SE427405B - DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL - Google Patents

DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL

Info

Publication number
SE427405B
SE427405B SE7803835A SE7803835A SE427405B SE 427405 B SE427405 B SE 427405B SE 7803835 A SE7803835 A SE 7803835A SE 7803835 A SE7803835 A SE 7803835A SE 427405 B SE427405 B SE 427405B
Authority
SE
Sweden
Prior art keywords
signal
time base
information signal
digital
memory
Prior art date
Application number
SE7803835A
Other languages
Swedish (sv)
Other versions
SE7803835L (en
Inventor
M G Lemoine
Original Assignee
Ampex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampex filed Critical Ampex
Publication of SE7803835L publication Critical patent/SE7803835L/en
Publication of SE427405B publication Critical patent/SE427405B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/87Regeneration of colour television signals
    • H04N9/89Time-base error compensation
    • H04N9/896Time-base error compensation using a digital memory with independent write-in and read-out clock generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Television Signal Processing For Recording (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)

Description

'7803835-3 signalåtergivning som erfordras i signalbehandlingssystem med hög upplösning. Som exempel är tidstabil signalgenerering önskvärd i alla televisionssignalsbehandlingssystem och en i hög grad stabil generering är nödvändig i system, som användes för att framställa televisionssignaler för allmän utsändning. '7803835-3 signal reproduction required in high resolution signal processing systems. By way of example, time-stable signal generation is desirable in all television signal processing systems and a highly stable generation is necessary in systems used to produce public service television signals.

Två tekniker utnyttjas för att korrigera oönskade tidbasfel hos signaler, som återges från ett registreringsmedium, nämligen elektromekaniska och elektroniska. Elektromekaniska tekniker ut- nyttjas för att korrigera grova tidbasfel och uppnår denna korrige- ring genom att synkronisera signalregiàtrerings- och âtergivninrsi utrustningens arbete. Elektroniska tekniker utnyttjas för att korri- gera mindre, kvarstående tidbasfel, vilka ej korrigerats av de elektromekaniska anordningarna, och uppnår denna korrigering genom tidsförskjutning av signalen efter dess återgivning. Det är den elektroniska tekniken för tidbasfelskorrigering som föreliggande uppfinning har avseende pâ.Two techniques are used to correct unwanted time base errors of signals reproduced from a recording medium, namely electromechanical and electronic. Electromechanical techniques are used to correct gross time base errors and achieve this correction by synchronizing the work of signal recording and reproducing equipment. Electronic techniques are used to correct minor, residual time base errors, which have not been corrected by the electromechanical devices, and achieve this correction by time shifting of the signal after its reproduction. It is the electronic technique for time base error correction that the present invention relates to.

Hitintills har elektroniska system för ändring av en signals tidbas utnyttjat justerbara tidsfördröjningsanordningar, som är införda i signalbanan för att korrigera tidbasfel. I dessa system mätes tidbasfelet och den i signalbanan införda graden av tidsför- dröjning justeras för att kompensera och därmed korrigera det mätta tidbasfelet. En särskild systemtyp, som åtnjuter allmän användning, har en spänningsvariabel fördröjningsledning, i vilken koncentrerade, konstanta induktanser och spänningsvariabla, kapacitiva dioder är sammankopplade till en fördröjningsledningskonfiguration. En spänning som motsvarar det mätta tidbasfelet, påföres de variabla dioderna för att bestämma den nödvändiga fördröjningen för korrigering av tidbasfelet. En beskrivning av ett signaltidbasändringssystem, som är av typen med spänningsvariabel fördröjningsledning, lämnas i den amerikanska patentskriften 3 202 769.Heretofore, electronic systems for changing a signal time base have utilized adjustable time delay devices, which are inserted into the signal path to correct time base errors. In these systems, the time base error is measured and the degree of time delay introduced into the signal path is adjusted to compensate and thereby correct the measured time base error. A particular type of system that enjoys general use has a voltage variable delay line in which concentrated, constant inductances and voltage variable capacitive diodes are connected to a delay line configuration. A voltage corresponding to the measured time base error is applied to the variable diodes to determine the necessary delay for correcting the time base error. A description of a signal time base change system, which is of the voltage variable delay line type, is given in U.S. Pat. No. 3,202,769.

I en annan typ av elektroniskt signaltidbasändringssystem ära ett antal fasta fördröjningsledningar eller en enda fördröjnings- ledning, utmed vilken en serie uttag är fördelade, anordnade i kom- bínation med elektroniska strömställare. Tidbasfel korriqeras genom påverkan av strömställarna i överensstämmelse med det mätta felet för att selektivt införa den nödvändiga, korrigerande fördröjningen i signalbanan. Ett signaltidbasändringssystem, som är av typen med fast fördröjningsledning, beskrives i den amerikanska patentskrif- ten 3 763 317 och ett signaltidbasändringssystem, som är av typen med en uttagsförsedd fördröjningsledníng, finns beskrivet i den vsozsss-3 amerikanska patentskriften 3 748 368.In another type of electronic signal time base change system, a number of fixed delay lines or a single delay line, along which a series of sockets are distributed, are arranged in combination with electronic switches. Time base error is corrected by acting on the switches in accordance with the measured error to selectively introduce the necessary corrective delay in the signal path. A fixed delay signal line signaling system is described in U.S. Pat. No. 3,763,317 and a signal time base change system having a socket delayed type is disclosed in U.S. Pat. No. 3,748,368.

Pâ senare tid har digitala fördröjningsanordningar, såsom klockade lagringsregister, använts i system för korrigering av tidbasfel hos analoga signaler. Den analoga signalen, som korri- geras, digitaliseras, korrigeras och återbildas i de digitala sys- temen. Korrigeringen utföres genom inmatning eller skrivning av den digitaliserade signalen i ett justerbart lagringsregister med en fast hastighet, som är bestämd av frekvensen hos en referensklock- signal. Lagringsregistret pâverkas att korrigera tidbasfel genom att signalen från registret läses vid en justerad snabbare eller långsammare hastighet i beroende av tidbasfelet. Denna teknik med konstant skrivhastighet och variabel läshastighet kan ej hantera stora, diskontinuerliga eller inkrementella tidbasändringar hos signalen- I magnetbandsregistreringsapparater orsakas sådana in- krementella tidbasändringar vanligen av anomalier i apparaternas arbete och allra vanligast vid omkoppling mellan magnetiska om- vandlarhuvuden.More recently, digital delay devices, such as clocked storage registers, have been used in time base error correction systems for analog signals. The analog signal, which is corrected, digitized, corrected and regenerated in the digital systems. The correction is performed by inputting or writing the digitized signal in an adjustable storage register at a fixed rate, which is determined by the frequency of a reference clock signal. The storage register is affected to correct time base errors by reading the signal from the register at an adjusted faster or slower speed depending on the time base error. This technology with constant write speed and variable read speed cannot handle large, discontinuous or incremental time base changes of the signal. In magnetic tape recorders, such incremental time base changes are usually caused by anomalies in the work of the devices and most commonly when switching between magnetic transducer heads.

I signaltidbasändringssystem, särskilt de som är anordnade att eliminera tidbasfel och åstadkomma en hög grad av signaltidbasstabi- litet, har det varit prakis att kaskadkoppla anordningar för grov tidbaskorrigering och anordningar för fin tidbaskorrigering. Spän- ningsvariabla fördröjningsledningssystem har använts för att åstad- komma den önskade fina tidbaskorrigeringen, medan omkopplade för- dröjningsledningssystem har använts för att åstadkomma de grövre tidbaskorrigeringarna. Pâ grund av att alla sådana fördröjnings- ledningssystem är analoga anordningar är de benägna att driva samt har andra för analoga anordningar utmärkande nackdelar. In- krementella tidbasändringar, som uppkommer som följd av anomalier i bandregistreringsapparaters arbete, orsakar ofta fel eller dyr- bara avbrott i signalbehandlingsoperationernas utförande på grund av dessa tidbasfelkorrigeringsanordningars oförmåga att reagera för inkrementella ändringar. Om ett stort tidbasfelsomrâde måste korri- geras, är också stora och komplicerade korriqeringssystem nödvändiga.In signal time base change systems, especially those arranged to eliminate time base errors and achieve a high degree of signal time base stability, it has been the practice to cascade rough time base correction devices and fine time base correction devices. Voltage variable delay line systems have been used to achieve the desired fine time base correction, while switched delay line systems have been used to achieve the coarser time base corrections. Due to the fact that all such delay line systems are analog devices, they are prone to operate and have other disadvantages characteristic of analog devices. Incremental time base changes, which occur as a result of anomalies in the work of tape recorders, often cause errors or costly interruptions in the execution of the signal processing operations due to the inability of these time base error correcting devices to respond to incremental changes. If a large time base error range needs to be corrected, large and complicated correction systems are also necessary.

Avsevärda fördelar kan därför vinnas genom utnyttjande av en teknik för genomförande av signaltidbaskompensering, vilken teknik har förmåga att påverka alla tidbasändringar, inbegripet inkremen- tella, utan fel. Ytterligare fördelar kommer att erfaras vid ut- förandet av sådan signaltidbaskompensering genom att signaltidhasen först ändras med en bråkdel av ett känt inkrement, erfordrat för att föra signalen inom ett helt antal kända inkrement av den önska- . _...~..........a..~...;...._a_-.-....-..-.. .......~.-..|.-.._... . '7803835-3 de tidbasreferensen, och_genom att därefter ändra signalens tidbas med ett sådant helt antal kända inkrement, att signalen justeras till den önskade tidbasen.Significant benefits can therefore be gained by utilizing a technology for implementing signal time base compensation, which technology has the ability to affect all time base changes, including incremental ones, without error. Additional advantages will be experienced in performing such signal time base compensation by first changing the signal time phase with a fraction of a known increment required to carry the signal within a whole number of known increments of the desired one. _... ~ .......... a .. ~ ...; ...._ a _-.-....-..- .. ....... ~. - .. |.-.._.... And by subsequently changing the time base of the signal by such an integer number of known increments that the signal is adjusted to the desired time base.

Ett särdrag för föreliggande uppfinning är utnyttjandet av digi- tala tekniker för att ändra signaltidbasen, vilka möjliggör utnyttjan de av digitala kretsar, som är avsevärt mindre dyrbara att konstrue- ra och underhâlla än analoga kretsar. Ett annat särdrag för före- liggande uppfinning är det, att tidbaskcmpenseringen kan utföras utan behov av en analog mätning av graden av önskad kompensering, varigenom alla för analoga mätkopplingar utmärkande nackdelar unde vikes. Ännu ett annat särdrag för föreliggande uppfinning är att signalen tidsförskjutes med en bråkdel av ett känt inkrement genom att signalen tillfälligt lagras i en tidsbuffertanordning vid en tidpunkt, som är justerad i överensstämmelse med den önskade tid- basändringen, samtidigt som lagringsåtervinningstiden bibehâlles fast relativt en fastställd tidbasreferens. Ett ytterligare sär- drag för föreliggande uppfinning är det, att ytterligare, inkremen~ tella ändringar av en signals tidbas kan genomföras utan fel genom justering av signalens ytterligare lagringsåtervinningstid i över- ensstämmelse med en önskad tidbasändring samtidigt som lagrings- inmatningstiden bibehålles fast relativt en fastställd tidbasrefe- rens. Ännu ett annat särdrag för föreliggande uppfinning är det, att större ändringar av en signals tidbas än en huvuddelning av tidbasen, såsom bestämd av perioden av en cykel av signalens tid- baskomponent, kan utföras genom att signaltidbasen först ändras med något önskat belopp, som svarar mot en bråkdel av huvudtid- basdelningen, och därefter ytterligare inkrementellt ändra signa- lens tidbas med något önskat belopp, som motsvarar ett helt antal huvudtidbasdelningar.A feature of the present invention is the use of digital techniques to change the signal time base, which enable the use of digital circuits which are considerably less expensive to design and maintain than analog circuits. Another feature of the present invention is that the time base compensation can be performed without the need for an analogous measurement of the degree of desired compensation, thereby avoiding all the disadvantages characteristic of analog measuring couplings. Yet another feature of the present invention is that the signal is time shifted by a fraction of a known increment by temporarily storing the signal in a time buffer device at a time which is adjusted in accordance with the desired time base change, while maintaining the storage recovery time fixed relative to a fixed time base reference. A further feature of the present invention is that further, incremental changes of a signal's time base can be made without error by adjusting the signal's additional storage recovery time in accordance with a desired time base change while maintaining the storage input time fixed relative to an established time base reference. Yet another feature of the present invention is that larger changes of a signal time base than a major division of the time base, as determined by the period of a cycle of the signal time base component, can be performed by first changing the signal time base by any desired amount corresponding to against a fraction of the main time base division, and then further incrementally change the time base of the signal by any desired amount, which corresponds to a whole number of main time base divisions.

I överensstämmelse med föreliggande uppfinning kännetecknas en anordning för att relativt en referenssignal, som bestämmer en känd tidbas, ändra tidbasen hos en informationssignal, som inne- fattar en tidbassynkroniserinqskomponent av en känd nominell frekvens, av organ för mottagning och lagring av vart och ett av successiva intervall av informationssignalen under en tid, som motsvarar en bråkdel av en period av den nominella frekvensen, samt organ för mottagning av varje successivt intervall av den lagrade informa- tionssignalen och ytterligare lagring därav under en tid, som mot- svarar ett helt antal perioder av den nominella frekvensen. 7803835-3 En informationssignals tidbaskomponent är normalt en enkel, periodisk signal. Vissa informationssignaler, såsom televisions- signaler, har emellertid flera tidbaskomponenter anordnade för att definiera huvud- och delperioder av informationssignalen samt mellanperiodstidbastillstånd hos denna. På grund av att dessa tid- baskomponenter har olika frekvenser är det i vissa fall möjligt, att delperioder kan uppträda korrekt inriktade relativt en refe- rens, trots att perioder av högre ordning ej är korrekt inriktade- För att undvika de möjliga, skadliga verkningar som skulle kunna förorsakas av en falsk indikering av korrekt tidbasinriktning väl~ jes tidbaskomponenten av högst frekvens för härledning av informa- tionsklocksignalen. Signaltidbaskompensering upp till en period av tidbaskomponenten av högst frekvens âstadkommes automatiskt genom den ovan beskrivna tekniken att använda den härledda informations- klocksignalen för att ytterligare sample informationssignalen. Om signaltidbaskompenseringar, som är större än en period av tidbas- komponenten av högst frekvens, är nödvändiga för att uppnå korrekt tidbasinriktning, undersökes informationssignalen ytterligare för bestämning av det antal hela perioder som den dessutom måste ändras för korrekt inriktning av dess tidbas. Den erforderliga, ytterligare ändringen âstadkommes genom lagring av de samplade representationer- na i ett minne under ett antal perioder, som motsvarar bestämningen.In accordance with the present invention, there is provided an apparatus for changing, relative to a reference signal determining a known time base, the time base of an information signal comprising a time base synchronizing component of a known nominal frequency, by means for receiving and storing each of successive interval of the information signal for a time corresponding to a fraction of a period of the nominal frequency, and means for receiving each successive interval of the stored information signal and further storing it for a time corresponding to a whole number of periods of the nominal frequency. 7803835-3 The time base component of an information signal is normally a simple, periodic signal. However, some information signals, such as television signals, have several time base components arranged to define main and sub periods of the information signal as well as intermediate period time base states thereof. Due to the fact that these time-base components have different frequencies, it is in some cases possible that sub-periods may appear correctly oriented relative to a reference, even though periods of higher order are not correctly oriented- To avoid the possible, harmful effects that could be caused by a false indication of the correct time base direction, the time base component of the highest frequency is selected for deriving the information clock signal. Signal time base compensation up to a period of the time base component of the highest frequency is achieved automatically by the technique described above using the derived information clock signal to further sample the information signal. If signal time base compensations, which are larger than a period of the time base component of the highest frequency, are necessary to achieve correct time base alignment, the information signal is further examined to determine the number of whole periods that it must also be changed to correctly align its time base. The required additional change is accomplished by storing the sampled representations in a memory for a number of periods corresponding to the determination.

Den ytterligare ändringen utföres företrädesvis efter det att de samplade representationerna har passerat genom tidsbuffertanord- ningen.The further change is preferably performed after the sampled representations have passed through the time buffer device.

Sammanfattningsvis möjliggör föreliggande uppfinning en exakt ändring eller korrigering av en informationssignals tidbas över ett vitt område. Arrangemanget med två signallagringsdon, medelst vilka en informationssignals tidbas först ändras eller korrigeras med ett belopp, som motsvarar en bråkdel av en period av en tidbas- komponent hos informationssignalerna, varefter tidbasen ändras eller korrigeras med ett belopp, som motsvarar ett helt antal perioder av tidbaskomponenten, eliminerar behovet avsärskilda, komplicerade kretsar, som den tidigare teknikens kaskadkopplade tidbasändrande eller -korrigerande anordningar krävde. De särskilda, komplicerade kretsarna erfordrades i den tidigare teknikens anordningar för åstad- kommande av felfri funktion, då området för tidbasändring eller -korrigering hos något av de kaskadkopplade donen överskreds. Den tidigare teknikens kaskadkopplade anordningar är inrättade att först ändra eller korrigera en informationssignal med stora tidsinkrement 7803835-3 (allmänt omnämnt som grovkorrigering). Den eventuellt kvarstående tidbasjustering som kan krävas efter grovjusteringen utföres i det följande genom ändring eller korrigering av signalen med det kvar- stående lilla tidsinkrement (allmänt omnämnt som finkorrigering).In summary, the present invention enables an accurate change or correction of an information signal time base over a wide range. The arrangement of two signal storage devices, by means of which the time base of an information signal is first changed or corrected by an amount corresponding to a fraction of a period of a time base component of the information signals, after which the time base is changed or corrected by an amount corresponding to an integer period of the time base component. , eliminates the need for specific, complicated circuits required by prior art cascading time base changing or correcting devices. The special, complicated circuits were required in the prior art devices to provide faultless function when the range of time base change or correction of any of the cascaded devices was exceeded. The cascading devices of the prior art are arranged to first change or correct an information signal with large time increments (generally referred to as coarse correction). Any remaining time base adjustment that may be required after the rough adjustment is performed in the following by changing or correcting the signal with the remaining small time increment (commonly referred to as fine correction).

I televisionssignalstillämpningar styres donen för den grova och den fina tidbaskorrigeringen i förhållande till var sin komponent av televisionssignalen, nämligen linjesynkroniseringspulsen och färgsynkroniseringspulskomponenten, vilka ej har något förutsägbart inbördes långtidsförhållande. Resultatet blir att donet för den fina tidbaskorrigeringen kan arbeta på avsevärt avstånd från sitt arbetsomrâdes centrum och eventuellt överskrida sitt tidjusterings- områdes gränser. Om områdesgränsen överskrides, införes en oönskad störning i informationssignalen. Den tidigare teknikens anordningar undvek detta genom sådan sammankoppling av donen för grov och fin justering, att grovjusteringsdonets tidbasjustering försköts i rikt- ningen för finjusteringsdonets arbete i centrum av sitt omrâde.In television signal applications, the means for the coarse and fine time base correction are controlled in relation to each component of the television signal, namely the line synchronizing pulse and the color synchronizing pulse component, which have no predictable mutual long-term relationship. The result is that the device for the fine time base correction can work at a considerable distance from the center of its work area and possibly exceed the boundaries of its time adjustment area. If the area limit is exceeded, an unwanted disturbance is introduced in the information signal. The devices of the prior art avoided this by connecting the devices for coarse and fine adjustment in such a way that the time base adjustment of the coarse adjusting device was shifted in the direction of the work of the fine adjusting device in the center of its area.

Någon sådan sammankoppling kräver ej anordningen enligt föreliggande uppfinning. Uppfinningen möjliggör således ändring eller korrigering av en informationssignals tidbas genom användning av billiga digi- tala kretsar och utan behov av analoga mätkretsar. Uppfinningen möjliggör vidare en ändring eller korrigering av en informations- signals tidbas med stora inkrement utan införandet av diskontinui- teter i informationssignalen. Den digitala behandlingen för tidbas- ändring eller -korrigering försämrar slutligen ej informationssigna- lens kvalitet på samma sätt som analog behandling.No such interconnection requires the device of the present invention. The invention thus makes it possible to change or correct the time base of an information signal by using inexpensive digital circuits and without the need for analog measuring circuits. The invention further enables a change or correction of an information signal's time base with large increments without the introduction of discontinuities in the information signal. Finally, the digital processing for time base change or correction does not degrade the quality of the information signal in the same way as analog processing.

I Såsom framgår av det ovanstående är signaltidbaskompenseringen enligt föreliggande uppfinning lätt anpassbar till digitalisering och har därmed förmåga att dra nytta av de fördelar som kan vinnas genom användandet av digitala kretsar. Möjligheten att ändra en informa- tionssignals tidbas först med en bråkdel av ett känt tidsinkrement eller en huvudtidbasdelning och sedan med ett belopp, som är lika' med ett helt antal sådana inkrement, oberoende av tidbasändringens storlek, har dessutom fördelen av att undvika de begränsningar som sammanhör med kaskadkoppling av analoga tidbasändringsanordningar.As can be seen from the above, the signal time base compensation of the present invention is readily adaptable to digitization and thus has the ability to take advantage of the benefits that can be gained through the use of digital circuits. The possibility of changing the time base of an information signal first by a fraction of a known time increment or a main time base division and then by an amount equal to a whole number of such increments, regardless of the size of the time base change, also has the advantage of avoiding the constraints associated with cascading of analog time base change devices.

Uppfinningen skall beskrivas närmare i det följande under hän- visning till medföljande ritningar. Fig l är ett blockschema över en digital tidbaskompensator enligt föreliggande uppfinning, vilken tidbaskompensator är anpassad för en färgtelevisionssignal. Fig 2 är ett detaljerat blockschema och åskådliggör konstruktionen av det recirkulerbara ("recyclable") digitala minnet i kompensatorn enligt 7803835-3 fig l. Fig 3A och 3B är tidsdiagram och åskådliggör sättet för signal- tidbaskompenseringen enligt föreliggande uppfinning vid eliminering av tidbasfel från färgtelevisionssignaler. Fig 4 åskådliggör i block- form kretsar, som tillåter tidbaskompensatorn i fig l att korrigera större fel än en period av signalens färgsynkroniseringspuls.-Fig 5 åskådliggör i blockform kretsar, som tillåter utföringsformerna i fig l och 4 av tidbaskompensatorn att arbeta, när den inkommande signalen är en monokrom televisionssignal.The invention will be described in more detail in the following with reference to the accompanying drawings. Fig. 1 is a block diagram of a digital time base compensator according to the present invention, which time base compensator is adapted for a color television signal. Fig. 2 is a detailed block diagram illustrating the construction of the recyclable digital memory in the compensator of Fig. 1. Figs. 3A and 3B are timing diagrams illustrating the method of signal-time base compensation according to the present invention in eliminating time base errors from color television signals. . Fig. 4 illustrates in block form circuits which allow the time base compensator in Fig. 1 to correct larger errors than a period of the signal synchronization pulse. Fig. 5 illustrates in block form circuits which allow the embodiments in Figs. 1 and 4 of the time base compensator to operate when the incoming the signal is a monochrome television signal.

Den i fig l visade signaltidbaskompensatorn 110 enligt före- liggande uppfinning är anordnad att eliminera tidbasfel, som före- finns i en färgtelevisionsinformationssignal, som återges från en Sådan videoregistreringsapparat (ej visad) som en magnetskiveregist- reringsapparat. Det inses emellertid, att föreliggande uppfinníngs principer är lika tillämpbara på utförande av andra signaltidbas- kompenseringar, såsom korrigering av i andra tidsvariabla informa- tionssignaler förekommande tidbasfel, eliminering av skillnader i signalers relativa tidbaser och avsiktlig ändring av signalers tidbas. Med särskild hänvisning till fig l matas den okorrigerade färgtelevisionssignalen, som återges av skivregistreringsapparaten, till ingången till en kodande analog-digitalomvandlare lll, vilken är anordnad att på sin utgång 112 åstadkomma en kodad signal i form av en pulskodsmodulerad representation av televisionssignalen. Denna representationssignal behandlas ytterligare för att slutligen kopp- las felfri till en avkodande digital-analogomvandlare ll3, som avkodar den digitaliserade signalen och på en utgång 114 återbildar televisionssignalen i analog form. På grund av att de i den av digi- tal-analogomvandlaren ll3 avgivna televisionssignalen innefattade synkroniseringskomponenterna vanligen är missformade och innehåller oönskade transienter som följd av sin genomgång genom kompensatorn 110 kopplas televisionssignalen till en utgångsbehandlare 116 av den vid videoregistreringsapparater allmänt använda typen. Sådana behandlare ll6 är anordnade att skala bort synkroniseringskomponenter- na från den inkommande telvisionssignalen och införa nya, kOrr8kt formade och tidsreglerade synkroniseringskomponenter i signalen för bildande av den önskade, sammansatta televisionssignalen på sin ut- gång ll7. I I kompensatorn 110 enligt uppfinningen åstadkommer den kodande analog-digitalomvandlaren lll en flerbitsordsrepresentation av den inkommande signalen på utgången ll2 varje gång omvandlaren lll klockas av en via en ledning ll8 tillförd klocksignal; såsom visat. Omvand- 7803835-3 laren lll klockas för att sampla den inkommande telvisionssignalens momentana, ànaloga amplitud, så att en följd av binära ord framstäl- les på dess utgång 112, varvid varje ord består av ett antal binära bitar, vilka bitar tillsammans representerar en särskild amplitud- nivâ i ett binärt format. Denna analog-digitalomvandlinqsoperation kan i allmänhet benämnas som pulskodsmodulering av den inkommande signalen. Motsatsen till denna operation utföres av den avkodande digital-analogomvandlaren ll3. Den avkodande omvandlaren 113 mot- tager de binära, kodade orden på en ingång, som är kopplad till en ledning ll9, och lämnar som gensvar på en följd av referensklock- signaler, mottagna över ledningar 121 och 122, en återbildad eller avkodad, analog televisionssignal till en utgångsbehandlare ll6, som vidarebefordrar den korrigerade televisionssígnalen till ut- gången ll7. I överensstämmelse med föreliggande uppfinning uppnås tidbasfelkompenseringen genom härledning av en klocksignal ur en i televísionssignalen innefattad tídbaskomponent, så att den här- ledda klocksignalens klocktid är koherent med tidbaskomponenten.The signal time base compensator 110 shown in Fig. 1 according to the present invention is arranged to eliminate time base errors present in a color television information signal reproduced from such a video recording apparatus (not shown) as a magnetic disk recording apparatus. It will be appreciated, however, that the principles of the present invention are equally applicable to performing other signal time base compensations, such as correcting time base errors occurring in other time variable information signals, eliminating differences in signal relative time bases, and intentionally changing signal time base. With particular reference to Fig. 1, the uncorrected color television signal reproduced by the disc recording apparatus is fed to the input of an encoding analog-to-digital converter III, which is arranged to provide at its output 112 an encoded signal in the form of a pulse code modulated representation of the television signal. This representation signal is further processed to finally be faultlessly connected to a decoding digital-to-analog converter 133, which decodes the digitized signal and at an output 114 reproduces the television signal in analog form. Because the synchronization components included in the television signal output from the digital-to-analog converter 13 are usually malformed and contain unwanted transients as a result of their passage through the compensator 110, the television signal is coupled to an output processor 116 of the type used in video recorders. Such processors 166 are arranged to scale the synchronizing components from the incoming television signal and to introduce new, accurately shaped and timed synchronizing components into the signal to form the desired composite television signal at its output 117. In the compensator 110 according to the invention, the coding analog-to-digital converter III provides a multi-bit representation of the incoming signal at the output 111 each time the converter III is clocked by a clock signal applied via a line 111; as shown. The converter 111 is clocked to sample the instantaneous, analog amplitude of the incoming television signal, so that a sequence of binary words is produced at its output 112, each word consisting of a number of binary bits, which bits together represent a particular amplitude level in a binary format. This analog-to-digital conversion operation can generally be referred to as pulse code modulation of the incoming signal. The opposite of this operation is performed by the decoding digital-to-analog converter 133. The decoding converter 113 receives the binary, encoded words at an input connected to a line 119, and in response to a sequence of reference clock signals received over lines 121 and 122, leaves a regenerated or decoded analog television signal. to an output processor ll6, which forwards the corrected television signal to the output ll7. In accordance with the present invention, the time base error compensation is achieved by deriving a clock signal from a time base component included in the television signal, so that the clock time of the derived clock signal is coherent with the time base component.

Den härledda klocksignalen utnyttjas för att klockstyra analog- -digitalomvandlaren lll att sampla den okcrrigerade televisions- signalen ochutföra kodningen av televisionssignalen till de digitala, bínära ordrepresentationerna. Efter kodningen lagras den digitali- serade televisionssignalen samt avkodas i diqital-analogomvandlaren 113 medelst en klocksignal vid en klocktid, som är koherent med en referenstidbassignal, såsom en referensfärgunderbärvåg. Som följd av denna lagring och_avkodning bringas den avkodade televisionssignalen i fas med referensfärgunderbärvågen._ För fallet med en färgtelevisionssignal kan exakta tidbaskorri- geringar uppnås genom härledning av den informationssignalrelaterade klocksignalen ur färgsynkpulstidbaskomponenten, som är belägen i den bakre delen av varje horisontellt linjesläckninqsintervall_ Här- ledningen uppnås genom att till ingången till ett recirkulerbart, digitalt minne 123 kopplas binära ordrepresentationer för en ellef flera perioder av signalens färgsynkpuls, tillgängliga på analog- -digitalomvandlarens lll utgång 112. Minnet 123 bildar ett digitalt minne för ett flertal binära ord, som motsvarar amplitudnivåerna hos signalens färgsynkpuls vid samplingstidpunkterna. Genom lagring av de binära orden, tillgängliga under samplingen av signalens färg- synkpuls, lagras tillräcklig information i minnet 123 för att repe- titivt regenerera en hel period av färgsynkpulsen, så att en konti- 7803835-3 nuerlig signal, som är identisk med den okorrigerade televisions- signalens färgsynkpuls, kan utvecklas och vara bortom varaktigheten för signalens färgsynkpuls. Den härledda klocksignalen erhålles genom vidare behandling av den kontinuerligt regenererade färgsynk- pulssignalen och utnyttjas för att digitalisera återstoden av den horisontella linjen av televisionssignalen, från vilken den regene- rerades.The derived clock signal is used to clock control the analog-to-digital converter 11ll to sample the uncorrected television signal and perform the coding of the television signal into the digital, binary word representations. After the encoding, the digitized television signal is stored and decoded in the digital-to-analog converter 113 by means of a clock signal at a clock time which is coherent with a reference time base signal, such as a reference color subcarrier. As a result of this storage and decoding, the decoded television signal is brought into phase with the reference color subcarrier. achieved by connecting to the input of a recyclable digital memory 123 binary word representations for one or more periods of the color sync pulse of the signal, available at the output 112. of the analog-to-digital converter 112. The memory 123 forms a digital memory for a plurality of binary words corresponding to the amplitude levels of the color sync pulse of the signal at the sampling times. By storing the binary words available during the sampling of the color sync pulse of the signal, sufficient information is stored in the memory 123 to repetitively regenerate an entire period of the color sync pulse so that a continuous signal identical to the the color sync pulse of the uncorrected television signal may develop and be beyond the duration of the color sync pulse of the signal. The derived clock signal is obtained by further processing the continuously regenerated color sync pulse signal and is used to digitize the remainder of the horizontal line of the television signal from which it was regenerated.

För att säkerställa att den kontinuerliga signalen, dvs den härledda klocksignalen, som regenereras ur färgsynkpulssamplen, vilken lagras i det recirkulerbara minnet 123, förblir i fas med färgsynkpulsen, dvs den okorrigerade televisionssignalen, klock- styres analog~digitalomvandlaren lll först under samplinqen av televisionssignalens färgsynkpuls och de resulterande samplen lag- ras medelst en klocksignal vid en klocktidpunkt, som är koherent med referensklockslgnalen. Analog-digitalomvandlaren lll mäste således klockstyras av två klockstyrsignaler via ledningen ll8. Den första klockstyrningen sker under en samplings- och lagringsmod, som företrädesvis varar under flera perioder av färgsynkpulstidbas- komponenten. Under denna begynnelsemod mottager analog-digitalomvand- larens lll klockingàng (K) via ledningen ll8 en klockstyrsignal, som är läst i fas med referensklocksignalen. Analog-digitalomvandla- ren lll klockstyres av den andra, härledda klockstyrsignalen, mot- tagen via ledningen ll8, under en följande återcirkuleringsmod, som varar under återstoden av det horisontella linjeintervallet efter begynnelseklockstyrningen. För dessa tvâ operationsmoder är ett omkopplingsorgan 124 anordnat med ett omkopplingsdon 126 i ett första tillstånd eller samplings- och lagringstillstånd, i vilket tillstånd donet förbinder ledningen 118 med klockutgångs~ ledningen 122 från en X3-referensklockkälla l28. Omkopplingsdonet l26 är påverkbart till ett andra tillstånd eller återcirkulerings- tillstånd, i vilket det förbinder ledningen ll8 med en ledning l27 från en digital minneskrets 129 för åstadkommande av den här- ledda klocksígnalen. I återcirkuleringsmoden förbinder omkopplings- donet 126 analog-digitalomvandlarens lll klockingâng (K) med en X3-signalklocka l3l, som lämnar en klockutsignal för minneskretsen l29. X3-signalklockan 131 reagerar via ett bandpassfilter l32 för en utsignal från en digital-analogomvandlare 133. Digital-analog- omvandlaren l33 omvandlar eller âterbildar de binära ordrepresenta- tionerna av siqnalfärgsynkpulšen, återcirkulerade i det återcirku- 7803835-3 10 lerbara minnet 123, till en analog form. Den från digital-ana1og- omvandlaren 133 tillgängliga signalen framträder följaktligen som en kontinuerlig, ofiltrerad kopia av insignalstidbaskomponenten, vilken i denna föredragna utföringsform är en sinusformig färg- synkpuls i en televisionssignal. Bandpassfiltret 132 är inställt att uppvisa en mittfrekvens, som är lika med den hos färgsynkpulsen i den signal som korrigeras, vilket i fallet med en normerad NTSC- färgtelevisionssignal är en frekvens på 3,58 MHz. På sin plats mellan digital-analogomvandlarens 133 utgång och en ingång till X3-signal- klockan 131 har filtret 132 befunnits åstadkomma en fördelaktig återställning av färgsynkpulsfrekvensen efter de olika omvandlinge- och digitallagringsmanipulationerna. Om ett antal färgsignalsynk- pulscykler eller -perioder samplas och lagras i minnet 123 för regenerering av den härledda klocksignalen, kommer filtret 132 att utjämna varje i den recirkulerade färgsignalsynkpulsen ingående brus över antalet lagrade perioder, varigenom den härledda klock- signalens tidsnoggrannhet förbättras.To ensure that the continuous signal, i.e. the derived clock signal, which is regenerated from the color sync pulse sample stored in the recyclable memory 123, remains in phase with the color sync pulse, i.e. the uncorrected television signal, the analog-to-digital converter of the television signal is first controlled during the sample signal and the resulting samples are stored by a clock signal at a clock time which is coherent with the reference clock signal. Thus, the analog-to-digital converter III must be clocked by two clock control signals via line 118. The first clock control takes place during a sampling and storage mode, which preferably lasts for several periods of the color sync pulse time base component. During this initial mode, the clock input (K) of the analog-to-digital converter 11 receives a clock control signal via line 11, which is read in phase with the reference clock signal. The analog-to-digital converter III is clocked by the second, derived clock control signal, received via line 118, during a subsequent recirculation mode, which lasts for the remainder of the horizontal line interval after the initial clock control. For these two modes of operation, a switching means 124 is provided with a switching device 126 in a first state or sampling and storage state, in which state the device connects the line 118 to the clock output line 122 from an X3 reference clock source 228. The switching device 266 is operable to a second state or recirculation state, in which it connects the line 118 to a line 127 from a digital memory circuit 129 to provide the derived clock signal. In the recirculation mode, the switching device 126 connects the clock input (K) of the analog-to-digital converter 11 to an X3 signal clock 131, which provides a clock output signal for the memory circuit 139. The X3 signal clock 131 responds via a bandpass filter 132 to an output signal from a digital-to-analog converter 133. The digital-to-analog converter 133 converts or reshapes the binary word representations of the signal color sync pulse recirculated in the recirculable memory. an analog form. Accordingly, the signal available from the digital-to-analog converter 133 appears as a continuous, unfiltered copy of the input signal time base component, which in this preferred embodiment is a sinusoidal color sync pulse in a television signal. The bandpass filter 132 is set to have a center frequency equal to that of the color sync pulse in the signal being corrected, which in the case of a standardized NTSC color television signal is a frequency of 3.58 MHz. In its place between the output of the digital-to-analog converter 133 and an input of the X3 signal clock 131, the filter 132 has been found to provide an advantageous reset of the color sync pulse frequency after the various conversion and digital storage manipulations. If a number of color signal sync pulse cycles or periods are sampled and stored in the memory 123 to regenerate the derived clock signal, the filter 132 will equalize each noise included in the recycled color signal sync pulse over the number of stored periods, thereby improving the time accuracy of the derived clock signal.

Såsom angivits ovan är omkopplingsdonet 126 i omkopplings- organet 124 normalt i sitt åskådliggjorda andra eller återcirku- lerande tillstånd, varvid X3-signalklockan 131 förbindes med klockingången (K) till analog-digitalomvandlaren lll för styr- ning av samplingen och tidsstyrning av kodningen av den okorri- gerade televisionssignalen med de återcirkulerade färgsynkpuls- samplen, härledda från signalen. För att åstadkomma påverkan av omkopplingsdonet 126 till dess första tillstånd eller dess samp- lings- och lagringstillstànd innefattar omkopplingsorganet 124 kret- sar för att detektera uppträdandet av färgsynkpulstidbaskomponenten i televisionssignalen och som gensvar därpå påverka donet 126 i en- lighet därmed. Speciellt är en synkseparator 134 anordnad för att på ingången till kompensatorn 110 detektera uppträdandet av varje horisontell synkpuls (SIG H), som uppträder under släckningsinter- vallet i varje horisontell linje i televisionssignalen. Separatorns utgång är kopplad till ingången till en omkopplarstyrpulsgenerator 136. Vid detekterinq av den horisontella synkpulsens framkant lämnar separatorn 134 en instruktion till pulsqeneratorn 136. Efter ett intervall på ungefär 6 us lämnar pulsgeneratorn 136 en puls, som varar ungefär 2,0 us, för att överföra omkopplingsdonet 126 till dess samplings- och lagringstillstånd. Som gensvar på uppträdandeb 7803835-3 ll av en horisontell synkpuls på ingången till analog-digítalomvand- laren lll bringar således separatorn 134 och pulsgeneratorn 136 omkopplingsdonet 126 att mata den kodande X3-referensklocksignalen till klockingângen (K) till omvandlaren lll, vilken som gensvar därpå digitaliserar ett valt antal perioder av signalens färgsynk- puls. Tidsstyrningen av separatorns 134 och pülsgeneratorns l36 operationer, såsom här specificerade, är anordnad för NTSC-tele- visionssignaler, så att omkopplingsdonet 126 överföres till Sitt samplings- och lagringstillstånd under det mittre intervallet av färgsynkpulsintervallet. Det är önskvärt att bringa samplingen och lagringen av digitala representationer av signalens färgsynkpuls att uppträda i mitten av färgsynkpulsintervallet, eftersom detta intervall är det mest noggranna och tillförlitliga vid representa- tion av färgsynkroniseringspulsfrekvensen. Härledningen av den informationssignalrelaterade klocksignalen är dessutom mindre mot- taglig för fel, som kan införas genom små ändringar i läget för färgsynkpulsen i den bakre delen av det horisontella släcknings- intervallet.As indicated above, the switching device 126 in the switching means 124 is normally in its illustrated second or recirculating state, the X3 signal clock 131 being connected to the clock input (K) of the analog-to-digital converter III for controlling the sampling and timing of the coding of the uncorrected television signal with the recirculated color sync pulse samples, derived from the signal. To effect the switching device 126 to its first state or its coupling and storage state, the switching means 124 includes circuits for detecting the occurrence of the color sync pulse time base component in the television signal and in response thereto influencing the device 126 accordingly. In particular, a sync separator 134 is provided to detect at the input of the compensator 110 the occurrence of each horizontal sync pulse (SIG H) which occurs during the blanking interval in each horizontal line of the television signal. The output of the separator is connected to the input of a switch control pulse generator 136. Upon detection of the leading edge of the horizontal sync pulse, the separator 134 leaves an instruction to the pulse generator 136. After an interval of about 6 oz, the pulse generator 136 leaves a pulse lasting about 2.0 oz. transfer the switch 126 to its sampling and storage state. Thus, in response to the occurrence of a horizontal sync pulse at the input of the analog-to-digital converter III, the separator 134 and the pulse generator 136 cause the switching device 126 to supply the coding X3 reference clock signal to the clock input (K) to which the converter 11 digitizes a selected number of periods of the signal's color sync pulse. The timing of the operations of the separator 134 and the pulse generator 136, as specified herein, is provided for NTSC television signals so that the switch 126 is transferred to its sampling and storage state during the middle interval of the color sync pulse interval. It is desirable to cause the sampling and storage of digital representations of the color sync pulse of the signal to occur in the middle of the color sync pulse interval, as this interval is the most accurate and reliable in representing the color sync pulse frequency. In addition, the derivation of the information signal-related clock signal is less susceptible to errors, which can be introduced by small changes in the position of the color sync pulse in the rear part of the horizontal blanking interval.

För att konditionera det recirkulerbara minnet 123 för lagring av fem perioder av digitala färgsynkpulsrepresentationer är en synkpulsdetektor l37 kopplad till kompensatorns ll0 ingång. Vid färgsynkpulsens uppträdande i den inkommande televisionssignalen lämnar synkpulsdetektorn 137 en instruktion på en ledning l38, som sträcker sig till det recirkulerbara, digitala minnets skriv- aktiveringsingång (SK). Denna instruktion bringar minnet 123 ett skriva det binära flerbitsord som uppträder på utgången ll2 från analog-dígitalomvandlaren lll. Den faktiska skriv- eller laqfínqßr operationen sker vid varje referensklocktid, som är bestämd av en lockinsignal till minnet 123 från X3-referensklockan 128. Det re- cirkulerbara minnets 123 fortsatta arbete kan bäst beskrivas under hänvisning till både fig l och fig 2.To condition the recirculable memory 123 for storing five periods of digital color sync pulse representations, a sync pulse detector 137 is connected to the input of the compensator 110. Upon the appearance of the color sync pulse in the incoming television signal, the sync pulse detector 137 leaves an instruction on a line 138 which extends to the write enable input (SK) of the recyclable digital memory. This instruction causes the memory 123 to write the binary multi-bit word that appears at the output ll2 of the analog-to-digital converter lll. The actual write or write operation takes place at each reference clock time, which is determined by a lock input signal to the memory 123 from the X3 reference clock 128. The continued operation of the recyclable memory 123 can best be described with reference to both Fig. 1 and Fig. 2.

Med hänvisning till fig 2 innefattar minnet 123 ett direktaccess- minne 139 med konventionella skriv- och adresstyrinqångar, beteckna- de med symbolerna (S) och Q). En binärordsingâng är kopplad för mot- tagning av det binära flerbitsordet på analog-digitalomvandlarens lll utgång ll2. En binärordsutgång är anordnad för avgivande av de recirkulerade, digitala signalerna till ledningen 140. En adress- generator l4l reagerar för en källa för X3-referensklocksignaler 7803835-3 12 över ledningen 122 och lämnar via en förbindning 142 adressignaler för skriv- och läsaccess till minnet 139 i överensstämmelse med de alstrade adressignalerna. I minnet 123 ingår en skrivklockgenera- tor 143, som reagerar för den från synkpulsdetektorn 137 via led- ningen l38 mottagna instruktionen. Instruktionen inställer skriv- klockgeneratorn 143 att via ledningen 144 avge skrivaktiverings- signaler till direktaccessminnets 139 skrivaktiveringsingång (S) varje gång en X3-referensklocksignal mottages från ledningen 122.Referring to Fig. 2, the memory 123 includes a direct access memory 139 with conventional write and address control inputs, denoted by the symbols (S) and Q). A binary word input is connected to receive the binary multi-bit word at the output ll2 of the analog-to-digital converter lll. A binary word output is provided for outputting the recycled digital signals to line 140. An address generator 141 responds to a source of X3 reference clock signals over line 122 and provides write and read access address signals to the memory via a connection 142. 139 in accordance with the generated address signals. The memory 123 includes a write clock generator 143 which responds to the instruction received from the sync pulse detector 137 via line 138. The instruction sets the write clock generator 143 to output write enable signals via line 144 to the write enable input (S) of the direct access memory 139 each time an X3 reference clock signal is received from line 122.

Så länge skrivaktiveringssignalerna mottages av direktaccessminnet 139 kommer de av analog-digitalomvandlaren 111 avgivna, binära orden att skrivas in för lagring i minnet 139. Minnet 123 innefattar ock- så en räknare 145, som reagerar för den instruktion som mottages på dess återställsingång (Å), kopplad till ledningen 138, från synk- pulsdetektorn 137. Instruktionen återställer räknaren 145 för räk- ning av adressgeneratorn 141 lämnade adresser. Räknaren 145 åter- ställes också av en internt alstrad instruktion, såsom kommer att beskrivas längre fram. Varje gång räknaren 145 återställes, lämnar den en återställsinstruktion via en ledning 146. Den första åter- ställsinstruktion som avges efter den av synkpulsdetektorn 137 på ledningen 138 åstadkomma instruktionen kopplas för att inaktivera den tidigare aktiverade skrivklockgeneratorn 143 genom att återstäl- la den, tills nästa instruktion avges av synkpulsdetektorn 137.As long as the write enable signals are received by the direct access memory 139, the binary words output by the analog-to-digital converter 111 will be written for storage in the memory 139. The memory 123 also includes a counter 145, which responds to the instruction received at its reset input (Å). , connected to line 138, from the sync pulse detector 137. The instruction resets the counters 145 for counting the address generator 141 left addresses. The counter 145 is also reset by an internally generated instruction, as will be described later. Each time the counter 145 is reset, it leaves a reset instruction via a line 146. The first reset instruction issued after the instruction provided by the sync pulse detector 137 on the line 138 is switched to deactivate the previously activated write clock generator 143 by resetting it until the next instruction is given by the sync pulse detector 137.

På detta sätt hindras direktaccessmínnet 139 att mottaga ytterligare binärordsrepresentationer av televisionssignalen efter det att -femton sampel av färgsynkpulsen har mottagits. Räknaren 145 tjänar också till att recirkulera adressgeneratorn 141. Varje gång adress- generatorn 141 avger en adressignal, klockas den aktiverade räknaren 145 av en X3-referensklocksignal, som mottages från ledningen 122, för att via en ledning 147 undersöka den adress som avges av adress- generatorn 141 och kopplas till dess dataingång (D). När räknaren 145 detekterar avgivandet av den sista av femton adressigna1er,.som avges av adressgeneratorn 141, lämnar den en âterställsinstruktion till adressgeneratorn via ledningen 146. Räknaren använder också denna återställningsinstruktion internt för att återställa sig själv och åter undersöka av adressgeneratorn 141 avgivna adressignaler.In this way, the direct access memory 139 is prevented from receiving additional binary word representations of the television signal after fifteen samples of the color sync pulse have been received. The counter 145 also serves to recycle the address generator 141. Each time the address generator 141 outputs an address signal, the activated counter 145 is clocked by an X3 reference clock signal received from line 122 to examine via a line 147 the address given by address generator 141 and connected to its data input (D). When the counter 145 detects the output of the last of fifteen address signals output by the address generator 141, it leaves a reset instruction to the address generator via line 146. The counter also uses this reset instruction internally to reset itself and re-examine the address signals output from the address generator 141.

På detta sätt bringas adressgeneratorn 141 att kontinuerligt genomgå de femton adresser som identifierar de lokationer i direktaccess- minnet 139, i vilka de femton, bínära flerbitsorden, som represen- 7803835-3 13 terar de fem samplade perioderna av signalfärgsynkpulsen, lagras.In this way, the address generator 141 is caused to continuously review the fifteen addresses identifying the locations in the direct access memory 139 in which the fifteen binary multi-bit words representing the five sampled periods of the signal color sync pulse are stored.

En ytterligare förklaring av arbetssättet för det recirkulerbara minnet 123 kommer att lämnas häri tillsammans med en beskrivning av en faktisk arbetssekvens för kompensatorn ll0.A further explanation of the operation of the recyclable memory 123 will be provided herein along with a description of an actual operation of the compensator 110.

Vid val av takten, i vilken den inkommande informationssignalen måste samples, måste klocknings- eller samplingsfrekvensen vara åtminstone två gånger så hög som den maximala siqnalfrekvensen, som systemet skall släppa fram utan väsentlig försämring. Dessutom måste direktaccessminnets 139 klockningstakt och lagringskapacitet väljas så, att antalet i direktaccessminnet 139 lagrade, digitalise- rade sampel är ekvivalent med ett helt antal hela perioder av signa- lens tidbaskomponent, dvs lika med produkten av antalet sampel per period för tidbaskomponenten och ett helt antal perioder. Med klock- ningstakten och lagringskapaciteten valda pâ så sätt bär direktaccess- minnet l39 ett helt antal digitala representationer av hela perioder av signalens taktregleringskomponent, vilket vid recirkulering resul- terar i genereringen av en kontinuerlig klocksignal under recirkule- ringsmoden. För fallet med en färgtelevisionssignal uppfylles med fördel både lagringskapacitets- och samplíngstaktskriterierna genom att kodningsklocksignalens frekvens väljes tre gånger högre än färg- synkpulsfrekvensen och genom att femton sampel av färgsynkpulsen lagras. I den exemplifierande utföringsformen innefattar följaktligen X3-signalklockan 131 en frekvensmultiplicerare för att med en faktor 3 multiplicera den kontinuerligt regenererade färgsynkpulssignal som utvecklas av minnet 123, digital-analogomvandlaren l33 och band- passfiltret 132. Det framgår, att frekvensen för den under samplinga- och laqringsmoden utnyttjade, kodande klocksignalen måste vara nomi- nellt lika med den fastställda kodningstakten, ehuru fasen kan skilja sig från den härledda klocksignalen i överensstämmelse med tidbasfelet hos den signal som kompenseras.When selecting the rate at which the incoming information signal must be sampled, the clocking or sampling frequency must be at least twice as high as the maximum signal frequency that the system is to emit without significant deterioration. In addition, the clock rate and storage capacity of the direct access memory 139 must be selected so that the number of digitized samples stored in the direct access memory 139 is equivalent to an integer whole periods of the signal time base component, i.e. equal to the product of the number of samples per period of the time base component and an integer number. periods. With the clock rate and storage capacity selected in this way, the direct access memory l39 carries a whole number of digital representations of entire periods of the signal's rate control component, which in recirculation results in the generation of a continuous clock signal during the recirculation mode. In the case of a color television signal, both the storage capacity and sampling rate criteria are advantageously met by selecting the frequency of the coding clock signal three times higher than the color sync pulse frequency and by storing fifteen samples of the color sync pulse. Accordingly, in the exemplary embodiment, the X3 signal clock 131 includes a frequency multiplier for multiplying by a factor of 3 the continuously regenerated color sync pulse signal developed by the memory 123, the digital-to-analog converter 133 and the bandpass filter 132. It can be seen that the frequency and the during sampling The encoding clock signal used must be nominally equal to the determined coding rate, although the phase may differ from the derived clock signal in accordance with the time base error of the compensated signal.

I utföringsformen enligt Eig 3 är den grundläggande referens- tidbassignalen den exempelvis från studioreferenskällan för synkro- nisering av all studioutrustning för utsändningsändamål tillgängliga referensfärgunderbärvågen. Denna referensfärgunderbärvåg matas till en referenssignalsbehandlare l48, som är en konventionell komponent, vilken åstadkommer kompensering av i kablar och liknande förekomman- de fasta fördröjningar samt utveckling av den nödvändiga fasändringen veozszs-sd 14 av referenssignalen för europeiska färgsystem, såsom PAL-systemet.In the embodiment according to Eig 3, the basic reference time base signal is the reference color subcarrier available, for example, from the studio reference source for synchronizing all studio equipment for broadcasting purposes. This reference color subcarrier is fed to a reference signal processor 148, which is a conventional component which provides compensation for fixed delays in cables and the like and develops the necessary phase change veozszs-sd 14 of the reference signal for European color systems, such as the PAL system.

Behandlarens 148 utgång lämnar den grundläggande referenstidbassignal, relativt vilken kompensatorn 110 arbetar för att kompensera den in- kommande televisionssignalen. På grund av behovet av en X3-referens- klocksignal multipliceras den grundläggande referenstídbassignalens frekvens med en faktor 3 av en i X3-referensklockkällan eller -genera-' torn 128 ingående frekvensmultiplicerare. Eftersom en Xl-referens- klocksignal erfordras av den mest föredragna formen av kompensatørn 110, är en X1-referensklockgenerator 149 kopplad att mottaga referens- tidbassignalen från behandlaren 148 och avger via ledningen 121 den erforderliga X1-referensklocksignalen.The output of the processor 148 leaves the basic reference time base signal, relative to which the compensator 110 operates to compensate for the incoming television signal. Due to the need for an X3 reference clock signal, the frequency of the basic reference time base signal is multiplied by a factor of 3 by a frequency multiplier included in the X3 reference clock source or generator 128. Since an X1 reference clock signal is required by the most preferred form of compensator 110, an X1 reference clock generator 149 is coupled to receive the reference time base signal from the processor 148 and outputs via line 121 the required X1 reference clock signal.

I överensstämmelse med föregående val av kodninqs- och avkodninge- klocktakter är analog-digitalomvandlaren lll anordnad att utveckla ett separat, binärt ord vid var och en av de tre klocktidpunkter, som uppträder under det intervall som är lika med en period hOS färgsynkpulsen. I detta fall är analog-digitalomvandlaren lll ut- formad att âstadkomma ett ord om 8 bitar vid varje klocktidpunkt, vilka 8 bitar ger en amplitudnivåkapacitet på O-256 för den digitala representationen av den inkommande televisionssignalen. Det recirku- lerbara, digitala minnet 123 har därför en kapacitet om 15 ordf varvid varje ord åter består av 8 bitar. Eftersom det finns tre samplingspunkter för varje färgsynkpulsperiod är minnets 123 direkt- accessminne 139 anordnat att lagra fem hela perioder av den digitalt representerade färgsynkpulsen. Ehuru pulsgeneratorn 136 vid drift avger pulsen med längden 2 us som gensvar på detekteringen av den horisontella synkpulsen, instrueras minnet 139 av skrivklockgene- ratorn 143 (vid synkpulsens uppträdande) att skriva eller lagra de binära ord som uppträder på analog-digitalomvandlarens lll utgång 112 vidïtidpunkten för varje på ledningen 122 mottagen X3-referens- klocksignal. Med hänvisning till fig 2 bringar detta arbetssätt särskilt adressgeneratorn 141 att åstadkomma access till en ny ordminnesposition i minnet 139 som gensvar på var och en av X3- rcferensklockpulserna, varvid varje ånyo âtkomlíg ordminnesposítion møttaqer de momentana bittillstånden hos det binära ordet på utgången 112. Den 2 us långa pulsen, som avges av pulsgeneratorn 136, in- ställer tillfälligt omkopplingsdonet 126 i dess samplinqs- och lag- ringstillstånd, varigenom X3-referensklocksignalen kopplas för klock- ning av analog-digitalomvandlaren lll. 7803835-3 15 Lagringsoperationen är avslutad efter det att de fem perioderna av den digitaliserade färgsynkpulsen har lagrats genom att räknaren 145 via ledningen 147 detekterar den femtonde adress som alstras av adressgeneratorn 141 efter avgivandet av den 2 us långa pulsen och avger återställsinstruktionen till skrivklockgeneratorn 143. Åter- ställsinstruktionen inaktiverar skrivklockgeneratorn, varigenom skrivaktiveringssignalerna avlägsnas från direktaccessminnet 139.In accordance with the previous selection of encoding and decoding clock rates, the analog-to-digital converter III is arranged to develop a separate, binary word at each of the three clock times which occurs during the interval equal to a period of the color sync pulse. In this case, the analog-to-digital converter III is designed to provide a word of 8 bits at each clock time, which 8 bits provide an amplitude level capacitance of 0-256 for the digital representation of the incoming television signal. The recyclable digital memory 123 therefore has a capacity of 15 words, each word again consisting of 8 bits. Since there are three sampling points for each color sync pulse period, the memory 123 direct access memory 139 is arranged to store five whole periods of the digitally represented color sync pulse. Although the pulse generator 136 in operation outputs the pulse with a length of 2 μs in response to the detection of the horizontal sync pulse, the memory 139 is instructed by the write clock generator 143 (at the occurrence of the sync pulse) to write or store the binary words appearing at the output of the analog-digital converter. for each X3 reference clock signal received on line 122. Referring to Fig. 2, this operation in particular causes the address generator 141 to provide access to a new word memory position in the memory 139 in response to each of the X3 reference clock pulses, each again available word memory position meeting the instantaneous bit states of the binary word 11. The 2 μs long pulse emitted by the pulse generator 136 temporarily sets the switch 126 in its sampling and storage state, whereby the X3 reference clock signal is switched on to clock the analog-to-digital converter III. The storage operation is completed after the five periods of the digitized color sync pulse have been stored by the counter 145 via line 147 detecting the fifteenth address generated by the address generator 141 after outputting the 2 μs long pulse and outputting the reset instruction to the write clock generator3. The reset instruction disables the write clock generator, thereby removing the write enable signals from the direct access memory 139.

Efter avslutandet av samplings- och lagringsmoden fortsätter adressgeneratorn 141 att åstadkomma access till minnet 139 som gensvar på X3-referensklocksiqnalen via ledningen 122, varvid i följd samma femton ordlokationer, till vilka access vanns under skrivoperationen, upprepas. Detta bringar de lagrade orden om 8 bi- tar att successivt läsas ut via utgångsledningen 140 till digital- analogomvandlaren 133. Minnet 139 är permanent anordnat i en aktiv läsmod, så att de lagrade, binära orden kontinuerligt läses ut via ledningen 140. Läsfunktionen är verksam under lagringen av ny digi- tal information, mottaqen från analog-digitalomvandlaren 111, genom påverkan av en förbigångsomkopplare 151. Omkopplaren 141 har två ingångar och en utgång. Omkopplarens 151 ena ingång är medelst en ledning 153 kopplad till direktaccessminnets 139 utgång och dess andra ingång är kopplad via en förbigångsledning 154 till ledningen 112 till minnets 123 ingång. Ehuru inställd att åstadkomma skriv- aktiveringssignaler under samplings- och lagringsmoden,konditionerar skrivklockgeneratorn 143 förbigângsomkopplaren 151 att förbinda ledningarna 112 och 140, varigenom de binära ord som lagras i minnet 139 föres direkt till utgången. Vid slutet av samp1ings~ och lagrings- moden inaktiveras skrivklockgeneratorn 143, varvid omkopplaren 151 överföres till ett tillstånd för koppling av minnets 139 utgångs- ledning 153 till ledningen 140. Omkopplaren 151 förblir i detta tillstånd under hela recirkuleringsmoden, varvid de lagrade färg- synkpulsorden hringas att kopplas till digital-analogomvandlaren 133 för härledning av den informationssiqnalsrelaterade klocksigna- len. Ånordnandet av förbigångsomkopplaren 151 gör det möjligt att göra X3~klocksignalkretsarna klara för alstringen av den härledda X3-klocksiqnalen.Upon completion of the sampling and storage mode, the address generator 141 continues to provide access to the memory 139 in response to the X3 reference clock signal via line 122, successively repeating the same fifteen word locations to which access was gained during the write operation. This causes the stored words of 8 bits to be read out successively via the output line 140 to the digital-to-analog converter 133. The memory 139 is permanently arranged in an active read mode, so that the stored binary words are continuously read out via the line 140. The read function is active during the storage of new digital information, received from the analog-to-digital converter 111, by actuating a bypass switch 151. The switch 141 has two inputs and one output. One input of the switch 151 is connected by a line 153 to the output of the direct access memory 139 and its second input is connected via a bypass line 154 to the line 112 to the input of the memory 123. Although set to provide write enable signals during the sampling and storage mode, the write clock generator 143 conditions the bypass switch 151 to connect the wires 112 and 140, thereby passing the binary words stored in the memory 139 directly to the output. At the end of the sampling and storage mode, the write clock generator 143 is deactivated, the switch 151 being transferred to a state for connecting the output line 153 of the memory 139 to the line 140. The switch 151 remains in this state during the entire recirculation mode, the stored color sync pulse words being circulated. to be connected to the digital-to-analog converter 133 for deriving the information signal-related clock signal. The provision of the bypass switch 151 makes it possible to make the X3 clock signal circuits ready for the generation of the derived X3 clock signal.

Under recirkuleringsmoden arbetar adressgeneratorn 141 och räknaren 145 för att tillsammans åstadkomma den repetitiva alstrinuen 1 t), av samma adressföljd. Detta resulterar i att de i minnet 139 lagt 16 7803835-3 binära orden repetitivt läses i denna följd under den återstående tiden av det horisontella linjeintervallet efter färgsynkpulsen.During the recycle mode, the address generator 141 and the counter 145 operate to together produce the repetitive generating step 1t), of the same address sequence. This results in the binary words stored in memory 139 being read repeatedly in this sequence for the remaining time of the horizontal line interval after the color sync pulse.

I Fig 3A och 38 åskådliggör det sätt, på vilket den härledda klocksignalen alstras för att ligga i fas med tidbaskomponenten hos informationssignalen, från vilken den härledes. Fig 3A åskådliggör det tillstånd som skulle råda, om den inkommande färgtelevisionssigna- len var felfri. Under samplings- och lagringsintervallet åstadkommer X3-referensklockan samplingen av signalens färgsynkpuls i analog- ~digitalomvandlaren lll samt lagringen av sampelvärdena i det recir- kulerbara minnet 123. På grund av att den inkommande televisions-H signalen är felfri uppträder det första samplet av varje period av signalens färgsynkpuls vid början av färgsynkpulsperioden. Vid re- cirkulering av de femton i minnet 123 lagrade orden kommer filtrets 132 utsignal att ligga i fas med den i den inkommande televisions- signalen ingående färgsynkpulsen. Om ett tidbasfel förefinns i den inkommande televisionssignalen, såsom åskådliggjort i fig 3B, kommer de sampelvärden som representeras av de från analog-digítal- omvandlaren lll erhållna, binära orden att vara andra. Denna skill- nad förefinns på grund av tidbasskillnaden mellan referenstidbas- signalen och den inkommande televisionssignalen, därav de olika sampelpunkterna under färgsynkpulsperioden. Vid recirkulering av de i minnet 123 lagrade, femton orden kommer den regenererade färg- synkpulsutsignalen från filtret 132 att ligga i fas med den i den inkommande televisionssignalen ingående färgsynkpulsen. Den från filtrets utgång erhållna klocksignalen kommer således alltid att ligga i fas med den i televisionssignalen ingående tidbaskomponenten oberoende av de tidbasändringar eller fel som kan uppträda i denna.Figs. 3A and 38 illustrate the manner in which the derived clock signal is generated to be in phase with the time base component of the information signal from which it is derived. Fig. 3A illustrates the state that would prevail if the incoming color television signal were faultless. During the sampling and storage interval, the X3 reference clock performs the sampling of the color sync pulse of the signal in the analog-to-digital converter III and the storage of the sample values in the recyclable memory 123. Because the incoming television H signal is error free, the first sample of each period occurs of the color sync pulse of the signal at the beginning of the color sync pulse period. When the fifteen words stored in the memory 123 are recirculated, the output signal of the filter 132 will be in phase with the color sync pulse included in the incoming television signal. If a time base error is present in the incoming television signal, as illustrated in Fig. 3B, the sample values represented by the binary words obtained from the analog-to-digital converter III will be different. This difference exists due to the time base difference between the reference time base signal and the incoming television signal, hence the different sample points during the color sync pulse period. When the fifteen words stored in the memory 123 are recycled, the regenerated color sync pulse output signal from the filter 132 will be in phase with the color sync pulse included in the incoming television signal. The clock signal obtained from the output of the filter will thus always be in phase with the time base component included in the television signal, regardless of the time base changes or errors that may occur in it.

Ehuru i detta fall ett direktaccessminne, en adressgenerator och räknarorgan har utnyttjats för det recirkulerbara minnet 123, inses det, att andra digitala lagringskretsar kan användas i stället.Although in this case a direct access memory, an address generator and counter means have been used for the recyclable memory 123, it will be appreciated that other digital storage circuits may be used instead.

Som exempel kan ett recirkulerande skiftregister åstadkomma minnets 123 funktion, vilket inses av fackmannen på området.As an example, a recirculating shift register can provide the memory 123 function, as will be appreciated by those skilled in the art.

För att förenkla undvikandet av fel vid tidsförskjutningen eller tidsomställningen av de digitala representationerna av televisions- utsignalen från analog-digitalomvandlaren lll under recirkuleríngs- moden utnyttjas en tidsbuffertanordning 156, som vid sin ingång har en omvandlare 157 för omvandling av ett serieord till tre parallella ord och på sin utgång en komplementär omvandlare 158 för omvand- ling av tre parallella ord till ett serieord. Omvandlarna l57 och 158 är visade i fig 4. Följden av enskilda, binära ord, som åstad- kommes på utgången ll2, föres till serie-parallellomvandlarêfl 157- U 7803835-3 Denna omvandlare 157 mottager vart och ett av de på varandra följan~ de binära orden vid en klocktakt, som är tre gånger så hög som den rocirkulerade signalfärgsynkpulsen, genom att klockpulserna från X3- kloekkällan, tillgängliga på ledningen 118, tillföres denna omvand- lares klockingâng (K), såsom angivet. Omvandlaren 157 är konstruerad att lagra tre av de på utgången ll2 på seriesätt alstrade, binära orden samt är av det slag, vid vilket varje nytt, omvandlaren till- fört ord skiftar ut det sista ordet från omvandlaren, som alltid innehåller tre hela binära ord. Den serievis inmatade informationen överföres på parallellt sätt till omvandlaren lS8 via en klockisola- tor l63 (se fig 4), som är innefattad i tidsbuffertanordningen 156.In order to facilitate the avoidance of errors in the time shift or time conversion of the digital representations of the television output signal from the analog-to-digital converter III during the recirculation mode, a time buffer device 156 is used, which at its input has a converter 157 for converting a serial word into three parallel words. at its output a complementary converter 158 for converting three parallel words into a serial word. The converters 157 and 158 are shown in Fig. 4. The sequence of individual binary words produced at the output 122 is fed to the series-parallel converters. This converter 157 receives each of the successive ones. the binary words at a clock rate which is three times as high as the recirculated signal color sync pulse, by supplying the clock pulses from the X3 source, available on line 118, to the clock input (K) of this converter, as indicated. The converter 157 is designed to store three of the binary words generated in the output ll2 in series and is of the type in which each new word added to the converter replaces the last word from the converter, which always contains three whole binary words. The serially input information is transmitted in parallel to the converter IS8 via a clock isolator 163 (see Fig. 4), which is included in the time buffer device 156.

Under varje linjeintervall av den inkommande televisionssignalen uppträder överföringstidpunkten till klockisolatorn 163 vid den klocktidpunkt som är bestämd av klockpulser som alstras av en lX~signalklocka 159 (se fig l). lX~signalklockan är kopplad till bandpassfiltrets 132 utgång för att alstra en klockpulssignal vid den recirkulerade färgsynkpulsfrekvensen, som är frekvensen för färgsynkpulsen, såsom den uppträder vid början av linjeintervallet.During each line interval of the incoming television signal, the transmission time to the clock isolator 163 occurs at the clock time determined by clock pulses generated by a 1X signal clock 159 (see Fig. 1). The IX signal clock is coupled to the output of the bandpass filter 132 to generate a clock pulse signal at the recirculated color sync pulse frequency, which is the frequency of the color sync pulse as it appears at the beginning of the line interval.

Speciellt åstadkommes lX-signalklockan l59 genom begränsning av fil- terutsignalen och användning av en positivt gående framkant av den därigenom alstrade fyrkantsvâgformen för âstadkommande av klockpul- serna. Varje positivt gående framkant hos den begränsade, regenerera~ de färgsynkpulsen identifierar början av en period av färgsynkpulsen.In particular, the lX signal clock l59 is provided by limiting the filter output signal and using a positive leading edge of the square waveform thus generated to produce the clock pulses. Each positive leading edge of the limited regenerated color sync pulse identifies the beginning of a period of the color sync pulse.

]X-signalklockan lS9 är kopplad till tidsbuffertanordningen l56 via ledningen l6l. På detta sätt mottager klockisolatorn 163 som gensvar på varje tillförd klockpuls hela innehållet i omvandlaren 157, vilken såsom ovan diskuterats vid alla tidpunkter har tre hela binära ord, som alstrats av analog~digitalomvandlaren lll på utgången ll2. De tre orden, som mottages i parallellt format av klockisolatorn 163, motsvarar dessutom de tre ord som utvecklas under en period av den regenererade färgsynkpulsen.The X signal clock lS9 is connected to the time buffer device l56 via the line l61. In this way, in response to each applied clock pulse, the clock isolator 163 receives the entire contents of the converter 157, which, as discussed above at all times, has three whole binary words generated by the analog-to-digital converter III at the output 111. In addition, the three words received in parallel format by the clock isolator 163 correspond to the three words developed during a period of the regenerated color sync pulse.

Utsignalen från omvandlaren 157 är ett ord om 24 bitar, SOm kopplas till ingången till klockisolatorn 163. Isolatorn har för~ måga att samtidigt läsa och skriva orden om 24 bitar. På grund av att isolatorn l63 kan läsa och skriva samtidigt kan klockningsopera- tionerna ske på dess ingångs~ och utgângssidor med avseende på olika, icke-koherenta klocksígnaler, varigenom tidshuffterlagringen åstad- komnes liksom möjligheten att tidsförskjuta eller tidsomställa siq~ naïerna. För skrivning eller lagring av omvandlarens 157 utsiunnl kopplas av signalklockan l59 alstrade klocksignaler medelst led- pvsozszs-3 18 ningen 161 till en skrivadressingång (SA) och en skrivaktiverings- ingång (SK) till isolatorn 163. Denna klocksignal ligger i fas med den okorrigerade televisionssignalens färgsynkpuls. De lagrade orden om 24 bitar, vilka sammanhör med varje period av tidbaskomponenten, läses eller utmatas från ísolatorn 163 som gensvar på lX-referens- klocksignaler, åstadkomna av en referensklockgenerator 149 och kopp- lade till en läsadressingång (LA) till isolatorn 163 via en ledning 121.The output signal from the converter 157 is a word of 24 bits, which is connected to the input of the clock isolator 163. The isolator has the ability to simultaneously read and write the words of 24 bits. Because the isolator 163 can read and write simultaneously, the clocking operations can be performed on its input and output sides with respect to different, non-coherent clock signals, thereby providing the time shift storage as well as the ability to time-shift or time-shift the signals. For writing or storing the output of the converter 157, the clock signals generated by the signal clock 159 are switched by means of the line pvsozszs-30 181 to a write address input (SA) and a write enable input (SK) to the insulator 163. This clock signal is in phase with the uncorrected television signal color sync pulse. The stored 24-bit words associated with each period of the time base component are read or output from the isolator 163 in response to 1X reference clock signals provided by a reference clock generator 149 and connected to a read address input (LA) of the isolator 163 via a line 121.

Genom klockning av isolatorn 163 med två klocksignaler kommer_ fasen för isolatorns utsignal att tidsförskjutas eller tidsomställas och synkroniseras med referensfärgunderbärvågens fas.By clocking the insulator 163 with two clock signals, the phase of the isolator output signal will be time-shifted or time-shifted and synchronized with the phase of the reference color subcarrier.

Omvandlaren 158 är omvandlarens 157 komplement genom att den åstadkommer en överföring från parallell form till serieform av den digitala ordinformation som mottages från omvandlaren 157 via klockisolatorn 163. Omvandlaren 158 återomvandlar således den digi- tala informationen till ett serieformat om 1 ord, men i detta fall klockstyres serieorden ut från omvandlaren 158 vid en klocktidpunktj som är bestämd av ix-feferenskiockslqnalen, xfilkén tillföras omvandlaren 158 via ledningen 121, såsom angivet i fig 4. Dessa serieord matas via ledningen 119 till ingången till digital-analog-. omvandlaren 113 och avkodas därefter under styrning av 3X-referens- klooksignalen på ledningen 122. Digital-analogomvandlaren 113 åter- bildar den önskade, analoga signalen på utgången 114 synkroniserad med referensunderbärvågens fas, _ På det ovan beskrivna sättet är den digitala kompensatorn enligt föreliggande uppfinning anordnad att synkronisera en inkom- mande informationssignal med en referens- eller standardtidbassignal.The converter 158 is the complement of the converter 157 in that it provides a transfer from parallel form to serial form of the digital word information received from the converter 157 via the clock isolator 163. The converter 158 thus converts the digital information into a serial word of 1 word, but in this case When the serial words are clocked out of the converter 158 at a clock time determined by the ix-preference clock signal, the filter is supplied to the converter 158 via line 121, as indicated in Fig. 4. These serial words are fed via line 119 to the input of digital-analog. the converter 113 and then decoded under the control of the 3X reference clock signal on the line 122. The digital-to-analog converter 113 regenerates the desired analog signal on the output 114 synchronized with the phase of the reference subcarrier. In the manner described above, the digital compensator according to the present invention is arranged to synchronize an incoming information signal with a reference or standard time base signal.

Det iakttages, att tidskorrektionsområdet i föreliggande utförings- form är en period, som motsvarar tidbaskomponentens hela period.It is observed that the time correction area in the present embodiment is a period corresponding to the entire period of the time base component.

För fallet med en färgtelevisionssignal är närmare bestämt korrige- ringsområdet en period av färgsynkpulsfrekvensen, vilketär 1 delat med 3,58 MHz eller ungefär 0,28 us. Om fasfelet hos den in- kommande videosignalen sannolikt kommer att överskrida detta om- råde, såsom kaníske vid återgivning av televisionssignaler från bandregistreríngsapparater, så kommer den på utgången 114 avgivna signalen att Eörskjutas för att synkronisera Eärgsynkpulskomponentens fas med referensfärgunderbärvågen. Televisionssiqnalens horisontella synkronisering kommer emellertid att bli felaktigt fasad relativt den horisontella referensynksignalen. För vissa tillämpningar, såsom i samband med skivrogistreringsutrustning, är det genom Eöreliqqfinflfl 19 vsøzszs-3 utföringsform åstadkomma korrigeringsområdet om en hel period av färgsynkpulsen eller 0,28 us tillfyllest utan hjälp av ytterligare tidbasfelskompenserande system.More specifically, in the case of a color television signal, the correction range is a period of the color sync pulse frequency, which is 1 divided by 3.58 MHz or about 0.28 us. If the phase error of the incoming video signal is likely to exceed this range, such as canine when reproducing television signals from tape recorders, then the signal output at output 114 will be shifted to synchronize the phase of the edge sync pulse component with the reference color subcarrier. However, the horizontal synchronization of the television signal will be incorrectly bevelled relative to the horizontal reference sync signal. For some applications, such as in the case of disk recording equipment, the Eöreliqq flfl n flfl 19 vsøzszs-3 embodiment provides the correction range of an entire period of the color sync pulse or 0.28 μs in addition without the aid of additional time base error compensating systems.

Om förekomst av större tídbasfel är sannolik, införes ett direkt- accessminne 164 mellan klockisolatorn 163 och paralle1l-serieomvand- laren 158, såsom visat i fig 4. Minnet 164 korrigerar signalens tidbas med inkrement, som är lika med ett helt antal av färgsynk- pulsens period. Detta åstadkommes genom skrivning av ordet om 24 bi- tar i adresser i minnet 164, vilka adresser är bestämda av en skriv- adressgenerator 166. Minnet 164 aktiveras på sin aktiveringsinqång (SK) för inskrivning av ordet om 24 bitar och generatorn 166 klock- styres av lX-referensklocksignalen på ledningen 121. Minnets 164 innehåll läses i överensstämmelse med den adress som åstadkommes av en läsadressgenerator 167. Den av generatorn 167 tillförda läs- adressen bestämmes av de relativa tidpunkterna för uppträdandet av signalens och referensens horisontella synkpuls. De relativa upp- trädandetidpunkterna bestämmes av en räknare, som tjänstgör som en horisontell synkkomparator 168. Räknaren 168 börjar räkna som gensvar på den horisontella referenssynkpulsen och stoppas av upp- trädandet av signalens horisontella synkpuls. Räknaren 168 räknar i färgsynkpulsens takt. Räknarens 168 utgång är kopplad till ställ- ingången (S) till läsadressgeneratorn 167 och ändrar genom inställ- ning av utgångsläsadressen i överensstämmelse med talet i räknaren 168 efter uppträdandet av signalens horisontella synkpuls.If the occurrence of larger time base errors is probable, a direct access memory 164 is inserted between the clock isolator 163 and the parallel-to-series converter 158, as shown in Fig. 4. The memory 164 corrects the time base of the signal by increments equal to an integer of the color sync pulse. period. This is accomplished by writing the word of 24 bits into addresses in the memory 164, which addresses are determined by a write address generator 166. The memory 164 is activated at its activation input (SK) for writing the word of 24 bits and the generator 166 is clocked. of the IX reference clock signal on line 121. The contents of the memory 164 are read in accordance with the address provided by a read address generator 167. The read address provided by the generator 167 is determined by the relative times of occurrence of the horizontal sync pulse of the signal and reference. The relative occurrence times are determined by a counter, which serves as a horizontal sync comparator 168. The counter 168 starts counting in response to the horizontal reference sync pulse and is stopped by the occurrence of the horizontal sync pulse of the signal. The counter 168 counts at the rate of the color sync pulse. The output of the counter 168 is connected to the position input (S) of the read address generator 167 and changes by setting the output read address in accordance with the number in the counter 168 after the occurrence of the horizontal sync pulse of the signal.

De snccessiva orden om 24 bitar skrives i på varandra följande adresser i minnet 164. Minnets 164 kapacitet kan justeras enligt önskan. För en korrigering om åtminstone ett horisontellt linje- intervall, dvs ungefär 63,5 us, är minnet 164 anordnat att ha en kapacitet om 256 ord. Varje ord representerar en tid om en period av färgsynkpulsen, dvs ungefär 0,28 us. En kapacitet på 256 ord kommer därför att ge en lagringstid över 63,5 us. Läsadressgenera- torn 167 inställes relativt skrivadressgeneratorn 166, så att,om signalens horisontella synkpuls och referensens horisontella synk- puls är i fas,identiska adresser, alstrade av de två generatorerna, kommer att vara åtskilda i tiden ekvivalent med vad som erfordras för att recirkulera ungefär hälften av minnets kapacitet, varvid skrivadressalstringen ligger före läsadressalstringen. För en korri- geringskapacítet på ett horisontellt linjeintervall är åtskíllnaden ungefär 32 ns.The successive words of 24 bits are written in successive addresses in the memory 164. The capacity of the memory 164 can be adjusted as desired. For a correction of at least one horizontal line interval, i.e. approximately 63.5 us, the memory 164 is arranged to have a capacity of 256 words. Each word represents a time of a period of the color sync pulse, i.e. about 0.28 us. A capacity of 256 words will therefore give a storage time over 63.5 us. The read address generator 167 is set relative to the write address generator 166 so that, if the horizontal sync pulse of the signal and the horizontal sync pulse of the reference are in phase, identical addresses generated by the two generators will be separated in time equivalent to what is required to recirculate approximately half of the memory capacity, the write address generation being before the read address generation. For a correction capacity on a horizontal line interval, the difference is approximately 32 ns.

Ovan beskrivna konstruktion av och arbetssätt för föreliggande i7suzazs-3 20 uppfinning gäller ett system för korrigering av en informationssíg- nal, som har en upprepat uppträdande tidbassynkroniseringskomponent i form av en synkpuls av växlande amplitudvariationer, såsom en färg- synkpuls. Föreliggande uppfinning kan även tidbasfelskompensera in- formationssignaler, som saknar eller har tidbaskomponenter i annan form än en växelamplitudstidbassignal. Som exempel kan en monokrom televisionssígnal korrigeras i överensstämmelse med föreliggande uppfinnings principer genom införande av en artificiell synkpuls eller pilotsignal, som består av en synkpuls av växlande amplitud- variationer, i televisionssignalen under släckningsintervallet.The construction and operation of the present invention described above relates to an information signal correction system having a repeating time base synchronization component in the form of a sync pulse of varying amplitude variations, such as a color sync pulse. The present invention can also compensate for time base error information signals which lack or have time base components in a form other than an alternating amplitude time base signal. By way of example, a monochrome television signal may be corrected in accordance with the principles of the present invention by introducing an artificial sync pulse or pilot signal, consisting of a sync pulse of varying amplitude variations, into the television signal during the blanking interval.

Speciellt kan en sådan synkpulssignal tillföras den bakre delen av varje släckintervall, som åtföljer en monokrom televisionssignals horisontella linje, varvid den horisontella synkpulsen tjänstgör som tidbaskomponenten, i förhållande till vilken den införda pilot- signalen väljes att uppvisa ett förutbestämt fasförhållande.In particular, such a sync pulse signal can be applied to the rear part of each blanking interval which accompanies the horizontal line of a monochrome television signal, the horizontal sync pulse serving as the time base component, in relation to which the introduced pilot signal is selected to have a predetermined phase ratio.

Med hänvisning till fig 5 åskådliggöres en modifiering av syste- met i fig l för kompensering av en monokrom televisionssignal genom införande av en artificiell synkpulssignal, som består av en synk- puls av tidbasinformation med växlande amplitud. Synkpulsinföringen åstadkommas medelst en svängande oscillatorsynkpulsgenerator l7l med en ingång, som är styrd av den okorrigerade, monokroma horison- tella synkpulsen, som lämnas av synkseparatorn l34. En utgångsled- ning l73 från generatorn l7l är anordnad för att avge en synkpuls av tidbasinformation med växlande amplitud för införing i den mono- kroma televisionssignalen i en summerinqspunkt 174 via en ledare l77 från en grind l76. Punkten l74 är âstadkommen medelst en kon- ventionell sígnalsummeringskrets. Genom detta arrangemang införes den alstrade, artificiella synkpulssiqnalen i den monokroma tele- visionssignalen före den inkommande signalens tillförsel till den kodande analog-digitalomvandlaren lll i detta fall. Detta arrangemang fungerar enbart vid frånvaron av en i den inkommande signalen upp- trädande färgsynkpuls. För detta ändamål är en förbindning gjord från synkpulsdetektorns l37 utgång till grinden l76 för overksam- göring av grinden, när helst en färgsynkpuls detekteras i den in- kommande signalen.Referring to Fig. 5, a modification of the system of Fig. 1 to compensate for a monochrome television signal by introducing an artificial sync pulse signal, which consists of a sync pulse of time base information of varying amplitude, is illustrated. The sync pulse input is effected by means of a oscillating oscillator sync pulse generator 171 with an input which is controlled by the uncorrected, monochrome horizontal sync pulse provided by the sync separator 134. An output line 173 from the generator 171 is arranged to emit a sync pulse of time base information of varying amplitude for input into the monochrome television signal at a summing point 174 via a conductor 177 from a gate 176. Point l74 is achieved by means of a conventional signal summing circuit. By this arrangement, the generated artificial sync pulse signal is introduced into the monochrome television signal before the input of the incoming signal to the coding analog-to-digital converter III in this case. This arrangement only works in the absence of a color sync pulse occurring in the incoming signal. For this purpose, a connection is made from the output of the sync pulse detector 137 to the gate 176 for inactivation of the gate, whenever a color sync pulse is detected in the incoming signal.

Bortsett från det förhållandet, att synkpulssignalen i systenæt enligt fiq 5 alstras och införes artificiellt, fungerar detta system för användning tülsanmansxned monokroma televisionssiqnaler nå i huvud- sak samma sätt som beskrivits i samband med systemet enliqt fiq l, vilket s stem användes för fär televisionssi naler. Den artificiella Y G 9 _ " ma..- ._ _. ka... __ .í/ '7803835-3 synkpulsgeneratorn l7l är utformad att alstra en synkpulssignal med samma frekvens- och fasförhållande som en färgsynkpuls, så att den normala referensfärgunderbärvågen kan utnyttjas som referenstidbas- signal i den monokroma kretsen i fig 5. Detta uppnås i överensstämmel- se med föreliggande uppfinning genom att generatorn l7l från synk- separatorn 134 mottager den horisontella synkpulsen i varje monokrom televisionslinje, som den uppträder i den inkommande televisions- signalen, och utnyttjar den horisontella synkpulsens framkant för att trigga en fasstyrd svängningskrets, som är utformad att åstad- komma en oscillationsfrekvens, vilken är lika med den hos den normala färgsynkpulsen, vilken frekvens i sin tur nominellt är lika med frek- vensen hos referensfärgunderbärvâgen. Fasen hos den av svängninga- generatorn l7l alstrade synkpulsutsignalen styres i överensstämmelse med utsignalen från en med tvâ dividerande vippa 179, som har en ingång, vilken är känslig för framkanten hos den horisontella synk- puls som utvecklas av synkseparatorn 174. Vippan l79 har ett par utgångar l8l och 182, motsvarande vippans l79 motsatta sidor, varige- nom signaler avges, vilka är 1800 fasförskjutna. Syftet med den med två dividerande vippan 179 är att driva den fasstyrda svängnings- oscillatorn l7l så, att den utvecklar en 1800 fasändring vid varje televisionslinje för att bringa den artificiellt alstrade synkpuls-' signalen till överensstämmelse med den gängse fasväxling som före- finns mellan färgsynkpuls och synktakt i en standardiserad NTSC- färgtelevisionssignal.Apart from the fact that the sync pulse signal in the system network according to Fig. 5 is generated and inserted artificially, this system for use with monochrome television signals operates in substantially the same manner as described in connection with the system according to Fig. 1, which system is used for television signals. . The artificial YG 9 "" ma ..- ._ _. Ka ... __ .í / '7803835-3 sync pulse generator l7l is designed to generate a sync pulse signal with the same frequency and phase ratio as a color sync pulse, so that the normal reference color subcarrier can is used as a reference time base signal in the monochrome circuit of Fig. 5. This is achieved in accordance with the present invention in that the generator 171 receives from the sync separator 134 the horizontal sync pulse in each monochrome television line as it appears in the incoming television signal. and utilizes the leading edge of the horizontal sync pulse to trigger a phase controlled oscillation circuit which is designed to produce an oscillation frequency equal to that of the normal color sync pulse, which frequency in turn is nominally equal to the frequency of the reference color subcarrier. the sync pulse output signal generated by the oscillation generator 171 is controlled in accordance with the output signal from a with two dividing flip-flops 179 , which has an input which is sensitive to the leading edge of the horizontal sync pulse developed by the sync separator 174. The flip-flop 179 has a pair of outputs 181 and 182, corresponding to the opposite sides of the flip-flop 179, whereby signals are emitted which are 1800 phase shifted. The purpose of the two dividing flip-flop 179 is to drive the phase-controlled oscillator oscillator 171 so as to develop a 1800 phase change at each television line to bring the artificially generated sync pulse signal into conformity with the common phase changeover between color sync pulses. and sync rate in a standardized NTSC color television signal.

Vippan 179 reagerar följaktligen för varje horisontell synk- puls genom att ändra tillstånd. Som gensvar på en första horison- tell Synkpuls, mottagen från separatorn 134, kommer utgången 181 att växla från låg till hög nivå, medan utgången 182 samtidigt kom- mer att växla från hög till låg nivå. Den nästa horisontella synk- pulsen kommer att förorsaka en motsatt övergång. Den fasstyrda oscillatorn l7l är utformad att reagera enbart för utsignalsöver- gångar från utgångarna l8l och l82, vilka övergångar sker från låg till hög nivå.Consequently, the flip-flop 179 responds to each horizontal sync pulse by changing state. In response to a first horizontal sync pulse, received from the separator 134, the output 181 will switch from low to high level, while the output 182 will simultaneously switch from high to low level. The next horizontal sync pulse will cause an opposite transition. The phase-controlled oscillator 171 is designed to react only for output signal transitions from the outputs 181 and 182, which transitions take place from low to high level.

Allteftersom varje artificiell färgsynkpuls uppträder på ut- gången 173 efter den horisontella synkpulsen påverkar den 2 ns långa utpulsen, som lämnas av pulsgcneratorn 136, grinden 176 för att bringa denna att inta sitt inställda tillstånd. En mono/Eärg- omkopplare 183 inställes också att koppla pulsen från pulsgenera- torn 136 för styrning av det recirkulerbara minnet 123 i stället för fäfqßyflkpulsdetektorn 137.As each artificial color sync pulse occurs at output 173 after the horizontal sync pulse, the 2 ns long output pulse provided by pulse generator 136 affects gate 176 to cause it to assume its set state. A mono / Eärg switch 183 is also set to disconnect the pulse from the pulse generator 136 to control the recyclable memory 123 instead of the pulse pulse detector 137.

Claims (8)

1. '7803835-3 22 PATENTKRAV 1 . Anordning för att relativt en referenssignal , som bestämmer en känd tidbas, ändra tidbasen hos en infonnationssignal, som innefattar en tidbas- synkroniseringskomponent av en känd nominell frekvens, k ä n n e- t e c k n a d av organ (129, 149, 163) för mottagning och lagring av vartïoch ett av successiva intervall av informationssignalen under en tid, som motsvarar en bråkdel av en period av den nominella fre- kvensen, samt organ (164) för mottagning av varje successivt inter- vall av den lagrade informationssignalen och ytterligare lagring där- avi under en tid, som motsvarar ett helt antal perioder av den nomi- nella frekvensen. .1. '7803835-3 22 PATENT REQUIREMENTS 1. Apparatus for changing, relative to a reference signal determining a known time base, the time base of an information signal comprising a time base synchronizing component of a known nominal frequency, characterized by means (129, 149, 163) for receiving and storing each of successive intervals of the information signal for a time corresponding to a fraction of a period of the nominal frequency, and means (164) for receiving each successive interval of the stored information signal and further storing it during a time, which corresponds to a whole number of periods of the nominal frequency. . 2. Anordning enligt patentkravet 1, k ä n n e t e c k n a d därav, att organen (129, 149, 163) för lagring av informations- signalen under en tid, som motsvarar en bråkdel av en period av den nominella frekvensen, innefattar ett signalminne (163) för att som gensvar på styrsignaler lagra vart och ett av successiva inter- vall av informationssignalen under en tid, som är bestämd av styr- signalerna, organ (149) för åstadkommande av en första styrsignal med en tídbas, som är bestämd av referenssignalen, organ (l29) för mottagning av tidbassynkroniseringskomponenten under vart och ett av de successiva intervallen för regenerering av tidbassynkronise- ringskomponenten under varje intervall för bildande av en andra styrsignal, samt organ (121, 161) för att koppla den första och den andra styrsignalen till signalminnet (163) för att åstadkomma lag- ringen och återvinningen av den lagrade informationssignalen för varje intervall av informationssignalen.Device according to claim 1, characterized in that the means (129, 149, 163) for storing the information signal for a time corresponding to a fraction of a period of the nominal frequency, comprise a signal memory (163) for in response to control signals, storing each of successive intervals of the information signal for a time determined by the control signals, means (149) for providing a first control signal with a time base determined by the reference signal, means ( l29) for receiving the time base synchronization component during each of the successive intervals for regenerating the time base synchronization component during each interval to form a second control signal, and means (121, 161) for coupling the first and second control signals to the signal memory (163); ) to provide the storage and retrieval of the stored information signal for each interval of the information signal. 3. Anordning enligt patentkravet 2, k ä n n e t e c k n a d därav, att de styrsignalkopplande organen (161, 121) kopplar den andra styrsignalen till signalminnet (163) för att åstadkomma lagring av informationssignalen och kopplar den första styrsignalen till signalminnet för att åstadkomma återvinning av den lagrade informa- tionssignalen.Device according to claim 2, characterized in that the control signal switching means (161, 121) connect the second control signal to the signal memory (163) to provide storage of the information signal and connect the first control signal to the signal memory to effect recovery of the stored the information signal. 4. Anordning enligt patentkravet 2 eller 3, k ä n n e t e c k- n a d därav, att informationssignalen är en digital signal samt att organen för ytterligare lagring av informationssignalen inne- fattar ett digítalt minne (164) med adresserade minneslokationer för mottagning och lagring av successiva delar av den digitala in- formationen, mottagen från signalminnet (163) under varje intervall, organ (149, 166) för âstadkommande av lagringen av successiva delar av den digitala informatíonssignalen i olika, adresserade minnes- 7803835- ü¶ 23 lokationer i det digitala minnet (164) vid av en klocksignal bestämda tidpunkter, organ (l49, l67) för att åstadkomma åter- vinning av de lagrade delarna av informationssignalen från adres- serade minneslokationer vid av klocksignalen bestämda tidpunkter, samt organ (167, 168) för att som gensvar på informationssignalens tidbassynkroniseringskomponent och referenssignalen för varje in- tervall av den digitala informationssignalen justera tiden mellan lagringen av varje del av den digitala informationssignalen i en adress och âtervinningen av nämnda del från den adressen i överens- stämmelse med tidsskillnaden mellan tidbassynkroniseringskomponenten och referenssignalen.4. Device according to claim 2 or 3, characterized in that the information signal is a digital signal and that the means for further storing the information signal comprise a digital memory (164) with addressed memory locations for receiving and storing successive parts. of the digital information, received from the signal memory (163) during each interval, means (149, 166) for providing the storage of successive parts of the digital information signal in different, addressed memory locations in the digital memory (164) at times determined by a clock signal, means (149, 167) for effecting recovery of the stored portions of the information signal from addressed memory locations at times determined by the clock signal, and means (167, 168) for responding on the time base synchronization component of the information signal and the reference signal for each interval of the digital information signal adjust the time between the retrieval of each part of the digital information signal in an address and the retrieval of said part from that address in accordance with the time difference between the time base synchronization component and the reference signal. 5. Anordning enligt något av patentkraven 1-4, k ä n n e t e c k- n a d av en samplare (lll) för mottagning och sampling av informa- tionssignalen som gensvar på styrsignaler, varvid samplen av informa- tionssignalen kopplas för lagring i de under en bråkdel av en period lagrande organen (163), organ (126) för att omväxlande koppla en första styrsignal och en andra styrsignal till samplaren för att åstadkomma sampling av informationssignalen, vilka kopplingsorgan är anordnade att koppla den första styrsignalen till samplaren under ett tidbassynkroniseringskomponentintervall och att koppla den andra styrsignalen till samplaren mellan successiva kopplingar av den första styrsignalen.Device according to any one of claims 1-4, characterized by a sampler (III) for receiving and sampling the information signal in response to control signals, wherein the sample of the information signal is coupled for storage in those under a fraction a period storing means (163), means (126) for alternately coupling a first control signal and a second control signal to the sampler to effect sampling of the information signal, said coupling means being arranged to couple the first control signal to the sampler during a time base synchronization component interval and to couple the second control signal to the sampler between successive connections of the first control signal. 6. Anordning enligt patentkravet 5, k ä n n e t e c k n a d därav, att samplaren (lll) är en analog-digitalomvandlare för att som gensvar på styrsignalerna koda informationssignalen digitalt. Ü.6. Device according to claim 5, characterized in that the sampler (III) is an analog-to-digital converter for encoding the information signal digitally in response to the control signals. Ü. 7. Anordning enligt patentkravet 6, k ä n n e t e c k n a d av en digital-analogomvandlare (ll3), som är kopplad att mottaga den ytterligare lagrade informationssignalen från organen (164) för ytterligare lagring av den för att avkoda den digitala informations- signalen och åstadkomma en motsvarande âterbildad analog informations- signal.An apparatus according to claim 6, characterized by a digital-to-analog converter (113), which is coupled to receive the further stored information signal from the means (164) for further storing it to decode the digital information signal and provide a corresponding reconstructed analog information signal. 8. Anordning enligt något av patentkraven 5-7, k ä n n e t e c k- n a d därav, att samplaren (lll) åstadkommer digitala sampel av informationssignalen som successiva delar av denna.Device according to any one of claims 5-7, characterized in that the sampler (III) provides digital samples of the information signal as successive parts thereof.
SE7803835A 1974-04-25 1978-04-05 DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL SE427405B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US46426974A 1974-04-25 1974-04-25

Publications (2)

Publication Number Publication Date
SE7803835L SE7803835L (en) 1978-04-05
SE427405B true SE427405B (en) 1983-03-28

Family

ID=23843212

Family Applications (5)

Application Number Title Priority Date Filing Date
SE7504739A SE418353B (en) 1974-04-25 1975-04-24 DEVICE FOR REGENERATION OF A TIMETABLE COMPONENT WITH AN INFORMATION SIGNAL
SE7803834A SE427404B (en) 1974-04-25 1978-04-05 DEVICE FOR CHANGING THE TIME BASE WITH A DIGITAL INFORMATION SIGNAL
SE7803832A SE427321B (en) 1974-04-25 1978-04-05 DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL
SE7803833A SE427146B (en) 1974-04-25 1978-04-05 DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL
SE7803835A SE427405B (en) 1974-04-25 1978-04-05 DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL

Family Applications Before (4)

Application Number Title Priority Date Filing Date
SE7504739A SE418353B (en) 1974-04-25 1975-04-24 DEVICE FOR REGENERATION OF A TIMETABLE COMPONENT WITH AN INFORMATION SIGNAL
SE7803834A SE427404B (en) 1974-04-25 1978-04-05 DEVICE FOR CHANGING THE TIME BASE WITH A DIGITAL INFORMATION SIGNAL
SE7803832A SE427321B (en) 1974-04-25 1978-04-05 DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL
SE7803833A SE427146B (en) 1974-04-25 1978-04-05 DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL

Country Status (12)

Country Link
JP (5) JPS6048957B2 (en)
AT (3) AT372564B (en)
BE (1) BE828177A (en)
CA (1) CA1141022A (en)
CH (1) CH604447A5 (en)
DE (1) DE2518475C3 (en)
FR (1) FR2269258B1 (en)
GB (1) GB1520311A (en)
IT (1) IT1035417B (en)
NL (1) NL7504945A (en)
SE (5) SE418353B (en)
YU (5) YU37422B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2759871C2 (en) * 1976-10-29 1983-06-09 Ampex Corp., 94063 Redwood City, Calif. Digital arrangement for separating and processing the chrominance signal from a composite color television signal
JPS60261281A (en) * 1984-06-08 1985-12-24 Matsushita Electric Ind Co Ltd Color signal processor
DE3526017A1 (en) * 1985-07-20 1987-01-22 Thomson Brandt Gmbh RECORDER
GB8615214D0 (en) * 1986-06-21 1986-07-23 Quantel Ltd Video processing systems
JP2523601B2 (en) * 1987-03-16 1996-08-14 パイオニア株式会社 Video format signal processing system
JPH01147990A (en) * 1987-12-03 1989-06-09 Mitsubishi Electric Corp Time axis correction device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037063B2 (en) * 1972-05-24 1975-11-29
US4413011A (en) * 1981-02-26 1983-11-01 Warner-Lambert Company Substituted 2,2-dimethyl-5-phenoxypentanoic acid benzamides as anti-arteriosclerotic agents and method

Also Published As

Publication number Publication date
ATA321075A (en) 1983-02-15
SE7803833L (en) 1978-04-05
SE7803834L (en) 1978-04-05
YU286480A (en) 1983-10-31
SE7803832L (en) 1978-04-05
IT1035417B (en) 1979-10-20
AT375233B (en) 1984-07-10
SE427404B (en) 1983-03-28
JPS60105386A (en) 1985-06-10
NL7504945A (en) 1975-10-28
CA1141022A (en) 1983-02-08
JPH0345591B2 (en) 1991-07-11
DE2518475A1 (en) 1975-11-06
JPS60105385A (en) 1985-06-10
FR2269258B1 (en) 1977-07-08
CH604447A5 (en) 1978-09-15
JPS60109981A (en) 1985-06-15
DE2518475B2 (en) 1979-08-30
ATA28179A (en) 1983-11-15
ATA28279A (en) 1983-11-15
SE418353B (en) 1981-05-18
SE7504739L (en) 1975-10-27
AT372564B (en) 1983-10-25
JPS6048957B2 (en) 1985-10-30
FR2269258A1 (en) 1975-11-21
YU104175A (en) 1983-04-27
AT375232B (en) 1984-07-10
SE427146B (en) 1983-03-07
GB1520311A (en) 1978-08-09
YU37422B (en) 1984-08-31
BE828177A (en) 1975-10-21
JPS50150312A (en) 1975-12-02
YU286780A (en) 1983-10-31
YU286580A (en) 1983-10-31
JPS60109982A (en) 1985-06-15
YU286680A (en) 1983-10-31
DE2518475C3 (en) 1980-05-14
SE427321B (en) 1983-03-21
SE7803835L (en) 1978-04-05

Similar Documents

Publication Publication Date Title
US4063284A (en) Time base corrector
US4212027A (en) Time base compensator
JPS6346611B2 (en)
US4095259A (en) Video signal converting system having quantization noise reduction
JPS5825784A (en) Digital method and device for calibrating phase error of sample signal applicable for calibration of television signal
SE427405B (en) DEVICE TO CHANGE THE TIME BASE OF AN INFORMATION SIGNAL
JPS5923647A (en) Method of converting serial data signal and converting circuit
JP2655650B2 (en) Time axis correction device
JPH0239919B2 (en)
US8184391B1 (en) Phase-adjustment of divided clock in disk head read circuit
EP0052433B1 (en) Signal error detecting
CA1241110A (en) Apparatus for recording and reproducing digital signal
US5367535A (en) Method and circuit for regenerating a binary bit stream from a ternary signal
EP0374794A2 (en) Digital transmitting/receiving apparatus using buffer memory to eliminated effects of jitter
CA1090921A (en) Timing error compensator
JP2857396B2 (en) Synchronous signal generation circuit
JP2585709B2 (en) Synchronous signal recording / playback method
JP2785426B2 (en) Time axis correction device
CA1104216A (en) Time-base compensator
JP2592088B2 (en) Data recording / reproducing device
JPH069107B2 (en) Time axis correction device
JPH03273572A (en) Digital signal magnetic recording and reproducing device
JPH02214289A (en) Time base correction device for color video signal
JPS63100882A (en) Phase difference detector and time base correcting device for video signal using said detector
JPS59211164A (en) Sampling method of picture data

Legal Events

Date Code Title Description
NUG Patent has lapsed

Ref document number: 7803835-3

Effective date: 19941110

Format of ref document f/p: F