RU2767968C1 - Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления - Google Patents

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления Download PDF

Info

Publication number
RU2767968C1
RU2767968C1 RU2021114180A RU2021114180A RU2767968C1 RU 2767968 C1 RU2767968 C1 RU 2767968C1 RU 2021114180 A RU2021114180 A RU 2021114180A RU 2021114180 A RU2021114180 A RU 2021114180A RU 2767968 C1 RU2767968 C1 RU 2767968C1
Authority
RU
Russia
Prior art keywords
housing
gas turbine
turbine engine
metal powder
small
Prior art date
Application number
RU2021114180A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Ольга Геннадиевна Оспенникова
Владислав Валерьевич Антипов
Михаил Михайлович Бакрадзе
Святослав Васильевич Неруш
Павел Борисович Мазалов
Дмитрий Игоревич Сухов
Никита Алексеевич Ходырев
Сергей Александрович Тарасов
Александр Игоревич Пашков
Гарегин Григорович Асланян
Артем Ренатович Шакиров
Георгий Георгиевич Тарасов
Денис Александрович Мурысин
Семен Сергеевич Титов
Original Assignee
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ filed Critical Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority to RU2021114180A priority Critical patent/RU2767968C1/ru
Application granted granted Critical
Publication of RU2767968C1 publication Critical patent/RU2767968C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере. При этом осуществляют топологическую оптимизацию электронной 3D-модели детали с учетом конструктивных особенностей детали и схемы ее нагружения. Нагрев подложки осуществляют в течение 30-60 мин. При использовании никелевого или кобальтового сплава ее нагревают до 200°С, при использовании алюминиевого сплава – до 100°С, а сплавление осуществляют в среде азота или аргона. Обеспечивается сокращение массы деталей, повышение их тяговооруженности МГТД. 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области машиностроения, а именно к способу изготовления деталей малоразмерных газотурбинных двигателей (МГТД), в частности, двигателей типов МГТД-20, МГТД-125 и МГТД-150, методом селективного лазерного сплавления и может быть использовано в авиадвигателестроении при производстве маршевого двигателя летательного аппарата.
Технология аддитивного производства для изготовления изделий авиационного назначения методом селективного лазерного сплавления (СЛС) осложнена необходимостью разработки таких режимов синтеза для авиационных сплавов, чтобы последующее синтезированное изделие обладало минимальной долей внутренних объемных дефектов, а также заданным качеством поверхности. Помимо разработки режима необходимо сконструировать и оптимизировать конструкцию изделия таким образом, чтобы обеспечить наибольшую эффективность его применения в силовых агрегатах летательных аппаратов и снизить их вес.
Известен способ изготовления компонента газотурбинного двигателя из металлического порошка, содержащий аддитивное изготовление компонента и его термическую обработку. Аддитивное изготовление компонента ведут в формовочной камере, в которую вводят науглероживающий газ. Термическую обработку полученного аддитивным изготовлением компонента ведут с обеспечением осаждения карбидов на границах его зерен (RU 2670827 С2, опубл. 25.10.2018 г. B22F 3/105).
К недостаткам вышеуказанного способа можно отнести использование науглероживающего газа, который приводит к осаждению карбидов на поверхности сплавляемых слоев, что может приводить к росту объемных дефектов, локализованных между слоями.
Известен способ получения изделий для высоких тепловых нагрузок для авиационных двигателей, который включает обеспечение первой области компонента первым металлическим материалом посредством генеративного лазерного процесса или создание первой области из первого металлического материала, затем создание второй области компонента из второго металлического материала. Способ дополнительно включает создание охлаждающего элемента на компоненте путем селективного лазерного спекания и/или селективной лазерной плавки посредством увеличения концентрации таких элементов, как медь и/или алюминий с высокой теплопроводностью и высоким коэффициентом линейного расширения в металлическом материале. (ЕР 2559787 А1, опубл. 20.02.2013 B23K 26/00).
К недостаткам вышеуказанного способа можно отнести невозможность промышленной реализации данного способа изготовления деталей ГТД на современных установках селективного лазерного сплавления.
Известен способ изготовления металлических изделий селективным лазерным спеканием, включающий первый этап, на котором порошковый материал засыпают в загрузочный бункер, закрывают герметичную камеру, откачивают воздух из герметичной камеры с помощью вакуумной системы, затем заполняют внутренний объем герметичной камеры инертным газом из блока подачи инертного газа до достижения заданного давления, включают систему циркуляции инертного газа, обеспечивают непрерывный обдув зоны сплавления порошкового материала и оптического оборудования лазерной системы через вентиляционные отверстия и производят нагрев основания с подложкой для формируемого изделия. После чего осуществляют второй этап, на котором подают порошковый материал из загрузочного бункера в среде инертного газа через шлюзовое устройство в дозатор, производят выгрузку и разравнивание заданного объема порошкового материала с помощью выравнивателя из дозатора на подложку, полученный слой облучают сфокусированным лазерным излучением в точках слоя, соответствующих поперечному сечению формируемого изделия по заданной программе в системе управления упомянутой установки, после завершения облучения опускают опору для поддержки формируемого изделия на величину толщины полученного слоя. Выравниватель перемещают в обратном направлении, затем операции второго этапа повторяют до полного формирования изделия. После чего осуществляют третий этап, на котором удаляют защитный газ из герметичной камеры, выравнивают давление в герметичной камере с атмосферным, открывают герметичную камеру и извлекают полученное изделие из камеры (RU 2717761 С1, опубл. 25.03.2020, B22F 3/105).
К недостаткам вышеуказанного способа можно отнести технологические трудности обеспечения равномерного слоя порошка при его нанесении с использованием вертикальной подачи, что ведет к увеличению количества объемных дефектов при синтезе изделия.
Наиболее близким аналогом заявленного изобретения является способ изготовления детали из хромсодержащего жаропрочного сплава на основе никеля, включающий послойное нанесение порошка хромсодержащего жаропрочного сплава на основе никеля на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали, горячее изостатическое прессование полученной детали в среде аргона и ее термическую обработку. Металлический порошок хромсодержащего жаропрочного сплава на основе никеля предварительно подвергают газодинамической сепарации с последующей дегазацией. Процесс сплавления слоев порошка лазерным лучом проводят в защитной атмосфере азота. Перед горячим изостатическим прессованием полученную деталь помещают в среду электрокорунда и стружки титана или титанового сплава без соприкосновения детали с упомянутой стружкой (RU 2623537, опубл. 27.06.2017 B23K 26/342).
Недостатком данного способа является отсутствие предварительной компьютерной обработки (топологической оптимизации) электронной 3D-модели детали газотурбинного двигателя, что не позволяет совершенствовать конструкцию детали, тем самым, снижая эффективность ее применения.
Технический результат заявленного изобретения заключается в разработке способа изготовления деталей малогабаритного газотурбинного двигателя с тягой до 150 кгс с повышенным показателем тяговооруженности за счет сокращения массы деталей посредством топологической оптимизации.
Заявленный технический результат достигается тем, что способ изготовления деталей малоразмерного газотурбинного двигателя селективным лазерным сплавлением включает в себя операции создания электронной 3D-модели детали при помощи системы твердотельного моделирования, проведения топологической оптимизации детали с учетом ее конструктивных особенностей и схемы нагружения, разделение оптимизированной 3D-модели детали на слои и экспортирование ее на оборудование, газодинамическую сепарацию и дегазацию порошка, послойное нанесение металлического порошка на подложку нагретую в течении 30-60 минут до 200°С и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере азота.
В варианте изготовления детали МГТД фронтовое устройство, корпус, сопло, направляющий аппарат, колесо турбины, корпус соплового аппарата дополнительно подвергают горячему изостатическому прессованию при давлении 100-200 МПа и температуре 1100-1200°С.
В варианте изготовления детали МГТД фронтовое устройство, корпус, сопло, направляющий аппарат, жаровая труба, камера сгорания, дно корпуса, корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышка устройства входа, крепление испарительных трубок дополнительно подвергают термической обработке.
В варианте изготовления деталей: корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышка устройства входа, крепление испарительных трубок - в процессе сплавления слоев порошка осуществляют нагрев подложки до 100°С.
В варианте изготовления процесс сплавления слоев порошка лазерным лучом проводят в защитной атмосфере аргона.
В варианте изготовления металлический порошок выполнен из сплава на основе никеля или кобальта, или алюминия.
Топологическая оптимизация с учетом конструктивных особенностей и схемы нагружения после моделирования электронной 3D-модели детали позволяет снизить массу деталей МГТД с сохранением требуемых прочностных характеристик, тем самым обеспечить снижение веса и повышение тяговооруженности МГТД.
Газодинамическая сепарация металлического порошка позволяет исключить наличие в нем тонкой (агломерирующей) фракции менее 10 мкм, препятствующей равномерному нанесению на подложку, а также дефектных пористых гранул, внутри которых содержится локальный объем инертного газа аргона. Применение таких гранул в процессе лазерного сплавления приводит к структурной неоднородности (пористости) сплавленных слоев, что отрицательно сказывается на механических свойствах изготавливаемой детали. В большей степени достичь однородности сплавленных слоев можно используя порошки небольшого фракционного состава менее 63 мкм.
Дегазация металлического порошка жаропрочного сплава на основе фракционного состава менее 63 мкм позволяет удалить с поверхности частиц порошка адсорбированный кислород, который является вредной газовой примесью, приводящей к снижению механических свойств изготавливаемой детали.
С целью получения детали большей геометрической точности и высокими механическими свойствами предпочтительно использовать металлический порошок фракционного состава менее 63 мкм с содержанием кислорода менее 0,01 масс. %.
Дегазацию проводят посредством вакуумирования камеры, в которую помещен порошок, с последующим нагревом до температуры до 300°С и выдержке при ней в течение 2-6 ч.
Селективное сплавление (сканирование) порошка лазерным лучом лучше проводить со скоростью от 0,6 до 3,2 м/сек и мощностью лазера 150-600 Вт. Сочетание указанных скорости и мощности обеспечивает стабильный процесс изготовления деталей за счет полного расплавления сплавляемого слоя металлических порошков.
На подложку предпочтительно наносить слой порошка от 20 до 50 мкм.
В процессе изготовления каждое сечение формируемой детали разбивается на отдельные фрагменты, которые формируются с помощью лазерного сплавления металлического порошка, а при сплавлении следующего слоя детали шаг прохождения лазерного луча сдвигается. Это позволяет понизить термические напряжения, возникающие в процессе лазерного сплавления, за счет локализации внутренних напряжений сплавленного металла в небольшом участке и снижения их до минимума, что обеспечивает стабильность технологического процесса и изготовление детали заданной геометрической формы с высокой точностью.
Процесс селективного лазерного сплавления деталей из никелевого и кобальтового сплавов проводят с подогревом подложки до 200°С, для деталей из алюминиевого сплава - до 100°С. Эта операция направлена на снижение остаточных термических напряжений в деталях МГТД.
Проведение процесса горячего изостатического прессования детали, изготовленной селективным лазерным сплавлением металлического порошка жаропрочного сплава на основе никеля или кобальта, осуществляется при давлении 100-200 МПа и температуре 1100-1200°С, что обеспечивает эффективное снижение пористости синтезированного материала. Проведение процесса горячего изостатического прессования в среде электрокорунда и стружки титана или титанового сплава (стружка-газопоглотитель) обеспечивает уменьшение толщины окисленного слоя за счет снижения электрокорундом интенсивности циркуляции прессующей среды аргона у поверхности обрабатываемых деталей и поглощения из нее примесей кислорода стружкой-газопоглотителем, содержащей титан, имеющий высокое химическое сродство с кислородом. Во избежание высокотемпературного взаимодействия материала детали и стружки титана или титанового сплава во время горячего изостатического прессования деталь и стружка не должны соприкасаться, что достигается наличием в камере внутренней полости с полыми стенками, в которых находится смесь электрокорунда и стружки.
Заявленный способ осуществляется следующим образом. На первом этапе создается электронная 3D-модель при помощи системы твердотельного моделирования. Затем созданная электронная 3D-модель подвергается топологической оптимизации с учетом конструктивных особенностей и схемы нагружения в специальном программном обеспечении. После этого обработанная 3D-модель разделяется на слои и загружается в оборудование для трехмерной печати (3D-принтер). На втором этапе проводят предварительный подогрев подложки от 100 до 200°С в течении 30-60 минут, затем порошковый материал, толщина которого не превышает 50 мкм, распределяется тонким слоем на рабочей поверхности подложки. Лазер согласно заданным параметрам селективно осуществляет расплавление порошка в атмосфере азота или аргона для формирования первого слоя детали. После лазерного сплавления первого слоя металлического порошка подложка опускается на определенный уровень, наносится новый слой порошкового материала, и процесс многократно повторяется до завершения изготовления детали. При необходимости на третьем этапе проводится горячее изостатическое прессование и термическая обработка детали.
Детали МГТД, выполненные с применением заявленного способа, а также сплав, указаны в таблице №1.
Figure 00000001
По предложенному способу и прототипу была изготовлена камера сгорания двигателя МГТД-20. Масса деталей составила для предложенного способа - 330 г, для прототипа - 348 г. Эффективное снижение массы составило 5,2%.
По предложенному способу и прототипу был изготовлен диффузор двигателя МГТД-20. Масса деталей составила для предложенного способа - 135 г, для прототипа - 187 г. Эффективное снижение массы составило 27,8%.
По предложенному способу и прототипу был изготовлен корпус соплового аппарата МГТД-125/150. Масса деталей составила для предложенного способа - 803 г, для прототипа - 951 г. Эффективное снижение массы составило 15,6%.

Claims (4)

1. Способ изготовления деталей малоразмерного газотурбинного двигателя из жаропрочного сплава в виде никелевого, кобальтового или алюминиевого сплава, включающий создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере, отличающийся тем, что осуществляют топологическую оптимизацию электронной 3D-модели детали с учетом конструктивных особенностей детали и схемы ее нагружения, причем осуществляют нагрев подложки в течение 30-60 мин, при этом при использовании никелевого или кобальтового сплава ее нагревают до 200°С, при использовании алюминиевого сплава – до 100°С, а сплавление осуществляют в среде азота или аргона.
2. Способ по п. 1, отличающийся тем, что в качестве деталей малоразмерного газотурбинного двигателя изготавливают: фронтовое устройство, корпус, сопло, направляющий аппарат, колесо турбины, корпус соплового аппарата, которые дополнительно подвергают горячему изостатическому прессованию при давлении 100-200 МПа и температуре 1100-1200°С.
3. Способ по п. 1, отличающийся тем, что в качестве деталей малоразмерного газотурбинного двигателя изготавливают: фронтовое устройство, корпус, сопло, направляющий аппарат, жаровую трубу, камеру сгорания, дно корпуса, корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышку устройства входа, деталь крепления испарительных трубок, которые дополнительно подвергают термической обработке.
4. Способ по п. 3, отличающийся тем, что в качестве деталей малоразмерного газотурбинного двигателя изготавливают из алюминиевого сплава: корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышку устройства входа, деталь крепления испарительных трубок, при этом нагрев подложки осуществляют до 100°С.
RU2021114180A 2021-05-19 2021-05-19 Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления RU2767968C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021114180A RU2767968C1 (ru) 2021-05-19 2021-05-19 Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021114180A RU2767968C1 (ru) 2021-05-19 2021-05-19 Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Publications (1)

Publication Number Publication Date
RU2767968C1 true RU2767968C1 (ru) 2022-03-22

Family

ID=80819580

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021114180A RU2767968C1 (ru) 2021-05-19 2021-05-19 Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Country Status (1)

Country Link
RU (1) RU2767968C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804167C1 (ru) * 2023-02-17 2023-09-26 Публичное Акционерное Общество "Одк-Сатурн" Способ изготовления трубопровода сложной конфигурации для газотурбинного двигателя аддитивным методом

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623537C2 (ru) * 2015-11-13 2017-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ изготовления деталей послойным лазерным сплавлением металлических порошков жаропрочных сплавов на основе никеля
RU2674685C1 (ru) * 2018-06-05 2018-12-13 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку
WO2019004857A1 (en) * 2017-06-30 2019-01-03 Siemens Aktiengesellschaft ADDITIVE MANUFACTURING TECHNIQUE FOR PRECIPITATION CURED SUPERALLIATION POWDER MATERIAL
US10675687B2 (en) * 2016-03-24 2020-06-09 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3D) structures using 3D printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623537C2 (ru) * 2015-11-13 2017-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ изготовления деталей послойным лазерным сплавлением металлических порошков жаропрочных сплавов на основе никеля
US10675687B2 (en) * 2016-03-24 2020-06-09 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3D) structures using 3D printing
WO2019004857A1 (en) * 2017-06-30 2019-01-03 Siemens Aktiengesellschaft ADDITIVE MANUFACTURING TECHNIQUE FOR PRECIPITATION CURED SUPERALLIATION POWDER MATERIAL
RU2674685C1 (ru) * 2018-06-05 2018-12-13 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Разработка аддитивных технологических процессов изготовления жаровых труб ГТД из отечественного порошка марки ВВ751П. Сотов А.В. и др. "Аддитивные технологии: настоящее и будущее": материалы IV международной конференции, г. Москва, ФГУП "ВИАМ". - М.: ВИАМ, 2018, с.122-127. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811330C1 (ru) * 2022-11-17 2024-01-11 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Способ получения заготовок деталей и сборочных единиц индустриальных двигателей методом селективного лазерного сплавления металлического порошка
RU2804167C1 (ru) * 2023-02-17 2023-09-26 Публичное Акционерное Общество "Одк-Сатурн" Способ изготовления трубопровода сложной конфигурации для газотурбинного двигателя аддитивным методом

Similar Documents

Publication Publication Date Title
Dezaki et al. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process
Löber et al. Comparison off selective laser and electron beam melted titanium aluminides
EP2790858B1 (en) Method for additively manufacturing an article made of a difficult-to-weld material
US10780501B2 (en) Method for manufacturing objects using powder products
KR102383340B1 (ko) 적층 가공에 의한 기계 구성요소 제조 방법
JP6804205B2 (ja) 物品の製造方法
US4212669A (en) Method for the production of precision shapes
EP1878522B1 (en) Mass production of tridimensional articles made of intermetallic compounds
EP3670031A1 (en) Method and system for generating a three-dimensional workpiece
RU2623537C2 (ru) Способ изготовления деталей послойным лазерным сплавлением металлических порошков жаропрочных сплавов на основе никеля
WO2019186603A1 (en) Nozzle guide vane and manufacturing method for the same
Abdulrahman et al. Laser metal deposition of titanium aluminide composites: A review
Das et al. Direct laser fabrication of superalloy cermet abrasive turbine blade tips
RU2700439C1 (ru) Способ аддитивного производства изделий из титановых сплавов с функционально-градиентной структурой
EP3766604A1 (en) Method and device for purging an additive manufacturing space
RU2767968C1 (ru) Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления
CN113134629A (zh) 一种基于多段耦合调控性能的激光增材制造方法
EP3670030A1 (en) Method and system for generating a three-dimensional workpiece
CN108044122B (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
RU2790493C1 (ru) Способ изготовления заготовок послойным лазерным сплавлением металлических порошков сплавов на основе титана
Ahlfors Hot Isostatic Pressing for Metal Additive Manufacturing
EP3834962A1 (en) Method and system for generating a three-dimensional workpiece
EP3689499A1 (en) Manufacturing of high temperature aluminum components via coating of base powder
JP7207067B2 (ja) 金属部材の作製方法
CN114015922B (zh) 用于增材制造的钴基高温合金金属粉末材料及其制备方法