RU94039535A - Lamellar crystalline material and a method of its preparing - Google Patents

Lamellar crystalline material and a method of its preparing

Info

Publication number
RU94039535A
RU94039535A RU94039535/26A RU94039535A RU94039535A RU 94039535 A RU94039535 A RU 94039535A RU 94039535/26 A RU94039535/26 A RU 94039535/26A RU 94039535 A RU94039535 A RU 94039535A RU 94039535 A RU94039535 A RU 94039535A
Authority
RU
Russia
Prior art keywords
bismuth
crystalline material
chalcogenid
crystal
ampoule
Prior art date
Application number
RU94039535/26A
Other languages
Russian (ru)
Inventor
В.И. Трефилов
Ua]
К.Д. Товстюк
З.Д. Ковалюк
И.И. Григорчак
И.Д. Козмик
Б.П. Бахматюк
Original Assignee
Уилкоксон Бентон Х. (US)
Уилкоксон Бентон Х.
Трефилов В.И. (UA)
В.И. Трефилов
Товстюк К.Д. (UA)
К.Д. Товстюк
Ковалюк З.Д. (UA)
З.Д. Ковалюк
Григорчак И.И. (UA)
И.И. Григорчак
Козмик И.Д. (UA)
И.Д. Козмик
Бахматюк Б.П. (UA)
Б.П. Бахматюк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уилкоксон Бентон Х. (US), Уилкоксон Бентон Х., Трефилов В.И. (UA), В.И. Трефилов, Товстюк К.Д. (UA), К.Д. Товстюк, Ковалюк З.Д. (UA), З.Д. Ковалюк, Григорчак И.И. (UA), И.И. Григорчак, Козмик И.Д. (UA), И.Д. Козмик, Бахматюк Б.П. (UA), Б.П. Бахматюк filed Critical Уилкоксон Бентон Х. (US)
Publication of RU94039535A publication Critical patent/RU94039535A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

FIELD: monocrystalline materials of high quality. SUBSTANCE: lamellar monocrystalline material showing low defect level and the corresponding distribution of impurities that allows to intercalate at least 3 mole lithium into van der Waals channel per one mole of crystalline material without significant crystalline lattice distortion. Also, change of Gibbs free energy does not depend of lithium concentration incorporation. Material is prepared by the sequence stages. Ampoule is filled with stoichiometric amount of chalcogenid element and bismuth under nonoxidizing atmosphere and sealed. Then ampoule is heated to temperature 5-10 C above of bismuth chalcogenid melting point and cooled to the room temperature. Obtained polycrystalline bismuth chalcogenid is contacted with seeding crystal with specific structure of crystalline lattice. Obtained harmless nondefected monocrystal of bismuth chalcogenid is cooled to the room temperature. Some admixtures can be added to the prepared crystalline material to obtain highly intercalated crystalline material. Obtained crystalline material is used as active battery member, thermoelectric device and capacitor. EFFECT: enhanced quality of material.

Claims (1)

Изобретение относится к свободным от дефектов монокристаллическим материалам, способным включать высокие уровни примесей, и к способам их получения. Слоистый монокристаллический материал имеет достаточно низкую плотность дефектов и соответствующее распределение примесей, позволяющие интеркалирование минимум 3 молей лития в каналы Ван-дер-Ваальса на один моль кристаллического материала без значительного искажения кристаллической решетки, и характеризуется тем, что изменение свободной энергии Гиббса не зависит от концентрации включения лития. Этот материал получают путем последовательного осуществления следующих действий: ампулу заполняют стехиометрическими количествами элемента халькогенида и висмута, создают в ней атмосферу, препятствующую окислению, и герметизируют. Затем ампулу нагревают до температуры на 5-10° выше температуры плавления халькогенида висмута и охлаждают до комнатной температуры. Полученный поликристаллический халькогенид висмута контактирует с затравочным кристаллом со специфической структурой кристаллической решетки. Полученный в результате контактирования в высшей степени бездефектный монокристалл халькогенида висмута охлаждают до комнатной температуры. В полученный кристаллический материал можно ввести примеси для получения высокоинтеркалированного кристаллического материала. Полученный кристаллический материал используют в качестве активного элемента батареи, термоэлектрического устройства и конденсатора.The invention relates to defect-free single-crystal materials capable of incorporating high levels of impurities, and to methods for their preparation. A layered single-crystal material has a sufficiently low defect density and a corresponding impurity distribution that allows intercalation of at least 3 moles of lithium into Van der Waals channels per mole of crystalline material without significant distortion of the crystal lattice, and is characterized by the fact that the change in Gibbs free energy is independent of concentration inclusion of lithium. This material is obtained by the sequential implementation of the following actions: the ampoule is filled with stoichiometric quantities of the element of chalcogenide and bismuth, create an atmosphere in it that prevents oxidation, and is sealed. Then the ampoule is heated to a temperature of 5-10 ° above the melting point of bismuth chalcogenide and cooled to room temperature. The obtained polycrystalline bismuth chalcogenide is in contact with a seed crystal with a specific crystal lattice structure. The highly defect-free bismuth chalcogenide single crystal obtained by contacting is cooled to room temperature. Impurities may be added to the obtained crystalline material to produce a highly intercalated crystalline material. The obtained crystalline material is used as the active element of the battery, thermoelectric device and capacitor.
RU94039535/26A 1991-10-29 1994-04-28 Lamellar crystalline material and a method of its preparing RU94039535A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78452591A 1991-10-29 1991-10-29
US07/784525 1991-10-29

Publications (1)

Publication Number Publication Date
RU94039535A true RU94039535A (en) 1996-04-27

Family

ID=25132700

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94039535/26A RU94039535A (en) 1991-10-29 1994-04-28 Lamellar crystalline material and a method of its preparing

Country Status (8)

Country Link
EP (1) EP0662251A1 (en)
JP (1) JPH07505246A (en)
CN (1) CN1074249A (en)
AU (1) AU3176693A (en)
CA (1) CA2122369A1 (en)
IL (1) IL103583A0 (en)
RU (1) RU94039535A (en)
WO (1) WO1993008981A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439660B2 (en) * 2000-03-06 2010-03-24 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN100419130C (en) * 2004-11-03 2008-09-17 中国科学技术大学 Sb2Te3 monocrystalline nanometer line ordered array and its preparation method
KR101680763B1 (en) 2010-03-31 2016-11-29 삼성전자주식회사 Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
KR101695540B1 (en) * 2015-04-14 2017-01-23 엘지전자 주식회사 Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
CN113363493A (en) * 2021-06-25 2021-09-07 惠州亿纬锂能股份有限公司 Single crystal ternary positive electrode material, preparation method and battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877988A (en) * 1973-03-21 1975-04-15 Mallory & Co Inc P R Lithium-metal telluride organic electrolyte cell

Also Published As

Publication number Publication date
AU3176693A (en) 1993-06-07
IL103583A0 (en) 1993-03-15
JPH07505246A (en) 1995-06-08
CN1074249A (en) 1993-07-14
EP0662251A1 (en) 1995-07-12
WO1993008981A3 (en) 1993-06-10
WO1993008981A2 (en) 1993-05-13
CA2122369A1 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
Kamijoh et al. Single crystal growth and characterization of LiInSe2
JPWO2007100146A1 (en) Method for producing ZnO single crystal by liquid phase growth method
Lee et al. Growth and electrostrictive properties of Pb (Mg1/3Nb2/3) O3 crystals
KR20100015670A (en) Mg-containing zno mixed single crystal, laminate thereof and their production methods
RU94039535A (en) Lamellar crystalline material and a method of its preparing
Agarwal et al. Growth conditions and crystal structure parameters of layer compounds in the series Mo1− xWxSe2
Lopez-Otero et al. High mobility as-growm PbTe films prepared by the hot wall technique
Hársy et al. Direct synthesis and crystallization of GaSb
Mittleman et al. Electrical properties of cadmium and zinc doped CuInS2
Agarwal et al. Growth of single crystals of WSe2 by sublimation method
Linden et al. Phase Diagram of the Ternary System Pb–Sn–Te
Haworth et al. Growth and Characterization of CuInTe2 Single Crystals
Korczak et al. Structural and Galvanomagnetic Properties of Pb1− xMnxTe Single Crystals Grown by the Bridgman‐Stockbarger Method
CN108950687B (en) Borax crystals, method for producing same and use thereof
Shanks The growth of magnesium germanide crystals
Blank et al. The growth of single crystals of lead sulphide in silica gels at ambient temperatures-preliminary characterization and effect of various organic compounds as sulphide ion donors
Steinberg et al. Ternary Silicides of Lithium with Yttrium or Neodymium in a Modified U 3 Si 2-Type Structure
JP2555847B2 (en) Low resistance semiconductor crystal substrate and manufacturing method thereof
Wald et al. Bi 2 S 3 as a high Z material for γ-ray detectors
Raman et al. Growth of antimony sulphoiodide in gel
Nagat et al. Growth and characterization of single crystals of the ternary compound tlgate2
Abou-Zeid et al. Short Notes Kl 01 phys. stat. sol.(a) 6, K101 (1971) Subject classification: 14.3; 13.4; 15; 22. 3 Institut für Technische Physik, Technische Universität Braunschweig Te-Doped n-Type ZnSb
Kothiyal et al. Preparation of non-stoichiometric arsenic sulphide crystals As2S2. 15, and measurement of their electrical conductivity
Matsushita et al. Crystal growth of CuInSe2 by the method of horizontal Bridgman with two temperature zones
JPH0515677B2 (en)