RU93007754A - AUTONOMOUS ONBOARD CONTROL SYSTEM OF SPACE APPARATUS - Google Patents

AUTONOMOUS ONBOARD CONTROL SYSTEM OF SPACE APPARATUS

Info

Publication number
RU93007754A
RU93007754A RU93007754/23A RU93007754A RU93007754A RU 93007754 A RU93007754 A RU 93007754A RU 93007754/23 A RU93007754/23 A RU 93007754/23A RU 93007754 A RU93007754 A RU 93007754A RU 93007754 A RU93007754 A RU 93007754A
Authority
RU
Russia
Prior art keywords
star
spacecraft
earth
angular
relative
Prior art date
Application number
RU93007754/23A
Other languages
Russian (ru)
Other versions
RU2033949C1 (en
Filing date
Publication date
Application filed filed Critical
Priority to RU9393007754A priority Critical patent/RU2033949C1/en
Priority claimed from RU9393007754A external-priority patent/RU2033949C1/en
Priority to PCT/RU1993/000262 priority patent/WO1994018073A1/en
Priority to US08/505,262 priority patent/US5749545A/en
Application granted granted Critical
Publication of RU2033949C1 publication Critical patent/RU2033949C1/en
Publication of RU93007754A publication Critical patent/RU93007754A/en

Links

Claims (1)

Цель изобретения - обеспечение автономного контроля угловой ориентации и непосредственного непрерывного определения углового и местоположения космического аппарата (КА) относительно Земли. Используется известная система, в которой контроль угловой ориентации и определение широты положения КА в пространстве производится с помощью датчиков Земли и Полярной звезды. Указанная цель достигается введением в систему датчика навигационной звезды, исполненного совместно с датчиком Полярной звезды, либо отдельно от него, в поле зрения которого их положение плоскости, содержащей направления на звезды, измеряется относительно вертикала углом, определяющим инерциальную долготу и зависимое от нее угловое положение КА. Автономность системы в режиме угловой ориентации обеспечивается за счет того, что контроль ориентации по каналу "рысканье" осуществляется при удержании направлений на Полярную звезду и центр Земли в одной общей плоскости чувствительности датчиков. Такой контроль ориентации обеспечивает построение вертикала-проекции геовертикали на небесную сферу, характерной особенностью которого является обусловленное орбитальным движением вращение его вокруг направления "КА - Полярная звезда", что в системе связанных осей КА эквивалентно повороту относительно него звездного поля. Этот поворот, являющийся источником навигационной информации, измеряется с помощью вводимого в систему датчика. За базу отсчета, заранее рассчитанную по определенной методике и зафиксированную в запоминающем устройстве, принимается такое значение указанного угла, которое характеризуется инерциальной долготой КА, соответсвующей прямому восхождению Полярной звезды, и определенным угловым положением КА относительно широтной плоскости Земли.The purpose of the invention is the provision of autonomous control of the angular orientation and the direct continuous determination of the angular and position of the spacecraft (SC) relative to the Earth. A well-known system is used in which the control of the angular orientation and the determination of the latitude of the position of the spacecraft in space is carried out using sensors of the Earth and the Pole Star. This goal is achieved by introducing into the sensor system a navigation star, performed together with the Polar Star sensor, or separately from it, in whose field of view their position of the plane containing the directions to the stars is measured relative to the vertical by the angle determining the inertial longitude and the angular position of the spacecraft dependent on it . The autonomy of the system in the angular orientation mode is ensured by the fact that the orientation control along the “yaw” channel is maintained while keeping the directions to the Polar Star and the center of the Earth in one common sensitivity plane of the sensors. Such an orientation control ensures the construction of a vertical projection of the geo-vertical on the celestial sphere, a characteristic feature of which is its rotation due to the orbital movement around the KA - Polar Star direction, which in the system of connected axes of the KA is equivalent to the rotation of the star field relative to it. This turn, which is the source of navigation information, is measured using a sensor inputted into the system. The base of reference, calculated in advance by a certain method and recorded in a storage device, is assumed to be such a value of the specified angle, which is characterized by the inertial longitude of the spacecraft corresponding to the right ascension of the North Star, and a certain angular position of the spacecraft relative to the latitudinal plane of the Earth.
RU9393007754A 1993-02-09 1993-02-09 Self-contained on-board control system for space vehicle RU2033949C1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU9393007754A RU2033949C1 (en) 1993-02-09 1993-02-09 Self-contained on-board control system for space vehicle
PCT/RU1993/000262 WO1994018073A1 (en) 1993-02-09 1993-11-10 Autonomous on-board satellite control system
US08/505,262 US5749545A (en) 1993-02-09 1993-11-10 Autonomous on-board satellite control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9393007754A RU2033949C1 (en) 1993-02-09 1993-02-09 Self-contained on-board control system for space vehicle

Publications (2)

Publication Number Publication Date
RU2033949C1 RU2033949C1 (en) 1995-04-30
RU93007754A true RU93007754A (en) 1995-05-27

Family

ID=20137018

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9393007754A RU2033949C1 (en) 1993-02-09 1993-02-09 Self-contained on-board control system for space vehicle

Country Status (3)

Country Link
US (1) US5749545A (en)
RU (1) RU2033949C1 (en)
WO (1) WO1994018073A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978716A (en) * 1997-05-28 1999-11-02 Space Systems/Loral, Inc. Satellite imaging control system for non-repeatable error
US6098929A (en) * 1998-01-28 2000-08-08 Falbel; Gerald Three axis attitude readout system for geosynchronous spacecraft
US6076774A (en) * 1998-08-12 2000-06-20 Hughes Electronics Corporation Fuel and thermal optimal spiral earth acquisition
US6650287B1 (en) 1999-07-29 2003-11-18 Anatoly Stepanovich Karpov Method for determining the position of reference axes in an inertial navigation system of an object in respect with the basic coordinates and embodiments thereof
US6691033B1 (en) * 2000-07-26 2004-02-10 Hughes Electronics Corporation System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system
KR20030025407A (en) * 2001-09-20 2003-03-29 한국항공우주연구원 Method to estimate satellite latitude and longitude with earth sensor
US6732977B1 (en) 2002-02-11 2004-05-11 Lockheed Martin Corporation System for on-orbit correction of spacecraft payload pointing errors
US6695263B1 (en) * 2002-02-12 2004-02-24 Lockheed Martin Corporation System for geosynchronous spacecraft rapid earth reacquisition
US7051980B2 (en) * 2002-02-26 2006-05-30 Lockheed Martin Corporation Efficient orbit sparing system for space vehicle constellations
US6702234B1 (en) 2002-03-29 2004-03-09 Lockheed Martin Corporation Fault tolerant attitude control system for zero momentum spacecraft
US7835826B1 (en) 2005-12-13 2010-11-16 Lockheed Martin Corporation Attitude determination system for yaw-steering spacecraft
FR2932163B1 (en) * 2008-06-09 2010-06-11 Astrium Sas METHOD FOR CONTROLLING SATELLITE ATTITUDE AND ATTITUDE CONTROL SATELLITE
US8321076B2 (en) * 2009-12-18 2012-11-27 The Boeing Company On-line inertia estimation for use in controlling an aerospace vehicle
US9091552B2 (en) * 2011-10-25 2015-07-28 The Boeing Company Combined location and attitude determination system and methods
CN102840861B (en) * 2012-09-17 2015-04-29 常州工学院 Navigational star screening method for star sensors
CN102880184B (en) * 2012-10-24 2015-05-27 北京控制工程研究所 Autonomous orbit control method for stationary orbit satellite
RU2517800C1 (en) * 2012-12-17 2014-05-27 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Method of coelosphere coverage from space craft for surveillance of celestial bodies and coelosphere coverage space system for surveillance of celestial bodies and detection of solar system bodies to this end
CN103630109B (en) * 2013-12-08 2015-08-26 北京航空航天大学 A kind of method determining the earth's core vector based on starlight refraction
US10387457B2 (en) * 2014-06-17 2019-08-20 Sap Se Grid-based analysis of geospatial trajectories
RU2585179C1 (en) * 2014-11-14 2016-05-27 Общество с ограниченной ответственностью "Азмерит", ООО "Азмерит" Method of improving accuracy of determining celestial orientation and prolonged maintenance of high accuracy of determining orientation and apparatus therefor
CN104596503B (en) * 2015-01-26 2018-04-13 中国人民解放军国防科学技术大学 Tracking table based on differential satellite navigation measurement determines appearance and instruction compensation method
RU2629922C1 (en) * 2016-11-17 2017-09-04 Виктор Андреевич Павлов Method of two-channel attitude control of objects with six degrees of freedom of spatial motion
RU2696399C2 (en) * 2017-06-30 2019-08-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method for independent determination of spacecraft orbit parameters
CN113173267B (en) * 2021-04-30 2022-08-12 北京控制工程研究所 Dynamic torque distribution and angular momentum tracking control method of redundant flywheel set
CN113447043B (en) * 2021-05-21 2022-10-28 北京控制工程研究所 GNSS-based satellite astronomical navigation system error autonomous calibration method and system
CN114623802B (en) * 2022-01-28 2023-07-14 北京控制工程研究所 Method for calculating integration time of imaging camera in motion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294420A (en) * 1978-01-30 1981-10-13 Matra Attitude control systems for space vehicles
DE3417661A1 (en) * 1983-05-13 1984-11-15 Mitsubishi Denki K.K., Tokio/Tokyo System for controlling the orientation of an artificial satellite
FR2583873B1 (en) * 1985-06-20 1987-09-11 Matra METHOD AND DEVICE FOR INJECTING SATELLITE ONTO GEOSTATIONARY ORBIT WITH STABILIZATION FOLLOWING THE THREE AXES
FR2637565B1 (en) * 1988-10-06 1991-01-11 Aerospatiale ACTIVE CONTROL SYSTEM BASED ON THREE AXES OF THE ATTITUDE OF A GEOSTATIONARY SATELLITE
FR2637564B1 (en) * 1988-10-06 1994-10-14 Aerospatiale METHOD AND SYSTEM FOR AUTONOMOUS ORBIT CONTROL OF A GEOSTATIONARY SATELLITE
US5204818A (en) * 1990-05-22 1993-04-20 The United States Of America As Represented By The Secretary Of The Air Force Surveying satellite apparatus
FR2670886B1 (en) * 1990-12-21 1994-07-01 Aerospatiale ATTITUDE REACQUISITION METHOD BY STAR RECOGNITION FOR 3-AXIS STABILIZED SATELLITE.
FR2670745B1 (en) * 1990-12-21 1993-04-16 Aerospatiale ATTITUDE CONTROL SYSTEM FOR 3-AXIS STABILIZED SATELLITE ON LOW TILT ORBIT.
FR2691426B1 (en) * 1992-05-19 1997-09-19 Aerospatiale METHOD AND DEVICE FOR ACQUIRING EARTH VIA POLAR FOR 3-AXIS STABILIZED SATELLITE AT LOW-TILT ORBIT.
US5452869A (en) * 1992-12-18 1995-09-26 Hughes Aircraft Company On-board three-axes attitude determination and control system

Similar Documents

Publication Publication Date Title
RU93007754A (en) AUTONOMOUS ONBOARD CONTROL SYSTEM OF SPACE APPARATUS
RU2033949C1 (en) Self-contained on-board control system for space vehicle
AU2010201337B2 (en) North finding device, system and method
US5396326A (en) Two gimbal error averaging astro-inertial navigator
US9791278B2 (en) Navigating with star tracking sensors
US6480148B1 (en) Method and apparatus for navigation guidance
CA2279877A1 (en) A navigation/guidance system for a land-based vehicle
US20090204323A1 (en) Inertial navigation system error correction
ES2441175T3 (en) Simple device and method for a user to return to a location
CN103033189A (en) Inertia/vision integrated navigation method for deep-space detection patrolling device
US5223702A (en) Method and apparatus for rotational rate determination using a stellar reference
US9217639B1 (en) North-finding using inertial navigation system
US2949030A (en) Gyroscopically stabilized optical system platform
US5477470A (en) Real-time digital orientation device
US5451963A (en) Method and apparatus for determining aircraft bank angle based on satellite navigational signals
US3439884A (en) Space vehicle guidance system
RU2308681C1 (en) Gyroscopic navigation system for movable objects
US2933267A (en) Gyroscopically stabilized navigational reference device
US3230377A (en) Self-stabilized theodolite for manualtracking using photosensitive stabilizing means
JPH1172718A (en) Astronomical telescope
US3310877A (en) Vehicle optical alignment device
Lowrie Autonomous navigation systems technology assessment
US3232103A (en) Navigation system
US3281094A (en) Self-contained guidance system
RU2420714C2 (en) Device for choosing astronomical objects under observations from orbital space vehicle