SE204932C1 - - Google Patents

Info

Publication number
SE204932C1
SE204932C1 SE204932DA SE204932C1 SE 204932 C1 SE204932 C1 SE 204932C1 SE 204932D A SE204932D A SE 204932DA SE 204932 C1 SE204932 C1 SE 204932C1
Authority
SE
Sweden
Prior art keywords
fuel
pipe
refrigerant
branch
pipes
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE204932C1 publication Critical patent/SE204932C1/sv

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Uppfinnare: S Hackney och R Potter Prioritet begtird fran den 22 .fratuari ()eh 5 full 1962 (Storbritannien, 2334, 786) Foreliggande uppfinning hanfor sig till karnreaktorer och avser sadana reaktorer, dar ett flytande, neutronmodererande varmetransportmedium, vilket i fortsattningen kommer att benamnas primart kylmedium, anvandes som ett mellanliggande skikt mellan bransleelementen i reaktorharden och reaktoms kylmedium, vilket i fortsattningen kommer att benamnas det sekundara kylmediet; i denna reaktor aro bransleelementen inneshitna i bransleror, fyllda med primart kylmcdium. Inventors: S Hackney and R. Potter Priority Started February 22, 1962 (Great Britain, 2334, 786). is called the primary coolant, was used as an intermediate layer between the fuel elements in the reactor core and the reactor coolant, which will hereinafter be referred to as the secondary coolant; in this reactor, the fuel elements are housed in fuel clays, filled with primary refrigerant.

Det är en av det primara kylmediets funktioner att astadkomma en nastan konstant neutronmoderering i reaktorharden och det fir av denna anledning, som det primara kylmediet är ett neutronmodererande Arline. Man b or forsta, aft med ett neutron-modererande amne menas ett amne, som har en modereringsproportion storre an 10, varvid denna proportion definieras som forhallandet mellan amnets formaga att bromsa neutroner och dess absorbtionstvarsnitt, namligen es , dar e är den genomsnittliga, logaritmiska energiminskningen per neutronkollision i amnet, Z s är fimnets makroskopiska spridningstvarsnitt for epitermiska neutroner och La är Linnets makroskopiska absorpstionstvarsnitt. It is one of the functions of the primary refrigerant to achieve a nearly constant neutron moderation in the reactor core and it is for this reason that the primary refrigerant is a neutron moderating Arline. First, by a neutron-moderating substance is meant a substance which has a moderating proportion greater than 10, this proportion being defined as the ratio between the substance capable of inhibiting neutrons and its absorption cross-section, namely es, where e is the average, logarithmic the energy decrease per neutron collision in the workpiece, Z s is the fimnet's macroscopic scattering cross section for epithermal neutrons and La s is Linnet's macroscopic absorption cross section.

Foreliggande uppfinning hanfor sig till en karnreaktor, exempelvis en kokvattenreaktor, som i huvudsak bestar av bransleelement, bransleror, som innesluta bransleelementen, ett flytande, neutronmodererande, primart kylmedium, sasom exempelvis vatten under tryck, inne i bransle- Dupl. kl. 21 g: 21/24 roren, ett sekundart kylmedium, sasom exempelvis kokande vatten, avsett att passera i blandade vatske- och angfaser utanfor bransIeriiren under varmevoxlande kontakt genom rOren med det primara kylmediet, vilken kannetecknas av forlangningsror utan bransle, vilka aro seriekopplade med varje bransleror och vilka aven komma i kontakt med den blandade fasen av sekundart kylmedium i och for varmetransport mellan det primara kylmediet i forlangningsroren och det sekundara kylmediet, och av forbindelseror mellan narliggande forlangningsrors fran bransleroren vanda andar saint aven fOrbindelseror mellan narliggande branslerors fran forlangningsroren vanda andar for att erhalla serikoppling av det primara kylmediet mellan de olika branseelementen. The present invention relates to a nuclear reactor, for example a boiling water reactor, which consists essentially of fuel elements, fuel clays enclosing the fuel elements, a liquid, neutron moderating, primary refrigerant, such as pressurized water, inside the fuel Dupl. at 21 g: 21/24 tubes, a secondary cooling medium, such as boiling water, intended to pass in mixed liquid and vapor phases outside the industry during heat-exchanging contact through the tubes with the primary refrigerant, which may be characterized by non-industry elongated tubes connected in series with each and which also come into contact with the mixed phase of secondary refrigerant in and for heat transport between the primary refrigerant in the demand pipe and the secondary refrigerant, and of connections between adjacent demand pipes from the branch pipe water and saint also to obtain series connection of the primary coolant between the various branch elements.

I eft fall har uppfinningen tillampning vid en kokvattenreaktor med ett primart kylmedium i form av vatten under tryck och ett sekundart kylmedium i form av kokande vatten. Vid en utforingsform av uppfinningen farbinda forbindelserOr intill varanclra liggande bransleriir och intill varandra liggande forlangningsrOr, sã att man for det primara kylmediet erhaller en cirkulationsvfig, som har branslefyllda sektioner omvaxlande med ej branslefyllda sektioner, varvid det primara kylmediet vid passagen genom de branslefyllda sektionerna ej kan taga mer varme fran bransleelementen, an som transporteras fran de branslefyllda sektionema till det sekundara kylmediet, under det aft det primara kylmediet under passagen genom de ej branslefyllda sektionerna kyles, sit aft det blir lampligt att passera genom de branslefyllda sektionema. In any case, the invention has application to a boiling water reactor with a primary cooling medium in the form of water under pressure and a secondary cooling medium in the form of boiling water. In one embodiment of the invention, interconnect adjacent adjacent fuel lines and adjacent extension tubes so as to obtain for the primary refrigerant a circulating fluid having fuel-filled sections alternating with non-fuel-filled sections, the primary refrigerant not passing through the fuel. take more heat from the fuel elements, which are transported from the fuel-filled sections to the secondary refrigerant, while the primary refrigerant is cooled during the passage through the non-fuel-filled sections, as it becomes convenient to pass through the fuel-filled sections.

Tva reaktorer enligt uppfinningen skola nu 2 beskiivas med hj alp av exempel under hinvisning uppat far det sekundara kylmediet koka, sà att till bifogade ritningar i vilka: fig. 1 visar ett verdet bildas en blandning av vatten. och Anga, corn tikalt snitt genom en reaktor enligt uppfinningsepareras, sedan den lamnat varmevaxlingszonen en, fig. 21 diagramform visar ett snitt langs linjen 31, av dngavskilj are 33 av cyklontyp, som sitta 2-2 i fig. 1 och fig. 3 visar en fOrstorad bild av inne i domen, burna av den ov.re sttidplattan,. rOrmontaget i reaktorn i fig. 1 och i vilka fig. 4 vilka separatorer skicka i vag vattnet till utloppsvisar ett vertikalt snitt genom en annan reaktor • then 24 och angan till reningsanordningarna 34 enligt uppfinningen.och darefter till angavloppet. Two reactors according to the invention will now be described with the aid of examples with reference to the above, the secondary refrigerant is allowed to boil, so that to the accompanying drawings in which: Fig. 1 shows a value a mixture of water is formed. and Anga, the vertical section through a reactor according to the invention is separated, after it has left the heat exchange zone a, Fig. 21 diagrammatic form shows a section along the line 31, of cyclone-type dung separators 33, which sit 2-2 in Fig. 1 and Fig. 3 shows an enlarged image of inside the dome, carried by the upper time plate ,. The pipe assembly in the reactor of Fig. 1 and in which Fig. 4 which separators send in the vague water to the outlet shows a vertical section through another reactor 24 and then to the purification devices 34 according to the invention and then to the inlet.

Den reaktor, som nu skall beskriVas med hjalpDel primara kylmediet samlas upp fra'n de tio ett exempel, har en karna 11 (fig. 1 och 2), i transportvagarna genom bransle- och forlangningsvilken bransleelementen aro inneslutna i bransleliken i ett ringformat utloppshuvud 35. Pumpar Mr 12, genom vilka vanligt lEitt vatten under 23, monterade pa ihaliga stad 36, som sta fasta tryck cirkuleras som primart kylinedium. Branslepa den Ovre stbdplattan, cirkulera det primara liken aro arrangerade i knippen, pa ett satt, som kylmediet fran utloppshuvudet 35 till en spiralskall beskrivas nedan, i ett avsnitt for karnan, formad toroidkompressor 37 och darefter tillbaka begransat av en mellan vagg 13, och detta montatill brdnsle- och forlangningsrbren. Kompressorn ge är inneslutet i ett karl 14. Ett sekundart kyltjanar till att uppratthalla det primara kylmedium, aven detta latt vatten cirkuleras neat mediets tryck och sitter inne i det ringformade atgenom det ringformade utrymmet mellan karlet rymmet 38 mellan manteln och reaktortanken. och skiljevaggen och uppat genom karnan mellanMed oppna andar forsedda, ihdliga avstang- bransleroren. En termisk skarm 15, placerad ningsstavar 39, bestdende av neutronabsorberanmellan skiljevaggen och karlet, har oppningar 16 de material, sitta inne i varmevaxlingszonen, nar for att mojliggora det sekundara kylmediets nedreaktorn är under normal drift, och falla in i karatgaende node. Neutronmoderering i - reaktorn nan via ledarriir 42, nar man onskar stanga av astadkommes av de primara och sekundara kylreaktorn. Avstangningsstavarna manovreras hyd- medierna.rauliskt, och det finnes en koppling mellanv arj e stay Reaktorn ar innesluten i en reaktortank 17, och ett huvud 43, fyllt med vatska, vilket, sasom tillsluten av en dom 18, frau vilken det sticker framgax av ritningen är gemensamt f Or alla avupp ett angror 19, som är forsett med en huvudstangningsstavarna. avstangningsventil 21 for anga och tre kapor 22Det recirkulerade vattnet, utgorande sekundart (av vilka endast en visas i fig. 1), vilka var och en kylmedium, tillsammans med matarvatten, om sa innehalla en motordriven pump 23 for cirkulation är nOdvandigt, Wes tillbaka till reaktorkarlet av det primara kylmediet. PA sidan av domen genom inloppsoppningarna 25, som mynna i det sticker det aven ut fyra utloppsror 24 for omcirkuringformade utrymmet 38 ovanfOr den mellanlation av ej forangat, sekundart kylmedium, under liggande stodplattan. Monterade pa den inellandet att det Iran sidan av karlet 17 sticker ut fyra liggande stodplattan finnas c:a 40 backventiler inloppsror 25 for omcirkulation av sekundart kyl44, genom vilka det sekundara kylmediet maste medium. Karlet sitter i den nedre halvan av reakpassera for att komma in i karlet med karnan. tortanken och är upphangt med hjalp av en flans Dessa ventiler ha en mycket viktig funktion for 26, som omgiver karlet. En mellanliggande stOdsakerheten. platta 27 vilar pa flansen, under det att en stifdDel är Onskvart, att en reaktor forsattes ur platta 28 i byre anden vilar pa en studs, som utfunktion pa ett sakert satt vid varje tankbart forts i reaktortankens byre Onde, Dessa stOdtillbud. Foljaktligen maste man vidtaga atgarder plattor stracka sig Over hela reaktortanken och for att sakerstalla, att en skada ph den sekundara den mellanliggande stodplattan 27 forsluter karlet kylkretsen ej shall kunna resultera i att reaktor14. Mellan stodplattorna begransar en mantel 29 tanken blir tiimd pa sekundart kylmedium och en cylindrisk varmevaxlingszon 31, i vilken det darigenom lamna bransleroren torra utanpa med firms knippvis ordnade forlangningsrlir 32, varvid risk far tiverhettning. Skulle ett brott pd. domen varje forlangningsror utgor en fortsattning pa ett intraffa, forlorar det sekundara kylmediet silt bransleror. FOrlangningsrOrens ovre andar och tryck och foljaktligen forangas en stor del av branslerorens nedre andar aro hopkopplade, sá detta kylmedel; man kan emellertid visa, att tillalt det bildas tio parallella serpentinliknande rackligt mycket kylvatten stannar kvar i reaktor:vagar for det primara kylrnediets passage genom hardens karl for att fortfarande halla stone delen flera serier ror. Bransleroren och forlangningsav branslerOren nedsankta i vatten. Skulle A Toren hanga ned fran den owe stodplattan och fa andra sidan ett brott intraffa vid inloppstipp-sthdga av den mellanliggande stodplattan mot ningarna 25, ar det tankbart, att angtrycket i vibration och deformation.domen, i det fall ventilerna 22 saknades, skulle oppningar i stodplattorna tillata uppatghende kunna pressa ut allt sekundart kylvatteni hardens Rode av sekundart kylmedium genom harden och karl genom sprickan, och lamna bransleriiren varmevbdingszonen in i domen. Under sin vag torra utvandigt. Denna majlighet foregripes av 3 backventilerna 44, som forhindra att sekundart kylmedium tryckes tillbaka frail hardens karl och tryckes ut genom sprickan. The reactor, which will now be described with the aid of the primary refrigerant collected from the ten one example, has a core 11 (Figs. 1 and 2), in the transport carriages through which the fuel elements are enclosed in the fuel body in an annular outlet head 35. Pumps Mr. Fire the upper support plate, circulate the primary body arranged in bundles, in a manner as the coolant from the outlet head 35 to a spiral shell is described below, in a section of the core, shaped toroidal compressor 37 and then back limited by an intermediate rocker 13, and this assembly for fuel and extension pipes. The compressor gear is enclosed in a vessel 14. A secondary coolant serves to maintain the primary coolant, also this light water is circulated neat medium pressure and sits inside the annular through the annular space between the vessel space 38 between the jacket and the reactor tank. and the dividing wall and up through the karnan between With open spirits provided, ihdliga avstang- branleror. A thermal shield 15, placed on rods 39, consisting of the neutron absorber between the partition and the vessel, has openings 16 of the material, which sit inside the heat exchange zone, when to enable the secondary refrigerant down reactor to be under normal operation, and fall into the carat-going node. Neutron moderation in the reactor via conductor 42, when it is desired to switch off the primary and secondary cooling reactors. The shut-off rods are maneuvered in the hydraulic means, and there is a connection between the two housings. is common f Or all avupp a regret 19, which is provided with a main bar rods. shut-off valve 21 for steam and three hoods 22The recirculated water, constituting secondary (of which only one is shown in Fig. 1), each of which cooling medium, together with feed water, if so containing a motor-driven pump 23 for circulation is necessary, Wes back to the reactor vessel of the primary refrigerant. On the side of the mandrel through the inlet openings 25, which open into it, four outlet tubes 24 for the recirculation-shaped space 38 also protrude above the intermediate ventilation of unevaporated, secondary cooling medium, below the lying support plate. Mounted on the inside that the Iran side of the vessel 17 protrudes four horizontal support plate, there are about 40 non-return valves inlet pipes 25 for recirculation of the secondary coolant44, through which the secondary coolant must be medium. The vessel sits in the lower half of the re-pass to enter the vessel with the vessel. The suspicion and is suspended with the help of a flange These valves have a very important function for 26, which surrounds the vessel. An intermediate support factor. plate 27 rests on the flange, while a pin part is Onskvart, that a reactor is continued from plate 28 in the byre spirit rests on a bounce, as a function of a safe way at each conceivable continuation in the reactor tank byre Onde, These support options. Consequently, one has to take steps to extend over the entire reactor tank and to ensure that a damage to the secondary intermediate plate 27 closes the vessel, the cooling circuit should not be able to result in the reactor14. Between the support plates a jacket 29 delimits the tank is formed on secondary cooling medium and a cylindrical heat exchange zone 31, in which the fuel pipe is thereby left dry on the outside with the company's tightly arranged extension pipes 32, whereby there is a risk of overheating. Should a crime pd. the verdict each demand pipe constitutes a continuation of an intraffa, the secondary refrigerant loses silt fuel pipes. The upper spirits of the extension pipe and pressure and consequently a large part of the lower spirits of the branch pipe are evaporated, so this coolant; it can be shown, however, that a total of ten parallel serpentine-like racking amounts of cooling water are formed remaining in the reactor: scales for the passage of the primary cooling medium through the hard man to keep the stone part several series of tubes. Bransloren and demand of industriesOren immersed in water. Should A Toren hang down from the owe support plate and cause a break on the other side to occur at the inlet tip-support of the intermediate support plate against the grooves 25, it is conceivable that the pressure in vibration and deformation. in the standing plates allow oppatghende be able to squeeze out all the secondary cooling water in the harden's Rode of secondary coolant through the hardener and man through the crack, and leave the branleriier heat treatment zone into the dome. Under its vague dry outside. This possibility is anticipated by the non-return valves 44, which prevent the secondary cooling medium from being pushed back from the manhole and pushed out through the crack.

Varje bransleror 12 och med detta forbundna forlangningsror 32 (fig. 3) utgores av en oavbruten rorlangd, som tillverkas av ett material med Mgt infangningstvarsnitt for neutroner, exempelvis en legering pa zirkoniumbas, sasom zirkonium med 2,5 viktprocent Mob: denna speciella legering har lagt tvarsnitt vid infangning av neutroner i forening med mekanisk hallfasthet och korrosionsbestandighet i kokande vatten. Roren ha en inre diameter av 34,5 mm (1,359 turn) och aro ordnade i ett kvadratiskt gitter med sina centra 38,8 mm (1,529") frail varandra. Avstanden 1 detta gitter uppratthalles av den mellanliggande stodplattan 27, genom vilken roren ha glidbara genomforingar och av den ovre stOdplattan 28, Iran vilken rOren hanga ned. Pa den byre anden pa varje forlangningsror finnes ett rorformat huvud 45 pasatt, varvid de tva huvudena pa narliggande rtir aro hopkopplade med ett fOrbindelseror 46. A.ndhuvar 47 forsluta huvudenas ovre andar och sitta med fasta fogar i den ovre stOcIplattan, vilket utfors exempelvis genom pakrympning eller kalipressning: andhuvarna aro av en legering pa zirkoniumbas, heist samma som anvandes for roren 12 och 32. I sina nedre andar ha bransleroren reducerad diameter och forbindningar mellan narliggande bransleror aro gjorda av U-bolda kopplingsror 48. Placerade med sina axlar parallella och pa avstand fran varandra finnas Over hela rorsamlingens yta avstangningsstavar 39, vilka aven hanga ned fran den ovre stociplattan; pa dessa stallen forbinda langre grenstycken 49 huvudena pa narliggande forlangningsror. Bransle- och forlangningsroren arost kopplade med varandra, att de giva 10 separata, isolerade, serpentinliknande transportvagar for det primara kylmediet, som passerar genom rormontaget. Oppningar 51, 52 i den mellanliggande och den ovre sthdplattan 27 resp 28 tillata det sekundara kylmediet att cirkulera uppat mellan bransle- och forlangningsroren, samtidigt som det overfOres nagot varme, som giver pumpverkan, vilket val passar anordningarna for cirkulation av det sekundara kylmediet. Inne i varje branslerbr finnes ett bransleelement 53, buret av ett standarror 54 av rostfritt stal, som stracker sig uppat genom forlangningsroret och vid sin byre ande Or fast pa andhuven. Staven 54 bar en kryssformad ledaranordning 55 med radeillt utstickande delar for att centrera bransleelementet i bransleroret. Branselelementet centreras av liven 56 och i sin nedre del liven av en konisk projektion 57. Each branch clay 12 and associated extension tube 32 (Fig. 3) is formed by an uninterrupted tube length, which is made of a material with a high capture cross-section for neutrons, for example a zirconium-based alloy, such as zirconium with 2.5% by weight Mob: this special alloy has laid cross-section when capturing neutrons in combination with mechanical half-strength and corrosion resistance in boiling water. The tubes have an inner diameter of 34.5 mm (1,359 turns) and are arranged in a square grid with their centers 38.8 mm (1.529 ") apart. The distance in this grid is maintained by the intermediate support plate 27, through which the tubes have slidable bushings and of the upper support plate 28, Iran on which the pipe hangs.On the upper end of each extension pipe there is a tubular head 45 fitted, the two heads on adjacent tubes being interconnected by a connecting pipe 46. A.ndhuvar 47 closing the upper head and sit with fixed joints in the upper steel plate, which is performed, for example, by packing shrinkage or potassium pressing: the duck hoods are of a zirconium-based alloy, the same as those used for tubes 12 and 32. are made of U-bold coupling tubes 48. 39, which also hang down from the upper stoke plate; at these stalls, longer branch pieces 49 connect the heads of adjacent extension tubes. The fuel and extension tubes are interconnected to provide separate, insulated, serpentine-like transport carriages for the primary refrigerant passing through the tubing assembly. Apertures 51, 52 in the intermediate and upper support plates 27 and 28, respectively, allow the secondary coolant to circulate upwardly between the fuel and extension tubes, while transferring some heat which imparts pumping action, which option suits the devices for circulating the secondary coolant. Inside each fuel pipe there is a fuel element 53, carried by a stainless steel standard pipe 54, which extends upwards through the extension pipe and at its carrying spirit is fixed to the hood. The rod 54 carried a cross-shaped conductor device 55 with radially projecting parts for centering the fuel element in the fuel pipe. The branch element is centered by the web 56 and in its lower part the web by a conical projection 57.

Funktionen for det primara kylmediet, som latt vatten under tryck, fir att taga bort varme fran hransleelementen och avlamna det till det sekundara kylmediet, som ar kokande iätt vatten. Anordnandet av forlangningsrOren. 32 sasom varmeoverforingszon utan bransle omedelhart ovanfor karnan gOr det mojligt for det primara kylmedium, som cirkulerar inne i dessa, att fora bort varme mellan pa varandra foljande tur och returpassager genom karnan. Foljaktligen kan det primara kylmediet vid sin passage genom bransleroren fora bort mar varme frail branslet, On det lamnar till det sekundara kylmediet, varvid overskottet senare Overfores till samma sekundara kylmedium med hjalp av forlangningsroren, innan det primara kylmediet nasta gang passerar genom karnan. Pa detta satt bibehalles en karna med kompakt temperaturkarakteristik i stallet for alternerande for en given varmetransport, genom att fOrlanga bransleelementets langd, sa att man erhaller den Onskade hastigheten i varmetransport. En forlangning av detta slag skulle Oka branslets varmeoverfbringsyta men elimineras av den nackdelen, att den okar hardens volym med en forlust i reaktorekonomi som foljd. Det är darfor briskvart att halla bransleelementen korta, sa att man far en kompakt hard. Den mangd varme, som OverfOres per tidsenhet, skulle markbart Okas genom att Oka ytan pa branslertiren 12 med hjalp av inre och yttre fenor. Varmetransporten genom dessa fenor skulle emellertid begransas av deras varmeledningsfOrmaga och fOljaktligen skulle varmetransporten ej okas i flagon stOrre omfattfling. The function of the primary refrigerant, which left water under pressure, is to remove heat from the furnace elements and paralyze it to the secondary refrigerant, which is boiling in water. Arrangement of the demand pipe. 32 as a heat transfer zone without a branch immediately above the core, it makes it possible for the primary coolant circulating inside them to dissipate heat between successive return and return passages through the core. Consequently, the primary refrigerant during its passage through the fuel pipe can be carried away by the hot frail fuel, leaving it to the secondary refrigerant, the surplus later being transferred to the same secondary refrigerant by means of the extension pipe, before the primary refrigerant next passes through the tank. In this way, a core with a compact temperature characteristic is maintained instead of alternating for a given heat transport, by extending the length of the fuel element, so that the desired speed in heat transport is obtained. A requirement of this kind would increase the heat transfer surface of the industry but be eliminated by the disadvantage that it increases the volume of the hardener with a loss in reactor economy as a result. It is therefore brisk to keep the fuel elements short, so that you get a compact hard. The amount of heat that OverfOres per unit of time would be markedly Okas by Increasing the surface of the industry tier 12 with the help of inner and outer fins. However, the heat transport through these fins would be limited by their thermal conductivity and consequently the heat transport would not be increased to a greater extent.

Sasom papekats ovan aro bransle- och forlang-, ningsroren hopkopplade sà att de utgOra 10 serpentinliknande transportvagar f Or det primara kylmedium, som flyter genom Oren. Dessa transportvagar utmarkas schematiskt i fig. 1 av pilarna A-J. Varje transportvag har ett inlopp, som star i fOrbindelse med kompressorn 37, och, ett utlopp, som star i forbindelse med det ringformade uppsamlingshuvudet 35 (fig. 1). Varje transportvag stracker sig Over hela reaktorharden och utgores av, mera noggrant beskrivet, en serie fram- och tillbakagaende passager Over karnan: Mom ett visst rakt Over detta gaende band. Minnda, utgores transportvagen H av tre passager, h1, h2 och 113. For att varje transportvag skall innehalla lika start antal bransle- och forlangningsror besta de i mitten liggande transportvagarna B, D, G och I av fyra passager tvars Over karnan och de yttre transportvagarna A, E, F och J av sex passager tvars Over karnan. Arrangemanget av transportvagarna i grupper om fern, sa att de bilda ett korsmonster, sakerstaller att det extra varme, som i jamforelse med de yttre delarna produceras i hardens centrala del, sprides Over hela karnan sa snabbt som mojligt. As noted above, the fuel and demand tubes are interconnected to form 10 serpentine-like transport carriages for the primary refrigerant flowing through the Oren. These transport carriages are schematically marked in Fig. 1 by the arrows A-J. Each transport carriage has an inlet which communicates with the compressor 37, and an outlet which communicates with the annular collecting head 35 (Fig. 1). Each transport carriage extends over the entire reactor core and consists of, more accurately described, a series of reciprocating passages across the karnan: Mom a certain straight Over this going band. Remember, transport trolley H consists of three passages, h1, h2 and 113. In order for each transport trolley to contain an equal starting number of branch and extension pipes, the transport trolleys B, D, G and I in the middle consist of four passages across the karnan and the outer ones. transport carriages A, E, F and J of six passages across the karnan. The arrangement of the transport wagons in groups about fern, said that they form a cross-monster, sakertaller that the extra heat, which in comparison with the outer parts is produced in the central part of the hard, is spread over the whole karnan as quickly as possible.

Med branselroren i ett kvadratiskt gitter med 38,8 mm (1,529 turns) sida, sasom tidigare namnts, anordnas forbindningarna mellan narliggande Tor tvars Over det kvadratiska gittrets diagonaler, sa att det storre avstand, som sta till forfogande tvars Over dessa diagonaler, 51,2 mm, (2,160 turn) 4 kan anvandas for att passa in U-biijda forbindelseTor 48 vid branslererens nedre andar. Alla forbindelseroren 48, tillhorande en grupp transportvagar, lat oss saga A, B, C, D och E, passera under anslutningsriforen tillhOrande den andra gruppen transportvagar och ga vinkelratt mot dessa. Alla anslutningar fOr inlopp och utlopp pa. rormontaget aro utforda pa forlangningsrorens huvu:den. Man giver det primara kylmediet sa Mgt tryck, att man forhindrar total kokning, nagot som annars kunde medfora avsevard minskning i tathet hos det primara kylmediet med en darav foljande minskning i modereringsformagan for det primara kylmediet. Hastigheten i varmetransport mellan det primara och sekundara kylmediet okas emellertid, om det forekommer flagon turbulent stromning i det primara kylmediet. Darfor halles det primara kylmediet heist vid sadant tryck, att det bildas nagon anga i detta, varvid angbubblorna fororsaka turbulens i det primara kylmediet °eh salunda okar hastigheten i varmetiverforing. With the branch tubes in a square grid with 38.8 mm (1,529 turns) side, as previously mentioned, the connections between adjacent Tor are arranged across the diagonals of the square grid, so that the greater distance, which is available across these diagonals, 51, 2 mm, (2,160 turns) 4 can be used to fit the U-shaped connectionTor 48 to the lower spirits of the branch laser. All the connecting tubes 48, belonging to a group of transport carriages, let us say A, B, C, D and E, pass under the connecting riff belonging to the other group of transport carriages and go perpendicular to them. All connections for inlet and outlet on. the pipe assembly is challenging on the head of the extension pipe. The primary refrigerant is given so much pressure that it prevents total boiling, something which could otherwise lead to a significant reduction in the density of the primary refrigerant with a consequent reduction in the moderation capacity of the primary refrigerant. However, the rate of heat transfer between the primary and secondary refrigerants is increased if there is a slight turbulent flow in the primary refrigerant. Therefore, the primary refrigerant is kept high at such a pressure that some vapor is formed in it, the vapor bubbles causing turbulence in the primary refrigerant and thus increasing the speed of heat transfer.

Den andra reaktorn, som nu skall beskrivas under hanvisning till fig. 4, liknar i hog grad reaktorn i fig. 1 och fOljaktligen ha samma hanvisningssiffror anvants far liknande konstruktionsdelar i hada reaktorerna. Salunda har den andra reaktorn en hard 11, vars branseelement aro inneslutna i bransleror 12, genom vilka latt vatten under tryck cirkuleras. Bransleroren aro samlade i ett knippe i ett omrade, som begransas av en mantel 13, och denna samling ror är innesluten i en tank 14. Ett sekundart kylmedium, ven nu latt vatten, cirkuleras genom harden och forangas av det varme, som bildas av branseleelementen. Neutronmodereringen i reaktorn astadkommes av det primara och det sekundara kylmediet. Likaledes är reaktorkarlet 17 tillslutet av en dom 18, fran vilken det sticker ut ett angror 19 och tre kapor 22, var och en innehallande en motordriven pump 23 f Or cirkulation av det primara kylmediet. Ej forangat sekundart kylmedium omcirkuleras genom utloppen 24 och inloppen 25. Liksom i den forsta reaktorn avgransar en mantel 29 en cylindrisk varmeOverforingszon 31, i vilken det finnas knippen av fOrlangningsrOr 32, varvid varje forlangningsror är en fortsattning av ett bransleriir. Fbrlangningsrthens ovre andar och branslerorens nedre andar ha fOrbindningar 30, sa att det bildas parallella transportvagar med ett serpentinliknande utseende fOr det primara kylmediet. Det primara kylmediet uppsamlas fran och Hires Ater in i transportvagarna genom bransleoch forlangningsroren med hjalp av ringformade huvuden. Pumparna 23 cirkulera det primara kylmediet fran det ovre utloppshuvudet 35 till en toroidkompressor 37 och darefter tillbaka till det nedre inloppshuvudet 30 och bransle- och forlangningsroren. Kompressorn är belagen inuti det ringformade utrymmet 38 mellan manteln och reaktortanken. The second reactor, which will now be described with reference to Fig. 4, is very similar to the reactor of Fig. 1 and consequently having the same reference numerals used for similar structural parts in the reactors. Salunda has the second reactor a hard 11, the fuel elements of which are enclosed in fuel clays 12, through which light water under pressure is circulated. The fuel tubes are collected in a bundle in an area bounded by a jacket 13, and this collection of tubes is enclosed in a tank 14. A secondary coolant, even now light water, is circulated through the hardener and evaporated by the heat generated by the fuel elements. . The neutron moderation in the reactor is provided by the primary and secondary refrigerants. Likewise, the reactor vessel 17 is closed by a mandrel 18, from which a jig 19 and three caps 22 protrude, each containing a motor-driven pump 23 for circulating the primary refrigerant. Unevaporated secondary refrigerant is recirculated through the outlets 24 and the inlets 25. As in the first reactor, a jacket 29 defines a cylindrical heat transfer zone 31, in which there are bundles of extension tubes 32, each extension tube being a continuation of a fuel line. The upper spirits of the rectifier and the lower spirits of the fuel pipe have connections 30, so that parallel transport carriages are formed with a serpentine-like appearance for the primary refrigerant. The primary refrigerant is collected from and Hires Ater into the transport wagons through the fuel and demand pipes with the help of annular heads. The pumps 23 circulate the primary refrigerant from the upper outlet head 35 to a toroidal compressor 37 and then back to the lower inlet head 30 and the branch and demand tubes. The compressor is located inside the annular space 38 between the jacket and the reactor tank.

Betrakta vi nu den primara kylkretsen i denna andra reaktor mera i detalj, sa finna vi, att pumparna 23 transportera primart kylmedium genom ett utloppsror 60 till det nedre ringformade inloppshuvudet 30. Fran detta huvud stracker sig ett rot 61 till den nedre delen pa kompressorn 37, fran vilken man far, pa ett Ott, som skall beskrivas mer fullstandigt i fortsattningen, den nodvandiga tryckokningen pa det primara kylmediet. Inloppsroren 40 (av vilka endast ett är utmarkt pa ritningen) forbinda inloppshuvudena med var och en av de parallella transportvagarna genom bransleoch forlangningsroren och andarna pa dessa transportvagar forbindas med hj alp av resp ror 62 (av vilka endast ett visas pa ritningen) med det ringformade utloppshuvudet 35, vilket med ett ror 63 är anslutet till sugsidan pa pumpen. If we now consider the primary cooling circuit in this second reactor in more detail, we find that the pumps 23 transport primary cooling medium through an outlet pipe 60 to the lower annular inlet head 30. From this head a root 61 extends to the lower part of the compressor 37 , from which one obtains, on an Ott, to be described more fully in the continuation, the necessary pressure increase on the primary refrigerant. The inlet pipes 40 (of which only one is marked in the drawing) connect the inlet heads to each of the parallel transport carriages through the branch and extension pipes and the spirits of these transport carriages are connected by means of respective pipes 62 (of which only one is shown in the drawing) to the annular the outlet head 35, which with a tube 63 is connected to the suction side of the pump.

Kompressorn 37 är sammansatt av fyra toroider 64 till 67 med samma storlek, vilka aro placerade ovanpa varandra i ett rakt cylindriskt arrangemang med ett nagot storre avstand mellan toroiderna 65 och 66, dar inloppsoppningarna 25 for det omcirkulerade sekundara kylmediet mynna i reaktortanken, varvid avstandet bestammes av ror, sasom visas vid 68, vilka fOrbinda varje par bredvid varandra liggande toroider i flera punkter fordelade runt om toroidperimetern. Dessa ror 68 ha mindre innerdiameter an toroiderna och som man kan se pa hoger sida av ritningen ligga de ordnande pa linje den ena ovanf Or den andra, sh att inloppsroret 61, som kommer in i den ovre toroiden, gar rakt igenom dam ned till den nedre toroiden. The compressor 37 is composed of four toroids 64 to 67 of the same size, which are placed on top of each other in a straight cylindrical arrangement with a slightly larger distance between the toroids 65 and 66, where the inlet openings 25 of the recirculated secondary refrigerant open into the reactor tank, the distance being determined of tubes, as shown at 68, which connect each pair of adjacent toroids at several points distributed around the toroid perimeter. These pipes 68 have a smaller inner diameter than the toroids and as can be seen on the right side of the drawing they are arranged in line one above the other, so that the inlet pipe 61, which enters the upper toroid, goes straight through the dam down to the lower toroid.

Kompressorerns toroider Oro fasta med hj alp av spannringarna 69 och 70, vilka sitta fasta koncentriskt Over toroiderna 66 och 67. SW erhalles med hjalp av st8dbockar med utseende enligt 71, som ha lampligt svangda ytor, pA vilka den nedre toroiden 67 kan vila. The toroids of the compressor are fixed by means of the tension rings 69 and 70, which are fixed concentrically.

Med hjalp av ventiler och rOrledningar (ej utvisade) star den ovre toroiden 64 i fOrbindelse med en kompressor for gasen i manteln, vilken kompressor är belagen utanf Or reaktortanken 17. Gas, som matats in vid ett bestamt tryck av kompressorn, fangas upp i den tidigare namnda kompressorn for hire tryekreglering, sâ att det tryck, som byggts upp i den infangade gasen, i det fall det primara kylmediet bar en temperatur, som motsvarar full reaktoreffekt, ar sa Mgt, att det med sakerhet forhindrar total kokning av det primara kylmediet. Heist ordnar man i forvag ett tryck, som tillAter en obetydlig kokning, men som är tillrackligt stort for att det skall bildas sma angblasor, som kunna astadkomma turbulens i det primara kylmediet som hjalp fOr varmetiverforingen. By means of valves and pipes (not shown) the upper toroid 64 is connected to a compressor for the gas in the jacket, which compressor is coated outside the reactor tank 17. Gas, which is fed in at a certain pressure by the compressor, is trapped in it. the aforementioned compressor for hire pressure control, so that the pressure built up in the trapped gas, in case the primary refrigerant carried a temperature corresponding to full reactor power, is so Mgt, that it certainly prevents total boiling of the primary refrigerant . A pressure is arranged in advance, which allows an insignificant boiling, but which is large enough to form small vesicles, which can cause turbulence in the primary refrigerant which helped the heat transfer.

Enbart for att giva ett exempel uppraknas nedan konstruktionsparametrarna fOr den andra reaktorn, som beskrivits ovan: 204 93Z 60 megawatt (varme) 20,000 hk 1298 nun (51 turn) 1127 mm (44, 35 turn) Zr-2,5 % Nb 790 36,3 mm (1,429 tum) 34,mm (1,359 turn) 38,8 mm (1,529 turn) 3,2 mm (0,125 turn) 1,86 ton U 1,46 1,63 1, 32,3 megawatt per ton U 84,5 megawatt per ton U 20,000 megawattdygn per ton U 1,600° C 21 70,7 mm (2,784 turn) 80,2 mm (3,160 turn) 4 % bor Reaktoreffekt Angkraft, hastkrafter Karnans diameter Karnans aktiva langd Material for bransleriir Antal bransleror Antal branslestavar per ror Bransleror, ytterdiameter Bransleror, innerdiameter Centrumaystand mellan branslertiren (kvadratiskt gitter) Utrymme mellan branslertir och branslestavar Branslesats Axiell flodesfbrdelningsfaktor Radiell flodesfordelningsfaktor Skarvflodesfaktor (peaking factor) Bransleeffekt, genomsnitt Bransleeffekt, toppvarde Genomsnittlig bransleutbranning Branslets temperatur, max. Just to give an example, the design parameters for the second reactor are described below, as described above: 204 93Z 60 megawatts (heat) 20,000 hp 1298 nun (51 turns) 1127 mm (44, 35 turns) Zr-2.5% Nb 790 36 , 3 mm (1.429 inches) 34, mm (1.359 turns) 38.8 mm (1.529 turns) 3.2 mm (0.125 turns) 1.86 tons U 1.46 1.63 1, 32.3 megawatts per ton U 84.5 megawatts per tonne U 20,000 megawatt days per tonne U 1,600 ° C 21 70.7 mm (2,784 rpm) 80.2 mm (3,160 rpm) 4% bore Reactor power Angling force, speed forces Nuclear diameter Nucleus active length Material for industry series Number of industry numbers industry rods per pipe Industry clay, outer diameter Industry clay, inner diameter Centrumaystand between industry tir (square lattice) Space between industry tir and industry rods Fire rate Axial river distribution factor Radial river distribution factor Splice flow factor Branch flow factor Branch flow factor.

Antal avstangningsstavar Avstangningsstavarnas innerdiameter Avstangningsstavarans ytterdiameter Avstangningsstavarnas material, rostfritt stal med Primart kylmedium, sammansattning Primara kylmediets arbetstryck Primara kylmediets maximumtemperatur Primara kylmediets flodeshastighet Primara kylmediets pumpeffekt Antal pumpar for det primara kylmediet Primara kylmediets volym Sekundara kylmediets angfas Angproduktion Sekundara kylmediets inmatningstemperatur Sekundara kylmediets cirkulationshastighet (i harden) Sekundara kylmediets tryck yid inloppet till harden Sekundara kylmediets tryckf all Sekundara kylmediets pumpeffekt Man bor forsta, att nppfinningen ej begransas till detaljerna i foregdende exempel. Sâ kan exempelvis, oaktat att de primara och sekundara kylmedierna har ha beskrivits som kokande latt vatten under tryck, det ena eller back dessa kylmedier bestá av en blanding av latt och tungt vatten; ett sadant arrangemang ger mojlighet att reglera reaktorn och forlanga livslangden for harden genom att variera forhallandet mellan latt och tungt vatten i kylmediet. Dessuton hehova bransleroren och fOrlangningsroren ej vara I ett stycke; i en reaktor enligt fiireliggande uppfinning skulle bransleroren kunna vara av zirkonium, under det att forlangningsroren skulle kunna vara av nagot billigare material eller nagot material, som bjuder battre varmeledningsformaga. Eftersom forlangningsroren ligga utanfor hardens zon, kan detta material utgaras av rost- H20, 100 % 1480 kg/cm' (2100 p.s.i.a.) 318° C (600° F) 0,45 x 10' kg/tim. (10' lbs/tim) 60KW 3 1,98 in' (70 kubikfot) 665/0,70 kg/cm2 (0,995 p.s.i.a.) utan kondensat 103 m3/tim (227000 lbs/tim) 160°C (3° F) 1,86 x 10' Vim (4,1 x 10' lbs/tim) 48,1 kg/cm' (685 p.s.i.a.) 1,41 kg/cm' (20 p.s.i.) 150 KW fritt stal, som har ett storre neutronabsorbstionstvarsnitt är zirkonium. Number of shut-off rods Inner diameter of the shut-off rods Outer diameter of the shut-off rod The material of the shut-off rods, stainless steel with Primary refrigerant, composition Primary refrigerant working pressure Primary refrigerant maximum temperature Primer refrigerant flow rate Secondary refrigerant pressure at the inlet to the hardener Secondary refrigerant pressure pump Secondary refrigerant pump power It should be understood that the invention is not limited to the details of the preceding examples. Thus, for example, notwithstanding that the primary and secondary refrigerants have been described as boiling light water under pressure, one or more of these refrigerants may consist of a mixture of light and heavy water; such an arrangement makes it possible to regulate the reactor and extend the life of the hardener by varying the ratio between light and heavy water in the refrigerant. In addition, the branch pipe and the extension pipe do not have to be in one piece; in a reactor according to the present invention, the fuel pipe could be of zirconium, while the extension pipe could be of somewhat cheaper material or some material which offers better thermal conductivity. Since the extension tubes are located outside the hardening zone, this material can be made of stainless H (10 'lbs / h) 60KW 3 1.98 in' (70 cubic feet) 665 / 0.70 kg / cm2 (0.995 psia) without condensate 103 m3 / h (227000 lbs / h) 160 ° C (3 ° F) 1.86 x 10 'Vim (4.1 x 10' lbs / hr) 48.1 kg / cm '(685 psia) 1.41 kg / cm' (20 psi) 150 KW free steel, which has a larger neutron absorption cross section is zirconium.

Claims (6)

Patentansprak:Patent claim: 1. Karnreaktor, exempelvis en kokvattenreaktor, som i huvudsak bestar av bransleelement, branslerar, som innesluter bransleelementen, ett flytande neutronmodererande, primart kylmedium, sasom exempelvis vatten under tryck, inne i bransleroren och ett sekundart kylmedium, sãsom exempelvis kokande vatten, avsett att passera i blandade vatske- och angfaser utanfor bransleroren under varmevaxlande kontakt genom rOren med det primara kylmediet karmeteeknad av forlangningsror utan bransle, vilka är seriekopplade med varje bransleror och vilka aven 6 kommer i kontakt med den blandade fasen av sekundart kylmedium i och for varmetransport mellan det primara kylmediet i forlangningsroren och det sekundara kylmediet, och av forbindelseror mellan narliggande forlangningsrors frail bransleroren vanda andar samt aven forbindelseror mellan narliggande branslerors frau forlangningsroren vanda andar for att erhalla serikoppling av det primara kylmediet mellan de olika bransleelementen.A nuclear reactor, such as a boiling water reactor, consisting essentially of fuel elements, fuel clays enclosing the fuel elements, a liquid neutron moderating, primary refrigerant, such as pressurized water, inside the fuel tube and a secondary cooling medium, such as boiling water, intended to pass in mixed liquid and vapor phases outside the fuel pipe during heat-exchanging contact through the pipes with the primary refrigerant karmeteeknad of extension pipes without fuel, which are connected in series with each fuel pipes and which also come into contact with the mixed phase of secondary refrigerant for heat transport between the primary the refrigerant in the demand pipe and the secondary refrigerant, and of connections between adjacent demand pipes frail the branch pipe vanda spirits and also connections between adjacent branch pipes frau the demand pipe vanda spirits to obtain series connection of the primary refrigerant between the various industry elements. 2. Karnreaktor, enligt patentanspraket 1, kannetecknad darav, att bransleroren (12) sitta knippvis i lodratt stallning, sa att bransleelementen grupperas i en aktiv hardzon (11) och darav, att forlangningsroren (32) utan bransle stracka sig uppat utanfor karnan, sa att de bilda en varmeoverforingszon (31), och darvid belt och linnet befinna sig i den blandade fasen • av sekundart kylmedium.Nuclear reactor, according to patent claim 1, characterized in that the branch pipe (12) is located in bundles in a vertical position, so that the fuel elements are grouped in an active hard zone (11) and hence, the extension pipe (32) without fuel extends upwards outside the core, said that they form a heat transfer zone (31), and thereby the belt and the linen are in the mixed phase • of secondary cooling medium. 3. Karnreaktor enligt patentanspraket 2, forsedd med en avskiljare for separering av det sekundara kylmediets faser, kannetecknad darav, att fOrlangningsroren (32) helt och hallet befinna sig pa avskiljarens (34) blandfassida.Nuclear reactor according to claim 2, provided with a separator for separating the phases of the secondary refrigerant, characterized in that the extension tubes (32) are entirely on the mixed phase side of the separator (34). 4. Karnreaktor enligt patentanspraket 3, kan netecknad darav, att forlangningsrdren (32) vid den ena anden av bransleroren (12) jamte andforbindelserna (48) vid den andra anden forbinda bransleriiren pa sidant satt, att det bildas transportvagar (A-J i fig. 2) for det primara kylmediet, vilka korsa varandra och darigenom bilda en matris av transportvagar, med vilkas hjalp overskottsvarme, som bildas pa flagon plats i hardzonen, sprides i hela hardzonen och varmeoverforingszonen.Nuclear reactor according to claim 3, characterized in that the extension pipes (32) at one end of the fuel pipe (12) and the duct connections (48) at the other second connect the fuel pipe sideways, so that transport carriages are formed (AJ in Fig. 2). ) for the primary refrigerant, which cross each other and thereby form an array of transport carriages, with the help of which excess heat, which is formed in a flake place in the hard zone, is distributed throughout the hard zone and the heat transfer zone. 5. Karnreaktor enligt patentanspraket 4, kannetecknad darav, att transportvagarna aro sâ anordnade, att vane transportvag är hopkopplad av approximativt samma natal bransleror.5. A nuclear reactor according to claim 4, characterized in that the transport carriages are arranged such that the conventional transport carriage is interconnected by approximately the same natal fuel clays. 6. Karnreaktor enligt patentanspraken 1-5, kannetecknad darav, att varje bransleror och till detta Miranda forlangningsror utgoras av ett kontinuerligt rOr, uppvisande ett bransleladdat avsnitt och ett avsnitt utan-bransle. Anforda publikationer:Nuclear reactor according to claims 1-5, characterized in that each branch clay and to this Miranda extension pipe consists of a continuous tube, having a branch-loaded section and a section without branch. Request publications:
SE204932D SE204932C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE204932T

Publications (1)

Publication Number Publication Date
SE204932C1 true SE204932C1 (en) 1965-01-01

Family

ID=41988309

Family Applications (1)

Application Number Title Priority Date Filing Date
SE204932D SE204932C1 (en)

Country Status (1)

Country Link
SE (1) SE204932C1 (en)

Similar Documents

Publication Publication Date Title
EP3485496B1 (en) Vertically-segmented nuclear reactor
US11145424B2 (en) Direct heat exchanger for molten chloride fast reactor
EA039692B1 (en) Thermal management of molten fuel nuclear reactors
CN102822902A (en) Compact nuclear reactor with integral steam generator
JP4786616B2 (en) Reactor
US20130336442A1 (en) Pressurized water reactor compact steam generator
US9523496B2 (en) Integral pressurized water reactor with external steam drum
US3400049A (en) Steam cooled nuclear reactor power system
KR101436497B1 (en) Passive decay heat removal system for liquid metal cooled reactors with enhanced natural circulation cooling capability using a helical type sodium-to-sodium heat exchanger
US9336907B2 (en) Pressure-tube reactor with coolant plenum
US3395076A (en) Compact nuclear reactor heat exchanging system
US3029197A (en) Boiling reactors
JPH0216496A (en) Isolation condenser with stop cooling system heat exchanger
DE1439846C3 (en) Atomic nuclear reactor cooled with liquid coolant
JPH02281194A (en) Steam separating system for boiling water reactor
SE204932C1 (en)
US3144393A (en) Subcooled liquiod inlet fog cooled nuclear reactors
JPH0727051B2 (en) Boiling water reactor system with staggered chimney
JPH05215877A (en) Core of boiling water type nuclear reac- tor
US5180546A (en) Boiling water reactor with downcomer steam release channel
JPH04230896A (en) Output adjustable natural-circulation type boiling water reactor
GB2098382A (en) Packed fluidized bed blanket for fusion reactor
US3188278A (en) Fuel element for a supercritical pressure power reactor
JPH0727054B2 (en) Boiling water reactor system with descending steam release channel
Kima et al. Preliminary Thermal Stress Analysis for Intermediate Heat Exchanger of Prototype SFR