RU2794167C1 - Устройство для видения подводных объектов - Google Patents

Устройство для видения подводных объектов Download PDF

Info

Publication number
RU2794167C1
RU2794167C1 RU2022117466A RU2022117466A RU2794167C1 RU 2794167 C1 RU2794167 C1 RU 2794167C1 RU 2022117466 A RU2022117466 A RU 2022117466A RU 2022117466 A RU2022117466 A RU 2022117466A RU 2794167 C1 RU2794167 C1 RU 2794167C1
Authority
RU
Russia
Prior art keywords
laser
objects
underwater
photodetector
optical system
Prior art date
Application number
RU2022117466A
Other languages
English (en)
Inventor
Андрей Андреевич Катанович
Александр Клавдиевич Жаровов
Юрий Викторович Шокин
Вячеслав Александрович Цыванюк
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова"
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова"
Application granted granted Critical
Publication of RU2794167C1 publication Critical patent/RU2794167C1/ru

Links

Images

Abstract

Использование: изобретение относится к системам лидаров и лазерного видения объектов в рассеивающих свет оптических средах (вода, туман, атмосферная дымка) и может быть использовано в системах лазерной локации для обнаружения и распознавания различных объектов, например, подводных объектов. Сущность: устройство для видения подводных объектов включает сканирование объектов импульсным лазерным излучением с узкой диаграммой направленности, подавление помехи обратного рассеяния поляризационной фильтрацией и стробированием фотоприемника, обнаружение отраженного от объекта лазерного импульса и регистрацию максимального значения амплитуды на переднем фронте принимаемого импульса. Новизна заявленного устройства состоит в том, что когда не обнаруживается отраженное от объекта лазерное излучение, его обнаружение и регистрацию производят по максимальной крутизне спада рассеянного оптической средой излучения и затем по упомянутым регистрируемым сигналам формируют образ подводного объекта. Технический результат: повышение надежности, увеличение дальности видения и улучшение качества изображения подводных объектов. 2 ил.

Description

Изобретение относится к системам лидаров и лазерного видения объектов в рассеивающих свет оптических средах (вода, туман, атмосферная дымка) и может быть использовано в системах лазерной локации для обнаружения и распознавания различных объектов, например, подводных объектов.
Известно устройство для видения объектов - патент RU 2465619 С1, G01S 17/88 от 17.06.2011 опубл. 27.10.2012 бюл. №30. Устройство содержит размещенные в герметичном корпусе с оптическими окнами передающий канал, образованный последовательно установленными источником лазерного излучения, телескопом, блоком сканирования лазерным пучком, выходной оптической системой и основной приемный канал, образованный входной оптической системой, содержащей поляризационный фильтр, интерференционный светофильтр и линзу, фотоприемником с узлом стробирования, усилителем и пиковым детектором, при этом передающий и основной приемный каналы подключены к блоку управления и обработки информации, а также содержащее аналогичный по составу основному приемному каналу дополнительный приемный канал, причем поляризационные фильтры входной оптической системы основного и дополнительного приемного каналов вынесены за пределы герметичного корпуса перед соответствующими каналам интерференционными фильтрами, при этом плоскость поляризации поляризационного фильтра дополнительного приемного канала повернута относительно плоскости поляризации поляризационного фильтра основного приемного канала.
Известно также устройство для видения подводных объектов - RU 2397510 С2, G01S 17/88 от 07.07.2008, опубл. 20.08.2010 бюл. №23 (прототип). Устройство содержит передающий канал в виде источника лазерного импульса, блока сканирования лазерным пучком в двух взаимно ортогональных направлениях, выходной оптической системы с фокусирующим объективом-трансфокатором, а также приемный канал в виде входной оптической системы с поляризационным фильтром, фотоприемника с узлом стробирования и усилителя, причем за усилителем размещен пиковый детектор, регистрирующий максимум сигнала на переднем фронте, отраженного от объекта импульса, а передающий и приемный каналы подключены к блоку управления и обработки информации.
Недостатком аналогов и прототипа является то, в случае малого коэффициента отражения зондирующего лазерного импульса от объекта, а также при повышенных уровнях рассеяния водой лазерного излучения, превышение отраженного от объекта принимаемого лазерного импульса на фоне рассеянного водой излучения настолько мало, что может быть принято решение об отсутствии объекта в засвечиваемой области пространства. Это приведет к снижению надежности обнаружения объекта.
Целью изобретения является увеличение дальности видения и улучшение качества изображения подводных объектов.
Поставленная цель достигается тем, что устройство для видения подводных объектов выполнено в виде двух блоков, причем в первый блок входит передающий канал, а во второй блок приемный канал, передающий канал состоит из источника зондирующего импульсно-периодического лазерного излучения последовательно соединенного с телескопом, устройством сканированного лазерного пучка и выходной оптической системой, а приемный блок состоит из входной оптической системы, состоящей из узкополосного светофильтра, поляризационного фильтра и линзы, соединенных последовательно с фотоприемником с узлом стробирования, усилителем, устройством дифференцирования, первым пиковым детектором, подключенным к выходу усилителя и вторым пиковым детектором, подключенным к выходу устройства дифференцирования, причем пиковые детекторы выходами соединены с устройством управления и обработки принимаемых сигналов, которое имеет выходы на передающий и приемный канал, причем в передающем канале устройство управления запускает процессы генерирования лазерного импульса в лазере и сканирования лазерным пучком в устройстве сканирования, а в приемном канале устройство управления и обработки принимаемых сигналов в соответствии с ожидаемой дальностью до подводного объекта синхронизирует моменты запирания и отпирания (стробирования) фотоприемника и пиковых детекторов с моментом излучения лазерного импульса лазером, при этом устройство сканирования лазерным пучком выполнено в виде двух взаимно ортогональных акустооптических дефлекторов, а выходная оптическая система для сканирующего лазерного пучка образована фокусирующим объективом и объективом-трансфокатором, а входная оптическая система содержит узкополосный светофильтр, поляризационный фильтр и объектив, фокусирующий световой поток на фоточувствительную поверхность многоэлементной фоточувствительной матрицы фотоприемника.
Сущность изобретения иллюстрируется чертежами фиг. 1 и фиг. 2.
На фиг. 1 представлена схема устройства для видения подводных объектов, где приняты следующие обозначения:
1 - подводный объект.
2 - рассеивающая свет оптическая среда (морская вода).
3 - передающий канал.
4 - источник импульсного лазерного излучения (лазер).
5 - телескоп.
6 - устройство сканирования лазерным пучком.
7 - акустооптический дефлектор сканирования по координате Y.
8 - акустооптический дефлектор сканирования по координате X.
9 - выходная оптическая система.
10 - фокусирующий объектив.
11 - объектив-трансфокатор.
12 - приемный канал.
13 - входная оптическая система.
14 - узкополосный светофильтр.
15 - поляризационный фильтр.
16 - линза.
17 - фотоприемник с узлом стробирования.
18 - усилитель.
19 - первый пиковый детектор.
20 - устройство дифференцирования.
21 - второй пиковый детектор.
22 - устройство управления и обработки принимаемых сигналов.
На фиг. 2 показаны эпюры принимаемых сигналов на выходе усилителя 18. Сплошная кривая соответствует наличию отраженного от объекта лазерного импульса, а пунктирная кривая - отсутствию отражения от объекта зондирующего лазерного излучения из-за его поглощения подводным объектом.
Устройство, представленное на фиг. 1, включает в свой состав: передающий канал 3 в виде источника зондирующего импульсно-периодического лазерного излучения 4, телескопа 5, устройства сканирования лазерным пучком 6, выходной оптической системы 9; приемный канал 12 в виде входной оптической системы 13, фотоприемника с узлом стробирования 17, усилителя 18, устройства дифференцирования 20 и первого пикового детектора 19, подключенного к выходу усилителя 18, второго пикового детектора 21 на выходе устройства дифференцирования 20; причем пиковые детекторы 19 и 21 выходами соединены с устройством управления и обработки принимаемых сигналов 22, который имеет выходы на передающий канал 3 и приемный канал 12. В передающем канале 3 устройство управления 22 запускает процессы генерирования лазерного импульса в лазере 4 и сканирования лазерным пучком в блоке сканирования 6. В приемном канале 12 устройства управления и обработки принимаемых сигналов 22 в соответствии с ожидаемой дальностью до подводного объекта 1 синхронизирует моменты запирания и отпирания (стробирования) фотоприемника 17 и пиковых детекторов 19 и 21 с моментом излучения лазерного импульса лазером 4. Устройство сканирования лазерным пучком 6 выполнено в виде двух взаимно ортогональных акустооптических дефлекторов 7 и 8, а выходная оптическая система 9 для сканирующего лазерного пучка образована фокусирующим объективом 10 и объективом-трансфокатором 11. Входная оптическая система 13 содержит узкополосный светофильтр 14, поляризационный фильтр 15 и объектив 16, фокусирующий световой поток на фоточувствительную поверхность многоэлементной фоточувствительной матрицы фотоприемника 17.
Работа устройства для видения подводных объектов.
Заданный сектор пространства, в котором находится подводный объект 1, дискретно и попиксельно сканируют по двум ортогональным координатам зондирующим импульсно-периодическим лазерным пучком с расходимостью 0,05-0,2° с возможностью изменения угла сектора обзора от 2 до 25°. При формировании зондирующего изменяют углы сканирования от 2° до 25°, а также регулируют расходимость лазерного пучка. Угловой размер одного засвечиваемого пикселя изображения объекта соответствует угловому размеру диаграммы направленности (расходимости) лазерного пучка.
Отраженное от подводного объекта 1 излучение после обратного прохода через рассеивающую свет воду 2 поступает в приемном канале 12 во входную оптическую систему 13, в которой оно подвергается спектральной селекции рабочей длины излучения посредством узкополосного светофильтра 14 и поляризационной селекции посредством поляризационного фильтра 15, обеспечивающего подавление помехи от засветки обратного рассеяния водой. Объектив 16 обеспечивает совмещение поля зрения входной оптической системы 13 со сканируемой областью пространства и фокусировку принимаемого излучения на фоточувствительной поверхности многоэлементного фотоприемника 17.
Для устранения мешающего воздействия мощной фоновой засветки обратного рассеивания водой, которая проявляется перед регистрацией полезного сигнала, используют стробирование фотоприемника 17, осуществляемое синхронно с излучением лазерного импульса. При стробировании фотоприемник 17 запирается с момента излучения зондирующего импульса и отпирается в момент, непосредственно предшествующий ожидаемому приходу отраженного от подводного объекта 1 полезного сигнала.
Регистрацию интенсивности излучения, отраженного от подводного объекта 1, осуществляют многоэлементным фотоприемником 17 (матрицей) с общим полем зрения, охватывающем сектор обзора пространства, в котором производится поиск или наблюдение подводного объекта 1. Размер поля зрения каждого элемента фотоприемника 17, размещенного в фокальной плоскости объектива 16 фотоприемника, равен или превышает размер диаграммы направленности лазерного пучка зондирующего излучения. В качестве выходного сигнала фотоприемника 17 используют выходной сигнал с того элемента его, который соответствует направлению лазерного пучка на подводный объект 1, то есть каждому засвечиваемому пикселю соответствует определенный элемент фотоприемника 17 в фокальной плоскости объектива 16. При предварительной обработке зарегистрированного отраженного сигнала снижают влияние рассеяния вперед на контрастность и детализацию изображения посредством выделения первым пиковым детектором 19 максимального значения амплитуды сигнала фотоприемника 17, имеющего место на переднем фронте принимаемого импульса и соответствующего моменту прихода нерассеянных фотонов, отраженных от подводного объекта 1 в направлении на источник зондирующего излучения.
Новым в заявленном устройстве для видения объектов является то, что дополнительно к обнаружению объекта по отраженному от него сигналу производят обнаружение объекта и по максимальной крутизне спада излучения, обратно рассеянного водой. Для этого используют второй пиковый детектор 21, на вход которого подают принимаемый фотоприемником 17 сигнал через устройство дифференцирования 20. Это дополнительное обнаружение используют в случаях пропуска обнаружения по сигналу на переднем фронте отраженного от объекта импульса, которое может происходить вследствие малого коэффициента отражения от объекта или повышенного рассеяния лазерного излучения водой, то есть когда мощность сигнала, отраженного от объекта, настолько мала по отношению к мощности рассеянного водой излучения, что обнаружение объекта по отраженному от объекта излучению не происходит. Второй пиковый детектор 21 обнаруживает и фиксирует момент максимальной крутизны спада сигнала на заднем фронте принимаемого сигнала и соответствующую этому моменту наиболее резкую границу начала формирования теневой области за поверхностью подводного объекта 1.
С выхода пиковых детекторов 19 и 21 сигнал подают в устройство управления и обработки принимаемых сигналов 22. Этим устройством обеспечивают управление моментом излучения импульса в лазере 4, сканированием в блоке сканирования 6, расходимостью лазерного пучка в выходной оптической системе 9, стробированием фотоприемника 17, работой пиковых детекторов 19 и 21, а также формирование образа объекта по совокупности сигналов, поступающих с пиковых детекторов 19 и 21.
Таким образом, предложенное изобретение по разработке устройства видения подводных объектов состоит в том, что когда не обнаруживается отраженное от объекта лазерное излучение, его обнаружение и регистрацию производят по максимальной крутизне спада рассеянного оптической средой излучения и затем по упомянутым регистрируемым сигналам формируют образ подводного объекта.

Claims (1)

  1. Устройство для видения подводных объектов выполнено в виде двух блоков, причем в первый блок входит передающий канал, а во второй блок приемный канал, передающий канал состоит из источника зондирующего импульсно-периодического лазерного излучения последовательно соединенного с телескопом, устройством сканированного лазерного пучка и выходной оптической системой, а приемный блок состоит из входной оптической системы, состоящей из узкополосного светофильтра, поляризационного фильтра и линзы, соединенных последовательно с фотоприемником с узлом стробирования, усилителем, устройством дифференцирования, первым пиковым детектором, подключенным к выходу усилителя и вторым пиковым детектором, подключенным к выходу устройства дифференцирования, причем пиковые детекторы выходами соединены с устройством управления и обработки принимаемых сигналов, которое имеет выходы на передающий и приемный каналы, причем в передающем канале устройство управления запускает процессы генерирования лазерного импульса в лазере и сканирования лазерным пучком в устройстве сканирования, а в приемном канале устройство управления и обработки принимаемых сигналов в соответствии с ожидаемой дальностью до подводного объекта синхронизирует моменты запирания и отпирания (стробирования) фотоприемника и пиковых детекторов с моментом излучения лазерного импульса лазером, при этом устройство сканирования лазерным пучком выполнено в виде двух взаимно ортогональных акустооптических дефлекторов, выходная оптическая система для сканирующего лазерного пучка образована фокусирующим объективом и объективом-трансфокатором, а входная оптическая система содержит узкополосный светофильтр, поляризационный фильтр и линзу, фокусирующую световой поток на фоточувствительную поверхность многоэлементной фоточувствительной матрицы фотоприемника.
RU2022117466A 2022-06-27 Устройство для видения подводных объектов RU2794167C1 (ru)

Publications (1)

Publication Number Publication Date
RU2794167C1 true RU2794167C1 (ru) 2023-04-12

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400396B1 (en) * 1991-10-21 2002-06-04 ARETé ASSOCIATES Displaced-beam confocal-reflection streak lindae apparatus with strip-shaped photocathode, for imaging very small volumes and objects therein
RU2397510C2 (ru) * 2008-07-07 2010-08-20 Российская Федерация в лице Министерства Обороны Российской Федерации Способ видения подводных объектов и устройство для его реализации
EP2022008A4 (en) * 2006-05-09 2012-02-01 Technion Res & Dev Foundation PICTURE SYSTEMS AND METHOD FOR RESTORING THE OBJECTIBILITY
RU2465619C1 (ru) * 2011-06-17 2012-10-27 Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" Устройство для видения объектов в мутных оптических средах
RU2549210C2 (ru) * 2013-07-12 2015-04-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ обнаружения объекта на малых дистанциях и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400396B1 (en) * 1991-10-21 2002-06-04 ARETé ASSOCIATES Displaced-beam confocal-reflection streak lindae apparatus with strip-shaped photocathode, for imaging very small volumes and objects therein
EP2022008A4 (en) * 2006-05-09 2012-02-01 Technion Res & Dev Foundation PICTURE SYSTEMS AND METHOD FOR RESTORING THE OBJECTIBILITY
RU2397510C2 (ru) * 2008-07-07 2010-08-20 Российская Федерация в лице Министерства Обороны Российской Федерации Способ видения подводных объектов и устройство для его реализации
RU2465619C1 (ru) * 2011-06-17 2012-10-27 Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" Устройство для видения объектов в мутных оптических средах
RU2549210C2 (ru) * 2013-07-12 2015-04-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ обнаружения объекта на малых дистанциях и устройство для его осуществления

Similar Documents

Publication Publication Date Title
US7940444B2 (en) Method and apparatus for synchronous laser beam scanning
US5249046A (en) Method and apparatus for three dimensional range resolving imaging
CN106569224B (zh) 一种扫描型激光雷达光学***
WO2019024370A1 (zh) 激光雷达点云与图像融合式探测***
US5467122A (en) Underwater imaging in real time, using substantially direct depth-to-display-height lidar streak mapping
EP3111165A1 (en) Distance measuring device and parallax calculation system
US10955531B2 (en) Focal region optical elements for high-performance optical scanners
US6873716B1 (en) Confocal-reflection streak lidar apparatus with strip-shaped photocathode, for applications at a wide range of scales
CN109814128B (zh) 时间飞行与关联成像相结合的高分辨快速成像***及方法
GB2457375A (en) Lidar arrangement for mapping the environment around a vehicle
US5233415A (en) Imaging lidar employing transmitter referencing
CN111141701A (zh) 一种基于太赫兹单脉冲的快速超分辨成像方法及***
CN111123619B (zh) 短相干照明与偏振结合的水下远距离光学成像装置及方法
DE112018005682T5 (de) Optische elemente mit fokusregion für optische hochleistungsscanner
US20190226834A1 (en) Laser imaging
CA2237894C (en) Confocal-reflection streak lidar apparatus with strip-shaped photocathode, for application at a wide range of scales
RU2794167C1 (ru) Устройство для видения подводных объектов
KR20220084173A (ko) 능동형 광학 센서 시스템의 측정 데이터를 필터링하는 기법
CN108885260B (zh) 具有单轴扫描的渡越时间探测器
US6172785B1 (en) Light-scanning device
US9702819B1 (en) Surface vessel wake detection
RU2540451C1 (ru) Система лазерной локации
RU2465619C1 (ru) Устройство для видения объектов в мутных оптических средах
KR20170127865A (ko) 통합픽셀로 구성된 거리영상센서
US10725154B2 (en) Optical detection of an object in a turbid medium using an optical vortex