RU93003628A - METHOD OF OBTAINING SINTERED COMPOSITIONAL MATERIAL BASED ON TITANIUM DIBORIDE - Google Patents

METHOD OF OBTAINING SINTERED COMPOSITIONAL MATERIAL BASED ON TITANIUM DIBORIDE

Info

Publication number
RU93003628A
RU93003628A RU93003628/02A RU93003628A RU93003628A RU 93003628 A RU93003628 A RU 93003628A RU 93003628/02 A RU93003628/02 A RU 93003628/02A RU 93003628 A RU93003628 A RU 93003628A RU 93003628 A RU93003628 A RU 93003628A
Authority
RU
Russia
Prior art keywords
material based
titanium diboride
temperature
obtaining sintered
compositional material
Prior art date
Application number
RU93003628/02A
Other languages
Russian (ru)
Other versions
RU2034928C1 (en
Inventor
О.К. Лепакова
О.Г. Терехова
Original Assignee
Томский филиал Института структурной макрокинетики РАН
Filing date
Publication date
Application filed by Томский филиал Института структурной макрокинетики РАН filed Critical Томский филиал Института структурной макрокинетики РАН
Priority to RU93003628A priority Critical patent/RU2034928C1/en
Priority claimed from RU93003628A external-priority patent/RU2034928C1/en
Application granted granted Critical
Publication of RU2034928C1 publication Critical patent/RU2034928C1/en
Publication of RU93003628A publication Critical patent/RU93003628A/en

Links

Claims (1)

Способ используется для получения в качестве исходного материала методами порошковой металлургии конструкционных и инструментальных изделий. Цель изобретения: снижение температуры и времени высокотемпературной обработки ( спекания ), увеличение характеристик пластичности и износостойкости, прессуемости перед спеканием. Сущность изобретения: при получении спеченного композиционного материала осуществляют механическую активацию в планетарной мельнице с последующей термообработкой при 1200 - 1300oС в течение 30 - 60 мин. Положительный эффект: снижение температуры на 70 - 100oС, достижение характеристики σ изготовления., равной 1250 - 1350 МПа, и твердости по Роквеллу 87 - 90.The method is used to obtain as a starting material by methods of powder metallurgy of structural and tool products. The purpose of the invention: reducing the temperature and time of high-temperature processing (sintering), increasing the characteristics of ductility and wear resistance, compressibility before sintering. The essence of the invention: upon receipt of the sintered composite material is carried out mechanical activation in a planetary mill, followed by heat treatment at 1200 - 1300 o C for 30 - 60 minutes Positive effect: decrease in temperature by 70 - 100 o С, achievement of characteristic σ of manufacture., Equal to 1250 - 1350 MPa, and Rockwell hardness 87 - 90.
RU93003628A 1993-01-22 1993-01-22 Method to produce sintered composite material on the base of titanium diboride RU2034928C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93003628A RU2034928C1 (en) 1993-01-22 1993-01-22 Method to produce sintered composite material on the base of titanium diboride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93003628A RU2034928C1 (en) 1993-01-22 1993-01-22 Method to produce sintered composite material on the base of titanium diboride

Publications (2)

Publication Number Publication Date
RU2034928C1 RU2034928C1 (en) 1995-05-10
RU93003628A true RU93003628A (en) 1996-03-27

Family

ID=20136130

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93003628A RU2034928C1 (en) 1993-01-22 1993-01-22 Method to produce sintered composite material on the base of titanium diboride

Country Status (1)

Country Link
RU (1) RU2034928C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460331A (en) * 2016-06-02 2017-12-12 昆明冶金高等专科学校 A kind of method that titanium slag is modified
RU2737185C1 (en) * 2020-02-20 2020-11-25 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук Method of producing composite materials based on ti-b-fe, ain modified nanoparticles
RU2733775C1 (en) * 2020-04-30 2020-10-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of producing composite material ti-15mo/tib with improved plastic characteristics
CN113385675B (en) * 2021-05-31 2023-09-01 自贡硬质合金有限责任公司 Preparation method of hard alloy or metal ceramic

Similar Documents

Publication Publication Date Title
ZA899850B (en) Process for the production of metals,alloys and ceramic materials
RU93003628A (en) METHOD OF OBTAINING SINTERED COMPOSITIONAL MATERIAL BASED ON TITANIUM DIBORIDE
Eylon et al. Property Improvement of Low Chlorine Titanium Alloy Blended Elemental Powder Compacts by Microstructure Modification.(Retroactive Coverage)
MXPA05011284A (en) Molybdenum alloy x-ray targets having uniform grain structure.
Fujishiro et al. Effect of processing on the mechanical properties of IMI-829 titanium alloys
Wirth et al. Correlations between post-hip treatment, resulting microstructure and fatigue behavior of prealloyed Ti-6 Al-4 V powder compacts.
Krastilevsky Hydrogen influence on texture forming under hot and cold rolling of high-strength titanium alloys
McKimpson et al. Rapid Isostatic Processing of Metal Powders
Wang et al. The Effect of Hot Isostatic Pressing(HIP) on the Structure and Properties of ZT 4 Titanium Alloy Precise Castings
Bohlen et al. Fatigue Behavior of Powder Metallurgy Ti--6 Al--4 V
Miyazaki et al. Structure and Mechanical Properties of Ti sub 3 Al Compact Produced by Hot Pressing of Mechanically Alloyed Powder
Eylon et al. Effect of hot isostatic pressing and heat treatment on fatigue properties of Ti-6 Al-4 V castings
Wierzbinski Microstructural Evolution During Dynamic Restoration Processes in Copper-Nickel Alloys, Paper from the 7 th International Symposium, Japan Institute of Metals, Aspects of High Temperature Deformation and Fracture in Crystalline Materials, Nagoya, Japan, July 28-31, 1993
Zhang et al. Review of the Reactive Mechanism in Mechanical Alloying.
Peng et al. Manganizing Process for Die Steels
Morii et al. Slip Modes and Texture Formation in Titanium and Ti--Al Alloy at High Temperature
Sato et al. Effect of the Treatment Temperature on the Preparation of TiAl--TiB sub 2 Composite Materials by MA and HIP Methods
SU398350A1 (en) METHOD OF MANUFACTURING METAL-CERAMIC PRODUCTS FROM MARTENSATED STEELS
Zubkova et al. The Microstructure and Properties of Carbide Steel in Relation to Manufacturing Practice
LEE Effect of degassing treatment on the PM Ti-6 Al-4 V alloy
Santos et al. Effect of HIP'ing on the Mechanical Properties of Sintered High-Speed Steels
Arensburger Properties of Dispersively-Hardening Powders of Copper Alloys
Mehlhose et al. Machining Behavior, Work Hardening and Cutting Behavior of Materials Made by Powder Metallurgy(P/M-Forgings)
Abkowitz et al. The Achievement of Wrought Tensile and Fatigue Properties in Fully Dense Elemental Blend P/M Ti--6 Al--4 V Alloy Manufactured Components
Hu Study on the Wear Resistance of Synchromesh Gears