SE1130121A1 - Cross-country skiing for the practice of classic cross-country skiing - Google Patents

Cross-country skiing for the practice of classic cross-country skiing Download PDF

Info

Publication number
SE1130121A1
SE1130121A1 SE1130121A SE1130121A SE1130121A1 SE 1130121 A1 SE1130121 A1 SE 1130121A1 SE 1130121 A SE1130121 A SE 1130121A SE 1130121 A SE1130121 A SE 1130121A SE 1130121 A1 SE1130121 A1 SE 1130121A1
Authority
SE
Sweden
Prior art keywords
ski
span
camber
longitudinal
spring
Prior art date
Application number
SE1130121A
Other languages
Swedish (sv)
Other versions
SE537602C2 (en
Inventor
Mats Cedervall
Original Assignee
Mats Cedervall
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mats Cedervall filed Critical Mats Cedervall
Priority to SE1130121A priority Critical patent/SE537602C2/en
Priority to PCT/SE2012/051416 priority patent/WO2013089637A1/en
Priority to EP12858291.3A priority patent/EP2790801A4/en
Publication of SE1130121A1 publication Critical patent/SE1130121A1/en
Publication of SE537602C2 publication Critical patent/SE537602C2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/06Skis or snowboards with special devices thereon, e.g. steering devices
    • A63C5/07Skis or snowboards with special devices thereon, e.g. steering devices comprising means for adjusting stiffness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C7/00Devices preventing skis from slipping back; Ski-stoppers or ski-brakes
    • A63C7/005Devices preventing skis from slipping back, actuated by the boot

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The invention relates to a cross-country ski for classic cross-country skiing, including a gliding phase and a kicking phase. The ski comprises a common, continuous lower surface having a front and a rear glide zone and a central grip zone, the ski being formed with a central upward bent camber, which exerts a camber force against depression of the camber, such that in the gliding phase the ski is able to bear the weight of a skier while maintaining the central grip zone spaced from an underlying snow surface, whereas in the kicking phase, when the skier is exerting a kicking force towards the ski, the camber force is overcome and the grip zone is pressed towards the underlying snow surface. The ski additionally comprising a front part, a rear part and a camber regulating mechanism, said front part and said rear part being joined by an intermediate low flexural resistance portion of the ski having a reduced flexural resistance in comparison to adjacent portions of the ski, wherein the camber regulating mechanism has a high camber state and a low camber state where said high camber state is a state when the camber is maximally curved upwards and the grip zone is not in contact with the under¬ lying snow surface, whereas the low camber state is a state when the camber is low and the grip zone is in contact with the underlying snow surface. The camber regulating mechanism is bridging over the low flexural resistance portion and interconnecting the front and the rear parts and is designed such that it, at least in the high camber state, contributes to the overall camber force acting against depression of the camber and such that the camber force from the camber regulating mechanism is lower at the low camber state than at the high camber state or at a dead center position between the high camber state and the low camber state.

Description

I Langdskida fdr utovande av klassisk Lingdskidakning Tekniskt Omrade Uppfumingen avser en klassisk langdsldda, I synnerhet en skida med spann som har fastzon och glidzon. In Cross-country skiing before the practice of classic Cross-country skiing Technical Area The invention refers to a classic cross-country skiing, In particular a ski with a span that has a fixed zone and a sliding zone.

Teknikens standpunkt Klassiska ldngdskidor har i allmanhet spann for att ge bra glidegenskaper. Detta spann fungerar som en bojd bladfjader. Styvheten och h6jden pa spannet vdljs for att matcha vikten pa skidakaren. Nar skidakaren lagger all sin vikt pa lampligt stalle pa en skida sa bor spannets styvhet tillata fastzonen att atminstone delvis vara i kontakt med snon. Kontakten mellan fastzonen och snon fOrbdttras ndr skidakaren skjuter ifran nedat med foten. Spannet ãr ofta konstruerat sâ att kontakten forbattras ytterligare ndr skidakaren lagger sin vikt och trycker med frdmre delen av foten. I glidfasen lagger skidakaren mer vikt narmare Fastzonen pa en skida har en yta med fastvalla eller annan metod att motsta bakatrorelser, sasom fiskfjallsstruktur, stighudar, kemisk beldgging osv. Denna fastvalla, eller annan metod, ãr bara effektiv ndr kontakten med underlaget har signifikant ttyck. Det vii saga, att under franskjutsfasen hindra skidan fran att glida bakat genom den positiva reaktionskraften som underlaget paverkar skidan med. State of the art Classic longitudinal skis generally have a span to provide good gliding properties. This span acts as a curved leaf spring. The stiffness and height of the team are chosen to match the weight of the skier. When the skier places all his weight in a suitable place on a ski, the rigidity of the span should allow the fixed zone to be at least partially in contact with the snow. The contact between the fixed zone and the rope is improved when the skier shoots from below with the foot. The span is often designed so that the contact is further improved when the skier puts his weight and presses with the front part of the foot. In the sliding phase, the skier places more weight closer. The fixed zone of a ski has a surface with a solid wall or other method to resist back movements, such as fish mountain structure, riser skins, chemical peeling, etc. This fastwave, or other method, is only effective when the contact with the substrate has significant pressure. It is fair to say that during the French firing phase, the ski is prevented from sliding backwards by the positive reaction force with which the ground affects the ski.

For en traditionell skida, anpassad for klassiska skidakningsteg kan det noteras att det namnda trycket under skidan inte är idealt fordelat. I en ideal situation skulle alla krafter fran skidakarens vikt och franskjut fOrdelas i fdstzonen. Dock, for skidor med traditionellt spann kommer en signifikant del av krafterna fordelas i glidzonerna. Detta for att kompromissa glidet i glidfasen mot fastet i franskjutsfasen. Ju styvare spannet ãr desto battre är glidet, och ju mjukare spannet är desto battre faste. 2 Professionella tavlingsskidakare har oftast ett styvt spann, eftersom de kan anbringa stora franskjuts- och stakningskrafter. Motionsakare har vanligtvis mjukare spann, vilket ger ett samre glid. For a traditional ski, adapted for classic skiing steps, it can be noted that the named pressure under the ski is not ideally distributed. In an ideal situation, all forces from the skier's weight and French shot would be distributed in the foot zone. However, for skis with a traditional span, a significant part of the forces will be distributed in the sliding zones. This is to compromise the sliding in the sliding phase against the fastening in the French firing phase. The stiffer the span, the better the slide, and the softer the span, the better the firmness. 2 Professional skiers usually have a rigid span, as they can apply large French skating and staking forces. Exercisers usually have softer spans, which gives a smoother glide.

Det firms ett antal uppfmningar Morn omradet som forsaker att forbdttra kompromissen mellan faste och glid. I US4300786, US4221400, US7360782, US 2011/0233900 Al och US4754989 beskrivs olika system och metoder for att statiskt andra spannet. Detta Riser inte problemet att ha bra glid och bra taste, det gör bara att man kan an.dra kompromissen sâ att man exempeMs vdljer att ha daligt eller bra glid. There are a number of inventions in the Morn area that attempt to improve the compromise between fasting and sliding. US4300786, US4221400, US7360782, US 2011/0233900 A1 and US4754989 describe various systems and methods for statically changing the span. This does not raise the problem of having good glide and good taste, it just means that you can change the compromise so that you, for example, choose to have poor or good glide.

I US5427400 sá andras karakteristiken av spannet genom att spannet ar styvare ndr man star pa halen jamfort med nar man star pa frdmre delen av foten. En springa i skidans bas anvands fOr att astadkomma detta. Troligtvis är detta inte signifikant mer effektivt an att placera framre delen av foten narmre spannets centrum, och halen mer forskjuten bakat. Detta är det salt vilket de fiesta skidor tillverkas idag. In US5427400 others see the characteristic of the span in that the span is stiffer when you stand on the tail compared to when you stand on the front part of the foot. A gap in the base of the ski is used to achieve this. This is probably not significantly more efficient than placing the front part of the foot closer to the center of the span, and the tail more offset backwards. This is the salt from which most skis are made today.

Pa liknande sat i US 5829776 sá andras karakteristiken av spannet genom att trycka ner hdlen pa en platta som krokar fast i framre delen av binclningen for att Oka spannets styvhet. Detta är relativt begransat eftersom man far mjukare spann endast da man lyfter hdlen. Problemet med detta ãr att man tvingar skidakaren att lyfta hdlen fOr att minska spannet. Lyftande av hdlen sker vanligtvis inte i den initiala franskjutsfasen. Ytterligare ett problem med denna metod ãr att spannet forstyvas ndr mer vikt laggs pa, men i den ideala situationen ska spannet bli mindre styvt ndr mycket vikt an.vands i franskjutsfasen 3 Problemlosning Foreliggande uppfinning loser namnda nackdelar och kompromisser med traditionellt spann. Similarly, in U.S. 5,829,776, the characteristics of the buckle are seen by others by pressing the handles down on a plate which hooks into the front of the binding to increase the stiffness of the buckle. This is relatively limited because you get a softer span only when you lift the handle. The problem with this is that you force the skier to lift the handle to reduce the span. Lifting of the handle does not usually take place in the initial phantom firing phase. Another problem with this method is that the span is stiffened when more weight is applied, but in the ideal situation the span should be less rigid when much weight is used in the French firing phase. 3 Problem solving The present invention solves the mentioned disadvantages and compromises with traditional span.

Detta astadkoms genom mekanismer som ger skidan ett dynamiskt spann. This is achieved through mechanisms that give the ski a dynamic span.

I samband med foreliggande uppfinning betyder dynamisk spann ett spann som har ett dynamiskt motstandsmonster mot yttre krafter. Ett traditonellt spann fungerar som en bladfjader, och ger saledes ett progressivt motstand mot yttre krafter. Det dynamiska spannet är ett spann vars motstand initialt fungerar som ett normalt progressivt spann, men nar den yttre franskjutskraften blir storre an ett visst justerbart gransvarde kollapsar spannet nastan totalt och pa sâ vis fordelas alla krafter i fa stzonen. I det foljande kallas detta tillstand for lagre spanntillstand. Detta dynamiska spann astadkoms genom ett antal olika mekanismer, vilka ãr beskrivna i mer detalj i detaljbeskrivningen och figurerna. 4 Enligt en forsta utforingsform av uppfinningen astadkoms dynamiskt spann genom att ha en skida som bestar av en frdmre och en bakre del. Dessa delar ar fOrenade genom en gemensam bas. Basen har tva glidzoner, fram respektive bak, och en fastzon mellan dessa. Den framre och bakre delen ãr ocksâ forenade av ett gangjarn, som âr placerat nara basen. Den framre och bakre delen har en mekanism for dynamiskt spann fastsatt i den ovre ytan pa dessa. Denna mekanism for dynamiskt spann bestar av en kil som sitter mellan kanterna pa de ovre ytorna ndr spannet har Mgt tillstand. Denna kil är fjaderbelastad sa att den bara kan tryckas ner om en nedatgaende kraft stone an en forbestamd och justerbart niva anbringas. Denna nedatga.ende kraft skapas av skidakaren. Nar skidakaren trycker med tillrackligt stor kraft kommer kilen att tryckas ner och de ovre delarna av den framre och bakre delen kommer att komma narmare varandra, och pa sa. sat fOrsatta skidan i lagt spanntillstand och ger pa sa salt skidan bra faste. In the context of the present invention, dynamic span means a span which has a dynamic pattern of resistance to external forces. A traditional span acts as a leaf spring, thus giving a progressive resistance to external forces. The dynamic span is a span whose resistance initially functions as a normal progressive span, but when the external shear force becomes greater than a certain adjustable spruce value, the span almost completely collapses and thus all forces are distributed in the fixed zone. In the following, this state is called the lower span state. This dynamic range is achieved through a number of different mechanisms, which are described in more detail in the detailed description and figures. According to a first embodiment of the invention, dynamic span is achieved by having a ski consisting of a front and a rear part. These parts are united by a common base. The base has two sliding zones, front and rear, respectively, and a fixed zone between them. The front and rear parts are also joined by a hinge, which is placed near the base. The front and rear parts have a dynamic span mechanism attached to the upper surface thereof. This dynamic span mechanism consists of a wedge located between the edges of the upper surfaces when the span is in high condition. This wedge is spring-loaded so that it can only be depressed if a downward force stone at a predetermined and adjustable level is applied. This downward force is created by the skier. When the skier pushes with sufficient force, the wedge will be pushed down and the upper parts of the front and rear part will come closer to each other, and so on. put the ski in a laid-back condition and give the salt the ski a good fast.

Detta lagre spanntillstand kommer att forbli tills skidakaren tar bort den nedatgaende kraften. Da kommer den fjaderbelastade kilen att tryckas upp mellan de ovre delarna av framre och bakre delen av skidan, och pa sa salt aterstalla spannet till dess hogre tillstand med bra glidegenskaper. This lower tension state will remain until the skier removes the downward force. Then the spring-loaded wedge will be pushed up between the upper parts of the front and rear part of the ski, and then salt will restore the span to its higher condition with good sliding properties.

Enligt en andra utforingsform av uppfinningen astadkoms dynamiskt spann genom att ha en skida som bestar av en framre och en bakre del. Dessa delar ãr fOrenade genom en gemensam bas. Basen har tva glidzoner, frarn respektive bak, och en fastzon mellan dessa. Den framre och bakre delen ãr ocksã forenade av ett gangjarn, som ãr placerat ndra basen. Den ovre delen av den bakre delen har forldngning som sticker ut ovanfor den framre delen. I slutet av denna forldngnings finns ett gangjarn med en plan del fastsatt. Denna plana del gar emot Oversidan pa den fratnre delen, med en liten vinkel framat. Denna plana del är aven fjaderbelastad sa att den bara kan rOra sig om den belastas med tillrackligt hog kraft. Den namnda vinkeln vdljs sâ att fjadern inte behover vara kraftig. Nar skidan belastas med tillackligt stor kraft kommer den nedre delen av den plana delen att glida langs oversidan pa den framre delen av skidan, vilken bor ha lag friktion. Den namnda plana delen kommer att rotera runt gangjarnet som ãr fastsatt i forlangningen. Nar den plana delen glider kommer vinkeln att dndras och pa sâ vis krdvs mindre och mindre kraft for att trycka den nedat. Salunda kommer fOrlangningen rora sig nedat tills den tar emot oversidan pa den frdmre delen av skidan. Pa sa vis har den beskrivna mekanismen kollapsat sa att spannet har ett la.gt tillstand, och pa samma sat som den forsta utforingsformen kommer detta tillstand att kvarstâ tills skidakaren avldgsnar den nedatgaende kraften. Da kommer den fjaderbelastade plana delen tryckas tillbaks igen och aterstdlla skidan i dess byre spanntillstand med bra glidegenskaper. I en variant av denna utforingsform ãr fjddern beldgen i gangjarnet som sitter fast i forlangningen. Denna fjader är da av torsion styp. According to a second embodiment of the invention, dynamic span is achieved by having a ski consisting of a front and a rear part. These parts are united by a common base. The base has two sliding zones, front and rear, and a fixed zone between them. The front and rear parts are also joined by a hinge, which is placed on the other base. The upper part of the rear part has an extension which protrudes above the front part. At the end of this aging, a hinge with a flat part is attached. This flat part goes towards the upper side of the lower part, with a small angle forward. This flat part is also spring-loaded so that it can only move if it is loaded with sufficiently high force. The said angle is chosen so that the spring does not have to be strong. When the ski is loaded with sufficient force, the lower part of the flat part will slide along the upper side of the front part of the ski, which should have low friction. The said flat part will rotate around the hinge which is fixed in the extension. As the flat part slides, the angle will change and thus less and less force is required to push it down. Thus, the extension will move downwards until it receives the upper side of the front part of the ski. In this way, the mechanism described has collapsed so that the span has a low state, and in the same way as the first embodiment, this state will remain until the skier relieves the descending force. Then the spring-loaded flat part will be pushed back again and restore the ski in its straight tension condition with good sliding properties. In a variant of this embodiment, the spring is the bellows in the hinge which is fixed in the extension. This spring is then of the torsion type.

Enligt en tredje utforingsform av uppfinningen astadkoms dynamisk spann pa liknande salt som i den andra utf8ringsformen, forutom att istallet fOr ett gangjarn och en plan del sá trycker forlangningen ner mot en kil, som glider pa Overdelen av framre delen av skidan. Denna kil är fjdderbelastad. Ndr tillrackligt stor kraft anbringas glider kilen framat och forldrigningen kan kollapsa mot framre delen av skidan. Overgingen mellan olika spanntillstand sker pa liknande sdtt som for de tva fOrsta utfOringsformerna Enligt en fjarde utfOringsform av uppfmningen astadkoms dynamisk spann pa liknande satt som i den tredje utfOringsformen, f6rutom att istallet f6r glidande sa har minst en av kilen och fOrldngningen ett kullager for minskad friktion. According to a third embodiment of the invention, dynamic span is achieved on similar salt as in the second embodiment, except that instead of a hinge and a flat part, the extension presses down against a wedge, which slides on the upper part of the front part of the ski. This wedge is spring loaded. When sufficient force is applied, the wedge slides forward and the parent gear may collapse against the front of the ski. The transition between different clamping conditions takes place in a similar way as for the first two embodiments. According to a fourth embodiment of the invention, dynamic range is achieved in a similar manner as in the third embodiment, except that instead of sliding at least one of the wedge and the elongation has a ball bearing .

Enligt en femte utforingsform av uppfmningen astadkoms dynamisk spann genom att ha en fackverkskontruktion inuti skidan eller externt. Fackverket bestar av styva stdnger. Fackverket har ett antal fjdderbelastade stanger och ndr dessa belastas tillrackligt mycket av skidakaren ger de vika och fackverket kollapsar, och pa sa vis salts skidan i lagt spanntillstand. 6 Enligt en sjatte utforingsform av uppfmningen astadkoms dynamisk spann genom att ha en fjader med dubbelt krOkning internt i skidan eller externt. Fjadern med dubbel krOkning har egenskapen att den har tva stabila tillstand, ett dar den ãr krokt at ena hMlet, och ett ddr den är krOkt at andra hallet. Mellan dessa tillstand finns en skarp overgangspunkt, ddr fjaderns motstandskraft andrar polaritet. En sadan fjader anvands for att ge skidan en dynamiskt spann enligt vad som beskrivits for de andra utforingsformerna. Som en jamforelse kan namnas att det vanligaste anvandningsomradet for sadana fjadrar âr sjdlvlindande reflexer och leksaker. According to a fifth embodiment of the invention, dynamic span is achieved by having a truss construction inside the ski or externally. The truss consists of rigid supports. The truss has a number of spring-loaded rods and when these are loaded sufficiently by the skier, they give way and the truss collapses, and in this way the ski is salted in the laid condition. According to a sixth embodiment of the invention, dynamic span is achieved by having a spring with double curvature internally in the ski or externally. The spring with double curvature has the property that it has two stable conditions, one where it is curved at one end, and one where it is curved at the other hall. Between these states there is a sharp transition point, where the resilience of the spring changes polarity. Such a spring is used to give the ski a dynamic range as described for the other embodiments. As a comparison, it can be mentioned that the most common area of application for such springs is self-winding reflectors and toys.

Enligt en sjunde utfOringsform av uppfinningen astacikoms dynamisk spann genom att ha en skida som bestar av en framre och en bakre del. Dessa delar âr fOrenade genom en gemensam bas. Basen har tva glidzoner, fram respektive bak, och en fastzon mellan dessa. According to a seventh embodiment of the invention, the dynamic range of the astacicom by having a sheath consisting of a front and a rear part. These parts are united by a common base. The base has two sliding zones, front and rear, respectively, and a fixed zone between them.

Oversidorna pa den framre och bakre delen är fOrenade av en mekansim for dynamiskt spann. Denna mekanism bestar av tva plattor som är fOrenade med tre gangjarn, tva som sitter ihop med overdelen av den framre och bakre delen pa skidan, och ett som forbinder de tva plattorna. Mekanismen bestar aven av en tryckande fidder de trycker det mellersta gangjarnet uppat. Gangjarnen är konstruerade med en begransad rorelsefrihet som begransar hur hogt upp fjadern kan trycka det mellersta gangjarnet. Ndr inga externa krafter paverkar mekanismen har skidan ett h6gt spanntillstand. Nar tillrãckligt starka kr-after pabringas mekanismen kollapsar den och skidan overgar till ett lagt spanntillstand. Skidan atergar till hogt spanntillstand ndr den externa kraften avlagsnas. The upper sides of the front and rear are joined by a dynamic span mechanism. This mechanism consists of two plates joined by three hinges, two which sit together with the upper part of the front and rear part of the ski, and one which connects the two plates. The mechanism also consists of a pressing feeder, they push the middle hinge upwards. The hinges are constructed with a limited freedom of movement that limits how high up the spring can push the middle hinges. When no external forces affect the mechanism, the ski has a high tension condition. When sufficiently strong SEK-after is applied, the mechanism collapses and the ski transitions to a laid tension state. The ski returns to a high tension condition when the external force is removed.

Enligt en attonde utforingsform av uppfmningen astadkoms dynamisk spann genom att kombinera nagon av ovansthende utforingsformer med en elektromekanisk eller elektromagnetisk mekanism. Alla fjdderbelastade delar kan ersattas med elektriska motorer eller elektromagneter. Pa sa vis ãr det majligt att basera spannets kollaps pa andra aspekter an kraftens storlek. Till exempel kan kollapsen vara baserad pa indata fran sensorer sasom accelerationsmdtare, trycksensorer, fotldge, hastighet etc. 7 Enligt en nionde utforingsform av uppfinnings astadkoms dynamisk spann genom att kombinera nagon av ovansta.ende utforingsformer med en skidbindning. I synnerhet innefattar bindningen fjanerdelen av den dynamiska spannmekanismen. Vidare kan bindningen justeras pa sa sat att aktiveringen av den dynamiska spannmekanismen inte bara styrs av den palagda kraftens storlek, utan ocksa forhallandet mellan kraften som paverkar den framre och bakre delen av bindningen. According to an eighth embodiment of the invention, dynamic range is achieved by combining any of the above embodiments with an electromechanical or electromagnetic mechanism. All spring-loaded parts can be replaced with electric motors or electromagnets. In this way, it is possible to base the collapse of the team on other aspects than the size of the force. For example, the collapse may be based on input from sensors such as accelerometers, pressure sensors, footprint, speed, etc. According to a ninth embodiment of the invention, the dynamic range is achieved by combining any of the above embodiments with a ski binding. In particular, the binding comprises the spring part of the dynamic tensioning mechanism. Furthermore, the binding can be adjusted in such a way that the activation of the dynamic tensioning mechanism is not only controlled by the magnitude of the applied force, but also the ratio between the force which affects the front and rear part of the binding.

En fOrdel med utfOringsformerna av uppfmningen dr att de ger en skida med bade bra glidegenskaper och bra fastegenskaper samtidigt. An advantage of the embodiments of the invention is that they provide a ski with both good sliding properties and good fastening properties at the same time.

Ytterligare en fordel ãr att eftersom med uppfinningen kan spannets hojd designas med ett signifikant gap mellan basen och sn6n dr det mojligt att ha ytstrukturer i belaget med valdigt bra fastegenskaper, som till exempel fiskfiallsmonster etc. Another advantage is that since with the invention the height of the bucket can be designed with a significant gap between the base and the snow, it is possible to have surface structures in the coating with very good fastening properties, such as fish fillets, etc.

Figurforteckning Figur 1 illustrerar en klassisk langdskida som belastas med ungefar hdlften av skidakarens vikt. List of figures Figure 1 illustrates a classic cross-country ski that is loaded with approximately half of the skier's weight.

Figur 2 illustrerar en klassisk ldngdskida som belastas med hela skidakarens vikt. Figure 2 illustrates a classic longitudinal ski that is loaded with the entire weight of the skier.

Figure 3 illustrerar en klassisk ldngdskida som belastas med hela skidakarens vikt plus kraften i franskjutet. Figure 3 illustrates a classic longitudinal ski that is loaded with the entire weight of the skier plus the force of the French shot.

Figur 4 illustrerar en Idassisk ldn.gdskida med dynamiskt spann enligt uppfmningen och hur krafterna fordelas. Figure 4 illustrates an Idassic ldn.gd ski with dynamic range according to the invention and how the forces are distributed.

Figure illustrerar en klassisk ldngdskida med en mekanism for att ge skidan dynamiskt spann. Figure illustrates a classic longitudinal ski with a mechanism to give the ski dynamic range.

Figur 6 illustrerar en fOrstorad version av mekanismen i figur 5. Mekanismen har hOgt spanntillstand. Figure 6 illustrates an enlarged version of the mechanism in Figure 5. The mechanism has a high clamping condition.

Figur 7 illustrerar en forstorad version av mekanismen i figur 5. Mekanismen har lagt spanntillstand. 8 Figur 8 illustrerar en forstorad version av en annan mekanism for dynamiskt spann. Mekanismen har h6gt spanntillstand. Figure 7 illustrates an enlarged version of the mechanism in Figure 5. The mechanism has added tension. Figure 8 illustrates an enlarged version of another dynamic span mechanism. The mechanism has a high tension state.

Figur 9 illustrerar en forstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har hog spanntillstand. Figure 9 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension condition.

Figur illustrerar en fOrstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har Mgt spanntillstand. Figure illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a very tight state.

Figur 11 illustrerar en fOrstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har h5gt spanntillstand. Figure 11 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 12 illustrerar en forstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har hogt spanntillstand. Figure 12 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 13 illustrerar en klassikt ldngdskida med dynamiskt spann erhallet genom en fjader med dubbel kurvatur. Skidan har h5gt spanntillstand. Figure 13 illustrates a classic longitudinal ski with dynamic span obtained through a spring with double curvature. The ski has a high tension condition.

Figur 14 illustrerar en forstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har hOgt spanntillstand. Figure 14 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur illustrerar samma dynamiska spannmekanism som i figur 14. Mekanismen har lagt spanntillstand. Figure illustrates the same dynamic tensioning mechanism as in Figure 14. The mechanism has set the tensioning state.

Figur 16 illustrerar en forstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har hogt spanntillstand. Figure 16 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 17 illustrerar hur en skidpjaxa kan fastsattas i skidan for optimal aktivering av den dynamiska spannmekanismen. Figure 17 illustrates how a ski jacket can be attached to the ski for optimal activation of the dynamic tensioning mechanism.

Figur 18 illustrerar en forstorad version av ytterligare en annan mekanism fOr dynamiskt spann, ddr mekanismen är integrerad med bindningen. Figure 18 illustrates an enlarged version of yet another dynamic span mechanism in which the mechanism is integrated with the bond.

Detaljbeskrivning av uppfinningen Uppfinning kommer I det foljande att beskrivas i mer detalj hari med 9 referenser till de bifogade figurerna, dar ett flertal utforingsformer av uppfmningen visas. DETAILED DESCRIPTION OF THE INVENTION The invention will now be described in more detail herein with 9 references to the accompanying figures, in which a number of embodiments of the invention are shown.

Uppfinningen kan emellertid utfOras i manga olika former och skall inte tolkas som begransad till de utfOringsformer som visas hari, snarare tillhandahalls dessa utf6ringsformer sa att denna detaljbeskrivning skall vara grundlig och fullstandig, och kommer fullstandigt fOrmedla omfattningen av uppfinning for fackmannen Mom teknikomradet. Pa ritningarna hanvisar likadana hanvisningsbeteckningar till likadana element. However, the invention may be embodied in many different forms and should not be construed as limited to the embodiments shown herein, rather, these embodiments are provided so that this detailed description is thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like reference numerals refer to like elements throughout.

Vidare kommer fackman Mom omradet att inse att medan foreliggande uppfinning primart beskrivs som en apparat som an en del av en skida, kan uppfinningen aven utforas i skidbindningar liksom andra anordningar utanfOr skidan som kan utfora de funktioner som beskrivs hari. Furthermore, those skilled in the art will recognize that while the present invention is primarily described as an apparatus as part of a ski, the invention may also be embodied in ski bindings as well as other devices outside the ski which may perform the functions described herein.

Dessutom bor det vara klart for en fackman Mom omradet att ritningarna inte ãr helt detaljerade eller i raft skala. For illustrativt syfte visas vissa delar storre och oproportionerliga i forhallande till verldigheten. In addition, it should be clear to a skilled Mom in the art that the drawings are not fully detailed or in raft scale. For illustrative purposes, certain parts are shown larger and disproportionate in relation to reality.

Figur 1 visar en ungefarlig oversikt Over hur de vertikala krafterna paverkar en klassisk langdskida nar den an delvis belastad. Detta an till exempel en vanlig situation nar akaren dubbelstakar, sa att ungefar halften av akarens vikt belastar en skida. I detta fall kan det ses att kraften fordelas pa skidan 100 i en framre del 102 och en bakre del 101. Figure 1 shows an approximate overview of how the vertical forces affect a classic cross-country ski when it is partially loaded. This is, for example, a common situation when the field doubles, so that about half of the field's weight is loaded on a ski. In this case, it can be seen that the force is distributed on the sheath 100 in a front part 102 and a rear part 101.

Figur 2 illustrerar en typisk Oversikt Over hur de vertikala krafter paverkar en klassisk ldngdskida ndr den är belastad med stone delen av skidakarens vikt. Detta är till exempel en vanlig situation ndr skidakaren glider pa en skida efter att ha franskjutit med den andra, sâ att ungelar hela skidakarens vikt ãr pa en skida. I detta fall kan det ses att kraften fordelas pa skidan 200 i en framre del 202 och en bakre del 201, men jdmfort med Figur 1 kan noteras att delar av kraften ocksâ fordelas i fastzonen, som illustreras av de prickade kraftlinjerna 203. Det torde vara uppenbart for fackmannen inom omranet att pa grund av detta ãr det illustrerade spannet inte idealisk for att glida pa en skida. Figure 2 illustrates a typical Overview of how the vertical forces affect a classic longitudinal ski when it is loaded with the stone part of the skier's weight. This is, for example, a common situation when the skier slips on one ski after shooting with the other, so that youngsters the entire weight of the skier is on one ski. In this case it can be seen that the force is distributed on the sheath 200 in a front part 202 and a rear part 201, but compared with Figure 1 it can be noted that parts of the force are also distributed in the fixed zone, which is illustrated by the dotted power lines 203. It should be it is obvious to the person skilled in the art that due to this the illustrated span is not ideal for sliding on a ski.

Figur 3 visar en typisk bild av hur de vertikala krafterna paverkar en klassisk ldngdskida nar den ãr belastad med skidakarens hela vikt plus ytterligare kraft som orsakas av franskjutet i franskjutsfasen. Detta ãr till exempel en vanlig situation ndr skidakaren Aker med omvaxlande diagonalsteg och skjuter ifran for att producera en drivkraft. I detta fall kan det ses att kraften fordelas pa skidan 300 i en framre del 302 och en bakre del 301, men jamfort med Figur 2 kan noteras att en betydande del av kraften nu kommer fran fastzonen, sasom illustreras av de prickade kraftlinjerna 303. Emellertid ãr det mesta av kraften fortfarande fordelad i glidande sektionerna 301 och 302. Salunda bor det vara uppenbart f6r fackmannen inom teknikomradet att det visade spannet inte ger ett perfekt faste. 11 Figur 4 illustrerar en typisk overblick Over hur de vertikala krafterna kommer att distribueras i franskjutsfasen ndr en skida med den fOreslagna uppfinningen implementerad i spannet anvands. Den totala kraften kommer fran skidakarens vikt och ytterligare kraft som orsakas av franskjutet i franskjutsfasen. Detta ãr till exempel en vanlig situation ndr skidakaren Aker med omvdxlande diagonalsteg och skjuter ifran fOr att producera en drivkraft. I detta fall kan man se att viss kraft fordelas pa skidan 400 i en framre del 402 och en bakre del 401, men jamfort med Figur 3 kan noteras att nu endast en mycket liten del ãr fOrdelad i glidzonerna, och att nastan all kraft kommer fran fastzonen, sasom illustreras av prickade kraftlinjerna 403. Det torde vara uppenbart for fackmannen Mom omradet att en skida med dynamiskt spann ger ett mycket battre faste an en konventionell klassisk langdakningsskida. Figure 3 shows a typical picture of how the vertical forces affect a classic longitudinal ski when it is loaded with the full weight of the skier plus additional force caused by the French shot in the French shot phase. This is, for example, a common situation when the skier Aker with alternating diagonal steps and shoots away to produce a driving force. In this case, it can be seen that the force is distributed on the sheath 300 in a front part 302 and a rear part 301, but compared with Figure 2 it can be noted that a significant part of the force now comes from the fixed zone, as illustrated by the dotted power lines 303. However most of the force is still distributed in the sliding sections 301 and 302. Thus, it should be apparent to those skilled in the art that the span shown does not provide a perfect fast. Figure 4 illustrates a typical overview of how the vertical forces will be distributed in the French firing phase when a ski with the proposed invention implemented in the span is used. The total force comes from the weight of the skier and additional force caused by the French shot in the French shot phase. This is, for example, a common situation when the skier Aker alternates with diagonal steps and pushes away to produce a driving force. In this case it can be seen that some force is distributed on the sheath 400 in a front part 402 and a rear part 401, but compared with Figure 3 it can be noted that now only a very small part is distributed in the sliding zones, and that almost all force comes from the fast zone, as illustrated by the dotted power lines 403. It should be obvious to the person skilled in the art that a ski with a dynamic span gives a much better fast than a conventional classic long-distance ski.

Figur illustrerar en typisk oversikt av en utforingsform av uppfinningen. En klassisk ldngdskida 501 har en dynamisk spannmekanism 502. 12 Figur 6 och 7 visar en foredragen utforingsform av uppfinningen. Figur 6 illustrerar den mekanism som beskrivs i 502 i en stone skala for Okad tydlighet och darmed visas endast delar av skidan 501. Mekanismen bestar av ett antal delar, av vilka endast de viktigaste visas for att klargora presentationen. Skidan 501 bestar av en framre och en bakre del. Delarna sitter ihop med en gemensam bas. Basen har tva glidzoner, vid den framre och bakre delen respektive, och en fastzon. De framre och bakre delar àr ocksá forenade med ett gangjarn 602, som ãr belaget nara basen. De framre och bakre delarna har en dynamisk spannmekanism fast vid de ovre ytorna. Denna dynamiska spannmekanism bestar i huvudsak av en vinklad kil 613 som ár inklamd mellan tva plattor 603 och 604. Plattan 603 ãr fast vid den Ovre ytan av den bakre delen av skidan 501 och plattan 604 ãr fast vid den ovre delen av den framre delen av skidan 501. Kilen ar fast pa insidan av den framre delen av skidan med ett gangjarn 614. En fjader konstruktion bestaende av en justerskruv 612, en fjader 611 och en mutter 610 anvands f8r att justera den erforderliga kraften som kravs for att trycka kilen 613 nedat. Fjadern 611 och muttern 610 ar fasta vid varandra och kilen 613 sa att de inte kan rotera nar stallskruven 612 vrids. I det hoga spanntillstandet trycker fjadern i ovannamnda konstruktion kilen 613 uppat, sâ att den ãr inklamd mellan plattorna 603 och 604. Den dynamiska spannmekanism bestar ocksa av en ovre vinklad plattform 605 som är fast vid plattan 603 med ett gangjarn 607. Den vinklade plattform 605 kan ttycka mot den vinklade kilen 613. Nar plattformen 605 trycks ned med en 'craft som är stone an kraften fran fjadern konstruktionen 610-612 plus friktion ror sig kilen 613 nedat och den ãr inte langre inklamd mellan plattorna 603 och 604, vilket far den dynamiska spannmekanismen att kollapsa till ett lagt spanntillstand, sasom visas i Figur 7. Plattorna 603 och 604 och kilen 613 har snedstallda kanter, sa att nar den palagda kraften reduceras kommer kilen 613 att pressas mellan plattorna 603 och 604 av fjaderkonstruktionen 610-612. Vinkeln pa denna snedstallning kommer att avgora vid vilken kraftniva skidan Ater& till hogt spanntillstand. 13 Figur 8 visar en annan utforingsform, som ãr en variant pa utforingsformen som beskrivs i Figur 5-7. Skillnaden i denna utforingsform är att en fidder 803 trycker direkt pa kilen 802 Figur 9 illustrerar ytterligare en annan utforingsform ddr dynamiskt spann uppnas genom att ha en skida 901 som bestar av en framre och en bakre del. Delarna f6renas av en gemensam bas. Basen har tva glidzoner, fram respektive bak, och en fastzon. De framre och bakre delarna ãr ocksâ f6renade med ett gangjarn 902, som ãr beldget nara basen. Den ovre delen av den bakre delen har en forldngning 903 som stracker sig ut ovanfor den framre delen. I slutet av denna forlangning sitter en led 904 med en plan struktur 905 bifogad. Denna plana struktur 905 gar emot den ovre delen av den framre delen av skidan 901 med en vinkel framat. Den dr ocksá fOrhindrad att glida bakat genom forhojningen 920. Den plana strukturen 905 trycks ocksa tillbaka av en fjaderkonstruktion bestaende av en fjader 906, justerskruv 907 och en mutter 908 fast vid skidan. Saledes kan den plana strukturen 905 bara rera sig framat om skidan 901 ãr belastad med tillrdckligt stor vertikal kraft. Den namnda vinkeln ar vald sá att fjadern 906 inte behover vara stark och tung. Nar skidan 901 ãr belastad med tillrdcklig kraft, som bestams av stallskruven 907, kommer den nedre anden av den plana strukturen 905 glider ldngs ytan av den framre delen av skidan 901, som skall ha lag friktion. Den Ovre delen av den plana strukturen 905 kommer att rotera runt leden 904 fast vid fOrldngningen 903. Eftersom den nedre anden av den plana strukturen 905 glider ytterligare framat andras vinkeln och darmed kravs mindre och mindre kraft for att trycka den nedat. Ddrfor kommer forldngningen 903 att rora sig nedat tills den nar den ovre delen av den framre delen av skidan 901. Saledes har den beskrivna mekanismen kollapsat till ett lagt spanntillstand, och endast en liten nedatriktad kraft kravs f8r att halla mekanismen i detta tillstand. Detta laga spanntillstand kvarstar tills akaren tar bort nastan all neda.triktade kraft, da kommer den fjdderbelastade plana strukturen 905 att tryckas tillbaka igen, och pA. sa. sat aterstalla skidan till ett hogt spann tillstand med goda glidegenskaper. 14 Figur illustrerar ytterligare en annan utforingsform ddr dynarniskt spann uppnas genom att ha en skida 1001 som bestar av en framre och en bakre del. Delarna ãr forenade av en gemensam bas. Basen har tva glidzoner, vid den framre respektive bakre delen, och en fastzon. De framre och bakre delarna är ocksa forenade med ett gangjarn 1002, som är beldget nara basen. Den byre delen av den bakre delen har en forldngning 1003 som stracker sig ut ovanfbr den framre delen. Pd den ovre ytan av den framre delen av skidan 1001 firms en kil 1009 som har en vinklad byre yta beldgen. Kilen 1009 stoppas att glida bakat av den lilla forhojningen 1020. Den plana strukturen skjuts tillbaka av en fjader konstruktion bestaende av en fjader 1006, justerskruv 1007 och en mutter 1008 fast vid skidan. Sdledes kan kilen 1009 bara rora sig framat om skidan belastad med tillrdcklig kraft. Den namnda vinkeln av den ovre ytan hos kilen 1009 vdljs sa att fjadern 1006 inte behover vara stark och tung. Ndr skidan dr belastad med tillracklig kraft, som bestams av stallskruven 1007, kommer kilen 1009 glider framdt Fangs ytan pa den framre delen av skidan 1001, som skall ha lag friktion. Eftersom kilen 1009 glider ytterligare framat kommer den bakre kanten av kilen 1009 ga fri fran den framre kanten pa forlangningen 1003, och darmed kommer forldngningen att dna sig nedat tills den vidriir den ovre delen av den framre delen av skidan 1001. Saledes har den beskrivna mekanismen kollapsat till ett lag spanntillstAnd, och endast en liten nedatriktad kraft kravs fOr att halla den mekanism i detta tillstand. Detta laga spanntillstand kvarstar tills akaren tar bort ndstan all den nedatriktade kraften, da kommer kilen 1009 att skjutas tillbaka igen, och pa sa satt aterstalla skidor till ett hOgt spanntillstAnd med goda glidegenskaper. Figure illustrates a typical overview of an embodiment of the invention. A classic length ski 501 has a dynamic tensioning mechanism 502. Figures 6 and 7 show a preferred embodiment of the invention. Figure 6 illustrates the mechanism described in 502 on a stone scale for increased clarity and thus only parts of the sheath 501 are shown. The mechanism consists of a number of parts, of which only the most important ones are shown to clarify the presentation. The ski 501 consists of a front and a rear part. The parts sit together with a common base. The base has two sliding zones, at the front and rear part respectively, and a fixed zone. The front and rear parts are also joined by a hinge 602, which is coated near the base. The front and rear parts have a dynamic clamping mechanism attached to the upper surfaces. This dynamic clamping mechanism consists essentially of an angled wedge 613 which is clamped between two plates 603 and 604. The plate 603 is fixed to the upper surface of the rear part of the sheath 501 and the plate 604 is fixed to the upper part of the front part of the sheath. the sheath 501. The wedge is fixed on the inside of the front part of the sheath with a hinge 614. A spring construction consisting of an adjusting screw 612, a spring 611 and a nut 610 is used to adjust the force required to push the wedge 613 down. . The spring 611 and the nut 610 are fixed to each other and the wedge 613 so that they cannot rotate when the stable screw 612 is turned. In the high clamping state, the spring in the above construction pushes the wedge 613 upwards so that it is clamped between the plates 603 and 604. The dynamic clamping mechanism also consists of an upper angled platform 605 which is fixed to the plate 603 with a hinge 607. The angled platform 605 can press against the angled wedge 613. When the platform 605 is pressed down with a 'craft which is stone by the force of the spring structure 610-612 plus friction, the wedge 613 moves downwards and it is no longer clamped between the plates 603 and 604, which causes it dynamic clamping mechanism to collapse into a laid clamping condition, as shown in Figure 7. The plates 603 and 604 and the wedge 613 have sloping edges, so that when the applied force is reduced, the wedge 613 will be pressed between the plates 603 and 604 of the spring structure 610-612. The angle of this skew will determine at what power level the ski Ater & to high tension condition. Figure 8 shows another embodiment, which is a variant of the embodiment described in Figure 5-7. The difference in this embodiment is that a feeder 803 presses directly on the wedge 802. Figure 9 illustrates yet another embodiment in which a dynamic span is achieved by having a sheath 901 consisting of a front and a rear part. The parts are united by a common base. The base has two sliding zones, front and rear, respectively, and a fixed zone. The front and rear parts are also joined by a hinge 902, which is belted near the base. The upper part of the rear part has an extension 903 which extends above the front part. At the end of this request is a joint 904 with a flat structure 905 attached. This flat structure 905 abuts the upper part of the front part of the sheath 901 at an angle forward. It is also prevented from sliding backwards through the ridge 920. The flat structure 905 is also pushed back by a spring construction consisting of a spring 906, adjusting screw 907 and a nut 908 fixed to the ski. Thus, the planar structure 905 can only move forward if the sheath 901 is loaded with a sufficiently large vertical force. The said angle is chosen so that the spring 906 does not have to be strong and heavy. When the sheath 901 is loaded with sufficient force, which is determined by the stable screw 907, the lower spirit of the planar structure 905 slides along the surface of the front part of the sheath 901, which should have low friction. The upper part of the planar structure 905 will rotate around the joint 904 fixed to the extension 903. As the lower spirit of the planar structure 905 slides further forward the angle of the other and thus less and less force is required to push it downwards. Therefore, the extension 903 will move downward until it reaches the upper part of the front part of the sheath 901. Thus, the described mechanism has collapsed to a laid tension state, and only a small downward force is required to keep the mechanism in this state. This low tension state remains until the field removes almost all of the downward force, then the spring-loaded planar structure 905 will be pushed back again, and pA. sa. sat restore the ski to a high span condition with good sliding properties. Figure illustrates yet another embodiment in which dynamic range is achieved by having a sheath 1001 consisting of a front and a rear portion. The parts are united by a common base. The base has two sliding zones, at the front and rear, respectively, and a fixed zone. The front and rear parts are also joined by a hinge 1002, which is beldget near the base. The upper part of the rear part has an extension 1003 which extends above the front part. On the upper surface of the front part of the sheath 1001 there is a wedge 1009 which has an angled byre surface beldgen. The wedge 1009 is stopped to slide backwards by the small ridge 1020. The flat structure is pushed back by a spring construction consisting of a spring 1006, adjusting screw 1007 and a nut 1008 fixed to the ski. Thus, the wedge 1009 can only move forward if the ski is loaded with sufficient force. The said angle of the upper surface of the wedge 1009 is adjusted so that the spring 1006 does not have to be strong and heavy. When the ski is loaded with sufficient force, which is determined by the stable screw 1007, the wedge 1009 will slide forward Fang surface on the front part of the ski 1001, which should have low friction. As the wedge 1009 slides further forward, the trailing edge of the wedge 1009 will release from the leading edge of the extension 1003, and thus the extension will bend downwards until it touches the upper part of the front part of the sheath 1001. Thus, the described mechanism has collapsed into a law of tension, and only a small downward force is required to keep the mechanism in this state. This low tension condition remains until the field removes almost all the downward force, then the wedge 1009 will be pushed back again, and in this way restore the skis to a high tension condition with good sliding properties.

Med hanvisning nu till Figur 11, som visar ytterligare en utfOringsform som är en variant av utf8ringsformen som illustreras i Figur 10. I den utforingsform som illustreras i Figur 11 är kilen 1009 i Figur 10 ersatt av en kil 1109 med rullager 1110 for att minska friktionen. Dessutom har forldngningen 1103 ett rullager 1111 f8r att ytterligare reducera friktionen. Referring now to Figure 11, which shows another embodiment which is a variant of the embodiment illustrated in Figure 10. In the embodiment illustrated in Figure 11, the wedge 1009 in Figure 10 is replaced by a wedge 1109 with roller bearings 1110 to reduce friction. . In addition, the extension 1103 has a roller bearing 1111 to further reduce friction.

Figur 12 illustrerar ytterligare en annan utforingsform ddr dynamiskt spann uppnds genom att ha en fjaderbelastad fackverksstruktur inbaddad inuti skidan. Figur 12 visar en skiss Over fackverkets struktur. Fackverksstrukturen bestar av en Ovre lang stang 1201 som stracker sig fran den framre delen av spannet till den bakre delen. Figure 12 illustrates yet another embodiment where dynamic span is achieved by having a spring-loaded truss structure embedded within the sheath. Figure 12 shows a sketch of the truss structure. The truss structure consists of an upper long bar 1201 which extends from the front part of the span to the rear part.

Fackverksstrukturen bestar ocksa av en lagre lAng stang 1204 som stracker sig fran den framre delen av spann till den bakre delen. Den Ovre stangen 1201 och den undre stangen 1204 är fOrbundna med styva balkar 1203, vllket ger fackverksstrukturen styva egenskaper. The truss structure also consists of a bearing long rod 1204 which extends from the front part of the span to the rear part. The upper bar 1201 and the lower bar 1204 are connected to rigid beams 1203, which give the truss structure rigid properties.

Nara mitten av fackverksstrukturen ãr den ovre stangen 1201 och den undre stangen 1204 forbundna med styva balkar 1202, som ãr fasta permanent till den Ovre stangen 1201, men som kan rora sig langs den nedre stangen 1204. FOrflyttningen av 1202 ldngs stangen 1204 begransas av en fjader 1205 som är fast till stangerna 1202. Nar fackverksstrukturen ãr belastad med tillrãcklig stor nedatriktad kraft ddr stangerna 1202 dr fasta i stangen 1201 kommer fjadern 1205 att forlangas och darmed forlorar fackverksstrukturen sin styvhet vid denna punkt och kollapsar darmed. Skidan kommer da in i ett ldgt spanntillstand och kommer inte tillbaka till h6gt spanntillstand forran den nedatriktade kraften avlagsnas. Near the center of the truss structure, the upper rod 1201 and the lower rod 1204 are connected by rigid beams 1202, which are fixed permanently to the upper rod 1201, but which can move along the lower rod 1204. The movement of the 1202 longitudinal rod 1204 is limited by a spring 1205 which is fixed to the rods 1202. When the truss structure is loaded with a sufficiently large downward force ddr the rods 1202 dr fixed in the rod 1201, the spring 1205 will be required and thus the truss structure loses its rigidity at this point and thereby collapses. The ski then enters a low tension state and does not return to a high tension state until the downward force is removed.

Figur 13 illustrerar ytterligare en annan utfOringsform dar dynamisk Spann uppnas genom att ha en dubbelkrokt fjader 1302 fast vid skidan 1303. Den Ovre delen av Figur 13 visar en forstorad sidovy 1302 och en forstorad vy framifran 1301 av den dubbelkrokta fjadern. Den dubbelkrokta fjadern har formen av en yta, vilken har en egenskap att den har tva stabila tillstand, ett dar den ãr krokt i en riktning, och ett dal- den ãr krokt i den andra riktningen. Mellan dessa till tillstand finns en skarp Overgengspunkt, dar den bOjande kraften hos fjadern andrar polaritet. En dubbelkrokt fjader anvands med en overgangspunkt som ger skidan en dynamisk spann sasom beskrivits for de andra utfOringsformerna av denna uppfinning. Som referens kan namnas att den kanske vanligaste anyandningen av dubblakrokta fjadrar ãr reflektorer och leksaker som kan fasta sig sjalv runt olika objekt, se t.ex. US3410023. 16 Figur 14 och visar ytterligare en annan utforingsform av uppfinningen. Skidan 1401 bestar av en framre och en bakre del. Dessa delar forenas av en gemensam bas 1404. Basen 1404 hat tva glidzoner, pa den frdmre respektive bakre delen, och en fastzon. Framre delen hat en ovre yta 1402 och bakre delen hat en Ovre yta 1403 och dessa är fOrenade genom en dynamisk spannmekanism som ãr fast vid dessa ovre ytor 1402 och 1403. Denna dynamiska spannmekanism bestar huvudsakligen av tva plattor 1430 som är forenade med varandra medelst gangjarnet 1421. De tva. plattorna 1430 ãr ocksá ansluten till den frarnre byre ytan 1402 med gangjdrnet 1422 och till den bakre Ovre ytan 1403 med gangjarnet 1420. Del av konstruktionen ãr ocksâ en tryckande fjader 1410 som trycker uppat pa gangjarnet 1421. Gangjarnen 1420, 1421 och 1422 at konstruerade med ett begransat rorelseomfang som begransar hur hogt fjadern 1410 kan skjuta gangjarnet 1421. Nat ingen yttre kraft verkar pa den dynamiska spannmekanismen hat skidan ett hog spanntillstand, sasom illustreras i Figur 14. Ndr tillrdckligt stor yttre nedatriktad kraft appliceras pa namnda mekanism, kollapsar mekanismen och skidan intar ett lag spanntillstand, sasom illustreras i Figur 15. Skidan 1401 atergar till ett hogt spanntillstand nar den yttre kraften avlagsnas. 17 Figur 16 illustrerar ytterligare en annan utforingsform dar dynamiskt spann uppnas genom att ha en skida 1601 som bestar av en framre och en bakre del. Delarna fOrenas av en gemensam bas. Basen har tva glidzoner, vid den framre respektive bakre delen, och en fdstzon. De framre och bakre delarna är ocksa forenade med ett gangjarn, som är beldget nara basen. Den ovre delen av den bakre delen har en forlangning 1603 som stracker sig ut ovanfor den framre delen. I slutet av denna forldngning finns en led 1604 med en plan struktur 1605 bifogad. Gan.gjarnet 1604 har en integrerad torsionsfjader som trycker den plana strukturen 1605 i en moturs riktning. Den plana strukturen 1605 gar mot den ovre delen av den frdmre delen av skidan i en vinkel. Det forhindras ocksa att glida bakat av den lilla forhojningen 1620. Saledes kan den plana strukturen 1605 bara ga framat om skidan belastad med tillracklig stor kraft. Den namnda vinkeln dr vald sa att torsionsfjadern inte behover vara stark och tung. Ndr skidan är belastad med tillrdckligt stor kraft tvingas den nedre anden av den plana strukturen 1605 att glida ldngs ytan av den framre delen av skidan 1601, som skall ha lag friktion. Den ovre delen av den plana strukturen kommer att rotera runt det fjdderbelastade gangjarnet 1604 fast vid fOrldrigningen 1603. Allt eftersom den plana strukturen glider ldngre fram Andras vinkeln och darmed kravs mindre och mindre kraft for att pressa ner den. DarfOr kommer forldngningen att rora sig nedat tills den vidror den ovre delen av den framre delen av skidan 1601. Saledes har den beskrivna mekanismen kollapsat till ett lagt spanntillstand, och endast en liten kraft kravs f6r att halla mekanismen i detta tillstand. Detta la.ga spanntillstand kvarstar tills akaren tar bort nastan all den neda.triktade kraften, da kommer den fjaderbelastade plana strukturen att tryckas tillbaka igen, och pa sâ salt aterstdlla skidan till ett hogt spanntillstand med goda glidegenskaper. 18 En ytterligare utforingsform ãr en variant av alla utforingsformer ovan dar en fjader anvandes. I denna utforingsform ersatts fjadrarna med en elektrisk anordning, sasom en elektromagnet eller en elektrisk motor. I denna utfOringsform aktiveras inte mekanismen bara av kraftens trOskelvarde. Aktiveringen baseras pa elektriska sensorer sasom accelerometrar, tryckgivare och hastighetsensorer, vilkas utsignaler bearbetas av en mikroprocessor. Mikroprocessorn aktiverar sedan den elektriska motorn eller elektromagneten. Figure 13 illustrates yet another embodiment where dynamic span is achieved by having a double hook spring 1302 attached to the sheath 1303. The upper portion of Figure 13 shows an enlarged side view 1302 and an enlarged front view 1301 of the double hook spring. The double-crooked spring has the shape of a surface, which has the property that it has two stable conditions, one where it is crooked in one direction, and a valley which is crooked in the other direction. Between these to the state there is a sharp transition point, where the bending force of the spring changes polarity. A double-hook spring is used with a transition point which gives the ski a dynamic span as described for the other embodiments of this invention. As a reference, it can be mentioned that perhaps the most common use of double-crooked springs are reflectors and toys that can attach themselves around different objects, see e.g. US3410023. Figure 14 and shows yet another embodiment of the invention. The ski 1401 consists of a front and a rear part. These parts are united by a common base 1404. The base 1404 has two sliding zones, on the front and rear part, respectively, and a fixed zone. The front part has an upper surface 1402 and the rear part has an upper surface 1403 and these are joined by a dynamic clamping mechanism which is fixed to these upper surfaces 1402 and 1403. This dynamic clamping mechanism consists mainly of two plates 1430 which are joined to each other by means of the hinge 1421. De tva. the plates 1430 are also connected to the front outer surface 1402 with the hinge 1422 and to the rear upper surface 1403 with the hinge 1420. Part of the construction is also a compressive spring 1410 which presses upwards on the hinge 1421. The hinge 1420, 1421 and 1422 are constructed with a limited range of motion that limits how high the spring 1410 can push the hinge 1421. Since no external force acts on the dynamic tensioning mechanism, the ski has a high tension state, as illustrated in Figure 14. When a sufficiently large external downward force is applied to said mechanism, the mechanism collapses and the ski assumes a low tension state, as illustrated in Figure 15. The sheath 1401 returns to a high tension state when the external force is removed. Figure 16 illustrates yet another embodiment where dynamic range is achieved by having a sheath 1601 consisting of a front and a rear portion. The parts are formed by a common base. The base has two sliding zones, at the front and rear, respectively, and a foot zone. The front and rear parts are also joined by a hinge, which is beldget near the base. The upper part of the rear part has a extension 1603 which extends above the front part. At the end of this obsolescence, a section 1604 with a planar structure 1605 is attached. Gan.gjarnet 1604 has an integrated torsion spring which pushes the flat structure 1605 in a counterclockwise direction. The planar structure 1605 faces the upper part of the front part of the ski at an angle. It is also prevented from sliding backwards by the small elevation in 1620. Thus, the flat structure in 1605 can only move forward if the ski is loaded with sufficient force. The named angle selected here means that the torsion spring does not have to be strong and heavy. When the sheath is loaded with sufficient force, the lower spirit of the planar structure 1605 is forced to slide along the surface of the front portion of the sheath 1601, which should have low friction. The upper part of the flat structure will rotate around the spring-loaded hinge 1604 fixed to the extension 1603. As the flat structure slides further forward the angle of the other and thus less and less force is required to press it down. Therefore, the obsolescence will move downward until it touches the upper part of the front part of the sheath in 1601. Thus, the described mechanism has collapsed to a laid tension state, and only a small force is required to keep the mechanism in this state. This low tension condition remains until the field removes almost all the downward force, then the spring-loaded flat structure will be pushed back again, and in that way the ski will return to a high tension condition with good sliding properties. A further embodiment is a variant of all embodiments above where a spring is used. In this embodiment, the springs are replaced with an electrical device, such as an electromagnet or an electric motor. In this embodiment, the mechanism is not activated only by the threshold value of the force. Activation is based on electrical sensors such as accelerometers, pressure sensors and speed sensors, the output signals of which are processed by a microprocessor. The microprocessor then activates the electric motor or electromagnet.

I annu en annan variant av ovansta.ende utforingsformer ãr halen ansluten till deaktiveringen av den dynamiska spannmekanismen, pa ett sadant satt att spannet endast atergar till ett hogt spanntillstand om halen lyfts fran skidan. In yet another variant of the above embodiments, the tail is connected to the deactivation of the dynamic buckle mechanism, in such a way that the buckle only returns to a high buckle condition if the tail is lifted from the sheath.

I annu en annan variant av ovanstaende utforingsformer ãr halen ansluten till aktiveringen av den dynamiska spannmekanism, pa ett sadant satt att spannet endast kan ga Over till lagt spanntillstand om forhallandet mellan trycket under halen och framfoten trycket ligger Mom ett visst intervall. Till exempel om det mesta av vikten ligger pa halen aktiveras inte overgangen till lagt spanntillstand. In yet another variant of the above embodiments, the tail is connected to the activation of the dynamic tensioning mechanism, in such a way that the span can only give Over to the added tensioning state if the ratio between the pressure under the tail and the forefoot pressure is Mom a certain interval. For example, if most of the weight is on the tail, the transition to the added tension condition is not activated.

Figur 17 illustrerar ytterligare en annan utforingsform. Figur 17 visar hur en pjaxa kan fa.stas pa skidor tillsammans med dynamiska spannmekanismer. I Figur 17 liknar den dynamiska spannmekanism den som visas i Figur 6 och 7, men det kan vara en mangd olika dynamiska spannmekanisms sasom beskrivits tidigare. I Figur 17 placeras pjaxan 1750 pa en platta 1730. Plattan 1730 kan integreras med skidbindningen eller en platta dar skidbindning kan monteras. Figure 17 illustrates yet another embodiment. Figure 17 shows how a boot can be fastened to skis together with dynamic tensioning mechanisms. In Figure 17, the dynamic tensioning mechanism is similar to that shown in Figures 6 and 7, but there may be a variety of dynamic tensioning mechanisms as previously described. In Figure 17, the boot 1750 is placed on a plate 1730. The plate 1730 can be integrated with the ski binding or a plate where the ski binding can be mounted.

Under plattan 1730 firms ett gangjarn 1720, som ãr placerad vid en viss position i fram-bak riktningen. Det bOr vara uppenbart att nar den resulterande kraften fran skon verkar bakom gangjarnet 1720 fmns det ingen kraft som trycker pa den dynamiska spannmekanismen 1710. Below the plate 1730 there is a hinge 1720, which is placed at a certain position in the front-rear direction. It should be obvious that when the resulting force from the shoe acts behind the hinge 1720, there is no force pressing on the dynamic tensioning mechanism 1710.

Nar den resulterande kraften verkar framfor gangjarnet 1720 pressar plattan 1730 ned pa den dynamiska spannmekanismen. Det bor sta klart for fackmannen Mom omradet att det är mOjligt att ha ett system dar den dynamiska spannmekanism endast aktiveras nar skidakarens tyngd verkar pa skidan tillrackligt langt fram. 19 Figur 18 illustrerar en annan fOredragen utfOringsform av uppfinningen. Skidan 1801 bestar av en framre och en bakre del. Delarna forenas av en gemensam bas. Basen har tva glidzoner, vid den framre respektive bakre delen, och en fastzon. De framre och bakre delarna har en dynamisk spannmekanism fast vid de Ovre ytorna och denna dynamiska spannmekanism integreras med skidans bindning. Denna dynamiska spannmekanism bestar i huvudsak av en vinklad kil 1832 som ligger inkldmd mellan tva plattor 1810 och 1811. Plattan 1811 dr fast vid undersidan av den ovre ytan av den bakre delen av skidan 1801 och plattan 1810 dr fast vid undersidan av den byre ytan av den framre delen av skidan 1801. Kilen 1832 är fast vid en platta 1831 som fir den nedre ytan av skidbindningens platta. Plattan 1831 fir ansluten till en balk 1830 som delvis platsar i en skara i pjdxan 1850 da namnda pjaxor fir fast vid bindningen. Tillsammans utgor plattan 1831 och balken 1830 en del av skidbindningen. Kombinationen av plattan 1831 och balken 1830 fungerar som en bladfjaner, som fir forbojd och drar kilen 1832 uppat med en viss kraft, men vinkeln i kilen 1832 hailer den fran att rora sig ytterligare uppat ndr namnda dynamiska spannmekanism fir i hogt spanntillstand. Den bindande delen bestar av 1831 och 1830 ãr fast vid skidan med fdstena 1820 och 1821. Nar akaren anbringar nedatriktad kraft av en viss storlek till den frdmre delen av skidpjaxan 1850 kommer namnda bindningsdelar 1831 och 1830 att bojas och saledes skjuta kilen 1832 nedat, och darmed kollapsa skidan till ett lâgt spanntillstand. Storleken nedatriktade kraft som behovs kan justeras av den langsgaende placeringen av fdstelementet 1820 och h6jden av fdstelementet 1821. Slddan kommer inte att aterga till hogt spanntillstand fOrrdn det mesta av namnda nedatriktade kraft avlagsnas. Det beor sta klart for fackmannen inom omradet att den mekanism som beskrivs i Figur 18 inte kommer att kollapsa cm akaren applicerar nedatriktade kraften nara hdlomradet av pjaxan 1850. When the resulting force acts in front of the hinge 1720, the plate 1730 presses down on the dynamic clamping mechanism. It should be clear to the person skilled in the art that it is possible to have a system in which the dynamic tensioning mechanism is only activated when the weight of the skier acts on the ski sufficiently far forward. Figure 18 illustrates another preferred embodiment of the invention. The 1801 ski consists of a front and a rear part. The parts are united by a common base. The base has two sliding zones, at the front and rear, respectively, and a fixed zone. The front and rear parts have a dynamic tensioning mechanism attached to the upper surfaces and this dynamic tensioning mechanism is integrated with the binding of the ski. This dynamic clamping mechanism consists essentially of an angled wedge 1832 which is sandwiched between two plates 1810 and 1811. The plate 1811 is fixed to the underside of the upper surface of the rear part of the sheath 1801 and the plate 1810 is fixed to the underside of the upper surface of the front part of the ski 1801. The wedge 1832 is fixed to a plate 1831 which leads to the lower surface of the plate of the ski binding. The plate in 1831 was connected to a beam in 1830, which was partly placed in a group in the pjdxan in 1850, when the said pjaxor was attached to the binding. Together, the slab in 1831 and the beam in 1830 form part of the ski binding. The combination of the plate in 1831 and the beam in 1830 acts as a leaf sweeper, which is bent and pulls the wedge upwards in 1832 with a certain force, but the angle of the wedge in 1832 prevents it from moving further upwards when the dynamic tensioning mechanism is in high tension. The binding part consists of 1831 and 1830 is fixed to the ski with the headstones 1820 and 1821. When the field applies downward force of a certain size to the front part of the ski jacket 1850, said binding parts 1831 and 1830 will be bent and thus push the wedge 1832 down, thereby collapsing the ski to a low tension state. The magnitude of the downward force required may be adjusted by the longitudinal position of the feed member 1820 and the height of the feed member 1821. This will not return to the high tension condition until most of said downward force is removed. It should be clear to those skilled in the art that the mechanism described in Figure 18 will not collapse if the field applies the downward force near the height of the 1850 jacket.

Foreliggande uppfinning ar inte begransad till de ovan beskrivna fOredragna utforingsformerna. Olika alternativ, modifieringar och ekvivalenter kan anvandas. DarfOr bor de ovannamnda utforingsformerna inte tas som begransande for uppfinningen, vilken definieras av de bifogade patentkraven. 1 The present invention is not limited to the preferred embodiments described above. Various alternatives, modifications and equivalents can be used. Therefore, the above-mentioned embodiments should not be construed as limiting the invention, which is defined by the appended claims. 1

Claims (30)

PatentkravPatent claims 1. En ldngdskida (501) f8r att utova klassisk langdslddakning, inklusive en glidande fas och en franskjutande fas, kannetecknad av: En skida innefattande en framre del, en bakre del, en spannreducerande mekanism och en skidbindning, namnda framre del och namnda bakre del har en gemensam nedre yta, namnda gemensamma nedre yta har en framre och en bakre glidyta och en central fastzon, ndmnda framre del och namnda bakre del ãr forbundna med varandra med atminstone namnda spannreducerande mekanism, namnda spannreducerande mekanism har ett hog spanntillstand och ett Mgt spanntillstand ddr det h6ga spanntillstandet ãr ett tillstand ddr namnda skidas spann ãr Mgt och namnda fastzon inte ãr i kontakt med den underliggande ytan och det laga spanntillstandet ãr ett tillstand dar namnda skidas spann ãr lagt och namnda fastzon ãr i kontakt med namnda underlag, namnda laga spanntillstand ger namnda skida egenskapen att nedatriktade krafter verkande pa namnda spannreducerande mekanism fordelas framst i namnda fastzon, namnda spannreducerande mekanism karaktdriserad av att aktivering av ndmnda spannreducerande mekanism kollapsar namnda hoga spanntillstand till ndmnda laga spanntillstand, namnda spannreducerande mekanism karaktdriserad av att inaktivering av namnda spannreducerande mekanism aterstdller ndmnda laga spanntillstand till riamnda h6ga spanntillstand .A longitudinal ski (501) for practicing classical longitudinal roofing, including a sliding phase and a transverse firing phase, characterized by: A ski comprising a front part, a rear part, a span reducing mechanism and a ski binding, said front part and said rear part has a common lower surface, said common lower surface has a front and a rear sliding surface and a central fixed zone, said front part and said rear part are connected to each other with at least said span reducing mechanism, said tension reducing mechanism has a high tension state and a Mgt tension state. if the high tension condition is a condition where the said ski span is Mgt and said fixed zone is not in contact with the underlying surface and the legal tension condition is a condition where said ski span is laid and said fixed zone is in contact with said surface, said legal tension condition gives said ski the property that downward forces acting on said span reducing mechanism are distributed In said fixed zone, said span reducing mechanism characterized in that activation of said tension reducing mechanism collapses said high tension state to said low tension state, said tension reducing mechanism characterized in that inactivation of said tension reducing mechanism restores said low tension state. 2. En ldngdskida (501) enligt patentkrav 1, kdnnetecknad av att namnda spannreducerande mekanism baseras pa en kil (613).A length ski (501) according to claim 1, characterized in that said span reduction mechanism is based on a wedge (613). 3. En langdsIdda(501) enligt krav 2, kannetecknad av att namnda kil (613) ãr inldamd mellan namnda framre del av skidan och namnda bakre del av skidan ndr namnda spannreducerande mekanism ãr i namnda hoga spanntillstand.A longitudinal edge (501) according to claim 2, characterized in that said wedge (613) is recessed between said front part of the ski and said rear part of the ski when said tension reducing mechanism is in said high tension condition. 4. En ldngdskida (501) enligt krav 2 eller 3, kannetecknad av att namnda kil trycks pa av en fjddermekanism (610-612).A longitudinal ski (501) according to claim 2 or 3, characterized in that said wedge is pressed by a spring mechanism (610-612). 5. En langdsIdda (501) enligt krav 4, kannetecknad av att namnda fjadermekanism (610-612) dr. justerbar.A longitudinal edge (501) according to claim 4, characterized in that said spring mechanism (610-612) dr. adjustable. 6. En ldngdskida enligt krav 4 eller 5, kannetecknad av att namnda fjadermekanism är integrerad med namnda ldl. 2A length ski according to claim 4 or 5, characterized in that said spring mechanism is integrated with said ldl. 2 7. En langdskida enligt patentkrav 6, kannetecknad av att namnda fjadermekanism ãr integrerad med namnda skidbindning.A cross-country ski according to claim 6, characterized in that said spring mechanism is integrated with said ski binding. 8. En langdskida (901) enligt patentkrav 1, kannetecknad av att namnda spannreducerande mekanism baseras pa en forlangning fran namnda bakre del av skidan.A longitudinal ski (901) according to claim 1, characterized in that said span reduction mechanism is based on a demand from said rear part of the ski. 9. En langdskida (901) enligt krav 8, kannetecknad av att namnda forlangning har en fjaderbelastad utlosningsmekanism fast mellan namnda forlangning och narnnda framre del av skidan.A longitudinal ski (901) according to claim 8, characterized in that said extension has a spring-loaded release mechanism fixed between said extension and said front part of the ski. 10. En langdskida (901) enligt patentkrav 9, kannetecknad av att namnda fjaderbelastade utlosningsmekanism ãr baserad pa en platta (905) fast via ett gangjarn (904) till namnda forlangning, namnda platta glider mot namnda framre del av skidan och plattan trycks pa av en fjader.A longitudinal ski (901) according to claim 9, characterized in that said spring-loaded release mechanism is based on a plate (905) fixed via a hinge (904) to said extension, said plate slides against said front part of the ski and the plate is pressed by a feather. 11. En langdskida (1001) enligt patentkrav 9, kannetecknad av att namnda fjaderbelastade utlosningsmekanism ar baserad pa en snedstalld kil (1009) som glider pa namnda framre del av skidan, namnda fOrlangning trycker pa namnda snedstallda kil (100) och namnda snedstallda kil trycks pa av en fjader (1006).A longitudinal ski (1001) according to claim 9, characterized in that said spring-loaded release mechanism is based on an inclined wedge (1009) sliding on said front part of the ski, said extension presses on said inclined wedge (100) and said inclined wedge pa of a feather (1006). 12. En langdskida (1601) enligt patentkrav 9, kannetecknad av att namnda fjaderbelastade utlosningsmekanism ãr baserad pa en platta (1605) fast via ett gangjarn(1604) till namnda forlangning, namnda platt glider mot namnda framre del av skidan och namnda gangjarn (1604) har en integrerad torsionsfjader.A longitudinal ski (1601) according to claim 9, characterized in that said spring-loaded release mechanism is based on a plate (1605) fixed via a hinge (1604) to said extension, said plate slides against said front part of the ski and said hinge (1604). ) has an integrated torsion spring. 13. En langdskida (1101) enligt patentkrav 11, kannetecknad av att namnda lutande kil (1109) har ett lager for minskad friktion.A longitudinal ski (1101) according to claim 11, characterized in that said inclined wedge (1109) has a bearing for reduced friction. 14. En langdskida (1101) enligt krav 11 eller 13, varvid namnda forlangning har ett lager for minskad friktion.A longitudinal ski (1101) according to claim 11 or 13, wherein said extension has a bearing for reduced friction. 15. En langdskida enligt krav 10 till 14, varvid namnda fjader stoppas av en forhOjning i namnda framre del av skidan.A longitudinal ski according to claims 10 to 14, wherein said spring is stopped by an elevation in said front part of the ski. 16. En langdskida enligt patentkrav 1, kannetecknad av att namnda spannreducerande mekanism baseras pa en fackverksstruktur med atminstone en fjaderbelastad stang (1202), varvid fackverksstrukturen har egenskapen att den kollapsar ndr den ãr belastad med tillrackligt av namnda nedatriktade krafter.A longitudinal ski according to claim 1, characterized in that said span reduction mechanism is based on a truss structure with at least one spring-loaded rod (1202), the truss structure having the property of collapsing when it is loaded with sufficiently said downward forces. 17. En langdskida enligt patentkrav 1, kannetecknad av att namnda spannreducerande mekanism baseras pa en dubbelkrokt fjader (1302), 3 varvid namnda dubbelkrokta fjader har egenskapen att den kollapsar ndr den ar belastad med tillrackligt av namnda nedatriktade krafter.A longitudinal ski according to claim 1, characterized in that said span reducing mechanism is based on a double-hooked spring (1302), said double-hooked spring having the property of collapsing when it is loaded with sufficient of said downward forces. 18. En langdskida (1401) enligt patentkrav 1, kannetecknad av att namnda spannreducerande mekanism baseras pa en forsta platta f6rbunden med ett farsta &learn till namnda framre del av skidan och en andra platta ansluten till namnda bakre del av skidan med ett andra gangjarn, varvid namnda forsta platta och namnda andra platta ãr ansluten till varandra med ett tredje gangjarn.A longitudinal ski (1401) according to claim 1, characterized in that said span reducing mechanism is based on a first plate connected to a first & learn to said front part of the ski and a second plate connected to said rear part of the ski by a second hinge, wherein said first plate and said second plate are connected to each other by a third hinge. 19. En langdskida (1401) enligt patentkrav 18, kan.netecknad av att namnda tredje gangjarn trycks pa av en fjadermekanism (1410).A longitudinal ski (1401) according to claim 18, characterized in that said third hinge is pressed on by a spring mechanism (1410). 20. En langdskida (1401) enligt patentkrav 18 eller 19, van atminstone ett av namnda gangjam har ett begransad rotationsspann.A cross-country ski (1401) according to claim 18 or 19, wherein at least one of said gangues has a limited rotational span. 21. En langdskida enligt krav 1 till 20, kannetecknad av att namnda skidbindning ár anordnad sá att den trycker pa namnda spannreducerande mekanismA cross-country ski according to claims 1 to 20, characterized in that said ski binding is arranged so as to press on said span-reducing mechanism. 22. En langdskida enligt krav 1 till 20, kannetecknad av att namnda skidbindning ãr integrerad med namnda spannreducerande mekanismA cross-country ski according to claims 1 to 20, characterized in that said ski binding is integrated with said span-reducing mechanism 23. En langdskida enligt krav 1 till 22, kannetecknad av att namnda aktivering utloses genom att namnda nedatriktade krafter applicerade pa namnda spannreducerande mekanism overstiger en viss niva.A cross-country ski according to claims 1 to 22, characterized in that said activation is triggered by said downward forces applied to said span reduction mechanism exceeding a certain level. 24. En langdskida enligt krav 1 till 22, kannetecknad av att namnda aktivering utloses genom att namnda nedatriktade krafter applicerade pa namnda spannreducerande mekanism overstiger en viss niva och dessutom att namnda nedatriktade krafter har en viss kvot mellan framfoten och halomranet.A longitudinal ski according to claims 1 to 22, characterized in that said activation is triggered by said downward forces applied to said span reducing mechanism exceeding a certain level and in addition said downward forces having a certain ratio between the forefoot and the halo rim. 25. En langdskida enligt krav 1 till 24, kannetecknad av att namnda inaktivering utloses av att de namnda nedkriktade krafterna applicerade pa namnda spannreducerande mekanism minskar under en viss niva.A longitudinal ski according to claims 1 to 24, characterized in that said inactivation is triggered by the said downward forces applied to said span reduction mechanism decreasing below a certain level. 26. En langdskida enligt krav 1 till 24, kannetecknad av att namnda inaktivering utloses av att namnda nedatriktade krafter applicerade pa namnda spannreducerande mekanism minskar under en viss niva och dessutom att namnda nedatriktade krafter har en viss kvot mellan framfoten och halomradet.A longitudinal ski according to claims 1 to 24, characterized in that said inactivation is triggered by said downward forces applied to said span reducing mechanism decreasing below a certain level and furthermore said downward forces having a certain ratio between the forefoot and the halo area. 27. En langdskida enligt krav 1 till 26, kannetecknad av att namnda spannreducerande mekanism ãr ansluten till en pjaxa under namnda utovande av klassiskt langdskidakning 4A cross-country ski according to claims 1 to 26, characterized in that said span-reducing mechanism is connected to a pajama during said practice of classical cross-country skiing 4 28. En ldngdskida enligt krav 1 till 27, kannetecknad av att namnda fastzon har ett grovt monster for okat grepp.A longitudinal ski according to claims 1 to 27, characterized in that said fixed zone has a coarse sample for increased grip. 29. En ldngdskida enligt krav 1 till 28, kannetecknad av att namnda gemensamma nedre yta ãr uppdelad i atminstone tva delar.A longitudinal ski according to claims 1 to 28, characterized in that said common lower surface is divided into at least two parts. 30. En ldngdskida enligt krav 1 till 29, kannetecknad av att namnda skida kan delas upp i atminstone tvd. delar.A longitudinal ski according to claims 1 to 29, characterized in that said ski can be divided into at least two. parts.
SE1130121A 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing SE537602C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1130121A SE537602C2 (en) 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing
PCT/SE2012/051416 WO2013089637A1 (en) 2011-12-16 2012-12-17 A cross-country ski for practicing classic cross-country skiing
EP12858291.3A EP2790801A4 (en) 2011-12-16 2012-12-17 A cross-country ski for practicing classic cross-country skiing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1130121A SE537602C2 (en) 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing

Publications (2)

Publication Number Publication Date
SE1130121A1 true SE1130121A1 (en) 2013-06-17
SE537602C2 SE537602C2 (en) 2015-07-21

Family

ID=48612950

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1130121A SE537602C2 (en) 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing

Country Status (3)

Country Link
EP (1) EP2790801A4 (en)
SE (1) SE537602C2 (en)
WO (1) WO2013089637A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537616C2 (en) * 2013-02-28 2015-08-04 Ulf Ekström Cross Country Skiing
WO2015094081A1 (en) * 2013-12-16 2015-06-25 Inadco Ab Ski and method for manufacturing a ski
SI25609A (en) * 2018-03-23 2019-09-30 Elan, D.O.O. Foldable ski

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262924A (en) * 1979-02-14 1981-04-21 Corwin Charles H Hinge ski
SE436690B (en) * 1983-05-20 1985-01-21 Eriksson Karl G V DEVICE FOR SKI WITH VARIABLE SPAN
FR2556975B3 (en) * 1983-12-23 1986-04-11 Tmc Corp DEVICE FOR PREVENTING THE RETROGRADE SLIDING OF A SKI
DE3564376D1 (en) * 1984-02-10 1988-09-22 Tmc Corp SKI DE FOND
FR2666021B1 (en) * 1990-08-24 1992-11-13 Salomon Sa CROSS-COUNTRY SKIING, PARTICULARLY FOR THE PRACTICE OF THE ALTERNATIVE PIT.
DE4240342C1 (en) * 1992-12-01 1994-02-03 Manfred Geith Ski binding device for long distance and touring skis - involves binding fixed to rearward end of rigid lever plate whose other front end is pivotably fitted to ski
FR2719782B1 (en) * 1994-05-11 1997-08-08 Salomon Sa Device for cross-country skiing and skiing equipped with such a device.
FR2719780B1 (en) * 1994-05-11 1996-07-12 Salomon Sa Device for cross-country skiing and skiing equipped with such a device.
CZ305931B6 (en) * 2008-12-05 2016-05-11 Jiří Popel Ski with climbing system, particularly cross-country ski

Also Published As

Publication number Publication date
EP2790801A1 (en) 2014-10-22
EP2790801A4 (en) 2015-08-19
WO2013089637A1 (en) 2013-06-20
SE537602C2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
US7708302B2 (en) Snowboards
US6923455B2 (en) Two-handled snow scooter
EP1213041A2 (en) Sliding device
RU2595547C2 (en) Attachment
US9174663B2 (en) Snow rider
US9539489B2 (en) Summer style wheeled ski
SE1130121A1 (en) Cross-country skiing for the practice of classic cross-country skiing
CN102105198B (en) Rollerski or skate with braking system and method for braking said sports item
US10315097B2 (en) Motorized snowboard system
US6702315B2 (en) Methods and apparatus for resisting gliding device runaway
US9339718B2 (en) Assistance system for a gliding board or snowshoe
WO2006088811A3 (en) Ski binding having a dynamically variable upward heel release threshold
CN208799745U (en) A kind of anti-skid device for skis
EP2253357B1 (en) Loop binding with rotating platform
US20020096860A1 (en) Adjustable ski suspension and ski tip stiffener devices
JP5508307B2 (en) snow board
ITVI20120324A1 (en) CONNECTION SYSTEM FOR SKI ATTACKS.
JP6925654B2 (en) Gliding practice device
EP2558173A2 (en) Sport equipment for snow ride
CN207100675U (en) It is quick-fried walk footwear
KR101665348B1 (en) Snowboard having tension adjusting function
JP2003250949A (en) Apparatus for improving operability of snowboard and the board
RU73209U1 (en) ICE SKATS
EP2233023A1 (en) A device for soles of shoes suitable for increasing the elevation of the user, and shoes provided with said device
KR20090053408A (en) Snow board

Legal Events

Date Code Title Description
NUG Patent has lapsed