SE1450094A1 - Arsenic-free brass with improved zinc toughness and cutability - Google Patents

Arsenic-free brass with improved zinc toughness and cutability Download PDF

Info

Publication number
SE1450094A1
SE1450094A1 SE1450094A SE1450094A SE1450094A1 SE 1450094 A1 SE1450094 A1 SE 1450094A1 SE 1450094 A SE1450094 A SE 1450094A SE 1450094 A SE1450094 A SE 1450094A SE 1450094 A1 SE1450094 A1 SE 1450094A1
Authority
SE
Sweden
Prior art keywords
weight
alloy
arsenic
free
massing
Prior art date
Application number
SE1450094A
Other languages
Swedish (sv)
Inventor
Jan Nilsson
Cato Martinsen Merelid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52649087&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=SE1450094(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed filed Critical
Priority to SE1450094A priority Critical patent/SE1450094A1/en
Priority to JP2016549434A priority patent/JP6178016B2/en
Priority to EP15709371.7A priority patent/EP3099832B1/en
Priority to CA2937664A priority patent/CA2937664A1/en
Priority to US15/115,084 priority patent/US20160340759A1/en
Priority to PCT/SE2015/050103 priority patent/WO2015115989A2/en
Priority to RU2016133287A priority patent/RU2016133287A/en
Priority to BR112016017682A priority patent/BR112016017682A2/en
Priority to CN201580006618.1A priority patent/CN106170569A/en
Priority to SG11201605577PA priority patent/SG11201605577PA/en
Priority to MX2016009812A priority patent/MX2016009812A/en
Priority to KR1020167022706A priority patent/KR101802933B1/en
Priority to AU2015211433A priority patent/AU2015211433A1/en
Publication of SE1450094A1 publication Critical patent/SE1450094A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

Föreliggande uppfinningen avser en arsenikfri mässinglegering med förbättrad (i) avzinkningshärdighet, (ii) skärbarhet, och (iii) skydd mot intergranulär korngränskorrosion, där nämnda mässinglegeringen innefattar 60,0-65,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,2-0,6 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn, och varvid mässinglegeringen kännetecknas av den innefattar < 5 vikt-% (3-fas, företrädesvis < 1 vikt-%. Därutöver avser uppfinningen ett förfarande för framställning av nämnda mässinglegering.The present invention relates to an arsenic-free brass alloy having improved (i) dezincification resistance, (ii) cuttability, and (iii) protection against intergranular grain boundary corrosion, wherein said brass alloy comprises 60.0-65.0 wt% Cu, 0.10-1.00 wt% Pb, 0.2-0.6 wt% P, 0.02-0.06 wt% Sb, and the residue Zn, the brass alloy being characterized by comprising <5 wt% (3-phase, In addition, the invention relates to a process for producing said brass alloy.

Description

ARSENIKFRI MASSING MED FORBATTRAD AVZINKNINGSHARDIGHET OCH SKARBARHET Tekniskt omrade FOreliggande uppfinning avser en arsenikfri massinglegeringen med fOrbattrad avzinkningshardighet, skydd mot intergranular korngranskorrosion och skarbarhet. TECHNICAL FIELD The present invention relates to an arsenic-free massing alloy with improved dezincification hardness, protection against intergranular granule corrosion and scalability.

Uppfinningens bakgrund Massing är ett material vars grundbestandsdelare är koppar (Cu) och zink (Zn). Genom tillsats av olika legeringsamnen sasom bly (Pb), jam (Fe), aluminium (Al), nickel (Ni), mangan (Mn), kisel (Si) kan massingen ges unika egenskaper, och det finns manga olika massingslegeringar anpassade for olika typer av bearbetningar och slutprodukter. Beroende pa sammansattning och tillverkning kommer mas- singen att besta av olika sa kallade faser, som am mikrostrukturkomponenter. De vanliga faserna i massing är a-fasen sonn am kopparrik och p-fasen sonn am zinkrik. Ofta bestar massing av en blandning av dessa tva faser. Background of the Invention Massing is a material whose basic constituents are copper (Cu) and zinc (Zn). By adding different alloying elements such as lead (Pb), jam (Fe), aluminum (Al), nickel (Ni), manganese (Mn), silicon (Si) the mass can be given unique properties, and there are many different mass alloys adapted for different types of processing and end products. Depending on the composition and manufacturing, the machining will consist of different so-called phases, such as microstructure components. The common phases in massing are the a-phase sonn am copper-rich and the p-phase sonn am zinc-rich. Massaging often consists of a mixture of these two phases.

En fast losning med en enhetlig massingkomposition bildas nar upp till cirka vikt-`)/0 zink tillsatts till koppar. Ytterligare okning av zinkhalten ger en blandning av den ursprungliga fasta losningen (a-fasen) och en ny fast losning med h6gre halt av zink (p-fasen). Massing som innehaller mellan 35 - 45 vikt-% zink bestar av blandningar av dessa tva faser och kallas a-13-massing eller duplex-massing, varvid forhallandet mellan a-fasen till p-fasen beror huvudsakligen pa zinkhalten. A solid solution with a uniform massing composition is formed when up to about weight-/) / 0 zinc is added to copper. Further increase of the zinc content gives a mixture of the original solid solution (the α-phase) and a new solid solution with a higher content of zinc (the β-phase). Massages containing between 35 and 45% by weight of zinc consist of mixtures of these two phases and are called α-13 massages or duplex massages, the ratio between the α-phase and the β-phase depending mainly on the zinc content.

Narvaron av p-fas i a-p-massing ger minskad kall duktilitet men kraftigt 6kad mottaglighet till varmbearbetning genom extrudering eller stansning samt gjutning utan varmesprickor, aven nar bly är narvarande. Darutover är a-p-legeringar starkare och, eftersom de innehaller en hogre andel zink, billigare an a-massing. Dock uppvisar a-p-massinglegeringar h6gre kanslighet f6r avzinkning. Dammed finns det ett behov av att framstalla a-p-massinglegeringar med avzinkningshardighet. The presence of p-phase in a-p-massing gives reduced cold ductility but greatly reduced susceptibility to hot processing by extrusion or punching as well as casting without heat cracks, even when lead is present. In addition, a-p alloys are stronger and, because they contain a higher proportion of zinc, cheaper than a-mass. However, a-p-massing alloys have a higher probability of dezincification. Thus, there is a need to produce a-p-massing alloys with dezincification hardness.

I vissa miljoer maste speciallegeringar anvandas. Ett sadant exennpel am VVS arnnaturer i form av blandare, ventiler, kopplingar med nnera da avzinkningshardighet erfordras. Avzinkning am en typ av korrosion dar zink selektivt angrips och lamnar 2 en poros kopparstruktur. Avzinkningshardig massing har en relativ hog Cu halt, over 60%, samt innehaller en inhibitor sasom arsenik (As), som gor att massing-ens a-fas är resistent mot avzinkning. Eftersom endast a-fasen kan stabiliseras är det viktigt att minimera halten 13-fas genom en h6gre kopparhalt. Det har dock visat sig att det kvarstar [3-fas aven om arsenik och hog kopparhalt pa Over 60% har anvants. Darmed finns det ett behov av minimera p-fasen hos a-p-massinglegeringar (innefattande60 vikt-% Cu) pa ett alternativt satt. In some millions, special alloys must be used. Such an example of plumbing fixtures in the form of mixers, valves, couplings, etc. when dezincification hardness is required. Desalination is a type of corrosion in which zinc is selectively attacked and leaves a porous copper structure. Dezincification-resistant pulp has a relatively high Cu content, over 60%, and contains an inhibitor such as arsenic (As), which makes the a-phase of the pulp resistant to dezincification. Since only the α-phase can be stabilized, it is important to minimize the 13-phase content through a higher copper content. However, it has been shown that it remains [3-phase even if arsenic and high copper content of Over 60% have been used. Thus, there is a need to minimize the p-phase of α-β-massing alloys (comprising 60% by weight Cu) in an alternative manner.

Massinglegeringar kan utover avzinkning drabbas av intergranular korngranskor- rosion vilket är en form av korrosion som sker langs med korngranserna. Zinkhalten är hogre vid korngranserna hos massinglegeringar och intergranular korngranskorrosion angriper just den zink som finns langs med korngranserna. Darmed finns det aven ett behov av att skydda massinglegeringar mot intergranular korngranskorrosion. In addition to dezincification, pulp alloys can suffer from intergranular grain spruce corrosion, which is a form of corrosion that occurs along the grain boundaries. The zinc content is higher at the grain boundaries of massing alloys and intergranular grain branch corrosion attacks precisely the zinc that is along the grain boundaries. Thus, there is also a need to protect massing alloys against intergranular grain spruce corrosion.

Manniskor exponeras oftast for oorganisk arsenik via dricksvatten och viss f6da, och for olika organiska arsenikforeningar framfor alit via fisk och skaldjur [1-3]. Globalt sett am/ander flera nniljoner manniskor dricksvatten med sa hog arsenikhalt att det foreligger risk for allvarliga halsoeffekter. Varst drabbade är Bangla- desh, Indien, Taiwan, samt delar av Sydamerika och Kina [3]. Darmed finns det ett behov att sanka halterna pa arsenik i drickvatten genom att inte anvanda arsenik i legeringar av massing som är i kontakt med dricksvatten. Humans are most often exposed to inorganic arsenic via drinking water and certain foods, and to various organic arsenic compounds rather than alit via fish and shellfish [1-3]. Globally, several million people drink drinking water with such a high arsenic content that there is a risk of serious throat effects. The worst affected are Bangladesh, India, Taiwan, and parts of South America and China [3]. Thus, there is a need to lower the levels of arsenic in drinking water by not using arsenic in alloying masses that are in contact with drinking water.

Amerikanska vetenskapsakademien har uppskattat livstidsrisken fOr cancer till 1-3 fall per 1000 individer vid ett dagligt intag av 1 liter dricksvatten med arsenikhalter vid gransvardesnivan 10 pg/I, vilket overskrider lagrisknivan (ca ett fall per 100 000 exponerade) som kan anses utgora en acceptabel risk for en enskild miljofaktor [3]. Som for andra cancerframkallande amnen, minskar risken for halsoeffekter vid minskad exponering. Gransvardet for arsenik i dricksvatten är 10 pg/I inom EU. The American Academy of Sciences has estimated the lifetime risk of cancer to be 1-3 cases per 1000 individuals with a daily intake of 1 liter of drinking water with arsenic levels at the spruce value level 10 pg / I, which exceeds the storage risk level (about one case per 100,000 exposed) which can be considered acceptable risk of a single environmental factor [3]. As with other carcinogens, the risk of side effects with reduced exposure decreases. The limit value for arsenic in drinking water is 10 pg / I within the EU.

Gransvardet for arsenik i dricksvatten i Sverige, 10 pg/I, är baserat pa cancerrisken [3]. Livstidsrisk for canceruppkomst, vid dagligt intag av arsenik motsvarande gransvardet i dricksvatten (10-20 pg arsenik per dag beroende pa alder, klinnat och fysisk aktivitet), har uppskattats till 1-3 per 1 000 individer (0,1-0,3 procent). 3 Det är darmed Onskvart att begransa intaget av arsenik sa langt det är mojligt. Det galler speciellt for barn, eftersom experimentella studier tyder pa att foster och sma barn är kansligare an vuxna. 5 I lander dar bly är relativt vanligt i vattenledningssystemet har bly i dricksvatten bidragit till hog exponering. Bly kan skada nervsystemet redan vid mycket laga Doser [3,4]. Det omogna nervsystemet är speciellt kansligt. Blyhalten i blod kan sattas i relation till halsorisken. Vid blodblyhalter runt 100 pg/I och hogre har symtorn som nedsatt intellektuell kapacitet, fordrojd utveckling och beteendestorningar kunnat pavisas hos barn som exponerats under fosterstadiet och smabarnsaren. Darmed finns det ett behov att sanka halterna av bly i drickvatten genom att anvanda lagre halter av bly i legeringar av massing som är i kontakt med dricksvatten. The limit value for arsenic in drinking water in Sweden, 10 pg / I, is based on the risk of cancer [3]. Lifetime risk of developing cancer, with daily intake of arsenic corresponding to the limit value in drinking water (10-20 pg arsenic per day depending on age, clinical and physical activity), has been estimated at 1-3 per 1,000 individuals (0.1-0.3 percent ). 3 It is therefore Onskvart to limit the intake of arsenic as far as possible. This is especially true for children, as experimental studies suggest that fetuses and young children are more likely than adults. 5 In countries where lead is relatively common in the water supply system, lead in drinking water has contributed to high exposure. Lead can damage the nervous system even at very low doses [3,4]. The immature nervous system is especially sensitive. The lead content in blood can be set in relation to the throat risk. At blood lead levels around 100 pg / I and higher, the symptoms such as impaired intellectual capacity, delayed development and behavioral disorders have been demonstrated in children exposed during the fetal stage and the toddler. Thus, there is a need to lower the levels of lead in drinking water by using lower levels of lead in alloys of pulp that are in contact with drinking water.

Uppfinningens syfte Syftet med foreliggande uppfinning är att tillhandahalla en arsenikfri a-P.- massinglegering. 20 Syftet är vidare att massinglegeringen har forbattrad avzinkningshardighet an massinglegeringar med arsenik. Object of the Invention The object of the present invention is to provide an arsenic-free α-P. massing alloy. The object is further that the massing alloy has improved dezincification hardness than massing alloys with arsenic.

Syftet är vidare att tillhandahalla en massinglegering med likartad eller battre skydd mot intergranular korngranskorrosion an massinglegeringar med arsenik. The aim is further to provide a massing alloy with similar or better protection against intergranular grain branch corrosion than massing alloys with arsenic.

Syftet är vidare att halten bly i massinglegeringen ska vara 1,0 vikt-`)/0, foretrades 0,10 vikt-% Pb. The purpose is further that the content of lead in the massing alloy should be 1.0% by weight, 0.10% by weight of Pb was preferred.

Syftet är vidare att halten av p-fasen är < 5 vikt-°/0, foretradesvis 1 vikt-°/0. 4 Sammanfattning av uppfinningen Genom foreliggande uppfinning, sasom det framgar i de sjalvstandiga patentkraven, uppfylls ovan angivna syften. Lampliga utforingsformer av uppfinningen anges i de osjalvstandiga patentkraven. The purpose is further that the content of the β-phase is <5% by weight / 0, preferably 1% by weight / 0. Summary of the Invention The present invention, as set forth in the independent claims, fulfills the above objects. Suitable embodiments of the invention are set out in the dependent claims.

Uppfinningen avser en arsenikfri a-p-massinglegering med forbattrad (i) avzinkningshardighet, (ii) skarbarhet, och (iii) skydd mot intergranular korngranskorrosion. 10 Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen 60,065,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,2-0,6 vikt-% P (fosfor), 0,02-0,06 vikt-% Sb (antimon), och resten Zn. Namnda massinglagering kannetecknas av att den inne- fattar < 5 vikt-%foretradesvis 1 vikt-%. Eftersom endast a-fasen kan stabi- liseras är det viktigt att minimera halten p-fas till <5 vikt-%foretradesvis 1 15 vikt-%, i syfte att motverka avzinkning och intergranular korngranskorrosion. The invention relates to an arsenic-free α-β-massing alloy having improved (i) dezincification hardness, (ii) cleavability, and (iii) protection against intergranular grain corrosion. In a preferred embodiment, the arsenic-free pulp alloy comprises 60.065.0 wt% Cu, 0.10-1.00 wt% Pb, 0.2-0.6 wt% P (phosphorus), 0.02-0.06 weight% Sb (antimony), and the residue Zn. Said pulp storage is characterized by the fact that it comprises <5% by weight, preferably 1% by weight. Since only the α-phase can be stabilized, it is important to minimize the content of β-phase to <5% by weight, preferably 1% by weight, in order to counteract dezincification and intergranular grain corrosion.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen 60,065,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,2-0,6 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn, och varvid massinglegeringen innefattar < 0,5 vikt-%13-fas, foretrades- 20 vis 1 vikt-%och framstallningen av namnda massinglegeringen innefattar stegen att: tillsatta Sb och P till en baslegering i en smaltugn, snnaltan halls i en gjutform, den gjutna massinglegeringen varmebehandlas vid 500 °C till 550°C i 1 - 2 timmar. According to a preferred embodiment, the arsenic-free pulp alloy comprises 60.065.0 wt% Cu, 0.10-1.00 wt% Pb, 0.2-0.6 wt% P, 0.02-0.06 wt% Sb , and the residue Zn, and wherein the pulp alloy comprises <0.5% by weight of 13 phase, preferably 1% by weight and the preparation of said pulp alloy comprises the steps of: adding Sb and P to a base alloy in a narrow furnace, In a mold, the cast massing alloy is heat treated at 500 ° C to 550 ° C for 1-2 hours.

Eftersom endast a-fasen kan stabiliseras är det viktigt att minimera halten p-fas i syfte att motverka avzinkning och intergranular korngranskorrosion. Varmebehandlingen i kombination med inhibitorn Sb sanker mangden 13-fas samt att legeringstillsatsen P sanker skarkrafterna. I denna f6redragna utforingsform har arse- 30 nikfria massinglegeringen karakteriserats genom sattet att framstalla den (productby-process) i kombination med andra bestamningar for legeringen eftersom det är svart att definiera legeringens tekniska sardrag pa ett annat satt, dvs. det är delvist tack vare varnnebehandling sonn legeringen erhaller forbattrad (i) avzinkningshardighet och (ii) skydd mot intergranular korngranskorrosion. Since only the α-phase can be stabilized, it is important to minimize the β-phase content in order to counteract dezincification and intergranular barley grain corrosion. The heat treatment in combination with the inhibitor Sb reduces the amount of 13-phase and the alloy additive P reduces the shear forces. In this preferred embodiment, the arsenic-free massing alloy has been characterized by the method of producing it (product by process) in combination with other determinations for the alloy because it is black to define the technical characteristics of the alloy in another way, i.e. this is partly due to the protective treatment of the alloy, which improves (i) dezincification hardness and (ii) protection against intergranular grain corrosion.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen 63,064,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn. Den lite hogre mangden Pb ger en viss forbattrad skarbarhet. According to a preferred embodiment, the arsenic-free pulp alloy comprises 63.064.0 wt% Cu, 0.10-1.00 wt% Pb, 0.02-0.06 wt% P, 0.02-0.06 wt% Sb , and the remainder Zn. The slightly higher amount of Pb gives a certain improved scalability.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen 63,064,0 vikt-% Cu, 0,80-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn. Den lite hogre mangden Pb ger en viss forbattrad skarbarhet. According to a preferred embodiment, the arsenic-free pulp alloy comprises 63.064.0 wt% Cu, 0.80-1.00 wt% Pb, 0.02-0.06 wt% P, 0.02-0.06 wt% Sb , and the remainder Zn. The slightly higher amount of Pb gives a certain improved scalability.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen aven 0,07-0,12 vikt-% Fe och 0,45-0,70 vikt-% Al. FOrekomsten av Fe och Al i massinglegeringen medfor en viss okad hardhet, styrka och draghallfasthet. According to a preferred embodiment, the arsenic-free massing alloy also comprises 0.07-0.12% by weight of Fe and 0.45-0.70% by weight of Al. The presence of Fe and Al in the massing alloy entails a certain increased hardness, strength and tensile strength.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen 63, 15 vikt-% Cu, 35,0 vikt-% Zn, 0,9 vikt-% Pb, 0,10 vikt-% Fe, 0,50 vikt-% Al, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb. Legeringstillsatser sasom Fe och Al forbattrar styrka, hardhet och draghallfasthet. Halten av P och Sb pa 0,02-0,06 vikt-% vardera ger skydd mot avzinkning och intergranular korngranskorrosion. According to a preferred embodiment, the arsenic-free massing alloy comprises 63, 15% by weight of Cu, 35.0% by weight of Zn, 0.9% by weight of Pb, 0.10% by weight of Fe, 0.50% by weight of Al, 0.02 -0.06 wt% P, 0.02-0.06 wt% Sb. Alloy additives such as Fe and Al improve strength, hardness and tensile strength. The content of P and Sb of 0.02-0.06% by weight each provides protection against dezincification and intergranular granule corrosion.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen arsenikfria massinglegering 63,5 vikt-% Cu, 35,0 vikt-% Zn, 0,9 vikt-% Pb, 0,10 vikt-% Fe, 0,50 vikt-% Al, 0,03 vikt-% P och 0,03 vikt-% Sb. Halten av P och Sb pa 0,03 vikt% vardera ger battre skydd mot avzinkning och intergranular korngranskorrosion samt ca 10% lagre skarkrafter. According to a preferred embodiment, the arsenic-free pulp alloy comprises arsenic-free pulp alloy 63.5% by weight of Cu, 35.0% by weight of Zn, 0.9% by weight of Pb, 0.10% by weight of Fe, 0.50% by weight of Al, O .03 wt% P and 0.03 wt% Sb. The content of P and Sb of 0.03% by weight each provides better protection against dezincification and intergranular grain spruce corrosion as well as about 10% lower shear forces.

Enligt en foredragen utforingsform innefattar arsenikfria massinglegeringen 0-0,200 vikt-% Ni, 0-0,100 vikt-% Mn, 0-0,02 vikt-% Si, 0-0,002 vikt-% As °oh/eller 0,00040,0006 vikt-% B (bor), foretradesvis 0,0005 vikt-% B. Nickel forbattrar hardhet och draghallfasthet utan signifikant effekt pa duktilitet vilket ger forbattrade egenskaper vid forhojda temperaturer. Forekomsten av Mn medfor en viss itikad hardhet, styrka och draghallfasthet. Si Okar hallfastheten och notningsbestandigheten. Halten av As och B är acceptabla halter av oundvikliga fOroreningar i legeringen. 6 Enligt en foredragen utforingsform framstalls arsenikfria massinglegeringen enligt föreliggande ansokan genom stegen att: tillsatta Sb och P till en baslegering i en smaltugn, snnaltan halls i en gjufform, c. den gjutna massinglegeringen varmebehandlas vid 500°C till 550°Ci 1 — 2 timmar. According to a preferred embodiment, the arsenic-free mass alloy comprises 0-0.200% by weight of Ni, 0-0.100% by weight of Mn, 0-0.02% by weight of Si, 0-0.002% by weight of As ° oh / or 0.00040,0006% by weight % B (boron), preferably 0.0005% by weight B. Nickel improves hardness and tensile strength without significant effect on ductility which gives improved properties at elevated temperatures. The presence of Mn entails a certain labeled hardness, strength and tensile strength. Si Increases the half strength and notch resistance. The levels of As and B are acceptable levels of unavoidable impurities in the alloy. According to a preferred embodiment, the arsenic-free pulp alloy according to the present application is prepared by the steps of: adding Sb and P to a base alloy in a melting furnace, then pouring into a mold, c. The cast pulp alloy is heat treated at 500 ° C to 550 ° C for 1-2 hours .

Varmebehandlingen i kombination med inhibitorn Sb sanker mangden 13-fas samt att legeringstillsatsen P sanker skarkrafterna. The heat treatment in combination with the inhibitor Sb reduces the amount of 13-phase and the alloy additive P reduces the shear forces.

Enligt en foredragen utforingsform framstalls arsenikfria massinglegeringen genom att varmebehandla vid 550°C i 2 timmar vilket sanker mangden p-fas till <5 vikt-%, foretradesvis 1 vikt-%, samt att legeringstillsatsen P sanker skarkrafterna till ca 10% lagre skarkrafter. According to a preferred embodiment, the arsenic-free massing alloy is prepared by heat treating at 550 ° C for 2 hours, which reduces the amount of p-phase to <5% by weight, preferably 1% by weight, and that the alloy additive P reduces the shear forces to about 10% lower shear forces.

Kort beskrivning av fig urerna Figur 1 - Mikrostrukturen pa hos bade gjuten och varmebehandlad testlegering illustreras. Alla bilder är tagna med optiskljusmikroskopi. Forsta raden är med 200x f6rstoring och andra raden är 500x forstoring. Brief Description of the Figures Figure 1 - The microstructure of both cast and heat treated test alloy is illustrated. All images are taken with optical light microscopy. The first row is with 200x magnification and the second row is 500x magnification.

Figur 2 - Tvarsnitt fran testskivor som visar graden av korrosionsangrepp for representativa testlegeringar illustreras. Figure 2 - Cross section of test discs showing the degree of corrosion attack for representative test alloys is illustrated.

Beskrivning av uppfinningen Foreliggande uppfinningen avser en arsenikfri massinglegering med forbattrad (i) avzinkningshardighet, (ii) skarbarhet, och (iii) skydd mot intergranular korngranskorrosion, dar namnda massinglegeringen innefattar 60,0-65,0 vikt-% Cu, 0,101,00 vikt-% Pb, 0,2-0,6 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn, och varvid massinglegeringen kannetecknas av den innefattar < 5 vikt-%foretradesvis 1 vikt-%. Description of the Invention The present invention relates to an arsenic-free pulp alloy having improved (i) dezincification hardness, (ii) cleavability, and (iii) protection against intergranular grain granulation corrosion, wherein said pulp alloy comprises 60.0-65.0 wt% Cu, 0.101.00 wt. % Pb, 0.2-0.6 wt% P, 0.02-0.06 wt% Sb, and the remainder Zn, and the massing alloy being characterized by it comprises <5 wt%, preferably 1 wt%.

Massinglegeringen enligt foreliggande uppfinningen kan aven innefatta legeringstillsatser sasom Fe, Al, Ni, Mn och Si i syfte att forbattra styrka, slitstyrka och/eller drag- 7 hallfasthet. Forekomsten av Fe, Mn och Al i massinglegeringen medfor en viss okad hardhet, styrka och draghallfasthet. Si okar hallfastheten och notningsbestandigheten hos massinglegeringen. Nickel forbattrar hardhet och draghallfasthet utan signifikant effekt pa duktilitet vilket ger forbattrade egenskaper vid forhojda temperaturer. Andra grundamnen sasom B, Bi, Mg, Cr och As kan ocksa forekomma i massinglegeringen som oundvikliga fororeningar. The pulp alloy of the present invention may also include alloying additives such as Fe, Al, Ni, Mn and Si in order to improve strength, abrasion resistance and / or tensile strength. The presence of Fe, Mn and Al in the massing alloy entails a certain increased hardness, strength and tensile strength. Si increases the half-strength and wear resistance of the massing alloy. Nickel improves hardness and tensile strength without significant effect on ductility, which gives improved properties at elevated temperatures. Other elements such as B, Bi, Mg, Cr and As can also occur in the massing alloy as unavoidable contaminants.

Med definitionen "arsenikfri" menas att massinglegeringen enligt foreliggande ansokan innefattar < 0,02 vikt-% As. Foretradesvis innefattar massinglegeringen 0,002 vikt-% As, dvs. att As forekommer som en oundviklig fororening. By the definition "arsenic-free" is meant that the massing alloy of the present application comprises <0.02% by weight of As. Preferably, the massing alloy comprises 0.002% by weight of As, i.e. that As occurs as an inevitable pollution.

Massinglegeringen enligt foreliggande uppfinning framstalls genom ett forfarande innefattande stegen att tillsatta Sb och P till en baslegering i en smaltugn, varvid baslegeringen innefattar den mangd Cu, Zn, Pb och eventuellt andra lege- ringstillsatser sasom Fe och Al, som ska inga i massinglegeringen, smaltan halls i en gjutform, den gjutna massinglegeringen varmebehandlas vid 500 °C till 550 °C i 1 — 2 timmar, varvid varmebehandlingen sker foretradesvis vid 550 °C i 2 timmar. The pulp alloy of the present invention is prepared by a process comprising the steps of adding Sb and P to a base alloy in a melting furnace, the base alloy comprising the amount of Cu, Zn, Pb and optionally other alloying additives such as Fe and Al kept in a mold, the cast massing alloy is heat treated at 500 ° C to 550 ° C for 1-2 hours, the heat treatment preferably taking place at 550 ° C for 2 hours.

Genom att tillsatta inhibitorn Sb och varmebehandling erhalls en massinglegering innefattande < 5 vikt-%foretradesvis 1 vikt-%vilket ger forbattrad avzinkningshardighet och skydd mot intergranular korngranskorrosion. Foreliggande uppfinning indikerar att P inte agerar som inhibitor men dess narvaro leder till lagre skarkrafter vilket är en ovantad teknisk effekt (se Exennpel 1). For ovrigt framjar Sb och varmebehandlingen vid 550 °C i 2 timmar att P-straken inte är sammanhangande vilket i sin tur framjar skydd mot intergranular korngranskorrosion. By adding the inhibitor Sb and heat treatment, a massing alloy comprising <5% by weight, preferably 1% by weight, is obtained, which gives improved dezincification hardness and protection against intergranular grain granulation corrosion. The present invention indicates that P does not act as an inhibitor but its presence leads to lower shear forces which is an unexpected technical effect (see Example 1). Otherwise, Sb and the heat treatment at 550 ° C for 2 hours promote that the P-strip is not coherent, which in turn promotes protection against intergranular grain spruce corrosion.

Foljande exempel är till for att illustrera ett f6redraget utf6ringsform och utesluter darmed inte andra massing legeringar med bade a- och 13-faser som faller inom skyddsomfanget f6r patentkraven enligt foreliggande uppfinning. Exemplet innefattar aven jamforande fOrsOk (i syfte att pavisa teknisk effekt) mellan massinglegeringar som innehaller olika kombinationer av As, Sb och/eller P. 8 EXEMPEL Baslegering tillverkad av Nordic Brass Gusum (NBG) Testlegeringar 1-11 som testades i foreliggande ansokan framstalldes genom att anvanda en baslegering med prototypnamnet 752 dar halten As, Sb och P är sA nara noll som mOjligt. Kemiska sammansattningen av 752 anges i Tabell 1 i vikt-`)0 dar "NBG standardvarde" indikerar kemiska sannmansattningen hos baslegeringen som man viii uppna medan "Min" och "Max" anger toleranserna. FOr Ovrigt anges aven den uppmatta sammansattningen hos baslegeringen. 10 Tabell 1: Minimum-, maximum- och standardvarden far 752 samt kemisk analys av baslegeringen 752 som anvandes far frannstallning av testlegeringarna 1-11. The following examples are intended to illustrate a preferred embodiment and thus do not exclude other pulp alloys having both α- and 13-phases which fall within the scope of the claims of the present invention. The example also includes comparative fOrsOk (in order to demonstrate technical effect) between massing alloys containing different combinations of As, Sb and / or P. 8 EXAMPLES Base alloy made by Nordic Brass Gusum (NBG) Test alloys 1-11 which were tested in the present application were produced by to use a base alloy with the prototype name 752 where the content As, Sb and P is as close to zero as possible. The chemical composition of 752 is given in Table 1 by weight. "NBG standard value" indicates the chemical true composition of the base alloy which is to be obtained while "Min" and "Max" indicate the tolerances. For the rest, the measured composition of the base alloy is also stated. Table 1: Minimum, maximum and standard values for 752 and chemical analysis of the base alloy 752 used for removal of the test alloys 1-11.

Kemisk sammansattning % Min Max NBG std varde Analys av baslegeringen som anvandes for alt framstalla testlegering 1-11 Cu 63,0 64,0 63,63, Zn Rest 35,0 35,23 Pb 0,80 1,00 0,90 0,896 Sn 0,016 Fe 0,07 0,12 0,0,070 Al 0,0,70 0,500 0,504 Ni 0,200 0,013 Mn 0,100 0,003 Si 0,02 0,0 As 0,002 0,002 Sb <0,001 Bi 0,001 P <0,001 B 0,0004 0,0006 0,0000,0006 Mg 0,001 Cr 0,002 As+Sb+P 0,000,002 9 Testlegering 1-11 Testlegeringarna framstalldes i form av got pa 2 kg genom att tillsatta As, Sb och/eller P till baslegeringen i en smaltugn (Leybold) dar legeringarna smaltes i en smaltdegel (Morgan degel) som hade placerats i en induktionsspole. Legeringarna smaltes i narvaro av luft med hjalp av ventilation Over smaltugnen och smaltan halides darefter in i en gjutform genom att tippa smaltdegeln tillsammans med spolen. Dimensionen hos gjutformen var 40x40 mm (h6jd, 300 mm). Chemical composition% Min Max NBG std varde Analysis of the base alloy used to produce test alloy 1-11 Cu 63.0 64.0 63.63, Zn Residue 35.0 35.23 Pb 0.80 1.00 0.90 0.896 Sn 0.016 Fe 0.07 0.12 0.070 Al 0.070 0.500 0.504 Ni 0.200 0.013 Mn 0.100 0.003 Si 0.02 0.0 As 0.002 0.002 Sb <0.001 Bi 0.001 P <0.001 B 0.0004 0, 0006 0,0000,0006 Mg 0,001 Cr 0,002 As + Sb + P 0,,000,002 9 Test alloy 1-11 The test alloys were produced in the form of castings of 2 kg by adding As, Sb and / or P to the base alloy in a narrow furnace (Leybold) where the alloys melted in a crucible (Morgan crucible) which had been placed in an induction coil. The alloys were melted in the presence of air with the help of ventilation. Over the smelting furnace and the smelting was then halied into a mold by tipping the smelting crucible together with the coil. The dimension of the mold was 40x40 mm (height, 300 mm).

Testlegeringar med olika kombinationer av As, Sb och/eller P som testades anges i Tabell 2. Test alloys with different combinations of As, Sb and / or P that were tested are listed in Table 2.

Tabell 2: Ha!ten av As, P och Sb i testlegeringarna 1-11 angivna i vikt-`)/0. De "Analyserade" halter- na indikerar de uppmatta vikt-% medan "Planerade" halterna indikerar de halter som man ville uppnA i testlegeringarna. Table 2: The content of As, P and Sb in the test alloys 1-11 given in weight-`) / 0. The "Analyzed" levels indicate the measured weight% while the "Planned" levels indicate the levels that were desired to be achieved in the test alloys.

Planerade Analyserade As (%v) P (%v) Sb (%v) As (%v) P (%v) Sb (%v) Legering 1 (baslegering) - - - 0,002 0,000 0,000 Legering 2 0,02 - - 0,00,000 0,000 Legering 3 0,06 - - 0,066 0,000 0,001 Legering 4 - 0,02 - 0,002 0,018 0,000 Legering - 0,06 - 0,002 0,066 0,000 Legering 6 - - 0,02 0,002 0,000 0,019 Legering 7 0,06 0,002 0,000 0,062 Legering 8 0,03 0,03 - 0,029 0,00,000 Legering 9 0,03 0,03 0,00,000 0,0 Legering 0,03 0,03 0,002 0,029 0,029 Legering 11 0,02 0.02 0.02 0,021 0,022 0,022 Testlegeringarnas kemiska sammansattning presenteras i Tabell 3 dar aven oundvikliga fororeningar sasom B, Bi, Mg och Cr har tag its med i tabellen. Planned Analyzed As (% v) P (% v) Sb (% v) As (% v) P (% v) Sb (% v) Alloy 1 (base alloy) - - - 0.002 0.000 0.000 Alloy 2 0.02 - - 0.00,000 0.000 Alloy 3 0.06 - - 0.066 0.000 0.001 Alloy 4 - 0.02 - 0.002 0.018 0.000 Alloy - 0.06 - 0.002 0.066 0.000 Alloy 6 - - 0.02 0.002 0.000 0.019 Alloy 7 0.06 0.002 0.000 0.062 Alloy 8 0.03 0.03 - 0.029 0.00,000 Alloy 9 0.03 0.03 0.00,000 0.0 Alloy 0.03 0.03 0.002 0.029 0.029 Alloy 11 0.02 0.02 0.02 0.021 0.022 0.022 Chemical of the test alloys composition is presented in Table 3, where unavoidable pollutants such as B, Bi, Mg and Cr are also included in the table.

Tabell 3: Kenniska sannnnansattningen av testlegeringarna i vikt-`3/0. Table 3: Knowledge of the true alloy of the test alloys in weight-`/ 3/0.

Cu Zn Pb Sn Fe Al Ni Mn Si As Sb B Si P Mg Cr min 63 0,8 ,07 , max 64 rest 0,9 ,12 0,7 0,2 0,1 0,02 ,002 NBGstd 63,1 ,0, 1 63,1 35,4 ,88 ,017 ,09 ,49 ,014 ,004 ,016 ,002 0 ,001 ,001 0 ,001 ,002 2 63,2 35,2 ,88 ,014 ,11 ,49 ,013 ,004 ,016 ,00 ,001 ,001 0 ,001 ,002 3 63,3 35,1 ,89 ,016 ,09 ,,013 ,004 ,016 ,066 ,001 ,001 ,001 0 ,001 ,002 4 63,3 35,1 ,89 ,016 ,08 ,,013 ,004 ,0,002 0 ,001 ,001 ,018 ,001 ,002 63,4 35,0 ,91 ,018 ,09 ,49 ,014 ,004 ,016 ,002 0 ,001 ,001 ,066 ,001 ,002 6 63,3 35,2 ,89 ,016 ,08 ,48 ,013 ,004 ,017 ,002 ,019 ,001 ,001 0 ,001 ,002 7 63,4 35,0 ,89 ,016 ,09 ,49 ,013 ,004 ,016 ,002 ,062 ,001 ,001 0 ,001 ,002 8 63,34,9 ,89 ,013 ,,49 ,013 ,004 ,016 ,029 0 ,001 ,001 ,0,001 ,002 9 63,2 35,2 ,91 ,018 ,09 ,,014 ,004 ,016 ,0,0,001 ,001 0 ,001 ,002 63,6 34,8 ,89 ,016 ,,48 ,013 ,004 ,017 ,002 ,029 ,001 ,001 ,028 ,001 ,002 11 63,34,9 ,89 ,0,,49 ,013 ,004 ,016 ,0,022 ,001 ,001 ,022 ,001 ,002 Korrosionstester Testlegeringarna 1-11 exponeras for korrosion i form av bade gjutna och varmebehandlade provskivor. Namnda varmebehandling gjordes vid 550 °C under 2 timmar och efter avlagsnande fran ugnen snabbslacktes proverna i vatten (med en fordrojning upp till 5 minuter). Som det har indikerats tidigare sa är varmebehandlingen till for att red ucera p-fasen i testlegeringarna. Cu Zn Pb Sn Fe Al Ni Mn Si As Sb B Si P Mg Cr min 63 0,8,07, max 64 rest 0,9,12 0,7 0,2 0,1 0,02, 002 NBGstd 63,1 , 0, 1 63.1 35.4, 88, 017, 09, 49, 014, 004, 016, 002 0, 001, 001 0, 001, 002 2 63.2 35.2, 88, 014, 11, 49, 013, 004, 016, 00, 001, 001 0, 001, 002 3 63.3 35.1, 89, 016, 09 ,, 013, 004, 016, 066, 001, 001, 001 0, 001, 002 4 63.3 35.1, 89, 016, 08 ,, 013, 004, 0.002 0, 001, 001, 018, 001, 002 63.4 35.0, 91, 018, 09, 49, 014, 004 , 016, 002 0, 001, 001, 066, 001, 002 6 63,3 35,2, 89, 016, 08, 48, 013, 004, 017, 002, 019, 001, 001 0, 001, 002 7 63.4 35.0, 89, 016, 09, 49, 013, 004, 016, 002, 062, 001, 001 0, 001, 002 8 63,34,9, 89, 013 ,, 49, 013, 004 , 016, 029 0, 001, 001, 0.001, 002 9 63.2 35.2, 91, 018, 09 ,, 014, 004, 016, 0,0,001, 001 0, 001, 002 63,6 34,8 , 89, 016 ,, 48, 013, 004, 017, 002, 029, 001, 001, 028, 001, 002 11 63,34,9, 89, 0,, 49, 013, 004, 016, 0.022, 001 , 001, 022, 001, 002 Corrosion tests The test alloys 1-11 are exposed to corrosion in the form of both cast and heat-treated sample discs. The said heat treatment was carried out at 550 ° C for 2 hours and after removal from the oven the samples were quenched in water (with a delay up to 5 minutes). As has been indicated previously, the heat treatment is to reduce the p-phase in the test alloys.

Varmebehandlingen gjordes vid 550 °C under 2 timmar eftersom jamforande forsok med andra tennperaturer och tidsintervall (sasonn 460°C till 550°C i 30 min - 8 timmar) indikerar att forbattrad avzinkningshardighet och skydd mot intergranular korngranskorrosion erhalls vid varmebehandling vid 550 °C under 2 timmar. For ovrigt har forst* visat att varmebehandling vid 550 °C under 2 timmar framjar ocksa att p-straken inte är sammanhangande vilket i sin tur framjar skydd mot IGA. The heat treatment was done at 550 ° C for 2 hours because comparative experiments with other tin temperatures and time intervals (season 460 ° C to 550 ° C for 30 minutes - 8 hours) indicate that improved dezincification hardness and protection against intergranular grain granulation corrosion is obtained with heat treatment at 550 ° C during 2 hours. Incidentally, it has been shown that heat treatment at 550 ° C for 2 hours also indicates that the p-strip is not continuous, which in turn promotes protection against IGA.

Testning av avzinkning och intergranular korngranskorrosion gjordes genom att skara ut provskivor Than mitten av geiten. Skivorna erh011s genom att prover skars ut fran goten och de exponerade ytorna slipades med 600 mesh-papper. Dessa provskivor maskerades darefter delvis med nagellack for att skapa oexponerade referensytor vilka anvandes for att bestamma djupet av korrosionsangrepp. 11 Testlegeringarna 1-11 exponerades for korrosion i enlighet med ISO 6509 "Koppar och kopparlegeringar - massing - Faststallande av avzinkning", 11 `)/0 CuCl2 losning i 24 timmar vid 75 ± 2 °C. Testing of dezincification and intergranular grain spruce corrosion was done by cutting out sample discs than the middle of the goat. The boards were obtained by cutting samples from the gutter and sanding the exposed surfaces with 600 mesh paper. These test discs were then partially masked with nail polish to create unexposed reference surfaces which were used to determine the depth of corrosion attack. 11 Test alloys 1-11 were exposed to corrosion in accordance with ISO 6509 "Copper and copper alloys - massaging - Determination of dezincification", 11 `) / 0 CuCl2 solution for 24 hours at 75 ± 2 ° C.

Efter korrosionstesterna bereddes tvarsnitt vinkelrata mot nagellacksmaskeringen for metallografisk undersOkning genom slipning och polering av provskivomar. Korrosionsangrepp bestamdes med ljusoptisktmikroskopi genom att mata med 200X och 500X forstoringar. After the corrosion tests, cross sections perpendicular to the nail polish mask were prepared for metallographic examination by grinding and polishing the sample discs. Corrosion attacks were determined by light optical microscopy by feeding at 200X and 500X magnifications.

Karaktarisering av strukturer fore korrosionsexponering gjordes pa samma satt pa etsade tvarsnitt. Kvantifiering gjordes genom att rakna fraktion av rutnatets korsningspunkter (mesh-intersection) vilka oversteg 200 punkter; dvs. man tar ett rutnat som man lagger ovanfor bilden, sen raknar man antalet punkter som är a- re- spektive P-fas och oversatter det till %. Characterization of structures before corrosion exposure was done in the same way on etched cross sections. Quantification was done by shaving the fraction of the mesh intersection which exceeded 200 points; i.e. you take a grid that you place above the image, then you trace the number of points that are a- or P-phase and translate it to%.

Resultat - Kvantifiering av (3-fasen hos testlegeringama Mangden p-fas bestamdes hos de etsade tvarsnitten och resultaten presenteras i Tabell 4. Results - Quantification of the β-phase of the test alloys The amount of β-phase was determined in the etched cross-sections and the results are presented in Table 4.

De jamforande forsaken visar att varmebehandlingen avsevart minskade mangden p-fas hos alla testlegeringar. Resultaten indikerar att ett varde under 5% p-fas medforde att det osannolikt bildades ett kontinuerligt natverk medan ett innehall Over 10% p-fas medfarde att kontinuerliga natverk. Detta indikeras klart och tydligt av Figur 1 dar mikrostrukturen pa hos bade gjuten och varmebehandlad testlegering 10 illustreras. Resultaten fran testerna understryker att varmebehandling ar nadvandigt for att minska p-fasen sa mycket som mojligt. 12 Tabell 4: Mangden 13-fas (vikt-%) i gjutna och varnnebehandlade testlegeringar 1-11 (matt genom att anvanda rutnat med korsningspunkter (mesh-intersecption) , 13x19, med 200x eller 500x forstoring f6r laga respektive hoga varden) As (%v) P (%v) Sb (%v) Gjuten Varmebehandlad Legering 1 - - - 13 2 Legering 2 0,02 - - 16 4 Legering 3 0,06 - - 13 2 Legering 4 0,02 - 11 1 Legering - 0,06 - 2 Legering 6 - - 0,02 4 Legering 7 - - 0,06 2 Legering 8 0,03 0,03 - 16 1 Legering 9 0,03 0,03 13 1 Legering 0,03 0,03 11 1 Legering 11 0,02 0,02 0,02 1 Resultat— Avzinkningshardighet Resultaten fran CuCl2 exponeringen av testlegering 1-11 presenteras i Tabell 5 dar det framgar om korrosion har intraffat i a- och/eller p-fasen samt hur djupt (pm) avzinkningen (AD - avzinkningsdjup) foreligger. Figur 2 illustrerar tvarsnitt fran testskivor som visar graden av korrosionsangrepp for representativa testlegeringar. The comparative experiments show that the heat treatment significantly reduced the amount of p-phase in all test alloys. The results indicate that a value below 5% p-phase meant that a continuous network was unlikely to be formed, while a content above 10% p-phase resulted in continuous network. This is clearly indicated by Figure 1 where the microstructure of both cast and heat treated test alloy 10 is illustrated. The results from the tests emphasize that heat treatment is necessary to reduce the p-phase as much as possible. 12 Table 4: The amount of 13-phase (weight%) in cast and warn-treated test alloys 1-11 (matt by using squared with intersection points (mesh intersection), 13x19, with 200x or 500x magnification for low and high values respectively) As ( % v) P (% v) Sb (% v) Cast Heat Treated Alloy 1 - - - 13 2 Alloy 2 0.02 - - 16 4 Alloy 3 0.06 - - 13 2 Alloy 4 0.02 - 11 1 Alloy - 0.06 - 2 Alloy 6 - - 0.02 4 Alloy 7 - - 0.06 2 Alloy 8 0.03 0.03 - 16 1 Alloy 9 0.03 0.03 13 1 Alloy 0.03 0.03 11 1 Alloy 11 0.02 0.02 0.02 1 Result— Dezincification hardness The results from the CuCl2 exposure of test alloy 1-11 are presented in Table 5 where it appears whether corrosion has occurred in the a- and / or p-phase and how deep (pm ) dezincification (AD dezincification depth) is available. Figure 2 illustrates cross-sections of test discs showing the degree of corrosion attack for representative test alloys.

Testerna fran foregaende avsnitt indikerade att varmebehandling avsevart minskar 13-fas innehall for alla legeringar (se Tabell 4). JamfOrande fOrstiken i Tabell 5 visar klart och tydligt att minskad mangdinnehall avsevart minskar avzinknings- djupet for alla legeringar som innehaller As och Sb. Nar man jamfor testlegering 1 (baslegering 752) med testlegering 2, 3, 6-10 sa gar det darutover att utlasa att As och Sb inhiberar avzinkning av a-fasen. The tests from the previous section indicated that heat treatment significantly reduces the 13-phase content for all alloys (see Table 4). The comparative preamble in Table 5 clearly shows that reduced quantity content significantly reduces the dezincification depth for all alloys containing As and Sb. When comparing test alloy 1 (base alloy 752) with test alloy 2, 3, 6-10, it is furthermore stated that As and Sb inhibit dezincification of the a-phase.

Resultaten visar ocksa att P inte verkar inhibera a-fasen. Tvartom sa verkar avzinkningen av a-fasen bli allvarligare efter reduktionen av p-fas genom varmebehandlingen (jamfor "max" vardena for legering 5) vilket är indikativt av att narvaro av p-fas i viss grad skyddar a-fas. 13 Det är aven intressant att jamfora innehallande enbart As och enbart Sb och resultaten tyder pa att forekomsten av As framjar intergranular korngranskorrosion medan Sb endast uppvisar allman korrosion. The results also show that P does not appear to inhibit the α-phase. On the contrary, the dezincification of the α-phase seems to become more severe after the reduction of β-phase by the heat treatment (cf. the "max" values for alloy 5), which is indicative of the presence of β-phase to some extent protecting α-phase. 13 It is also interesting to compare containing only As and only Sb and the results indicate that the occurrence of As promotes intergranular grain spruce corrosion while Sb only shows general corrosion.

Det verkar for ovrigt finnas en skillnad mean lagsta och hogsta koncentration av Sb, 0,02 vikt-% respektive 0,06 vikt-% Sb, vilket kan tyda pa att en hagre koncentration an 0,02 vikt-% behovs far full effekt vid anvandning av Sb. En koncentration ph 0,03 vikt-% som legering 10 verkar fungera bra som inhibitor av avzinkning. Incidentally, there seems to be a difference between the lowest and highest concentration of Sb, 0.02% by weight and 0.06% by weight, respectively, of Sb, which may indicate that a better concentration of 0.02% by weight is required to have full effect at use of Sb. A concentration of 0.03% by weight as an alloy seems to work well as an inhibitor of dezincification.

De basta resultaten erholls for testlegering 7, 9, 10 och 11 vilka alla innefattar Sb > 0,03 vikt-% eller en kombination av Sb och Sb > 0,03 vikt-`)0. The best results are obtained for test alloys 7, 9, 10 and 11 which all comprise Sb> 0.03% by weight or a combination of Sb and Sb> 0.03% by weight.

Sammanfattningsvist sa tyder resultaten pa att (i) varmebehandling, och (ii) nar- varo av As eller Sb, är nadvandiga for att erhalla avzinkningshardighet samt for att nnotverka intergranular korngranskorrosion. 14 Tabell 5: Avzinkningsdjup (AD) efter CuCl2 exponering och identifiering av sannexisterande korrosionsmekanismer sasom intergranular korngranskorrosion (IGA) och generella. "?" indikerar att det var svart att bestamma korrosionstyp, dvs. det kan vara a eller 13. In summary, the results indicate that (i) heat treatment, and (ii) the presence of As or Sb, are necessary to obtain dezincification hardness and to prevent intergranular grain corrosion. 14 Table 5: Depletion depth (AD) after CuCl2 exposure and identification of non-existent corrosion mechanisms such as intergranular grain granulation (IGA) and general. "?" indicates that it was black to determine the type of corrosion, ie. it can be a or 13.

KorrosionstypAD djup Gluten Korrosionstyp Varmebehanlad AD djup As %w P %w Sb %w AD typ Annat angrepp max (pm) medel (pm) AD typ Annat angrepp max (pm) medel (pm) Legering 1 - - - a and 13 353 134 a 270 84 Legering 2 0,02 - - 13 IGA 357 13 IGA 36 Legering 3 0,06 - - 13 IGA 282 52 13 IGA 89 Legering 4 - 0,02 - a and 13 402 319 a 211 73 Legering - 0,06 - a and 13 IGA 203 100 a 328 76 Legering 6 - - 0,02 a and 13 IGA 402 15a generell 106 9 Legering 7 - - 0,06 a and 13 generell 1657 13 generell 38 0 Legering 8 0,03 0,03 - 13 178 113 IGA 92 17 Legering 9 0,03 0,03 13 generell 209 84 ? generell 42 7 Legering 0,03 0,03 a and p 113 48 a generell 0 Legering 11 0,02 0,02 0,02 13 193 87 ? generell 0 5 Resultat— Skarkrafter Analyser som gjordes pa testlegeringarnas skarkrafter visade en ovantad teknik hos legering 10 som uppvisade god bearbetning saint aven 10% lagre skarkrafter an legering 1. in Det är mer fOrdelaktigt med lagre skarkrafter eftersonn hoga skarkrafter leder till problem i effektsvaga maskiner som är van liga sammanhanget och i de operationer dar man har en stor spanbredd. Exempel pa sadana operationer är svarvning med profilverktyg, spar- och avstickning borrning och gangning. Precision och noggrannhet paverkas ocksa negativt med stOrre skarkrafter. Corrosion typeAD deep Gluten Corrosion type Heat treated AD depth As% w P% w Sb% w AD type Other attack max (pm) average (pm) AD type Other attack max (pm) average (pm) Alloy 1 - - - a and 13 353 134 a 270 84 Alloy 2 0.02 - - 13 IGA 357 13 IGA 36 Alloy 3 0.06 - - 13 IGA 282 52 13 IGA 89 Alloy 4 - 0.02 - a and 13 402 319 a 211 73 Alloy - 0.06 - a and 13 IGA 203 100 a 328 76 Alloy 6 - - 0.02 a and 13 IGA 402 15a general 106 9 Alloy 7 - - 0.06 a and 13 general 1657 13 general 38 0 Alloy 8 0.03 0.03 - 13 178 113 IGA 92 17 Alloy 9 0.03 0.03 13 general 209 84? general 42 7 Alloy 0.03 0.03 a and p 113 48 a general 0 Alloy 11 0.02 0.02 0.02 13 193 87? general 0 5 Results— Cutting forces Analyzes performed on the shear forces of the test alloys showed an unexpected technique in alloy 10 which showed good machining as well as 10% lower shear forces than alloy 1. in It is more advantageous with lower shear forces as high shear forces lead to problems in low power machines which is common in the context and in the operations where you have a large span. Examples of such operations are turning with profile tools, saving and parting drilling and walking. Precision and accuracy are also negatively affected with greater shear forces.

Utf6ringsformerna enligt foreliggande uppfinning har beskrivits i detalj med hanvisning till ovanstaende specifika exemplet. Exemplet är dock avsett att endast vara illustrativ och begransar darmed inte skyddsomfanget for foreliggande uppfinning. Darmed ska det noteras att andringar och tillagg kan goras till det ovanstaende exemplet utan att avvika Than skyddsomfanget for uppfinningen. Skyddsomfanget for foreliggande uppfinning kan darfor inte omfattas enbart av ovanstaende exempel utan snarare av patentkraven. The embodiments of the present invention have been described in detail with reference to the above specific example. However, the example is intended to be illustrative only and thus does not limit the scope of the present invention. Thus, it should be noted that modifications and additions may be made to the above example without departing from the scope of the invention. The scope of protection of the present invention can therefore not be covered solely by the above examples but rather by the claims.

Referenser IARC MONOGRAPHS — 100C, ARSENIC AND ARSENIC COMPOUNDS, http://monographs.iarc.friENG/Monographs/vol100C/monol 00C-6.pdf Sveriges geologiska undersokning, Mineralmarknaden — Tema: Arsenik, sida 70-74 http:i/www.squ.se/dokument/service sdu publ/perpubl 2005- 4.pdf Socialstyrelsen, Miljohalsorapport 2005, Kapitel 16— Metaller, sida 185-187 for arsenik och sida 190-192 for bly hiki.se/PDFIMH R2005 d 4) WORLD HEALTH ORGANIZATION, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, VOLUME 87 - Inorganic and Organic Lead Compounds, sida 127-139 http://monographs.iarc.frIENG/Monographsivol871mono87.pdf References IARC MONOGRAPHS - 100C, ARSENIC AND ARSENIC COMPOUNDS, http: //monographs.iarc.friENG/Monographs/vol100C/monol 00C-6.pdf Swedish Geological Survey, Mineral Market - Theme: Arsenic, page 70-74 http: i / www .squ.se / dokument / service sdu publ / perpubl 2005- 4.pdf Socialstyrelsen, Miljohalsorapport 2005, Kapitel 16— Metaller, sida 185-187 for arsenik och sida 190-192 for bly hiki.se/PDFIMH R2005 d 4) WORLD HEALTH ORGANIZATION, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, VOLUME 87 - Inorganic and Organic Lead Compounds, page 127-139 http: //monographs.iarc.frIENG/Monographsivol871mono87.pdf

Claims (18)

16 Patentkrav16 Patent claims 1. Arsenikfri massinglegering med forbattrad avzinkningshardighet, skarbarhet och skydd mot intergranular korngranskorrosion, innefattande 60,0-65,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn, kannetecknad av att massinglegeringen innefattar < 5 vikt-% 13-fas, foretradesvis 1 vikt-`)/013-fas.Arsenic-free pulp alloy with improved dezincification hardness, cleavability and protection against intergranular grain spruce corrosion, comprising 60.0-65.0 wt.% Cu, 0.10-1.00 wt.% Pb, 0.02-0.06 wt.% P, 0.02-0.06% by weight of Sb, and the residue Zn, characterized in that the massing alloy comprises <5% by weight of 13-phase, preferably 1% by weight / 013 phase. 2. Arsenikfri massinglegering legering enligt krav 1, innefattande 63,0-64,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn.Arsenic-free pulp alloy alloy according to claim 1, comprising 63.0-64.0 wt% Cu, 0.10-1.00 wt% Pb, 0.02-0.06 wt% P, 0.02- 0.06% by weight of Sb, and the residue Zn. 3. Arsenikfri massinglegering legering enligt nagot av foregaende krav, innefattande 63,0-64,0 vikt-% Cu, 0,80-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,020,06 vikt-% Sb, och resten Zn.Arsenic-free pulp alloy alloy according to any one of the preceding claims, comprising 63.0-64.0 wt% Cu, 0.80-1.00 wt% Pb, 0.02-0.06 wt% P, 0.020, 06% by weight Sb, and the balance Zn. 4. Arsenikfri massinglegering enligt nagot av foregaende krav, innefattande 0,07-0,12 vikt-% Fe och 0,45-0,70 vikt-% Al.Arsenic-free massing alloy according to any one of the preceding claims, comprising 0.07-0.12% by weight of Fe and 0.45-0.70% by weight of Al. 5. Arsenikfri massinglegering legering enligt nagot av foregaende krav, inne- fattande 63,5 vikt-% Cu, 35,0 vikt-% Zn, 0,9 vikt-% Pb, 0,10 vikt-% Fe, 0, vikt-% Al, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb.Arsenic-free pulp alloy alloy according to any one of the preceding claims, comprising 63.5% by weight of Cu, 35.0% by weight of Zn, 0.9% by weight of Pb, 0.10% by weight of Fe % Al, 0.02-0.06 wt% P, 0.02-0.06 wt% Sb. 6. Arsenikfri massinglegering legering enligt nagot av foregaende krav, innefattande 63,5 vikt-% Cu, 35,0 vikt-% Zn, 0,9 vikt-% Pb, 0,10 vikt-% Fe, 0, vikt-% Al, 0,03 vikt-% P och 0,03 vikt-% Sb.Arsenic-free mass alloy alloy according to any one of the preceding claims, comprising 63.5% by weight of Cu, 35.0% by weight of Zn, 0.9% by weight of Pb, 0.10% by weight of Fe, 0,% by weight of Al , 0.03% by weight P and 0.03% by weight Sb. 7. Arsenikfri massinglegering enligt nagot av fOregaende krav, innefattande 00,200 vikt-% Ni, 0-0,100 vikt-% Mn, 0-0,02 vikt-% Si, 0-0,002 vikt-% As och/eller 0,0004-0,0006 vikt-% B.Arsenic-free pulp alloy according to any one of the preceding claims, comprising 00,200 wt% Ni, 0-0,100 wt% Mn, 0-0.02 wt% Si, 0-0,002 wt% As and / or 0.0004-0 .0006% by weight B. 8. Forfarande for framstallning av en arsenikfri massinglegering enligt nagot av foregaende krav, kannetecknad av stegen att 1. tillsatta Sb och P till en baslegering i en smaltugn, 2. snnaltan som erhalls i steg a halls i en gjutform, c. gjutna nnassinglegeringen sonn erhalls i steg b varnnebehandlas vid 500°C till 550°C i 1 — 2 tim mar. 17A process for producing an arsenic-free massing alloy according to any one of the preceding claims, characterized by the steps of 1. adding Sb and P to a base alloy in a smelting furnace, 2. the mixture obtained in step a is kept in a mold, c. obtained in step b is heat treated at 500 ° C to 550 ° C for 1-2 hours. 17 9. Forfarande for framstallning av massinglegering enligt krav 8, kannetecknad av att massinglegeringen varmebehandlas vid 550°C i 2 timmar.Process for the production of pulp alloy according to Claim 8, characterized in that the pulp alloy is heat-treated at 550 ° C for 2 hours. 10. Arsenikfri massinglegering med forbattrad avzinkningshardighet, skarbarhet och skydd mot intergranular korngranskorrosion, innefattande 60,0-65,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn, och varvid massinglegeringen innefattar < 0,5 vikt-% p-fas, foretradesvis 1 vikt-% p-fas, kannetecknad av att framstallningen av namnda massinglegering innefattar stegen att: 1. tillsatta Sb och P till en baslegering i en smaltugn, 2. smaltan halls i en gjutform, 3. den gjutna massinglegeringen varmebehandlas vid 500°C till 550°C i 1 — 2 timmar, foretradesvis vid 550°C i 2 timmar.Arsenic-free massing alloy with improved dezincification hardness, cleavability and protection against intergranular grain spruce corrosion, comprising 60.0-65.0 wt.% Cu, 0.10-1.00 wt.% Pb, 0.02-0.06 wt.% P, 0.02-0.06% by weight of Sb, and the residue Zn, and wherein the pulp alloy comprises <0.5% by weight of p-phase, preferably 1% by weight of p-phase, characterized in that the preparation of said pulp alloy comprises the steps of: 1. adding Sb and P to a base alloy in a melting furnace, 2. the melt is kept in a mold, 3. the cast massing alloy is heat treated at 500 ° C to 550 ° C for 1-2 hours, preferably at 550 ° C in 2 hours. 11. Arsenikfri massinglegering legering enligt krav 10, innefattande 63,0-64,0 vikt-% Cu, 0,10-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn.Arsenic-free pulp alloy alloy according to claim 10, comprising 63.0-64.0 wt% Cu, 0.10-1.00 wt% Pb, 0.02-0.06 wt% P, 0.02- 0.06% by weight of Sb, and the residue Zn. 12. Arsenikfri massinglegering legering enligt krav 10 eller 11, innefattande 63,0-64,0 vikt-% Cu, 0,80-1,00 vikt-% Pb, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb, och resten Zn.Arsenic-free pulp alloy alloy according to claim 10 or 11, comprising 63.0-64.0 wt% Cu, 0.80-1.00 wt% Pb, 0.02-0.06 wt% P, 0, 02-0.06% by weight Sb, and the balance Zn. 13. Arsenikfri massinglegering enligt krav10-12, innefattande 0,07-0,12 vikt-% Fe och 0,45-0,70 vikt-% Al.Arsenic-free massing alloy according to claims 10-12, comprising 0.07-0.12% by weight of Fe and 0.45-0.70% by weight of Al. 14. Arsenikfri massinglegering legering enligt nagot av foregaende kraven 10- 13. innefattande 63,5 vikt-% Cu, 35,0 vikt-% Zn, 0,9 vikt-% Pb, 0,10 vikt-% Fe, 0,50 vikt-% Al, 0,02-0,06 vikt-% P, 0,02-0,06 vikt-% Sb.Arsenic-free massing alloy alloy according to any one of the preceding claims 10-13. Comprising 63.5% by weight of Cu, 35.0% by weight of Zn, 0.9% by weight of Pb, 0.10% by weight of Fe, 0.50 wt% Al, 0.02-0.06 wt% P, 0.02-0.06 wt% Sb. 15. Arsenikfri massinglegering legering enligt nagot av foregaende kraven 10- 14. innefattande 63,5 vikt-% Cu, 35,0 vikt-% Zn, 0,9 vikt-% Pb, 0,10 vikt-% Fe, 0,50 vikt-% Al, 0,03 vikt-% P och 0,03 vikt-% Sb. 18Arsenic-free massing alloy alloy according to any one of the preceding claims 10-14. Comprising 63.5% by weight of Cu, 35.0% by weight of Zn, 0.9% by weight of Pb, 0.10% by weight of Fe, 0.50 wt% Al, 0.03 wt% P and 0.03 wt% Sb. 18 16. Arsenikfri massinglegering enligt nagot av foregaende kraven 10-16, ytterligare innefattande 0-0,200 vikt-% Ni, 0-0,100 vikt-% Mn, 0-0,02 vikt-% Si, 00,002 vikt-% As och/eller 0,0004-0,0006 vikt-% B.Arsenic-free massing alloy according to any one of the preceding claims 10-16, further comprising 0-0.200% by weight Ni, 0-0.100% by weight Mn, 0-0.02% by weight Si, 00.002% by weight As and / or 0 , 0004-0,0006% by weight B. 17. Anyandning av en arsenikfri massinglegering enligt nagot av kraven 1-7 och 10-17 i miljOer som konnmer i kontakt med vatten,Use of an arsenic-free massing alloy according to any one of claims 1-7 and 10-17 in environments which come into contact with water, 18. Anyandning enligt krav 18, varvid namnda miljoer är VVS armaturer, foretradesvis i form av blandare, ventiler och kopplingar.An inhalation according to claim 18, wherein said environments are plumbing fixtures, preferably in the form of mixers, valves and couplings.
SE1450094A 2014-01-30 2014-01-30 Arsenic-free brass with improved zinc toughness and cutability SE1450094A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
SE1450094A SE1450094A1 (en) 2014-01-30 2014-01-30 Arsenic-free brass with improved zinc toughness and cutability
AU2015211433A AU2015211433A1 (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability
RU2016133287A RU2016133287A (en) 2014-01-30 2015-01-30 Brass with increased resistance to dezincification and machinability
EP15709371.7A EP3099832B1 (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability
CA2937664A CA2937664A1 (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability
US15/115,084 US20160340759A1 (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability
PCT/SE2015/050103 WO2015115989A2 (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability
JP2016549434A JP6178016B2 (en) 2014-01-30 2015-01-30 Brass with improved dezincing resistance and machinability
BR112016017682A BR112016017682A2 (en) 2014-01-30 2015-01-30 BRASS WITH IMPROVED DEZINCIFICATION RESISTANCE AND MACHINESABILITY
CN201580006618.1A CN106170569A (en) 2014-01-30 2015-01-30 There are resistance to dezincification and the brass alloys of machining property of improvement
SG11201605577PA SG11201605577PA (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability
MX2016009812A MX2016009812A (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability.
KR1020167022706A KR101802933B1 (en) 2014-01-30 2015-01-30 Brass with improved dezincification resistance and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1450094A SE1450094A1 (en) 2014-01-30 2014-01-30 Arsenic-free brass with improved zinc toughness and cutability

Publications (1)

Publication Number Publication Date
SE1450094A1 true SE1450094A1 (en) 2015-07-31

Family

ID=52649087

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1450094A SE1450094A1 (en) 2014-01-30 2014-01-30 Arsenic-free brass with improved zinc toughness and cutability

Country Status (13)

Country Link
US (1) US20160340759A1 (en)
EP (1) EP3099832B1 (en)
JP (1) JP6178016B2 (en)
KR (1) KR101802933B1 (en)
CN (1) CN106170569A (en)
AU (1) AU2015211433A1 (en)
BR (1) BR112016017682A2 (en)
CA (1) CA2937664A1 (en)
MX (1) MX2016009812A (en)
RU (1) RU2016133287A (en)
SE (1) SE1450094A1 (en)
SG (1) SG11201605577PA (en)
WO (1) WO2015115989A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315868B1 (en) * 2017-11-28 2018-04-25 日酸Tanaka株式会社 Gas cutting crater
CN109038940A (en) * 2018-08-08 2018-12-18 东莞市特姆优传动科技有限公司 A kind of efficient high thrust solar panels electric pushrod
CN111235427B (en) * 2020-01-15 2020-12-29 宁波博威合金材料股份有限公司 Free-cutting brass alloy and preparation method and application thereof
CN112342428A (en) * 2020-10-23 2021-02-09 开平大昌铜材有限公司 DZR copper and preparation method thereof
CN114672690B (en) * 2022-03-16 2023-02-24 宁波金田铜业(集团)股份有限公司 Easily-colored brass and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE788371A (en) 1971-09-09 1973-01-02 Nordiske Kabel Traad PROCESS FOR GIVING BRASS A HIGHER RESISTANCE TO DEZINC LOSS
US3963526A (en) 1972-08-22 1976-06-15 Aktieselskabet Nordiske Kabel-Og Traadfabriker Method of imparting increased dezincification resistance to brass
JPS5838500B2 (en) * 1980-09-11 1983-08-23 株式会社 北沢バルブ Dezincification corrosion resistant special brass
JPS6086253A (en) 1983-10-18 1985-05-15 Nippon Mining Co Ltd Preparation of high-strength conductive copper alloy
JPS61213333A (en) 1985-03-18 1986-09-22 Sanpo Shindo Kogyo Kk Corrosion resistant copper alloy having excellent weldability
JPH0768595B2 (en) 1991-11-14 1995-07-26 三宝伸銅工業株式会社 Corrosion resistant copper base alloy material
JP2841270B2 (en) * 1994-01-17 1998-12-24 株式会社キッツ Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy
US5507885A (en) * 1994-01-17 1996-04-16 Kitz Corporation Copper-based alloy
WO1998045490A1 (en) * 1997-04-08 1998-10-15 Kitz Corporation Copper-based alloy excellent in corrosion resistance, hot workability, and resistance to stress corrosion cracking, and process for producing the copper-based alloy
DE19722827A1 (en) 1997-05-30 1998-12-03 Diehl Stiftung & Co Cold formable lead-containing brass for sanitary piping
DE10132055C2 (en) * 2001-07-05 2003-12-11 Diehl Metall Stiftung & Co Kg Dezincification-resistant copper-zinc alloy and process for its production
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
CN101988164A (en) * 2009-08-06 2011-03-23 摩登岛股份有限公司 Dezincification resistant brass alloy with low lead content
US20110064602A1 (en) * 2009-09-17 2011-03-17 Modern Islands Co., Ltd. Dezincification-resistant copper alloy
JP5591661B2 (en) * 2010-03-25 2014-09-17 サンエツ金属株式会社 Copper-based alloy for die casting with excellent dezincification corrosion resistance
US9217191B2 (en) * 2010-09-10 2015-12-22 Raufoss Water & Gas As Brass alloy comprising silicon and arsenic and a method of manufacturing thereof
DE102010038060A1 (en) 2010-10-08 2012-04-12 Kme Germany Ag & Co. Kg copper alloy
WO2012140977A1 (en) 2011-04-13 2012-10-18 サンエツ金属株式会社 Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance
IN2014MN00785A (en) 2011-11-04 2015-05-22 Mitsubishi Shindo Kk

Also Published As

Publication number Publication date
JP2017508073A (en) 2017-03-23
KR101802933B1 (en) 2017-11-29
WO2015115989A2 (en) 2015-08-06
EP3099832A2 (en) 2016-12-07
BR112016017682A2 (en) 2017-08-08
SG11201605577PA (en) 2016-08-30
JP6178016B2 (en) 2017-08-09
CA2937664A1 (en) 2015-08-06
RU2016133287A (en) 2018-03-05
RU2016133287A3 (en) 2018-10-15
WO2015115989A3 (en) 2015-09-24
KR20170005402A (en) 2017-01-13
AU2015211433A1 (en) 2016-09-01
MX2016009812A (en) 2017-02-28
EP3099832B1 (en) 2018-11-14
US20160340759A1 (en) 2016-11-24
CN106170569A (en) 2016-11-30

Similar Documents

Publication Publication Date Title
SE1450094A1 (en) Arsenic-free brass with improved zinc toughness and cutability
CA2619357C (en) Free-cutting copper alloy containing very low lead
JP6335194B2 (en) Lead-free, easy-to-cut, corrosion-resistant brass alloy with good thermoformability
AU2012317099B2 (en) Leadless free-cutting copper alloy and method for producing the same
CN102925744B (en) Leadless brass alloy and preparation method thereof
US20150376737A1 (en) Copper-zinc alloy for a plumbing fitting and method for the production thereof
CN103882255B (en) A kind of unleaded bell metal and application thereof
US10174409B2 (en) High performance AlSiMgCu casting alloy
EP2614167B1 (en) Brass alloy comprising silicon and arsenic and a method of manufacturing thereof
WO2011121799A1 (en) Lead-free free-machining bronze casting alloy
CA3032025A1 (en) Low-lead copper alloys
WO2011067682A1 (en) Low lead brass alloy
Geirinhas et al. Copper isotopes on artifacts from Fraga dos Corvos First Bronze Age habitat site and nearby Cu occurrences: an approach on metal provenance
JP2011038130A (en) Aluminum alloy having excellent machinability and high temperature embrittlement resistance
EP2360285B1 (en) Lead-free brass alloy
CN103184364B (en) Copper-based alloy tube containing silicon and aluminium and preparation method thereof
WO2011120077A1 (en) Brass allloy
KR20040062314A (en) Composition of Unleaded Free Cutting Brass with Advenced Corrosion Resistance
JPH0339442A (en) Aluminum free cutting alloy for hot forging
Zivkovic et al. Advanced trends in design of lead-free alternative for traditional free machining brasses
US20170107598A1 (en) Method for inhibiting dezincification of brass
CN114369743A (en) Lead-free copper alloy and use of lead-free copper alloy
Cabibbo et al. Characterisation of A 6082 aluminum alloy after thixoforming
Emadi et al. Effects of alloy chemistry and solidification rate on the mechanical properties of an Al-9Si-1Cu alloy for powertrain applications
JP2004052106A (en) Copper alloy based material for city water

Legal Events

Date Code Title Description
NAV Patent application has lapsed
NAV Patent application has lapsed