RU2765950C1 - Резиновая смесь для изготовления нефтенабухающих изделий - Google Patents

Резиновая смесь для изготовления нефтенабухающих изделий Download PDF

Info

Publication number
RU2765950C1
RU2765950C1 RU2021116649A RU2021116649A RU2765950C1 RU 2765950 C1 RU2765950 C1 RU 2765950C1 RU 2021116649 A RU2021116649 A RU 2021116649A RU 2021116649 A RU2021116649 A RU 2021116649A RU 2765950 C1 RU2765950 C1 RU 2765950C1
Authority
RU
Russia
Prior art keywords
rubber
oil
swelling
polyethylene
products
Prior art date
Application number
RU2021116649A
Other languages
English (en)
Inventor
Сергей Петрович Антипов
Артем Михайлович Лебедев
Карим Марселевич Марданшин
Эльвир Анисович Шарафетдинов
Лариса Фаритовна Волкова
Алексей Радикович Мухтаров
Original Assignee
Общество с ограниченной ответственностью "НАБЕРЕЖНОЧЕЛНИНСКИЙ ТРУБНЫЙ ЗАВОД"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НАБЕРЕЖНОЧЕЛНИНСКИЙ ТРУБНЫЙ ЗАВОД" filed Critical Общество с ограниченной ответственностью "НАБЕРЕЖНОЧЕЛНИНСКИЙ ТРУБНЫЙ ЗАВОД"
Priority to RU2021116649A priority Critical patent/RU2765950C1/ru
Application granted granted Critical
Publication of RU2765950C1 publication Critical patent/RU2765950C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к промышленности РТИ для нефтегазовой отрасли и может быть использовано для производства нефтенабухающих пакеров или иных изделий для изоляции пластов путем увеличения объема при контакте с нефтесодержащей жидкостью или попутным нефтяным газом. Резиновая смесь на основе синтетического этилен-пропилен-диенового полимера (СКЭПТ), в состав которой дополнительно вводится полиэтилен с молекулярной массой Mn 800-1500 в количестве 5-30 масс.ч. на 100 масс.ч. каучука СКЭПТ. Резиновая смесь может включать в себя наполнители, мягчители, пластификаторы, противостарители (антиоксиданты, антиозонанты), вулканизующие системы, антискорчинги, антиреверсивные агенты и т.д. Техническим результатом является получение изделий, обладающих высокой степенью набухания в среде нефти, при этом имеющих относительно невысокую скорость набухания. 3 з.п. ф-лы, 1 ил., 3 табл.

Description

Область техники
Изобретение относится к области резинотехнических изделий (РТИ) и РТИ для нефтедобывающей промышленности, в частности, и может быть использовано для производства нефтенабухающих пакеров, используемых при нефтедобыче и разработке скважин. Также данное изобретение может применяться и для создания иных изделий для изоляции пластов путем увеличения объема при контакте с нефтесодержащей жидкостью или попутным нефтяным газом. Кроме того, данное изобретение может применяться для ремонта систем транспортировки нефтепродуктов и соответствующего оборудования.
Уровень техники
Во многих областях применения разбухающие пакеры или заколонные пакеры могут служить более безопасным и простым средством разобщения пластов, чем цементирование и перфорирование. Разбухающие пакеры находят широкое применение и дают ощутимый положительный эффект в следующих операциях осуществляемых на месторождениях: разобщение пластов, отвод потока, вызов притока в скважину, скважины с компьютерной системой управления добычей, раздельная добыча из нескольких горизонтов, оптимизация использования цементирования, гравийная среда, гидроразрыв пласта, гидро- и пароизоляция зон в скважине, расширяющийся обратный клапан, заканчивание скважины и т.п.
Принцип действия разбухающего пакера и иных разбухающих изделий заключается в следующем. Когда разбухающий пакер или изделие, изготовленное из специального эластомера соприкасается со скважинными флюидами, происходит его разбухание, вследствие чего закупоривается затрубное пространство в любых открытых или обсаженных стволах. Отсутствие подвижных частей в конструкции позволяет производить установку без спускаемых через бурильные трубы инструментов, предназначенных для приведения конструкции в действие, и исключает возможность отказа. Эластомерные компаунды из которых изготавливаются разбухающие пакеры реагируют на скважинные флюиды, буровой раствор, жидкости для закачивания скважин и способны увеличиваться в объеме относительно объема, занимаемого при спуске в скважину. Использование эластомерных разбухающих пакеров в необсаженной скважине в дополнение к гравийной набивке позволяет изолировать секции боковых ответвлений от возможного проникновения воды.
Долгосрочная целостность скважины напрямую зависит от цементного покрытия трубопровода. Разрушение цементного покрытия может привести к потере производительности, снижению давления в скважине и раннему получению воды. Даже качественное цементное покрытие может быть повреждено при бурении и/или колебании давления и температуры в процессе добычи. Для его восстановления необходим дорогостоящий капитальный ремонт скважины. Разбухающие пакеры используются для уменьшения нагрузок в зоне контакта эластомер/ цемент, предотвращая, таким образом, разрушение цементного слоя. При образовании трещин в цементном слое затрубного пространства, эластомер разбухающего пакера вступает во взаимодействие с флюидами, от чего разбухает и закупоривает их путь движения. Устанавливая разбухающие пакеры на опасных участках, гарантируется долгосрочная кольцевая изоляция трубопровода.
В настоящее время ведется много разработок в данной области и существует множество запатентованных разработок.
Так, например, патентный источник WO 03008756, дата публикации 30.01.2003, описывает метод, при котором в затрубное пространство скважины помещается цилиндр из резины, который способен набухать при контакте с водой или нефтью, тем самым отсекая приток воды в продуктивные пласты.
Также из патентного документа WO 2014062391 А1, дата публикации 24.04.2014, известен набухающий пакер с контролируемой скоростью набухания который набухает благодаря, входящим в состав водоадсорбирующим добавкам, а именно сополимер тетрафторэтилена и пропилена, привитой сополимер крахмала и полиакрилатной кислоты, привитой сополимер поливинилового спирта и циклического кислотного ангидрида, сополимер изобутилена и малеинового ангидрида, сополимер винилацетата и акрилата, полимер оксида полиэтилена, привитой поли(этилен оксид) поли(акриловой кислоты), полимер типа карбоксиметилцеллюлозы, привитой сополимер крахмала и полиакрилонитрила, полиметакрилат, полиакриламид, сополимер акриламида и акриловой кислоты, поли(2-гидроксиэтил метакрилат), поли (2-гидроксипропил метакрилат), нерастворимый акриловый полимер, глинистый минерал с высокой способность к набуханию, бентонит натрия, бентонит натрия с монтмориллонитом в качестве основного компонента, бентонит кальция, их производные или их комбинации.
В патентном документе RU 2685350 C1, дата публикации 17.04.2019, описана водонефтенабухающая эластомерная композиция на основе бутадиен-α-метилстирольного каучука и содержащая водонабухающий реагент - натрийкарбоксиметилцеллюлозу в количестве 25,0 - 70,0, а также компоненты, которые являются привычными в технологии РТИ.
В патентном документе RU 2686202 С1, дата публикации 24.04.2019, описана резиновая смесь, которая содержит бутадиен-нитрильный каучук с содержанием НАК 17-20%, бутадиеновый каучук СКД, севилен 11808-340, серу, 2,2'-дибензтиазолдисульфид, гуанид Ф, цинковые белила, стеариновую кислоту, ацетонанил Н, технический углерод П 514, росил 175, тальк, тонкомолотый минеральный порошок из шунгита, канифоль, иглопробивное полотно «Оксипан», полиакриламид АК 639, реагент «Комета-Р» и натриевую соль полиакриловой кислоты ПАН-1.
Известен нефтенабухающий пакер, описанный в заявке CN 101824973 A, дата публикации 08.09.2010, изготовленный из резиновой смеси, содержащей бутадиен-стирольный каучук, акрилонитрил-бутадиеновый каучук, неопреновый каучук, технический углерод, оксид цинка, стеариновую кислоту, стабилизирующий агент, неорганический наполнитель, материал с высокой абсорбцией нефти.
Также существует резиновая смесь для уплотнительных элементов, описанная в патенте RU 2688512 С1, дата публикации 21.05.2019, которая содержит бутадиен-нитрильный каучук с содержанием нитрила акриловой кислоты 17-20%, изопреновый каучук СКИ-3, сэвилен 11808-340, N,N'-дитиодиморфолин, тиурам Д, сульфенамид Ц, цинковые белила, стеариновую кислоту, N-нитрозодифениламин, технический углерод Т 900, росил 175, тальк, мел, смолу нефтеполимерную «Сибпласт».
В патенте RU 2615520 C1, дата публикации 05.04.2017, описана нефтеабсорбирующая резиновая смесь на основе комбинации каучуков бутадиен-нитрильного марки БНКС-40АМН и синтетического изопренового марки СКИ-3, а также дополнительно содержащая вулканизующий агент - сера, ускорители вулканизации - каптакс и альтакс, активатор вулканизации - цинковые белила, противостаритель - нафтам-2, наполнители - технический углерод П 324, росил-175 и стеарат цинка, пластификаторы - норман-346 и канифоль.
Наиболее близким аналогом предлагаемого решения является композиционный нефтенабухающий материал, описанный в патенте RU 2625108 С1, опубликован 11.07.2017, характеризующийся тем, что включает бутадиен-нитрильный каучук с содержанием нитрила акриловой кислоты 17-20%, изопреновый каучук СКИ-3, серу, сульфенамид Ц, N,N'-дитиодиморфолин, тиурам Д, антискорчинг «ЗПР», оксид цинка, стеарат цинка, стеариновую кислоту, нафтам-2, технический углерод Н 220, таурит ТС-Д, смолу «Шинпласт», оксанол ЦС-100, дибутилфталат, масло индустриальное И-12А, транс-полинорборнен. Данное решение принято в качестве прототипа.
К недостаткам прототипа можно отнести: сложность технологии (необходимость предварительного «вымачивания» транс-полинорборнена и многокомпонентность состава), необходимость применения дополнительного оборудования, а также недостаточная степень набухания при довольно большой скорости.
Перечень чертежей
На фигуре 1 представлен график, показывающий зависимость изменения объема образца от времени выдерживания в среде.
Раскрытие изобретения
Целью предлагаемого решения является преодоление недостатков предшествующего уровня техники и разработка резиновой смеси, имеющей улучшенные свойства набухаемости и эффективно работающей в среде водонефтяной эмульсии, используемой, предпочтительно, для изготовления пакеров.
Технический результат изобретения заключается в разработке резиновой смеси, из которой изготавливают изделия, обладающие наиболее эффективным сочетанием свойств набухаемости, а именно, более медленным изменением объема в нефтесодержащих средах с одновременной увеличенной набухаемостью в таких средах. Также технология изготовления смеси является более простой, более быстрой и более дешевой ввиду того, что компонентный состав намного проще и доступней, а приготовление смеси требует соответственно меньше времени и операций.
Применительно к пакерам и иным разбухающим изделиям указанные улучшенные механические свойства положительно сказываются на безопасности при спуске оборудования, поскольку в нефтесодержащей среде пакер (или изделие) разбухает медленней. Кроме того, у предлагаемого решения значительно улучшены свойства набухания в нефтяной среде, что обеспечивает большую надежность и работоспособность пакера в данных условиях.
Технический результат достигается тем, что обеспечивают резиновую смесь на основе синтетического этилен-пропилен (диенового) полимера (далее по тексту СКЭПТ), при этом в состав дополнительно вводится полиэтилен с молекулярной массой (Mn) 800-1500 в количестве 5 - 30 масс.ч. на 100 масс.ч. каучука СКЭПТ. Подобные олигомеры полиэтилена могут представлять собой как жидкости, так и твердые, пластичные вещества при нормальных условиях.
Кроме вышеупомянутых компонентов, резиновая смесь может включать в себя ингредиенты, которые являются общеприменяемыми в резиновой промышленности: наполнители, мягчители, пластификаторы, диспергаторы, противостарители (антиоксиданты, антиозонанты), вулканизующие системы, антискорчинги, антиреверсивные агенты и т.д. Дополнительные ингредиенты подбираются исходя из специфических условий эксплуатации и изготовления изделия, и не влияют на сущность изобретения.
Выбор соотношения основных полимерных компонентов зависит от предполагаемых условий эксплуатации изделия из данной резиновой смеси и могут варьироваться в заданных пределах для достижения требуемых свойств.
Например, количество полиэтилена с молекулярной массой (Mn) 800-1500 может составлять 6, 7, 10, 15, 20, 25 масс.ч. на 100 масс.ч. СКЭПТ. Однако количественное соотношение компонента не ограничено только приведенными значениями и может включать любые промежуточные значения, входящие в первоначально указанные интервалы.
При этом выбор количественного содержания полиэтилена обусловлен достижением оптимальных физико-механических свойств изделий. Так, при содержании в концентрациях выше 30 масс.ч., неожиданно падает степень набухаемости изделия и прочностные характеристики резин, что неприемлемо в данном применении. При концентрации полиэтлена ниже минимально допустимого уровня (5 масс.ч.) эффект от его введения не является удовлетворительным и мало заметен.
При этом использование именно низкомолекулярного полиэтилена (с молекулярной массой 800-1500) было обусловлено тем, что что «классический» полимер полиэтилена крайне ограниченно набухает в среде нефтепродуктов при температурах ниже 80°С, причем это набухание настолько незначительно, что полиэтилен возможно использовать в качестве трубопроводов для перекачки нефти (см. Yu, K.; Morozov, E.; Ashraf, M.A.; Shankar, K. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. J. Reinf. Plast. Compos. 2017, 36, р. 1514-1530). Что касается полиэтилена с молекулярной массой менее 800, то его обработка сложна с технологической точки зрения, а порой невозможна, ввиду нестабильности свойств и агрегатного состояния. Как известно, свойства олигомеров сильно зависят от изменения количества повторяющихся звеньев в молекуле. С того момента, когда химические свойства перестают изменяться с увеличением длины цепочки, вещество называют полимером. Было экспериментально установлено, что полиэтилен с молекулярной массой 800-1500 при его использовании для получения резиновых изделий обладает наилучшим комплексом свойств набухаемости и обрабатываемости, а также стабильностью свойств в нефтесодержащих средах. Указанные полимеры по сути представляют собой полиэтиленовые воски.
Этилен-пропилен-диеновые каучуки (СКЭПТ) - это синтетические эластомеры. Представляют собой тройные сополимеры с 1-2 мол. % диена, например 2-этилиден-5-норборнена, дициклопентадиена. Растворяются во многих углеводородах и их хлорпроизводных. СКЭПТ получают сополимеризацией этилена с пропиленом и диеном на катализаторе Циглера-Натта в растворе или избытке полипропилена. Непластифицируются. Вулканизируются серой, фенол-формальдегидными смолами. СКЭПТ имеют превосходную атмосферо- и озоностойкость, высокую термо-, масло- и износостойкость, но также и высокую воздухопроницаемость, устойчивы в агрессивных средах, обладают хорошими диэлектрическими свойствами; предел прочности при растяжении 20-28 МПа, относительное удлинение 400-600%, эластичность по отскоку 40-52%.
Используемые в изобретении функциональные добавки, такие, как наполнители, мягчители, пластификаторы, противостарители (антиоксиданты, антиозонанты), диспергаторы, вулканизующие системы, антискорчинги, антиреверсивные агенты и т.д., являются хорошо знакомыми для специалистов и не требуют специального раскрытия. Подходящие для использования добавки раскрыты, в частности, в книге «Функциональные наполнители для пластмасс» под ред. Марино Ксантос, 2010 г.
Что касается механизма достижения технического результата, то этот вопрос до конца нами не исследован, однако повышенная набухаемость предложенной резиновой смеси скорее всего связана с природой низкомолекулярного полиэтилена. Данный эффект скорей всего связан с образованием пространственной структуры полимера в композите.
Также необходимо отметить, что изготовление нефтенабухающих пакеров не является единственной областью использования предложенной резиновой смеси и она может быть использована в любой области, требующей использование материалов, обладающих нефте- или маслонабухающими свойствами. В частности, данное изобретение может применяться для ремонта систем транспортировки нефтепродуктов и соответствующего оборудования
Осуществление изобретения
Для подтверждения возможности осуществления изобретения и достижения технического результата был проведен ряд исследований и экспериментов. Результаты экспериментов представлены ниже.
Резиновую смесь изготавливали на вальцах лабораторных ЛБ 320 150/150 (производства АО "Завода имени Красина") с общей загрузкой 1200 г., согласно приведенной ниже рецептуре.
В качестве компонентов резиновой смеси использовались синтетический каучук этилен-пропилен-норборненовый (Vistalon фирмы ExxonMobil), окись цинка (ГОСТ 208-84) - активатор ускорителей, сера (Polsinex фирмы Grupa Azoty) - вулканизующий агент, стеариновая кислота (ГОСТ 6484-84) - активатор ускорителей вулканизации, диспергатор наполнителей, мягчитель (пластификатор), органический пероксид - вулканизатор, технический углерод Н 220 - усиливающий наполнитель, масло индустриальное И-12А - пластификатор, низколекулярный полиэтилен Marcus M300 с молекулярной массой примерно 900-1100 (Marcus Oil & Chemical).
Соотношения компонентов предлагаемого решения и прототипа приведены в таблице 1:
Таблица 1
Составы резиновых смесей
Предлагаемое решение Прототип
Этилен-пропилен-диеновый каучук Vistalon 100,00 -
Бутадиен-нитрильный каучук с содержанием нитрила акриловой кислоты 17-20% - 50,00
Изопреновый каучук СКИ-3 - 50,00
Сера 0,20 0,50
Сульфенамид Ц - 2,00
N,N'-дитиоморфолин - 2,00
Тиурам Д - 2,00
Антискорчинг «ЗПР» 0,50
Окись цинка 5,00 3,00
Стеарат цинка - 5,00
Стеариновая кислота 5,00 2,00
Нафтам 2 - 2,00
Технический углерод Н 220 10,00 30,00
Таурит ТС-Д - 15,00
Смола «Шинпласт» - 5,00
Оксанол ЦС-100 - 2,00
Дибутилфталат - 3,00
Масло индустриальное И-12А 3,00 24,00
транс-полинорборнен - 6,00
Полиэтилен Marcus M300 25,00 -
Органический пероксид 7,00 -
Из изготовленных резиновых смесей на вулканизационном прессе LP 600kN (ф.Montech) свулканизованы образцы. После вылежки в 24 часа, образцы испытаны по ГОСТ ISO 1817-2016 «Резина и термоэластопласты. Определение стойкости к воздействию жидкостей». В качестве среды испытания применяется нефть с температурой 60-70°С.
Таблица 2
Результаты испытаний
Предлагаемое решение Прототип
Изменение объема через 12 ч, % 35 98
Изменение объема через 24 ч, % 55 122
Изменение объема через 48 ч, % 80 137
Изменение объема через 72 ч, % 101 152
Изменение объема через 96 ч, % 125 167
Изменение объема через 120 ч, % 142 172
Изменение объема через 144 ч, % 160 178
Изменение объема через 168 ч, % 189 182
Изменение объема через 336 ч, % 270 185
Изменение объема через 504 ч, % 320 186
Результаты испытаний графически изображены на фигуре 1.
Из изображения видно, что предлагаемое решение позволяет достигать больших степеней набухания, что прогнозирует возможность применения изобретения в условиях больших дифференциальных давлений.
Также было экспериментально исследовано влияние количества низкомолекулярного полиэтилена (с молекулярной массой 800-1500) на набухание композиции, т. к. известно, что «классический» полиэтилен крайне ограниченно набухает в среде нефтепродуктов при температурах ниже 80°С.
В качестве показателя для сравнения использованы значения «Изменение массы через 500 ч пребывания в тестовой жидкости». Условия испытаний аналогичны испытаниям фигуры 1. Рецептура эластомерного материала аналогична таблице 1, за исключением варьирования количества компонента «Полиэтилен Marcus M300»:
Результаты испытаний представлены в таблице 3
Таблица 3
Изменение массы образца через 500 ч пребывания в тестовой жидкости (нефть)
1 вариант 2 вариант 3 вариант 4 вариант 5 вариант 6 вариант
Содержание ПЭ, масс.ч. 0 10 20 30 45 60
Δm 500 ч, % 170 300 337 370 220 150
Как видно из данных таблицы, изменение массы непропорционально содержанию полиэтилена, а имеет экстремальный характер. Увеличение степени набухания при введении полиэтилена не может быть объяснено с точки зрения принципа аддитивности, т.к. как упомянуто выше, что полиэтилен не обладает достаточным набуханием. Как мы предполагаем, низкая молекулярная масса полиэтилена препятствует его кристаллизации, и он образует аморфные области в эластомерном материале, которые больше подвержены миграции нефтепродуктов внутрь материала. Уменьшение массы набухания при дальнейшем увеличении содержания полиэтилена можно связать с тем, что большая доля аморфных областей облегчает миграцию нефтепродуктов как в композит так и из композита.
Полиэтилен с еще меньшей молекулярной массой является слишком пластичным (практически жидким), он нестабилен, плохо поддается обработке и плохо формуется, в связи с чем использование таких олигомеров в данном изобретении не представляется возможным.
Данные испытания позволяют сделать вывод об эффективности использования низкомолекулярного полиэтилена (с молекулярной массой 800-1500) в количестве 5-30 масс.ч. совместно с каучуком СКЭПТ для получения нефтенабухающих изделий, обладающих высокой степенью набухания в среде нефти и масла, при этом имеющих относительно невысокую скорость набухания.
Резиновая смесь легко готовится, рецептура является относительно простой.

Claims (4)

1. Резиновая смесь для изготовления нефтенабухающих резиновых изделий на основе синтетического этилен-пропилен-диенового каучука (СКЭПТ), содержащая вулканизующую систему и технологические добавки, отличающаяся тем, что в состав смеси дополнительно вводится полиэтилен с молекулярной массой Mn 800-1500 в количестве 5-30 масс.ч. на 100 масс.ч. каучука СКЭПТ.
2. Резиновая смесь по п. 1, отличающаяся тем, что резиновым изделием является пакер.
3. Резиновая смесь по п. 1 или 2, отличающаяся тем, что используют полиэтилен Marcus M300 с молекулярной массой Mn примерно 900-1100.
4. Резиновая смесь по одному из пп. 1-3, отличающаяся тем, что в качестве технологических добавок используют наполнители, мягчители, пластификаторы, диспергаторы, противостарители - антиоксиданты, антиозонанты, антискорчинги, антиреверсивные агенты и красители.
RU2021116649A 2021-06-09 2021-06-09 Резиновая смесь для изготовления нефтенабухающих изделий RU2765950C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021116649A RU2765950C1 (ru) 2021-06-09 2021-06-09 Резиновая смесь для изготовления нефтенабухающих изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021116649A RU2765950C1 (ru) 2021-06-09 2021-06-09 Резиновая смесь для изготовления нефтенабухающих изделий

Publications (1)

Publication Number Publication Date
RU2765950C1 true RU2765950C1 (ru) 2022-02-07

Family

ID=80214765

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021116649A RU2765950C1 (ru) 2021-06-09 2021-06-09 Резиновая смесь для изготовления нефтенабухающих изделий

Country Status (1)

Country Link
RU (1) RU2765950C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008756A1 (en) * 2001-07-18 2003-01-30 Shell Internationale Research Maatschappij B.V. Wellbore system with annular seal member
CN101824973A (zh) * 2009-03-02 2010-09-08 河北宝石特种柔性胶化有限公司 油胀自封式封隔器
WO2014062391A1 (en) * 2012-10-16 2014-04-24 Halliburton Energy Services, Inc. Controlled swell-rate swellable packer and method
RU2615520C1 (ru) * 2016-05-25 2017-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Резиновая смесь
RU2625108C1 (ru) * 2016-07-25 2017-07-11 Акционерное общество "Чебоксарское производственное объединение имени В.И. Чапаева" Композиционный нефтенабухающий материал
RU2688512C1 (ru) * 2018-05-07 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Резиновая смесь
RU2690929C1 (ru) * 2018-10-09 2019-06-06 Общество с ограниченной ответственностью "ИНЖИНИРИНГОВЫЙ ЦЕНТР "ПОЛИМЕРНЫЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ" (ООО "ИЦ "ПМИТ") Водонефтенабухающая термопластичная эластомерная композиция

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008756A1 (en) * 2001-07-18 2003-01-30 Shell Internationale Research Maatschappij B.V. Wellbore system with annular seal member
CN101824973A (zh) * 2009-03-02 2010-09-08 河北宝石特种柔性胶化有限公司 油胀自封式封隔器
WO2014062391A1 (en) * 2012-10-16 2014-04-24 Halliburton Energy Services, Inc. Controlled swell-rate swellable packer and method
RU2615520C1 (ru) * 2016-05-25 2017-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Резиновая смесь
RU2625108C1 (ru) * 2016-07-25 2017-07-11 Акционерное общество "Чебоксарское производственное объединение имени В.И. Чапаева" Композиционный нефтенабухающий материал
RU2688512C1 (ru) * 2018-05-07 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Резиновая смесь
RU2690929C1 (ru) * 2018-10-09 2019-06-06 Общество с ограниченной ответственностью "ИНЖИНИРИНГОВЫЙ ЦЕНТР "ПОЛИМЕРНЫЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ" (ООО "ИЦ "ПМИТ") Водонефтенабухающая термопластичная эластомерная композиция

Similar Documents

Publication Publication Date Title
US20120208934A1 (en) Water Swelling Rubber Compound for Use in Reactive Packers and Other Downhole Tools
US10000685B2 (en) Traceable polymeric additives for use in subterranean formations
CA2690340C (en) Apparatus and method with hydrocarbon swellable and water swellable body
US7938191B2 (en) Method and apparatus for controlling elastomer swelling in downhole applications
GB2514195B (en) Oilfield apparatus and method comprising swellable elastomers
US10400543B2 (en) Wellbore fluid used with swellable elements
NO337100B1 (no) Sementblanding og fremgangsmåte for å tette i en borebrønn
US20060047028A1 (en) Hydrogel for use in downhole seal applications
US20070056735A1 (en) System for sealing a space in a wellbore
Salehi et al. Performance verification of elastomer materials in corrosive gas and liquid conditions
SA517381160B1 (ar) أسمنت ذاتي الالتئام يشتمل على بوليمر قادر على الانتفاخ في بيئة غازية
EP2806007B1 (en) Methods for maintaining zonal isolation in a subterranean well
WO2010039131A1 (en) Water swelling rubber compound for use in reactive packers and other downhole tools
WO2009060170A1 (en) Methods of integrating analysis, auto-sealing, and swellable- packer elements for a reliable annular seal
NO318614B1 (no) Fremgangsmate omfattende bruk av en tilsatsherdende, romtemperaturvulkaniserbar silikonsammensetning ved bronnkonstruksjon, -reparasjon og/eller -stenging.
WO2014066093A1 (en) Methods for maintaining zonal isolation in a subterranean well
RU2765950C1 (ru) Резиновая смесь для изготовления нефтенабухающих изделий
RU2751316C1 (ru) Резиновая смесь
Kwatia Studying “fitness for service” of the sealing assemblies and cement system
RU2767071C1 (ru) Резиновая смесь для изготовления водонабухающих изделий
RU2813984C1 (ru) Кислотоактивируемая резиновая смесь для изготовления водонабухающих резиновых изделий
Isaev et al. A Package of Technical and Technological Solutions for Enhancement of Casing Quality during Wells Construction
US20170183484A1 (en) Improved high temperature mechanical properties of elastomers with semi-crystalline polymers for downhole applications
AU2015202446A1 (en) Wellbore fluid used with swellable elements
AU2012259128A1 (en) Wellbore fluid used with swellable elements