RU99128104A - METHOD FOR CONTROL AND REGULATION OF THE ATMOSPHERE COMPOSITION DURING SINTERING - Google Patents

METHOD FOR CONTROL AND REGULATION OF THE ATMOSPHERE COMPOSITION DURING SINTERING

Info

Publication number
RU99128104A
RU99128104A RU99128104/02A RU99128104A RU99128104A RU 99128104 A RU99128104 A RU 99128104A RU 99128104/02 A RU99128104/02 A RU 99128104/02A RU 99128104 A RU99128104 A RU 99128104A RU 99128104 A RU99128104 A RU 99128104A
Authority
RU
Russia
Prior art keywords
oxygen
sintering
furnace
carbon
zone
Prior art date
Application number
RU99128104/02A
Other languages
Russian (ru)
Other versions
RU2212981C2 (en
Inventor
Йохан АРВИДССОН
Ола ЭРИКССОН
Original Assignee
Хеганес Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9701976A external-priority patent/SE9701976D0/en
Application filed by Хеганес Аб filed Critical Хеганес Аб
Publication of RU99128104A publication Critical patent/RU99128104A/en
Application granted granted Critical
Publication of RU2212981C2 publication Critical patent/RU2212981C2/en

Links

Claims (11)

1. Способ контроля и регулирования атмосферы печи при спекании компактированных заготовок, полученных методами порошковой металлургии, отличающийся тем, что непрерывно измеряют состав газов, определяющих кислородный и углеродный потенциалы в зоне печи, выбираемой из зоны спекания, зоны охлаждения и/или зоны термической обработки.1. A method of monitoring and controlling the atmosphere of a furnace during sintering of compacted preforms obtained by powder metallurgy methods, characterized in that the composition of gases that determine oxygen and carbon potentials in the furnace zone selected from the sintering zone, cooling zone and / or heat treatment zone is continuously measured. 2. Способ контроля и регулирования атмосферы печи при спекании компактированных заготовок, полученных методами порошковой металлургии, отличающийся тем, что состав газов, определяющих кислородный и углеродный потенциалы в зоне печи, непрерывно измеряют в отдельной камере, в которую отбирают газы из спекательной печи. 2. A method of controlling and regulating the atmosphere of a furnace during sintering of compacted preforms obtained by powder metallurgy methods, characterized in that the composition of gases that determine the oxygen and carbon potentials in the furnace zone is continuously measured in a separate chamber into which gases are taken from the sintering furnace. 3. Способ по п.1 или 2, по которому спекание нельзя выполнять при пониженном давлении. 3. The method according to claim 1 or 2, in which the sintering cannot be performed under reduced pressure. 4. Способ по любому из пп.1 - 3, отличающийся тем, что кислородный потенциал определяют посредством измерения его in situ (на месте). 4. The method according to any one of claims 1 to 3, characterized in that the oxygen potential is determined by measuring it in situ (in place). 5. Способ по любому из пп.1 - 4, отличающийся тем, что определение кислородного и углеродного потенциалов включает измерение парциального давления кислорода. 5. The method according to any one of claims 1 to 4, characterized in that the determination of oxygen and carbon potentials includes measuring the partial pressure of oxygen. 6. Способ по любому из пп.1 - 5, отличающийся тем, что парциальное давление кислорода измеряет кислородным зондом. 6. The method according to any one of claims 1 to 5, characterized in that the partial pressure of oxygen is measured with an oxygen probe. 7. Способ по любому из пп.1 - 6, отличающийся тем, что измерение углеродного потенциала включает измерение парциального давления кислорода кислородным зондом и концентрации по меньшей мере одного из содержащих углерод газов инфракрасным анализатором. 7. The method according to any one of claims 1 to 6, characterized in that the measurement of the carbon potential includes measuring the partial pressure of oxygen with an oxygen probe and the concentration of at least one of the carbon-containing gases with an infrared analyzer. 8. Способ по любому из пп.1 - 6, отличающийся тем, что содержание кислорода поддерживают на уровне ниже равновесной величины, определяющей образование оксида металла, и тем, что углеродный потенциал поддерживают на установочном значении, зависящем от требуемого углеродного потенциала в спекаемом материале. 8. The method according to any one of claims 1 to 6, characterized in that the oxygen content is maintained at a level below the equilibrium value that determines the formation of metal oxide, and that the carbon potential is maintained at a setting value depending on the desired carbon potential in the sintered material. 9. Способ по любому из пп.1 - 7, отличающийся тем, что компактированные заготовки состоят из низколегированных материалов на основе железа, включающих легко окисляемые легирующие элементы, выбираемые из группы, содержащей Cr, Mn, Мо, V, Nb, Zr, Ti, Al. 9. The method according to any one of claims 1 to 7, characterized in that the compacted blanks consist of low-alloyed iron-based materials, including easily oxidizable alloying elements selected from the group consisting of Cr, Mn, Mo, V, Nb, Zr, Ti Al. 10. Способ по любому из пп.1 - 9, отличающийся тем, что спекание выполняют в печи с ленточным транспортером. 10. The method according to any one of claims 1 to 9, characterized in that the sintering is performed in a furnace with a conveyor belt. 11. Способ по п.2, отличающийся тем, что температура в отдельной камере отличается от температуры в спекательной печи. 11. The method according to claim 2, characterized in that the temperature in a separate chamber differs from the temperature in the sintering furnace.
RU99128104/02A 1997-05-27 1998-05-27 Method for monitoring and controlling content of atmosphere in sintering furnace RU2212981C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9701976-4 1997-05-27
SE9701976A SE9701976D0 (en) 1997-05-27 1997-05-27 Method of monitoring and controlling the composition of the sintering atmosphere

Publications (2)

Publication Number Publication Date
RU99128104A true RU99128104A (en) 2001-09-20
RU2212981C2 RU2212981C2 (en) 2003-09-27

Family

ID=20407100

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99128104/02A RU2212981C2 (en) 1997-05-27 1998-05-27 Method for monitoring and controlling content of atmosphere in sintering furnace

Country Status (14)

Country Link
US (1) US6303077B1 (en)
EP (1) EP1015154B1 (en)
JP (1) JP2002501576A (en)
KR (1) KR100566650B1 (en)
CN (1) CN1206067C (en)
AU (1) AU7683098A (en)
BR (1) BR9809490A (en)
CA (1) CA2291148A1 (en)
DE (1) DE69817589T2 (en)
ES (1) ES2201498T3 (en)
RU (1) RU2212981C2 (en)
SE (1) SE9701976D0 (en)
TW (1) TW431918B (en)
WO (1) WO1998053939A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505699B1 (en) 2007-09-03 2010-10-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
DE102011101264B4 (en) * 2011-05-11 2022-05-19 Air Liquide Deutschland Gmbh Process for the heat treatment of pressed molded parts
JP5534629B2 (en) * 2012-03-27 2014-07-02 関東冶金工業株式会社 Heat treatment method, heat treatment apparatus, and heat treatment system
EP2871248A4 (en) * 2012-07-04 2015-12-16 Kanto Yakin Kogyo Co Ltd Heat treatment method, heat treatment device, and heat treatment system
DE102013104806A1 (en) 2013-05-08 2014-11-13 Sandvik Materials Technology Deutschland Gmbh belt furnace
EP3043135A1 (en) * 2015-01-08 2016-07-13 Linde Aktiengesellschaft Apparatus and method for controlling a sintering process
CN108088252B (en) * 2016-11-23 2020-12-04 中冶长天国际工程有限责任公司 Accurate control device and control method for gas concentration for injection-assisted sintering method
WO2020139325A1 (en) 2018-12-26 2020-07-02 Hewlett-Packard Development Company, L.P. Tracer gas endpoint-monitored sinter systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028100A (en) * 1973-05-17 1977-06-07 Chrysler Corporation Heat treating atmospheres
JPS5178714A (en) * 1974-12-28 1976-07-08 Kobe Steel Ltd Kofunmatsutaino kanetsuhoho
CA1190418A (en) * 1980-04-21 1985-07-16 Nobuhito Kuroishi Process for producing sintered ferrous alloys
CA1225536A (en) * 1982-08-09 1987-08-18 Borgwarner Transmission Systems Inc. High efficiency reduction carburization
US4891246A (en) * 1986-10-14 1990-01-02 E. I. Du Pont De Nemours And Company Controlled atmosphere firing process
US4964907A (en) * 1988-08-20 1990-10-23 Kawasaki Steel Corp. Sintered bodies and production process thereof
DE4113928A1 (en) * 1991-03-13 1992-09-17 Asea Brown Boveri METHOD FOR PRODUCING A SINTERING BODY FROM STEEL POWDER
JPH09263801A (en) 1996-03-28 1997-10-07 Kawasaki Steel Corp Finish heat treatment of iron and steel powder and finish heat treatment furnace
US5892164A (en) * 1997-03-19 1999-04-06 Air Products And Chemicals, Inc. Carbon steel powders and method of manufacturing powder metal components therefrom

Similar Documents

Publication Publication Date Title
RU2196659C2 (en) Method for preparing iron base powder
US5385337A (en) Control system for a soft vacuum furnace
RU99128104A (en) METHOD FOR CONTROL AND REGULATION OF THE ATMOSPHERE COMPOSITION DURING SINTERING
RU2212981C2 (en) Method for monitoring and controlling content of atmosphere in sintering furnace
Rongti et al. Kinetics of reduction of magnesia with carbon
CN1174241A (en) Method and apparatus for heat treatment including H2/H2O furnace region control
Lei et al. Corrosion control in sintered austenitic stainless steels
Nayar et al. Nitrogen absorption control during sintering of stainless steel parts
AT408994B (en) DEVICE FOR HEAT TREATING WORKPIECES, ESPECIALLY FOR GAS NITRATING, NITROCARBURIZING AND OXIDIZING
JP3307697B2 (en) Batch type firing furnace
RU2001127C1 (en) Furnace atmosphere carbon potential regulation method
Ruetsch The Control of Air/Gas Atmospheres Generated In Situ
Vrabel et al. Reduction of Chromium and Manganese Oxides During Sintering of Compacts From Fe--1 Cr--0. 7 Mn--0. 2 Mo Prealloyed Powder Steel
Demény Analysis of heat-treated steels by spark excitation and glow discharge optical emission spectrometry
SU785369A1 (en) Method and device for annealing machine control at stopping
Saxena et al. Predicting part temperatures during sintering under production conditions using a simple PC-based model
Magnusson et al. Reaching full density of 100Cr6 PM steel by capsule free hot isostatic pressing of high-velocity compacted material
JPS5658932A (en) Controlling method for reduction powdering property of sintered ore
Sobusiak Control of technological atmosphere properties by dew point method
Vrabel et al. Influence of Temperature on Carburizing of Sintered Compacts From Steel Powder DV 0. 40
Hermosilla et al. Oxidation(of Steel Ingots) in Soaking Pits
McLelland et al. Sintering furnace cycle influence on sinter hardened part parameters
Krehl et al. Powder Metallurgy of the Refractory Metals Niobium and Tantalum. Final Report
Tsukada et al. On-Line Analysis of Molten Steel by Chlorination ICP Analysis Technique
Zhang et al. Study on the Resistance Carbon Flux Sensor During Carburizing