Furthermore, El should always be chosen significantly higher than S2. Layer I will then act as a resonator.

Inom ett litet frekvensomrâde omkring resonansfrekvensen dvs den frekvens då skikt I har en elektrisk tjocklek (beräknad ur dl Vïâ, där dl är skik- tets 1 fysiska tjocklek) på ca en kvarts våglängd, blir impedansen Zl i gränsen mellan skikten I och II stor. Om också skikt II ges samma elekt- riska tjocklek blir impedansen Z2 i gränsen mellan skiktet II och resis- tansfolien r liten och resistansfolien kortsluts. Anordningen blir då totalreflekterande, eftersom förlusterna eliminerats. Utanför sagda frekvensomrâde blir Z2 stor och påverkar då ej resistansfolien. Skikten III och IV har där uppgiften att verka som en bredbandig tvåstegs kvarts- vågstransformator som över ett brett frekvensomrâde anpassar resistans- foliens ytresistans till fria rymdens vågimpedans, varigenom man erhåller låg reflexion från anordningen inom detta frekvensomrâde. Resistans- foliens r ytresistans R-fl /kvadrat bör väljas mellan 130 51 /kvadrat och l70!?./kvadrat. Den till skiktet 3 normerade konduktansen g närmast resistansfolien bör vara av storleksordningen 1,2 - 1,4 , varför 83 lämp- ligen väljs (§šš)2 och 84 = u/šš. önskar man att reflexionstoppens läge skall bli så okänslig som möjligt för infallsvinkeln för strålningen bör EZ >> 1.Within a small frequency range around the resonant frequency, ie the frequency when layer I has an electric thickness (calculated from dl Vïâ, where dl is the physical thickness of layer 1) of about a quarter wavelength, the impedance Z1 at the boundary between layers I and II becomes large. If layer II is also given the same electrical thickness, the impedance Z2 at the boundary between layer II and the resistance foil becomes small and the resistance foil is short-circuited. The device then becomes totally reflective, since the losses have been eliminated. Outside the said frequency range, Z2 becomes large and then does not affect the resistance foil. Layers III and IV have the task of acting as a broadband two-stage quartz wave transformer which over a wide frequency range adapts the surface resistance of the resistance foil to the wave impedance of free space, thereby obtaining low reflection from the device within this frequency range. The surface resistance R-fl / square of the resistance foil should be chosen between 130 51 / square and l70!? ./ square. The conductance g normalized to layer 3 closest to the resistance foil should be of the order of 1.2 - 1.4, so 83 is suitably selected (§šš) 2 and 84 = u / šš. if it is desired that the position of the reflection peak should be as insensitive as possible to the angle of incidence of the radiation, EZ >> 1.

Reflexionstoppens läge kommer att bli bestämd av hur elektriska tjockleken hos skikten I och II väljs dvs på värdena av El, Ez, dl och dz, vilka senare beteckningar avser skiktens fysiska tjocklek. Parametrarna 83, 84, d3 och d4 bör väljas så att också skikten III och IV blir en kvarts våg- längd tjocka vid reflexionstoppens frekvenš. Skikttjocklekarna fås alltså ur: dlfq = dzfš: = d3 63 = d4\/É:= -å där Åo är den mot re- flexionstoppens frekvens svarande våglängden i fri rymd. Sedan anord- ningens dimensioner bestämts kan smärre ändringar göras i skikttjocklekar- na tills optimala prestanda fås. 3 463 389 Refïextionstoppens bredd bestäms i huvudsak av kvoten me11an El och E2.The position of the reflection peak will be determined by how the electrical thickness of layers I and II is selected, i.e. on the values of El, Ez, dl and dz, which later designations refer to the physical thickness of the layers. Parameters 83, 84, d3 and d4 should be chosen so that layers III and IV also become a quarter of a wavelength thick at the frequency of the reflection peak. The layer thicknesses are thus obtained from: dlfq = dzfš: = d3 63 = d4 \ / É: = -å where Åo is the wavelength corresponding to the frequency of the reflection peak in free space. Once the dimensions of the device have been determined, minor changes can be made in the layer thicknesses until optimal performance is obtained. 3,463,389 The width of the reflex peak is mainly determined by the ratio between E1 and E2.

Ju större denna kvot är desto smaïare bïir denna topp. Vid muïtipïer av toppfrekvensen fås teoretiskt refïexionstoppar på grund av strukturens periodicitet.The larger this ratio, the smaller this peak. In the case of multiples of the peak frequency, reflection peaks are theoretically obtained due to the periodicity of the structure.

Skikten I och II bör göras av Iâgförïustmateriai för att resistansfoïien ska11 kortsiutas effektivt inom refïexionsområdet. Om föriusterna är Iâga kan den til] fria rymdens vågimpedans Z0 = 120TT.í2 normerade vågimpedan- sen Z2 direkt bakom den resistiva folien vid toppfrekvensen skrivas: Zig-E Vïl.tg I-:ffšfltg 2 Z0 4 ' E2 där Ål och ÖZ är förlustvinkïarna för skikt I och II. Härur kan re- fïexionstoppens dämpning beräknas. För Iâgdämpning bör Z2 << R. Som ett riktvärde bör Zz §_0,02 R. I skikt III och IV är förïusternas inverkan mindre kritisk varför det bör räcka om i dessa tg å_§ 0,02.Layers I and II should be made of laminated material in order for the resistance foil to be effectively shortened within the refinement area. If the preloaders are Iâga, the wave impedance Z0 = 120TT.í2 of the normal space impedance Z2 directly behind the resistive foil at the peak frequency can be written: Zig-E Vïl.tg I-: ffš fl tg 2 Z0 4 'E2 where Ål and ÖZ are the loss angles for layers I and II. From this, the attenuation of the reflex peak can be calculated. For attenuation, Z2 should be << R. As a guide value, Zz should be §_0.02 R. In layers III and IV, the effect of the pre-currents is less critical, which is why it should suffice in these tg å_§ 0.02.

I den den andra utföringsformen av anordningen som visas i fig 2 har ett metaiïnät n inïagts meilan skikten I och II. Även i detta fa1I verkar skiktet I som en resonator varvid metaiïnätet n uppträder som koppïings- susceptans. Fördeïen med detta utförande är att El kan ges ett Iâgt värde, nära 1. Kraven på Iåga förïuster b1ir i detta fa11 ej a11s Iika hårda. Värdet på susceptansen och refïexionstoppens frekvens bestämmer hur dl skaH väïjas. I detta faII beror refïexionstoppens bredd av susceptansens storiek. Ju större denna är ju smaiare b1ir toppen. I övrigt gä11er samma förhåiianden som för den första utföringsformen enligt fig 1.In the second embodiment of the device shown in Fig. 2, a metal net has been inserted between the layers I and II. Also in this case the layer I acts as a resonator, the metal network n acting as a coupling susceptance. The advantage of this embodiment is that El can be given a low value, close to 1. The requirements for light in this case are not too hard. The value of the susceptance and the frequency of the reflex peak determine how dl should be weighted. In this case, the width of the reflex peak depends on the size of the susceptance. The bigger this is, the smoother the top. Otherwise, the same conditions apply as for the first embodiment according to Fig. 1.

De materiaï som ingår i skikten finns kommersieïït tiïïgängïiga och kan Iätt anskaffas. För E N 1 finns skumpïaster och bikakemateriai, för E'ß 2 tefïon, för E ß 4 g1asfiber1aminat. För området E_¿ 9 finns Iâgförïustma- teriaï i form av substratmateriaï samt oïika keramiska material. Då E,z 100 kan titandioxid Ti02 användas som Iågförïustmateriai. De keramiska materiaïen har nackdeïen att vara mycket svârbearbetade.The materials included in the layers are commercially available and can be easily acquired. For E N 1 there are foam plasters and honeycombs, for E'ß 2 tefïon, for E ß 4 g1asfiber1aminate. For the area E_¿ 9, there is lâgförïust material in the form of substrate material and various ceramic materials. When E, z 100, titanium dioxide TiO 2 can be used as the low-density material. The ceramic materials have the disadvantage of being very difficult to machine.

Resistansfoïier i önskade värden saiuförs t ex i USA. Dessa är av p1ast och har den nödvändiga tunnheten (f¥0,07 mm). Som ett aïternativ ti11 dessa kan grafitsuspension sprutas direkt pâ skikt II e11er III. 465 389' Den här beskrivna beïäggningen kan användas på så sätt att antingen heia antennreflektorn 10 e11er i cassegrainfaïïet enbart subrefïektorn 11 beïäggs med en seiektivt refïekterande beiäggning 12 en1igt ovanstående beskrivning. I fig 3 visas hur detta tar sig ut i cassegrainfaiiet.Resistance foils in desired values are sold, for example, in the USA. These are made of plastic and have the necessary thinness (f ¥ 0.07 mm). As an alternative to these, graphite suspension can be sprayed directly onto layers II or III. 465 389 'The coating described here can be used in such a way that either the whole antenna reflector 10 or 11 in the cassegrain case only the subrefector 11 is coated with a selectively reflecting coating 12 according to the above description. Fig. 3 shows how this looks in the cassegrain file.

Resuïtatet av att vidtaga den föres1agna enk1a förändringen av (sub-) refïektorn bïir att fiendens radarspaning avsevärt försvåras medan den egna radarfunktionen ej nämnvärt pâverkas. Detta är viktigt såväl för fïygpian som för andra fa11 beroende på att antennrefiektorer ofta ger stora refïexioner, d.v.s. har stor radarmâiyta.The result of making the proposed simple change of the (sub-) reflector is that the enemy's radar reconnaissance is considerably more difficult while the own radar function is not appreciably affected. This is important both for the fijygpian and for other fa11s due to the fact that antenna reflectors often give large refixes, i.e. has a large radar surface.

Claims (5)

Patentkrav:Claims: 1. En för mikrovågsstråïning seïektivt refïekterande beïäggning för metaiïytor k ä n n e t e c k n a d a v att den är uppbyggd av fyra skikt, benämnda I ti11 IV sett från metaiïytan (M), med en resistiv foiie (r) meI1an skikten II och III, varvid skikten III och IV är kvartsvågs- transformatorer, som anpassar den resistiva foliens (r) ytresistans tiII den fria rymdens vågimpedans, och den resistiva foïien (r) tiiïsammans med skikten I och II fungerar som en koppïingsanordning som ger mycket stor refïexion runt en bestämd refïexionsfrekvens men mycket Iåg refïexion på ömse sidor, genom att resistansfo1ien kortsïuts vid refïexionsfrekvensen då skiktet I fungerar som en resonator med resonans vid denna frekvens och skiktet II har en elektrisk tjockiek av en fjärdedeis vågïängd vid denna frekvens.A microwave radiation reflective coating for metal surfaces is characterized in that it is composed of four layers, termed I to IV seen from the metal surface (M), with a resistive film (s) between layers II and III, wherein layers III and IV are quartz wave transformers, which adapt the surface resistance of the resistive foil (s) to the wave impedance of free space, and the resistive foil (s) together with the layers I and II function as a coupling device which gives very large reflection around a certain reflection frequency but very low reflection. on either side, by shortening the resistance foil at the reflection frequency when the layer I functions as a resonator with resonance at this frequency and the layer II has an electric thickness of a wavelength of a quarter of a day at this frequency. 2. Beïäggning enligt patentkravet 1 k ä n n e t e c k n a d a v att skiktet II har en dieïektricitetskonstant (52) som är 1-9.Coating according to claim 1, characterized in that the layer II has a dielectric constant (52) which is 1-9. 3. Beïäggning enïigt patentkravet 1 e11er 2 k ä n n e t e c k n a d a v att resistansfolien (r) har en ytresistans av 150 É 20 13- /kvadrat.Coating according to claim 1 or 2, characterized in that the resistance foil (s) has a surface resistance of 150 É / 13- / square. 4. Beïäggning enïigt något av patentkraven 1- 3 k ä n n e t e c k n a d a v att skiktet I har en dieiektricitetskonstant (Bl) som är högre än e11er Iika med 4.Coating according to one of Claims 1 to 3, characterized in that the layer I has a dielectric constant (B1) which is higher than or equal to 4. 5. Beïäggning eniigt något av patentkraven 1- 3 k ä n n e t e c k n a d a v att skiktet I från meta11ytan (M) sett består av ett dieiektrikum med en dieïektricitetskonstant som är nära 1 och ett metaI1nät (n) som funge- rar som en koppïingsusceptans.Coating according to one of Claims 1 to 3, characterized in that the layer I from the metal surface (M) is seen as consisting of a dielectric with a dielectric constant which is close to 1 and a metal net (n) which acts as a coupling susceptor.
SE8901113A 1989-03-30 1989-03-30 A coating for metal surfaces which is selectively reflective for microwave radiation SE463389B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE8901113A SE463389B (en) 1989-03-30 1989-03-30 A coating for metal surfaces which is selectively reflective for microwave radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8901113A SE463389B (en) 1989-03-30 1989-03-30 A coating for metal surfaces which is selectively reflective for microwave radiation

Publications (3)

Publication Number Publication Date
SE8901113D0 SE8901113D0 (en) 1989-03-30
SE8901113L SE8901113L (en) 1990-10-01
SE463389B true SE463389B (en) 1990-11-12

Family

ID=20375498

Family Applications (1)

Application Number Title Priority Date Filing Date
SE8901113A SE463389B (en) 1989-03-30 1989-03-30 A coating for metal surfaces which is selectively reflective for microwave radiation

Country Status (1)

Country Link
SE (1) SE463389B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084672A1 (en) * 2000-04-28 2001-11-08 Totalförsvarets Forskningsinstitut Radiation absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084672A1 (en) * 2000-04-28 2001-11-08 Totalförsvarets Forskningsinstitut Radiation absorber
US6700525B2 (en) 2000-04-28 2004-03-02 Totalforsvarets Försknings Institut Radiation absorber

Also Published As

Publication number Publication date
SE8901113D0 (en) 1989-03-30
SE8901113L (en) 1990-10-01

Similar Documents

Publication Publication Date Title
Chambers et al. Optimised design of Jaumann radar absorbing materials using a genetic algorithm
CN108061929B (en) Infrared, laser and microwave low-detectability compatible sub-wavelength structural material
US5537116A (en) Electromagnetic wave absorber
US2875435A (en) Electromagnetic wave absorbing dielectric walls
Cory et al. Wave propagation in metamaterial multi‐layered structures
CN106911007B (en) Multi-layer metamaterial surface texture for multi-band frequency selection wave transparent angle
US5119232A (en) Infrared-transmissive optical window
JP3535423B2 (en) Radome
JPS61140203A (en) Resisting loop angle filter
WO2012142831A1 (en) Broadband wave-absorbing metamaterial
US7420500B2 (en) Electromagnetic radiation absorber
KR101751638B1 (en) Apparatus for absorbing electromagnetic wave
JP2002158483A (en) Radio wave absorber
JPH09199911A (en) Thin film multi-layer electrode, high frequency resonator and high frequency transmission line
Varikuntla et al. Design of a novel 2.5 D frequency selective surface element using Fibonacci spiral for radome application
Idrees et al. A novel miniaturized frequency selective surface for EMI shielding applications
SE463389B (en) A coating for metal surfaces which is selectively reflective for microwave radiation
US11605898B2 (en) Antenna
RU2678937C1 (en) Ultra-wideband absorbent coating
JP3556618B2 (en) Transmission type radio wave absorber and radio wave reflection prevention method
RU2271058C1 (en) Absorbing coating
Swaminathan et al. Design of frequency selective surface using proximity mode coupling and its applications to Ku band RCS reduction
JP4115829B2 (en) Transmission type electromagnetic wave absorber
Beeharry et al. Theoretical analysis for systematic design of flexible broadband radar absorbers using the least-square method
RU2201022C2 (en) Twist reflector

Legal Events

Date Code Title Description
NUG Patent has lapsed

Ref document number: 8901113-4

Effective date: 19941010

Format of ref document f/p: F